1
|
Felicetti G, Thoumie P, Do MC, Schieppati M. Cutaneous and muscular afferents from the foot and sensory fusion processing: Physiology and pathology in neuropathies. J Peripher Nerv Syst 2021; 26:17-34. [PMID: 33426723 DOI: 10.1111/jns.12429] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
The foot-sole cutaneous receptors (section 2), their function in stance control (sway minimisation, exploratory role) (2.1), and the modulation of their effects by gait pattern and intended behaviour (2.2) are reviewed. Experimental manipulations (anaesthesia, temperature) (2.3 and 2.4) have shown that information from foot sole has widespread influence on balance. Foot-sole stimulation (2.5) appears to be a promising approach for rehabilitation. Proprioceptive information (3) has a pre-eminent role in balance and gait. Reflex responses to balance perturbations are produced by both leg and foot muscle stretch (3.1) and show complex interactions with skin input at both spinal and supra-spinal levels (3.2), where sensory feedback is modulated by posture, locomotion and vision. Other muscles, notably of neck and trunk, contribute to kinaesthesia and sense of orientation in space (3.3). The effects of age-related decline of afferent input are variable under different foot-contact and visual conditions (3.4). Muscle force diminishes with age and sarcopenia, affecting intrinsic foot muscles relaying relevant feedback (3.5). In neuropathy (4), reduction in cutaneous sensation accompanies the diminished density of viable receptors (4.1). Loss of foot-sole input goes along with large-fibre dysfunction in intrinsic foot muscles. Diabetic patients have an elevated risk of falling, and vision and vestibular compensation strategies may be inadequate (4.2). From Charcot-Marie-Tooth 1A disease (4.3) we have become aware of the role of spindle group II fibres and of the anatomical feet conditions in balance control. Lastly (5) we touch on the effects of nerve stimulation onto cortical and spinal excitability, which may participate in plasticity processes, and on exercise interventions to reduce the impact of neuropathy.
Collapse
Affiliation(s)
- Guido Felicetti
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Neuromotor Rehabilitation, Institute of Montescano, Pavia, Italy
| | - Philippe Thoumie
- Service de rééducation neuro-orthopédique, Hôpital Rothschild APHP, Université Sorbonne, Paris, France.,Agathe Lab ERL Inserm U-1150, Paris, France
| | - Manh-Cuong Do
- Université Paris-Saclay, CIAMS, Orsay, France.,Université d'Orléans, CIAMS, Orléans, France
| | | |
Collapse
|
2
|
Ren X, Yang R, Li L, Xu X, Liang S. Long non coding RNAs involved in MAPK pathway mechanism mediates diabetic neuropathic pain. Cell Biol Int 2020; 44:2372-2379. [PMID: 32844535 DOI: 10.1002/cbin.11457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes is the largest global epidemic of the 21st century, and the cost of diabetes and its complications comprise about 12% of global health expenditure. Diabetic neuropathy is the most common complication of diabetes, affecting up to 50% of patients over the course of their disease. Among them, 30%-50% develop neuropathic pain, which has typical symptoms that originate from the toes and progress to foot ulcers and seriously influence quality of life. The pathogenesis of diabetic neuropathic pain (DNP) is complicated and incompletely understood and there is no effective treatment except supportive treatment. Long noncoding RNAs (lncRNAs), a class of noncoding RNAs exceeding 200 nucleotides in length, have been shown to play key roles in fundamental cellular processes, and are considered to be potential targets for treatment. Recent research indicates that lncRNA is involved in the pathogenesis of DNP. Certain overexpressed lncRNAs can enhance the purinergic receptor-mediated neuropathic pain in peripheral ganglia and inflammatory cytokines are released due to receptors activated by adenosine triphosphate. In recent years, our laboratory also has been exploring the relationship and pathogenesis between lncRNAs and DNP. In this review, we focus on the recent progress in functional lncRNAs associated with DNP and investigate their roles related to respective receptors.
Collapse
Affiliation(s)
- Xinlu Ren
- Queen Mary University of London Joint Programme, Nanchang University, Nanchang, Jiangxi, China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
3
|
Soeberdt M, Kilic A, Abels C. Small molecule drugs for the treatment of pruritus in patients with atopic dermatitis. Eur J Pharmacol 2020; 881:173242. [PMID: 32504692 DOI: 10.1016/j.ejphar.2020.173242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022]
Abstract
Chronic pruritus is a cardinal symptom of the inflammatory skin disease atopic dermatitis (AD). Pathogenic mechanisms in the periphery, spinal cord and the brain have been implicated in AD-related pruritus. Therefore, both systemic and topical administration of drugs could potentially provide relief. Despite efforts to elucidate the mechanisms behind AD-related pruritus and the relative contribution of peripheral nervous system and central nervous system (CNS), specific and successful treatment options have not yet been developed. Several small molecule drugs are currently being investigated to treat AD and AD-related pruritus. These small molecule drugs can be applied systemically but also topically, as they are able to penetrate into the skin due to their small size. Small molecule drugs specifically targeting peripheral itch transmission, e.g. peripherally selective κ-opioid receptors agonists and neurokinin 1 receptors antagonists, have so far been unable to improve AD-related pruritus when applied systemically, possibly because of the lack of CNS activity. Current evidence from clinical and preclinical trials with centrally acting or peripherally selective oral κ-opioid receptors agonists implies that CNS activity is required for an antipruritic effect. CNS activity is, however, directly associated with CNS-mediated side-effects. On the other hand, topical application of small molecules with anti-inflammatory activity such as Janus kinase inhibitors and phosphodiesterase 4 inhibitors, and also of κ-opioid receptor agonists, has shown promising results regarding their ability to reduce AD-related pruritus. In conclusion, topical application of anti-inflammatory compounds appears to be a highly promising strategy for the treatment of AD-related pruritus.
Collapse
Affiliation(s)
| | - Ana Kilic
- Dr. August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
| | - Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany.
| |
Collapse
|
4
|
Görlach J, Amsel D, Kölbel H, Grzybowsky M, Rutsch F, Schlierbach H, Vanlander A, Pogatzki‐Zahn E, Habig K, Garkisch S, Müller V, Fritz T, Ziegler A, Hahn A, Krämer HH, Van Coster R, Schänzer A. Diagnostic utility of small fiber analysis in skin biopsies from children with chronic pain. Muscle Nerve 2019; 61:173-181. [DOI: 10.1002/mus.26766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 11/13/2019] [Accepted: 11/16/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Jonas Görlach
- Institute of NeuropathologyJustus‐Liebig‐University Giessen Giessen Germany
| | - Daniel Amsel
- Institute of NeuropathologyJustus‐Liebig‐University Giessen Giessen Germany
| | - Heike Kölbel
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Children's HospitalUniversity Duisburg‐Essen Essen Germany
| | - Michelle Grzybowsky
- Department of Child NeurologyJustus‐Liebig‐University Giessen Giessen Germany
| | - Frank Rutsch
- Department of General Pediatrics, Children's HospitalUniversity of Muenster Muenster Germany
| | - Hannah Schlierbach
- Institute of NeuropathologyJustus‐Liebig‐University Giessen Giessen Germany
| | - Arnaud Vanlander
- Division of Child Neurology, Department of PediatricsUniversity Hospital Gent Gent Belgium
| | - Esther Pogatzki‐Zahn
- Department of Anesthesiology, Intensive Care and Pain MedicineUniversity Hospital Muenster Muenster Germany
| | - Kathrin Habig
- Department of NeurologyJustus‐Liebig‐University Giessen Giessen Germany
| | - Stefanie Garkisch
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, Children's HospitalUniversity Duisburg‐Essen Essen Germany
| | | | - Thorsten Fritz
- Centre for Pain Therapy and Anaesthesiology at Schloss Butzbach Butzbach Germany
| | - Andreas Ziegler
- Department of General Pediatrics and Neuropediatrics, HeidelbergUniversity Hospital Heidelberg Germany
| | - Andreas Hahn
- Department of Child NeurologyJustus‐Liebig‐University Giessen Giessen Germany
| | - Heidrun H. Krämer
- Department of NeurologyJustus‐Liebig‐University Giessen Giessen Germany
| | - Rudy Van Coster
- Division of Child Neurology, Department of PediatricsUniversity Hospital Gent Gent Belgium
| | - Anne Schänzer
- Institute of NeuropathologyJustus‐Liebig‐University Giessen Giessen Germany
| |
Collapse
|
5
|
Huet F, Misery L. Sensitive skin is a neuropathic disorder. Exp Dermatol 2019; 28:1470-1473. [DOI: 10.1111/exd.13991] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Flavien Huet
- University of Brest LIEN Brest France
- Department of Dermatology University Hospital of Brest Brest France
| | - Laurent Misery
- University of Brest LIEN Brest France
- Department of Dermatology University Hospital of Brest Brest France
| |
Collapse
|
6
|
Abels C, Soeberdt M. Can we teach old drugs new tricks?—Repurposing of neuropharmacological drugs for inflammatory skin diseases. Exp Dermatol 2019; 28:1002-1009. [DOI: 10.1111/exd.13987] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/14/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel Bielefeld Germany
| | | |
Collapse
|
7
|
Sloan G, Shillo P, Selvarajah D, Wu J, Wilkinson ID, Tracey I, Anand P, Tesfaye S. A new look at painful diabetic neuropathy. Diabetes Res Clin Pract 2018; 144:177-191. [PMID: 30201394 DOI: 10.1016/j.diabres.2018.08.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
Abstract
The prevalence of diabetes mellitus and its chronic complications continue to increase alarmingly. Consequently, the massive expenditure on diabetic distal symmetrical polyneuropathy (DSPN) and its sequelae, will also likely rise. Up to 50% of patients with diabetes develop DSPN, and about 20% develop neuropathic pain (painful-DSPN). Painful-DSPN can cast a huge burden on sufferers' lives with increased rates of unemployment, mental health disorders and physical co-morbidities. Unfortunately, due to limited understanding of the mechanisms leading to painful-DSPN, current treatments remain inadequate. Recent studies examining the pathophysiology of painful-DSPN have identified maladaptive alterations at the level of both the peripheral and central nervous systems. Additionally, genetic studies have suggested that patients with variants of voltage gated sodium channels may be more at risk of developing neuropathic pain in the presence of a disease trigger such as diabetes. We review the recent advances in genetics, skin biopsy immunohistochemistry and neuro-imaging, which have the potential to further our understanding of the condition, and identify targets for new mechanism based therapies.
Collapse
Affiliation(s)
- Gordon Sloan
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Pallai Shillo
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Dinesh Selvarajah
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Iain D Wilkinson
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Irene Tracey
- FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Praveen Anand
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
8
|
Marmiroli P, Riva B, Pozzi E, Ballarini E, Lim D, Chiorazzi A, Meregalli C, Distasi C, Renn CL, Semperboni S, Morosi L, Ruffinatti FA, Zucchetti M, Dorsey SG, Cavaletti G, Genazzani A, Carozzi VA. Susceptibility of different mouse strains to oxaliplatin peripheral neurotoxicity: Phenotypic and genotypic insights. PLoS One 2017; 12:e0186250. [PMID: 29020118 PMCID: PMC5636145 DOI: 10.1371/journal.pone.0186250] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022] Open
Abstract
Peripheral neurotoxicity is one of the most distressing side effects of oxaliplatin therapy for cancer. Indeed, most patients that received oxaliplatin experience acute and/or chronic severe sensory peripheral neuropathy. However, despite similar co-morbidities, cancer stage, demographics and treatment schedule, patients develop oxaliplatin-induced peripheral neurotoxicity with remarkably different severity. This suggests individual genetic variability, which might be used to glean the mechanistic insights into oxaliplatin neurotoxicity. We characterized the susceptibility of different mice strains to oxaliplatin neurotoxicity investigating the phenotypic features of neuropathy and gene expression profiles in dorsal root ganglia of six genetically different mice strains (Balb-c, C57BL6, DBA/2J, AJ, FVB and CD1) exposed to the same oxaliplatin schedule. Differential gene expression in dorsal root ganglia from each mice strain were assayed using a genome-wide expression analysis and selected genes were validated by RT-PCR analysis. The demonstration of consistent differences in the phenotypic response to oxaliplatin across different strains is interesting to allow the selection of the appropriate strain based on the pre-defined read-out parameters. Further investigation of the correlation between gene expression changes and oxaliplatin-induced neurotoxicity phenotype in each strain will be useful to deeper investigate the molecular mechanisms of oxaliplatin neurotoxicity.
Collapse
Affiliation(s)
- Paola Marmiroli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- * E-mail:
| | - Beatrice Riva
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Eleonora Pozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Elisa Ballarini
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carla Distasi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Cynthia L. Renn
- School of Nursing, Department of Pain and Translational Symptom Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Sara Semperboni
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Lavinia Morosi
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | - Massimo Zucchetti
- Department of Oncology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Susan G. Dorsey
- School of Nursing, Department of Pain and Translational Symptom Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Armando Genazzani
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Valentina A. Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
9
|
Persistent Peripheral Nervous System Damage in Simian Immunodeficiency Virus-Infected Macaques Receiving Antiretroviral Therapy. J Neuropathol Exp Neurol 2016; 74:1053-60. [PMID: 26426267 DOI: 10.1097/nen.0000000000000249] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human immunodeficiency virus (HIV)-induced peripheral neuropathy is the most common neurologic complication associated with HIV infection. In addition to virus-mediated injury of the peripheral nervous system (PNS), treatment of HIV infection with combination antiretroviral therapy (cART) may induce toxic neuropathy as a side effect. Antiretroviral toxic neuropathy is clinically indistinguishable from the sensory neuropathy induced by HIV; in some patients, these 2 processes are likely superimposed. To study these intercurrent PNS disease processes, we first established a simian immunodeficiency virus (SIV)/pigtailed macaque model in which more than 90% of animals developed PNS changes closely resembling those seen in HIV-infected individuals with distal sensory neuropathy. To determine whether cART alters the progression of SIV-induced PNS damage, dorsal root ganglia and epidermal nerve fibers were evaluated in SIV-infected macaques after long-term suppressive cART. Although cART effectively suppressed SIV replication and reduced macrophage activation in the dorsal root ganglia, PGP 9.5 immunostaining and measurements of epidermal nerve fibers in the plantar surface of the feet of treated SIV-infected macaques clearly showed that cART did not normalize epidermal nerve fiber density. These findings illustrate that significant PNS damage persists in SIV-infected macaques on suppressive cART.
Collapse
|
10
|
|
11
|
Abstract
PURPOSE OF REVIEW This article discusses the clinical features, pathophysiology, and management of primary and secondary acquired immune axonal neuropathies. RECENT FINDINGS Although there are many collagen vascular disorders associated with vasculitic neuropathy, a quarter of cases have been described to be due to nonsystemic vasculitis of the peripheral nervous system. Enhanced surveillance and aggressive treatment of conditions such as cryoglobulin-related vasculitic neuropathy with cyclophosphamide, rituximab, and alfa interferons has led to improved morbidity and mortality, however, many cases of immune axonal acquired neuropathy are still associated with poor outcomes. Acute motor axonal neuropathy (AMAN) and acute motor sensory axonal neuropathy (AMSAN) are well-characterized variants of Guillain-Barré syndrome. SUMMARY Characterizing the clinical and electrophysiologic phenotype can help diagnose conditions such as nonsystemic vasculitic neuropathy, AMAN, AMSAN, and immune small fiber neuropathy, while careful evaluation of systemic features is key to identifying secondary immune axonal neuropathies such as vasculitic neuropathy related to collagen vascular disease. Additional research is needed to determine the exact immune pathogenesis and optimized treatment regimens for all acquired immune axonal neuropathies.
Collapse
|
12
|
Kopishinskaya SV, Gustov AV, Kolchanova TV. [Immunohistochemical examination of skin biopsy specimens with calculation of C fibers in the diagnosis of polyneuropathy]. Arkh Patol 2015; 77:43-49. [PMID: 26027400 DOI: 10.17116/patol201577243-49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The paper discusses the anatomy of innervation of the skin, the epidermis and dermis in particular, which are related to pain, the markers of skin nerves and cells. It gives data on the diagnosis of fine unmyelinated fibers, by immunohistochemically examining skin biopsy specimens. The paper also describes the morphometry of skin nerves: intraepidermal nerve fibers, dermal nerve fibers, and autonomic nerve fibers. It discusses whether a skin biopsy specimen may be used to diagnose polyneuropathies of different etiology: diabetic, immune, HIV-related, and hereditary ones.
Collapse
Affiliation(s)
- S V Kopishinskaya
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation
| | - A V Gustov
- Nizhny Novgorod State Medical Academy, Ministry of Health of the Russian Federation
| | | |
Collapse
|
13
|
Nerve demyelination increases metabotropic glutamate receptor subtype 5 expression in peripheral painful mononeuropathy. Int J Mol Sci 2015; 16:4642-65. [PMID: 25739080 PMCID: PMC4394440 DOI: 10.3390/ijms16034642] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 01/24/2023] Open
Abstract
Wallerian degeneration or nerve demyelination, arising from spinal nerve compression, is thought to bring on chronic neuropathic pain. The widely distributed metabotropic glutamate receptor subtype 5 (mGluR5) is involved in modulating nociceptive transmission. The purpose of this study was to investigate the potential effects of mGluR5 on peripheral hypersensitivities after chronic constriction injury (CCI). Sprague-Dawley rats were operated on with four loose ligatures around the sciatic nerve to induce thermal hyperalgesia and mechanical allodynia. Primary afferents in dermis after CCI exhibited progressive decreases, defined as partial cutaneous denervation; importantly, mGluR5 expressions in primary afferents were statistically increased. CCI-induced neuropathic pain behaviors through the intraplantar injections of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective mGluR5 antagonist, were dose-dependently attenuated. Furthermore, the most increased mGluR5 expressions in primary afferents surrounded by reactive Schwann cells were observed at the distal CCI stumps of sciatic nerves. In conclusion, these results suggest that nerve demyelination results in the increases of mGluR5 expression in injured primary afferents after CCI; and further suggest that mGluR5 represents a main therapeutic target in developing pharmacological strategies to prevent peripheral hypersensitivities.
Collapse
|
14
|
Mangus LM, Dorsey JL, Laast VA, Ringkamp M, Ebenezer GJ, Hauer P, Mankowski JL. Unraveling the pathogenesis of HIV peripheral neuropathy: insights from a simian immunodeficiency virus macaque model. ILAR J 2015; 54:296-303. [PMID: 24615443 DOI: 10.1093/ilar/ilt047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Peripheral neuropathy (PN) is the most frequent neurologic complication in individuals infected with human immunodeficiency virus (HIV). It affects over one third of infected patients, including those receiving effective combination antiretroviral therapy. The pathogenesis of HIV-associated peripheral neuropathy (HIV-PN) remains poorly understood. Clinical studies are complicated because both HIV and antiretroviral treatment cause damage to the peripheral nervous system. To study HIV-induced peripheral nervous system (PNS) damage, a unique simian immunodeficiency virus (SIV)/pigtailed macaque model of HIV-PN that enabled detailed morphologic and functional evaluation of the somatosensory pathway throughout disease progression was developed. Studies in this model have demonstrated that SIV induces key pathologic features that closely resemble HIV-induced alterations, including inflammation and damage to the neuronal cell bodies in somatosensory ganglia and decreased epidermal nerve fiber density. Insights generated in the model include: finding that SIV alters the conduction properties of small, unmyelinated peripheral nerves; and that SIV impairs peripheral nerve regeneration. This review will highlight the major findings in the SIV-infected pigtailed macaque model of HIV-PN, and will illustrate the great value of a reliable large animal model to show the pathogenesis of this complex, HIV-induced disorder of the PNS.
Collapse
|
15
|
Abels C. Intra-epidermal nerve fibres in human skin: back to the roots. Exp Dermatol 2014; 23:232-3. [PMID: 24450967 DOI: 10.1111/exd.12326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2014] [Indexed: 01/27/2023]
Abstract
Regarding the existence and the role of intra-epidermal nerve fibres, the literature is ambiguous. However, performing a literature search, a landmark paper turned up that even many dermatologists seem to have forgotten, or may not even know at all. This paper is entitled 'The innervation of human epidermis' written by Arthur and Shelley (J Invest Dermatol, 32, 1959, 397). The full text is available via http://www.nature.com/jid/journal/v32/n3/pdf/jid195969a.pdf. The authors present data on intra-epidermal nerves at 16 representative body areas. The existence of intra-epidermal nerve fibres is undisputable and does not only explain clinical symptoms but may even provide a promising target for drug development.
Collapse
Affiliation(s)
- Christoph Abels
- Dr. August Wolff GmbH & Co. KG Arzneimittel, Bielefeld, Germany
| |
Collapse
|
16
|
Buonocore M. Unilateral peripheral neuropathic pain: The role of neurodiagnostic skin biopsy. World J Clin Cases 2014; 2:27-31. [PMID: 24579067 PMCID: PMC3936215 DOI: 10.12998/wjcc.v2.i2.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/09/2013] [Accepted: 12/19/2013] [Indexed: 02/05/2023] Open
Abstract
According to the current definition of neuropathic pain (“pain arising as a direct consequence of a lesion or disease affecting the somatosensory system”), the demonstration of a lesion or disease involving the somatosensory system is mandatory for the diagnosis of definite neuropathic pain. Although several methods are currently available for this aim, none is suitable for every type of disease (or lesion). Neurodiagnostic skin biopsy (NSB) is a relatively new technique for the diagnosis of peripheral nerve lesions. It is an objective method, completely independent from the patient’s complaining, based on immunohistochemical staining techniques that allow measurement of the density of the epidermal nerve fibers, currently considered the free nerve endings of small diameter (A-delta and C) afferent fibers. NSB has the important property of being used to investigate the skin, allowing obtaining a diagnosis of small fiber axonal neuropathy of peripheral nerves supplying every body part covered by skin. This feature appears to be very important, particularly in cases of unilateral nerve lesions, because it allows going beyond the possibilities of neurophysiological tests which are available only for a limited number of peripheral nerves. All these characteristics make NSB a precious instrument for the diagnosis of peripheral unilateral neuropathic pain.
Collapse
|
17
|
Lee-Kubli CA, Mixcoatl-Zecuatl T, Jolivalt CG, Calcutt NA. Animal models of diabetes-induced neuropathic pain. Curr Top Behav Neurosci 2014; 20:147-70. [PMID: 24510303 DOI: 10.1007/7854_2014_280] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neuropathy will afflict over half of the approximately 350 million people worldwide who currently suffer from diabetes and around one-third of diabetic patients with neuropathy will suffer from painful symptoms that may be spontaneous or stimulus evoked. Diabetes can be induced in rats or mice by genetic, dietary, or chemical means, and there are a variety of well-characterized models of diabetic neuropathy that replicate either type 1 or type 2 diabetes. Diabetic rodents display aspects of sensorimotor dysfunction such as stimulus-evoked allodynia and hyperalgesia that are widely used to model painful neuropathy. This allows investigation of pathogenic mechanisms and development of potential therapeutic interventions that may alleviate established pain or prevent onset of pain.
Collapse
|
18
|
Acquired neuropathies. J Neurol 2013; 260:2433-40. [DOI: 10.1007/s00415-013-6994-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 11/26/2022]
|
19
|
Shipton EA. Skin matters: identifying pain mechanisms and predicting treatment outcomes. Neurol Res Int 2013; 2013:329364. [PMID: 23766902 PMCID: PMC3674740 DOI: 10.1155/2013/329364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 04/26/2013] [Accepted: 05/01/2013] [Indexed: 01/21/2023] Open
Abstract
The skin acts as a complex sensory organ. The emerging new data on peripheral pain mechanisms from within the skin is presented. This data has led to new insights into the potential pain mechanisms for various pain conditions including neuropathic pain (from small fiber neuropathies) and Complex Regional Pain Syndrome. The somatosensory neurons that innervate our skin constantly update our brains on the objects and environmental factors that surround us. Cutaneous sensory neurons expressing nociceptive receptors such as transient receptor potential vanilloid 1 channels and voltage-gated sodium channels are critical for pain transmission. Epidermal cells (such as keratinocytes, Langerhans cells, and Merkel cells) express sensor proteins and neuropeptides; these regulate the neuroimmunocutaneous system and participate in nociception and neurogenic inflammation. In the past two decades, there has been widespread use of modalities such as punch skin biopsies, quantitative sensory testing, and laser-evoked potentials to evaluate small caliber nerve fibers. This paper explores these laboratory techniques as well as the phenomenon of small fiber neuropathy. Treatment using transdermal drug delivery is discussed. There is potential for these findings to predict treatment outcomes in clinical practice and to develop new therapies for different pain conditions. These findings should enhance the physician's ability to evaluate and treat diverse types of pain.
Collapse
Affiliation(s)
- Edward A. Shipton
- Department of Anesthesia, University of Otago, P.O. Box 4345, Christchurch 8041, New Zealand
| |
Collapse
|