1
|
Gemignani F, Percesepe A, Gualandi F, Allegri I, Bellanova MF, Nuredini A, Saccani E, Ambrosini E, Barili V, Uliana V. Charcot-Marie-Tooth Disease with Myelin Protein Zero Mutation Presenting as Painful, Predominant Small-Fiber Neuropathy. Int J Mol Sci 2024; 25:1654. [PMID: 38338934 PMCID: PMC10855578 DOI: 10.3390/ijms25031654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
Charcot-Marie-Tooth disease (CMT) rarely presents with painful symptoms, which mainly occur in association with myelin protein zero (MPZ) gene mutations. We aimed to further characterize the features of painful neuropathic phenotypes in MPZ-related CMT. We report on a 58-year-old woman with a longstanding history of intermittent migrant pain and dysesthesias. Examination showed minimal clinical signs of neuropathy along with mild changes upon electroneurographic examination, consistent with an intermediate pattern, and small-fiber loss upon skin biopsy. Genetic testing identified the heterozygous variant p.Trp101Ter in MPZ. We identified another 20 CMT patients in the literature who presented with neuropathic pain as a main feature in association with MPZ mutations, mostly in the extracellular MPZ domain; the majority of these patients showed late onset (14/20), with motor-nerve-conduction velocities predominantly in the intermediate range (12/20). It is hypothesized that some MPZ mutations could manifest with, or predispose to, neuropathic pain. However, the mechanisms linking MPZ mutations and pain-generating nerve changes are unclear, as are the possible role of modifier factors. This peculiar CMT presentation may be diagnostically misleading, as it is suggestive of an acquired pain syndrome rather than of an inherited neuropathy.
Collapse
Affiliation(s)
- Franco Gemignani
- European Diagnostic Center, Polyclinic Dalla Rosa Prati, 43126 Parma, Italy
| | - Antonio Percesepe
- Medical Genetics Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Genetics Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Francesca Gualandi
- Medical Genetics Unit, Department of Mother and Child, Sant’Anna University Hospital of Ferrara, 44121 Ferrara, Italy
| | - Isabella Allegri
- Neurology Unit, Department of Specialized Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Maria Federica Bellanova
- Laboratory of Neuromuscular Histopathology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Andi Nuredini
- Neurology Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Elena Saccani
- Neurology Unit, Department of Specialized Medicine, University Hospital of Parma, 43126 Parma, Italy
| | - Enrico Ambrosini
- Medical Genetics Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Valeria Barili
- Medical Genetics Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Vera Uliana
- Medical Genetics Unit, University Hospital of Parma, 43126 Parma, Italy
| |
Collapse
|
2
|
Fridman V, Sillau S, Bockhorst J, Smith K, Moroni I, Pagliano E, Pisciotta C, Piscosquito G, Laurá M, Muntoni F, Bacon C, Feely S, Grider T, Gutmann L, Shy R, Wilcox J, Herrmann DN, Li J, Ramchandren S, Sumner CJ, Lloyd TE, Day J, Siskind CE, Yum SW, Sadjadi R, Finkel RS, Scherer SS, Pareyson D, Reilly MM, Shy ME. Disease Progression in Charcot-Marie-Tooth Disease Related to MPZ Mutations: A Longitudinal Study. Ann Neurol 2023; 93:563-576. [PMID: 36203352 PMCID: PMC9977145 DOI: 10.1002/ana.26518] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/29/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The paucity of longitudinal natural history studies in MPZ neuropathy remains a barrier to clinical trials. We have completed a longitudinal natural history study in patients with MPZ neuropathies across 13 sites of the Inherited Neuropathies Consortium. METHODS Change in Charcot-Marie-Tooth Examination Score (CMTES) and Rasch modified CMTES (CMTES-R) were evaluated using longitudinal regression over a 5-year period in subjects with MPZ neuropathy. Data from 139 patients with MPZ neuropathy were examined. RESULTS The average baseline CMTES and CMTES-R were 10.84 (standard deviation [SD] = 6.0, range = 0-28) and 14.60 (SD = 7.56, range = 0-32), respectively. A mixed regression model showed significant change in CMTES at years 2-5 (mean change from baseline of 0.87 points at 2 years, p = 0.008). Subgroup analysis revealed greater change in CMTES at 2 years in subjects with axonal as compared to demyelinating neuropathy (mean change of 1.30 points [p = 0.016] vs 0.06 points [p = 0.889]). Patients with a moderate baseline neuropathy severity also showed more notable change, by estimate, than those with mild or severe neuropathy (mean 2-year change of 1.14 for baseline CMTES 8-14 [p = 0.025] vs -0.03 for baseline CMTES 0-7 [p = 0.958] and 0.25 for baseline CMTES ≥ 15 [p = 0.6897]). The progression in patients harboring specific MPZ mutations was highly variable. INTERPRETATION CMTES is sensitive to change over time in adult patients with axonal but not demyelinating forms of MPZ neuropathy. Change in CMTES was greatest in patients with moderate baseline disease severity. These findings will inform future clinical trials of MPZ neuropathies. ANN NEUROL 2023;93:563-576.
Collapse
Affiliation(s)
- Vera Fridman
- Department of Neurology, University of Colorado Denver, Aurora, Colorado, USA
| | - Stefan Sillau
- Department of Neurology, University of Colorado Denver, Aurora, Colorado, USA
| | - Jacob Bockhorst
- Department of Neurology, University of Colorado Denver, Aurora, Colorado, USA
| | - Kaitlin Smith
- Department of Neurology, University of Colorado Denver, Aurora, Colorado, USA
| | - Isabella Moroni
- Department of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emanuela Pagliano
- Department of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pisciotta
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Guiseppe Piscosquito
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Istituti Clinici Scientifici Maugeri, Neurorehabilitation Unit, Scientific Institute of Telese Terme (BN), Italy
| | - Matilde Laurá
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health & Great Ormond Street Hospital, London, UK
| | - Chelsea Bacon
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Shawna Feely
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
| | - Tiffany Grider
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Laurie Gutmann
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Rosemary Shy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
| | - Janel Wilcox
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - David N. Herrmann
- Department of Neurology, University of Rochester, Rochester, New York, USA
| | - Jun Li
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
- Department of Neurology, Vanderbilt University, Nashville, Tennessee, USA
| | - Sindhu Ramchandren
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- PRA Health Sciences, Raleigh, North Carolina, USA
| | - Charlotte J. Sumner
- Departments of Neurology and Neuroscience, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas E. Lloyd
- Departments of Neurology and Neuroscience, John Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John Day
- Department of Neurology, Stanford University, Stanford, California, USA
| | - Carly E. Siskind
- Department of Neurology, Stanford University, Stanford, California, USA
| | - Sabrina W. Yum
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Reza Sadjadi
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Richard S. Finkel
- Department of Neurology, Nemours Children’s Hospital, Orlando, Florida, USA
| | - Steven S. Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Davide Pareyson
- Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michael E. Shy
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Department of Neurology, Wayne State University, Detroit, Michigan, USA
| | | |
Collapse
|
3
|
Abstract
Demyelinating forms of Charcot-Marie-Tooth disease (CMT) are genetically and phenotypically heterogeneous and result from highly diverse biological mechanisms including gain of function (including dominant negative effects) and loss of function. While no definitive treatment is currently available, rapid advances in defining the pathomechanisms of demyelinating CMT have led to promising pre-clinical studies, as well as emerging clinical trials. Especially promising are the recently completed pre-clinical genetic therapy studies in PMP-22, GJB1, and SH3TC2-associated neuropathies, particularly given the success of similar approaches in humans with spinal muscular atrophy and transthyretin familial polyneuropathy. This article focuses on neuropathies related to mutations in PMP-22, MPZ, and GJB1, which together comprise the most common forms of demyelinating CMT, as well as on select rarer forms for which promising treatment targets have been identified. Clinical characteristics and pathomechanisms are reviewed in detail, with emphasis on therapeutically targetable biological pathways. Also discussed are the challenges facing the CMT research community in its efforts to advance the rapidly evolving biological insights to effective clinical trials. These considerations include the limitations of currently available animal models, the need for personalized medicine approaches/allele-specific interventions for select forms of demyelinating CMT, and the increasing demand for optimal clinical outcome assessments and objective biomarkers.
Collapse
Affiliation(s)
- Vera Fridman
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12631 E 17th Avenue, Mailstop B185, Room 5113C, Aurora, CO, 80045, USA.
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Moss KR, Bopp TS, Johnson AE, Höke A. New evidence for secondary axonal degeneration in demyelinating neuropathies. Neurosci Lett 2021; 744:135595. [PMID: 33359733 PMCID: PMC7852893 DOI: 10.1016/j.neulet.2020.135595] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/31/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Development of peripheral nervous system (PNS) myelin involves a coordinated series of events between growing axons and the Schwann cell (SC) progenitors that will eventually ensheath them. Myelin sheaths have evolved out of necessity to maintain rapid impulse propagation while accounting for body space constraints. However, myelinating SCs perform additional critical functions that are required to preserve axonal integrity including mitigating energy consumption by establishing the nodal architecture, regulating axon caliber by organizing axonal cytoskeleton networks, providing trophic and potentially metabolic support, possibly supplying genetic translation materials and protecting axons from toxic insults. The intermediate steps between the loss of these functions and the initiation of axon degeneration are unknown but the importance of these processes provides insightful clues. Prevalent demyelinating diseases of the PNS include the inherited neuropathies Charcot-Marie-Tooth Disease, Type 1 (CMT1) and Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and the inflammatory diseases Acute Inflammatory Demyelinating Polyneuropathy (AIDP) and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP). Secondary axon degeneration is a common feature of demyelinating neuropathies and this process is often correlated with clinical deficits and long-lasting disability in patients. There is abundant electrophysiological and histological evidence for secondary axon degeneration in patients and rodent models of PNS demyelinating diseases. Fully understanding the involvement of secondary axon degeneration in these diseases is essential for expanding our knowledge of disease pathogenesis and prognosis, which will be essential for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Taylor S Bopp
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anna E Johnson
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
6
|
Zhang P, Moye LS, Southey BR, Dripps I, Sweedler JV, Pradhan A, Rodriguez-Zas SL. Opioid-Induced Hyperalgesia Is Associated with Dysregulation of Circadian Rhythm and Adaptive Immune Pathways in the Mouse Trigeminal Ganglia and Nucleus Accumbens. Mol Neurobiol 2019; 56:7929-7949. [PMID: 31129808 DOI: 10.1007/s12035-019-01650-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
The benefits of opioid-based treatments to mitigate chronic pain can be hindered by the side effects of opioid-induced hyperalgesia (OIH) that can lead to higher consumption and risk of addiction. The present study advances the understanding of the molecular mechanisms associated with OIH by comparing mice presenting OIH symptoms in response to chronic morphine exposure (OIH treatment) relative to control mice (CON treatment). Using RNA-Seq profiles, gene networks were inferred in the trigeminal ganglia (TG), a central nervous system region associated with pain signaling, and in the nucleus accumbens (NAc), a region associated with reward dependency. The biological process of nucleic acid processing was over-represented among the 122 genes that exhibited a region-dependent treatment effect. Within the 187 genes that exhibited a region-independent treatment effect, circadian rhythm processes were enriched among the genes over-expressed in OIH relative to CON mice. This enrichment was supported by the differential expression of the period circadian clock 2 and 3 genes (Per2 and Per3). Transcriptional regulators in the PAR bZip family that are influenced by the circadian clock and that modulate neurotransmission associated with pain and drug addiction were also over-expressed in OIH relative to CON mice. Also notable was the under-expression in OIH relative to CON mice of the Toll-like receptor, nuclear factor-kappa beta, and interferon gamma genes and enrichment of the adaptive immune processes. The results from the present study offer insights to advance the effective use of opioids for pain management while minimizing hyperalgesia.
Collapse
Affiliation(s)
- Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Laura S Moye
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Isaac Dripps
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amynah Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|