1
|
Basavarajappa BS, Subbanna S. Synaptic Plasticity Abnormalities in Fetal Alcohol Spectrum Disorders. Cells 2023; 12:442. [PMID: 36766783 PMCID: PMC9913617 DOI: 10.3390/cells12030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The brain's ability to strengthen or weaken synaptic connections is often termed synaptic plasticity. It has been shown to function in brain remodeling following different types of brain damage (e.g., drugs of abuse, alcohol use disorders, neurodegenerative diseases, and inflammatory conditions). Although synaptic plasticity mechanisms have been extensively studied, how neural plasticity can influence neurobehavioral abnormalities in alcohol use disorders (AUDs) is far from being completely understood. Alcohol use during pregnancy and its harmful effects on the developing offspring are major public health, social, and economic challenges. The significant attribute of prenatal alcohol exposure on offspring is damage to the central nervous system (CNS), causing a range of synaptic structural, functional, and behavioral impairments, collectively called fetal alcohol spectrum disorder (FASD). Although the synaptic mechanisms in FASD are limited, emerging evidence suggests that FASD pathogenesis involves altering a set of molecules involved in neurotransmission, myelination, and neuroinflammation. These studies identify several immediate and long-lasting changes using many molecular approaches that are essential for synaptic plasticity and cognitive function. Therefore, they can offer potential synaptic targets for the many neurobehavioral abnormalities observed in FASD. In this review, we discuss the substantial research progress in different aspects of synaptic and molecular changes that can shed light on the mechanism of synaptic dysfunction in FASD. Increasing our understanding of the synaptic changes in FASD will significantly advance our knowledge and could provide a basis for finding novel therapeutic targets and innovative treatment strategies.
Collapse
Affiliation(s)
- Balapal S. Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging and Neuropathology Area, New York State Psychiatric Institute, New York, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
2
|
Osterlund Oltmanns JR, Schaeffer EA, Goncalves Garcia M, Donaldson TN, Acosta G, Sanchez LM, Davies S, Savage DD, Wallace DG, Clark BJ. Sexually dimorphic organization of open field behavior following moderate prenatal alcohol exposure. Alcohol Clin Exp Res 2022; 46:861-875. [PMID: 35315075 PMCID: PMC9117438 DOI: 10.1111/acer.14813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can produce deficits in a wide range of cognitive functions but is especially detrimental to behaviors requiring accurate spatial information processing. In open field environments, spatial behavior is organized such that animals establish "home bases" marked by long stops focused around one location. Progressions away from the home base are circuitous and slow, while progressions directed toward the home base are non-circuitous and fast. The impact of PAE on the organization of open field behavior has not been experimentally investigated. METHODS In the present study, adult female and male rats with moderate PAE or saccharin exposure locomoted a circular high walled open field for 30 minutes under lighted conditions. RESULTS The findings indicate that PAE and sex influence the organization of open field behavior. Consistent with previous literature, PAE rats exhibited greater locomotion in the open field. Novel findings from the current study indicate that PAE and sex also impact open field measures specific to spatial orientation. While all rats established a home base on the periphery of the open field, PAE rats, particularly males, exhibited significantly less clustered home base stopping with smaller changes in heading between stops. PAE also impaired progression measures specific to distance estimation, while sex alone impacted progression measures specific to direction estimation. CONCLUSIONS These findings support the conclusion that adult male rats have an increased susceptibility to the effects of PAE on the organization of open field behavior.
Collapse
Affiliation(s)
| | - Ericka A Schaeffer
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | | | - Tia N Donaldson
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Gabriela Acosta
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Lilliana M Sanchez
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Suzy Davies
- Department of Neurosciences, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Daniel D Savage
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA.,Department of Neurosciences, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Douglas G Wallace
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | - Benjamin J Clark
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA.,Department of Neurosciences, The University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
3
|
Enhancement of parvalbumin interneuron-mediated neurotransmission in the retrosplenial cortex of adolescent mice following third trimester-equivalent ethanol exposure. Sci Rep 2021; 11:1716. [PMID: 33462326 PMCID: PMC7814038 DOI: 10.1038/s41598-021-81173-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Prenatal ethanol exposure causes a variety of cognitive deficits that have a persistent impact on quality of life, some of which may be explained by ethanol-induced alterations in interneuron function. Studies from several laboratories, including our own, have demonstrated that a single binge-like ethanol exposure during the equivalent to the third trimester of human pregnancy leads to acute apoptosis and long-term loss of interneurons in the rodent retrosplenial cortex (RSC). The RSC is interconnected with the hippocampus, thalamus, and other neocortical regions and plays distinct roles in visuospatial processing and storage, as well as retrieval of hippocampal-dependent episodic memories. Here we used slice electrophysiology to characterize the acute effects of ethanol on GABAergic neurotransmission in the RSC of neonatal mice, as well as the long-term effects of neonatal ethanol exposure on parvalbumin-interneuron mediated neurotransmission in adolescent mice. Mice were exposed to ethanol using vapor inhalation chambers. In postnatal day (P) 7 mouse pups, ethanol unexpectedly failed to potentiate GABAA receptor-mediated synaptic transmission. Binge-like ethanol exposure of P7 mice expressing channel rhodopsin in parvalbumin-positive interneurons enhanced the peak amplitudes, asynchronous activity and total charge, while decreasing the rise-times of optically-evoked GABAA receptor-mediated inhibitory postsynaptic currents in adolescent animals. These effects could partially explain the learning and memory deficits that have been documented in adolescent and young adult mice exposed to ethanol during the third trimester-equivalent developmental period.
Collapse
|
4
|
Harvey RE, Berkowitz LE, Hamilton DA, Clark BJ. The effects of developmental alcohol exposure on the neurobiology of spatial processing. Neurosci Biobehav Rev 2019; 107:775-794. [PMID: 31526818 PMCID: PMC6876993 DOI: 10.1016/j.neubiorev.2019.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/02/2019] [Accepted: 09/11/2019] [Indexed: 01/20/2023]
Abstract
The consumption of alcohol during gestation is detrimental to the developing central nervous system. One functional outcome of this exposure is impaired spatial processing, defined as sensing and integrating information pertaining to spatial navigation and spatial memory. The hippocampus, entorhinal cortex, and anterior thalamus are brain regions implicated in spatial processing and are highly susceptible to the effects of developmental alcohol exposure. Some of the observed effects of alcohol on spatial processing may be attributed to changes at the synaptic to circuit level. In this review, we first describe the impact of developmental alcohol exposure on spatial behavior followed by a summary of the development of brain areas involved in spatial processing. We then provide an examination of the consequences of prenatal and early postnatal alcohol exposure in rodents on hippocampal, anterior thalamus, and entorhinal cortex-dependent spatial processing from the cellular to behavioral level. We conclude by highlighting several unanswered questions which may provide a framework for future investigation.
Collapse
Affiliation(s)
- Ryan E Harvey
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Laura E Berkowitz
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
5
|
Bird CW, Barber MJ, Post HR, Jacquez B, Chavez GJ, Faturos NG, Valenzuela CF. Neonatal ethanol exposure triggers apoptosis in the murine retrosplenial cortex: Role of inhibition of NMDA receptor-driven action potential firing. Neuropharmacology 2019; 162:107837. [PMID: 31689422 DOI: 10.1016/j.neuropharm.2019.107837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/07/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
Exposure to ethanol during the last trimester equivalent of human pregnancy causes apoptotic neurodegeneration in the developing brain, an effect that is thought to be mediated, in part, by inhibition of NMDA receptors. However, NMDA receptors can rapidly adapt to the acute effects of ethanol and are ethanol resistant in some populations of developing neurons. Here, we characterized the effect of ethanol on NMDA and non-NMDA receptor-mediated synaptic transmission in the retrosplenial cortex (RSC), a brain region involved in the integration of different modalities of spatial information that is among the most sensitive regions to ethanol-induced neurodegeneration. A single 4-h exposure to ethanol vapor of 7-day-old transgenic mice that express the Venus fluorescent protein in interneurons triggered extensive apoptosis in the RSC. Slice electrophysiological recordings showed that bath-applied ethanol inhibits NMDA and non-NMDA receptor excitatory postsynaptic currents (EPSCs) in pyramidal neurons and interneurons; however, we found no evidence of acute tolerance development to this effect after the 4-h in-vivo ethanol vapor exposure. Acute bath application of ethanol reduced action potential firing evoked by synaptic stimulation to a greater extent in pyramidal neurons than interneurons. Submaximal inhibition of NMDA EPSCs, but not non-NMDA EPSCs, mimicked the acute effect of ethanol on synaptically-evoked action potential firing. These findings indicate that partial inhibition of NMDA receptors by ethanol has sizable effects on the excitability of glutamatergic and GABAergic neurons in the developing RSC, and suggest that positive allosteric modulators of these receptors could ameliorate ethanol intoxication-induced neurodegeneration during late stages of fetal development.
Collapse
Affiliation(s)
- Clark W Bird
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Megan J Barber
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Hilary R Post
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Belkis Jacquez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Glenna J Chavez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Nicholas G Faturos
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA.
| |
Collapse
|
6
|
Lippert T, Gelineau L, Napoli E, Borlongan CV. Harnessing neural stem cells for treating psychiatric symptoms associated with fetal alcohol spectrum disorder and epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:10-22. [PMID: 28365374 DOI: 10.1016/j.pnpbp.2017.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/09/2017] [Indexed: 12/20/2022]
Abstract
Brain insults with progressive neurodegeneration are inherent in pathological symptoms that represent many psychiatric illnesses. Neural network disruptions characterized by impaired neurogenesis have been recognized to precede, accompany, and possibly even exacerbate the evolution and progression of symptoms of psychiatric disorders. Here, we focus on the neurodegeneration and the resulting psychiatric symptoms observed in fetal alcohol spectrum disorder and epilepsy, in an effort to show that these two diseases are candidate targets for stem cell therapy. In particular, we provide preclinical evidence in the transplantation of neural stem cells (NSCs) in both conditions, highlighting the potential of this cell-based treatment for correcting the psychiatric symptoms that plague these two disorders. Additionally, we discuss the challenges of NSC transplantation and offer insights into the mechanisms that may mediate the therapeutic benefits and can be exploited to overcome the hurdles of translating this therapy from the laboratory to the clinic. Our ultimate goal is to advance stem cell therapy for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Trenton Lippert
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL 33612, USA
| | - Lindsey Gelineau
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL 33612, USA
| | - Eleonora Napoli
- Department of Molecular Biosciences, 3011 VM3B 1089 Veterinary Medicine Drive, University of California Davis, Davis, CA 95616, USA..
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd. MDC 78, Tampa, FL 33612, USA.
| |
Collapse
|
7
|
Selective reduction of cerebral cortex GABA neurons in a late gestation model of fetal alcohol spectrum disorder. Alcohol 2015; 49:571-80. [PMID: 26252988 DOI: 10.1016/j.alcohol.2015.04.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 11/21/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) are associated with cognitive and behavioral deficits, and decreased volume of the whole brain and cerebral cortex. Rodent models have shown that early postnatal treatments, which mimic ethanol toxicity in the third trimester of human pregnancy, acutely induce widespread apoptotic neuronal degeneration and permanent behavioral deficits. However, the lasting cellular and anatomical effects of early ethanol treatments are still incompletely understood. This study examined changes in neocortex volume, thickness, and cellular organization that persist in adult mice after postnatal day 7 (P7) ethanol treatment. Post mortem brain volumes, measured by both MRI within the skull and by fluid displacement of isolated brains, were reduced 10-13% by ethanol treatment. The cerebral cortex showed a similar reduction (12%) caused mainly by lower surface area (9%). In spite of these large changes, several features of cortical organization showed little evidence of change, including cortical thickness, overall neuron size, and laminar organization. Estimates of total neuron number showed a trend level reduction of about 8%, due mainly to reduced cortical volume but unchanged neuron density. However, counts of calretinin (CR) and parvalbumin (PV) subtypes of GABAergic neurons showed a striking >30% reduction of neuron number. Similar ethanol effects were found in male and female mice, and in C57BL/6By and BALB/cJ mouse strains. Our findings indicate that the cortex has substantial capacity to develop normal cytoarchitectonic organization after early postnatal ethanol toxicity, but there is a selective and persistent reduction of GABA cells that may contribute to the lasting cognitive and behavioral deficits in FASD.
Collapse
|
8
|
Poulos SG, Richie WD, Bailey RK, Lee A, Dela Peña I, Sanberg PR, Borlongan CV. The potential of neural stem cell transplantation for the treatment of fetal alcohol spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:149-56. [PMID: 24943998 DOI: 10.1016/j.pnpbp.2014.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/13/2014] [Accepted: 05/26/2014] [Indexed: 11/24/2022]
Abstract
Fetal alcohol spectrum disorder (FASD) is caused by intrauterine exposure to alcohol and can cause a full range of abnormalities to brain development, as well as long-term sequelae of cognitive, sensory and motor impairments. The incidence is estimated to be as high as 2% to 5% in children born within the US, however the prevalence is even higher in low socioeconomic populations. Despite the various mechanisms thought to explain the etiology of FASD, molecular targets of ethanol toxicity during development are not completely understood. More recent findings explore the role of GABA-A and GABA-B mechanisms, as well as cell death, cell signaling and gene expression malfunctions. Stem cell based therapies have grown exponentially over the last decade, which have lead to novel clinical interventions across many disciplines. Thus, early detailed understanding of the therapeutic potential of stem cell research has provided promising applications across a wide range of illnesses. Consequently, these potential benefits may ultimately lead to a reduced incidence and severity of this highly preventable and prevalent birth defect. It is recognized that stem cell derivations provide unique difficulties and limitations of therapeutic applications. This review will outline the current knowledge, along with the benefits and challenges of stem cell therapy for FASD.
Collapse
Affiliation(s)
- Stephen G Poulos
- Department of Psychiatry and Behavioral Sciences, Meharry Medical College, 1005 Dr Db Todd Jr Blvd, Nashville TN 37208 USA.
| | - William D Richie
- Department of Psychiatry and Behavioral Sciences, Meharry Medical College, 1005 Dr Db Todd Jr Blvd, Nashville TN 37208 USA
| | - Rahn K Bailey
- Department of Psychiatry and Behavioral Sciences, Meharry Medical College, 1005 Dr Db Todd Jr Blvd, Nashville TN 37208 USA
| | - Arthur Lee
- Department of Psychiatry and Behavioral Sciences, Meharry Medical College, 1005 Dr Db Todd Jr Blvd, Nashville TN 37208 USA
| | - Ike Dela Peña
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd. MDC 78, Tampa FL 33612 USA
| | - Paul R Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd. MDC 78, Tampa FL 33612 USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd. MDC 78, Tampa FL 33612 USA
| |
Collapse
|
9
|
Sadrian B, Wilson DA, Saito M. Long-lasting neural circuit dysfunction following developmental ethanol exposure. Brain Sci 2013; 3:704-27. [PMID: 24027632 PMCID: PMC3767176 DOI: 10.3390/brainsci3020704] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/10/2013] [Accepted: 04/23/2013] [Indexed: 01/14/2023] Open
Abstract
Fetal Alcohol Spectrum Disorder (FASD) is a general diagnosis for those exhibiting long-lasting neurobehavioral and cognitive deficiencies as a result of fetal alcohol exposure. It is among the most common causes of mental deficits today. Those impacted are left to rely on advances in our understanding of the nature of early alcohol-induced disorders toward human therapies. Research findings over the last decade have developed a model where ethanol-induced neurodegeneration impacts early neural circuit development, thereby perpetuating subsequent integration and plasticity in vulnerable brain regions. Here we review our current knowledge of FASD neuropathology based on discoveries of long-lasting neurophysiological effects of acute developmental ethanol exposure in animal models. We discuss the important balance between synaptic excitation and inhibition in normal neural network function, and relate the significance of that balance to human FASD as well as related disease states. Finally, we postulate that excitation/inhibition imbalance caused by early ethanol-induced neurodegeneration results in perturbed local and regional network signaling and therefore neurobehavioral pathology.
Collapse
Affiliation(s)
- Benjamin Sadrian
- Department of Child and Adolescent Psychiatry, New York University Langone School of Medicine, One Park Avenue, Eighth Floor, New York, NY 10128, USA; E-Mail:
- Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; E-Mail:
| | - Donald A. Wilson
- Department of Child and Adolescent Psychiatry, New York University Langone School of Medicine, One Park Avenue, Eighth Floor, New York, NY 10128, USA; E-Mail:
- Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; E-Mail:
| | - Mariko Saito
- Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA; E-Mail:
- Department of Psychiatry, New York University Langone School of Medicine, One Park Avenue, Eighth Floor, New York, NY 10128, USA
| |
Collapse
|
10
|
Urakawa S, Takamoto K, Hori E, Sakai N, Ono T, Nishijo H. Rearing in enriched environment increases parvalbumin-positive small neurons in the amygdala and decreases anxiety-like behavior of male rats. BMC Neurosci 2013; 14:13. [PMID: 23347699 PMCID: PMC3599335 DOI: 10.1186/1471-2202-14-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/22/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Early life experiences including physical exercise, sensory stimulation, and social interaction can modulate development of the inhibitory neuronal network and modify various behaviors. In particular, alteration of parvalbumin-expressing neurons, a gamma-aminobutyric acid (GABA)ergic neuronal subpopulation, has been suggested to be associated with psychiatric disorders. Here we investigated whether rearing in enriched environment could modify the expression of parvalbumin-positive neurons in the basolateral amygdala and anxiety-like behavior. RESULTS Three-week-old male rats were divided into two groups: those reared in an enriched environment (EE rats) and those reared in standard cages (SE rats). After 5 weeks of rearing, the EE rats showed decreased anxiety-like behavior in an open field than the SE rats. Under another anxiogenic situation, in a beam walking test, the EE rats more quickly traversed an elevated narrow beam. Anxiety-like behavior in the open field was significantly and negatively correlated with walking time in the beam-walking test. Immunohistochemical tests revealed that the number of parvalbumin-positive neurons significantly increased in the basolateral amygdala of the EE rats than that of the SE rats, while the number of calbindin-D28k-positive neurons did not change. These parvalbumin-positive neurons had small, rounded soma and co-expressed the glutamate decarboxylase (GAD67). Furthermore, the number of parvalbumin-positive small cells in the basolateral amygdala tended to positively correlate with emergence in the center arena of the open field and negatively correlated with walking time in the beam walking test. CONCLUSION Rearing in the enriched environment augmented the number of parvalbumin-containing specific inhibitory neuron in the basolateral amygdala, but not that of calbindin-containing neuronal phenotype. Furthermore, the number of parvalbumin-positive small neurons in the basolateral amygdala was negatively correlated with walking time in the beam walking test and tended to be positively correlated with activity in the center arena in the open field test. The results suggest that rearing in the enriched environment augmented parvalbumin-positive specific neurons in the basolateral amygdala, which induced behavioral plasticity that was reflected by a decrease in anxiety-like behavior in anxiogenic situations.
Collapse
Affiliation(s)
- Susumu Urakawa
- Department of Judo Neurophysiotherapy, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
- Department of System Emotional Science, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| | - Kouich Takamoto
- Department of Judo Neurophysiotherapy, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| | - Etsuro Hori
- Department of System Emotional Science, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| | - Natsuko Sakai
- Department of System Emotional Science, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| | - Taketoshi Ono
- Department of Judo Neurophysiotherapy, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Graduate school of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| |
Collapse
|
11
|
Ventromedian forebrain dysgenesis follows early prenatal ethanol exposure in mice. Neurotoxicol Teratol 2010; 33:231-9. [PMID: 21074610 DOI: 10.1016/j.ntt.2010.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/07/2010] [Indexed: 11/20/2022]
Abstract
Ethanol exposure on gestational day (GD) 7 in the mouse has previously been shown to result in ventromedian forebrain deficits along with facial anomalies characteristic of fetal alcohol syndrome (FAS). To further explore ethanol's teratogenic effect on the ventromedian forebrain in this mouse model, scanning electron microscopic and histological analyses were conducted. For this, time mated C57Bl/6J mice were injected with 2.9g/kg ethanol or saline twice, at a 4h interval, on their 7th day of pregnancy. On GD 12.5, 13 and 17, control and ethanol-exposed specimens were collected and processed for light and scanning electron microscopic analyses. Gross morphological changes present in the forebrains of ethanol-exposed embryos included cerebral hemispheres that were too close in proximity or rostrally united, enlarged foramina of Monro, enlarged or united lateral ventricles, and varying degrees of hippocampal and ventromedian forebrain deficiency. In GD 12.5 control and ethanol-exposed embryos, in situ hybridization employing probes for Nkx2.1 or Fzd8 to distinguish the preoptic area and medial ganglionic eminences (MGEs) from the lateral ganglionic eminences, respectively, confirmed the selective loss of ventromedian tissues. Immunohistochemical labeling of oligodendrocyte progenitors with Olig2, a transcription factor necessary for their specification, and of GABA, an inhibitory neurotransmitter, showed ethanol-induced reductions in both. To investigate later consequences of ventromedian forebrain loss, MGE-derived somatostatin-expressing interneurons in the subpallial region of GD 17 fetal mice were examined, with results showing that the somatostatin-expressing interneurons that were present were dysmorphic in the ethanol-exposed fetuses. The potential functional consequences of this insult are discussed.
Collapse
|
12
|
Effect of gestational ethanol exposure on parvalbumin and calretinin expressing hippocampal neurons in a chick model of fetal alcohol syndrome. Alcohol 2009; 43:147-61. [PMID: 19251116 DOI: 10.1016/j.alcohol.2008.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 10/29/2008] [Accepted: 12/09/2008] [Indexed: 01/12/2023]
Abstract
Fetal alcohol syndrome (FAS), a condition occurring in some children of mothers who have consumed alcohol during pregnancy, is characterized by physical deformities and learning and memory deficits. The chick hippocampus, whose functions are controlled by interneurons expressing calcium-binding proteins parvalbumin (PV) and calretinin (CR), is involved in learning and memory mechanisms. Effects on growth and development and hippocampal morphology were studied in chick embryos exposed to 5% and 10% ethanol volume/volume (vol/vol) for 2 or 8 days of gestation. There was a significant dose-dependent reduction (P<.05) in body weight and mean number per section of PV and CR expressing hippocampal neurons in ethanol-exposed chicks, without alterations in neuronal nuclear size or hippocampal volume, compared appropriate controls. Moreover, when chicks exposed to 5% ethanol for 2 and 8 days of gestation were compared, no significant differences were found in body parameters or neuronal counts. Similarly, exposure to 10% ethanol did not induce any significant changes in chicks exposed for 2 or 8 gestational days. Thus, these results suggest that gestational ethanol exposure induces a reduction in the mean number per section of PV and CR expressing hippocampal neurons, and could be a possible mechanism responsible for learning and memory disorders in FAS.
Collapse
|
13
|
Abstract
Exposure of the developing brain to ethanol disposes to the fetal alcohol syndrome, causing changes in the neurotransmitter systems of glutamate and gamma-amino butyric acid (GABA). However, expression of genes involved in GABA synthesis, vesicular and transmembrane transport has not been investigated so far. We exposed organotypic slice cultures of newborn rat cerebral cortex to ethanol (100 mM) for 4 days and observed a significant induction of the enzyme producing GABA (GAD67, +21%) and the vesicular transporter VGAT (+112%), whereas the expression of the transmembrane transporters did not differ from control conditions. In summary, ethanol exposure of the developing cortex induces GABAergic genes, which might facilitate the excitatory functions of GABA during development.
Collapse
Affiliation(s)
- Mathias Zink
- Department of Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.
| | | |
Collapse
|
14
|
Kampov-Polevoy AB, Eick C, Boland G, Khalitov E, Crews FT. Sweet liking, novelty seeking, and gender predict alcoholic status. Alcohol Clin Exp Res 2004; 28:1291-8. [PMID: 15365298 DOI: 10.1097/01.alc.0000137808.69482.75] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The relationship between a hedonic response to sweet taste and a propensity to excessive alcohol drinking is supported by both animal and human studies. There is evidence indicating that the tendency to rate more concentrated sweet solutions as the most pleasurable (i.e., sweet liking) is associated with the genetic vulnerability to alcoholism. However, sweet liking by itself is insufficient to predict the alcoholic status of the individual. Our previous study indicated that alcoholic status can be predicted by a combination of hedonic response to sweet taste and personality profile as measured by the Tridimensional Personality Questionnaire (TPQ). This study was designed to further test this hypothesis. METHODS Participants were 165 patients admitted to a residential treatment program for the treatment of alcoholism, drug dependence and/or interpersonal problems secondary to substance-abusing family members. In addition to a routine medical examination, on the 24th day after admission, patients completed the TPQ, the standard sweet taste test was conducted, and paternal family history of alcoholism was evaluated. RESULTS Sweet liking was strongly associated with a paternal history of alcoholism. The odds of receiving an alcohol dependence diagnosis were shown to increase, on the average, by 11% for every one-point increase in the TPQ novelty-seeking score in sweet-liking but not in sweet-disliking subjects. Gender contributed independently to the probability of alcohol dependence, with males exhibiting higher rates of alcoholism than females. CONCLUSIONS These findings support the hypothesis that a hedonic response to sweet taste is associated with a genetic risk for alcoholism. Alcoholic status may be predicted by a combination of sweet liking, the TPQ novelty-seeking score, and gender in a mixed group of alcoholic, polysubstance-dependent, and psychiatric patients.
Collapse
Affiliation(s)
- Alexey B Kampov-Polevoy
- Mount Sinai School of Medicine, Division of Addiction Psychiatry, Bronx Veterans Affairs Medical Center, Bronx, New York 10468, USA.
| | | | | | | | | |
Collapse
|
15
|
Moore DB, Madorsky I, Paiva M, Barrow Heaton M. Ethanol exposure alters neurotrophin receptor expression in the rat central nervous system: Effects of prenatal exposure. ACTA ACUST UNITED AC 2004; 60:101-13. [PMID: 15188276 DOI: 10.1002/neu.20009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Developmental ethanol exposure produces significant central nervous system (CNS) abnormalities. The cellular mechanisms of ethanol neurotoxicity, however, remain elusive. Recent data implicate altered neurotrophin signaling pathways in ethanol-mediated neuronal death. The present study investigated ethanol-induced alterations in neurotrophin receptor proteins in the rat CNS following chronic ethanol treatment during gestation, via liquid diet to pregnant dams. Brains were dissected on P1 and P10, and Western blots for the neurotrophin receptors TrkA, TrkB, TrkC, and p75 were quantified. Such ethanol treatment produced significant changes in neurotrophin receptor levels in the hippocampus, septum, cerebral cortex, and cerebellum. Receptor levels in hippocampus, septum, and cerebellum, tended to be decreased, while levels in cortex were consistently increased. Males were generally more affected than females. While most of these alterations were transient, sustained or delayed changes were present in P10 septum, cortex, and cerebellum. These results indicate that developmental ethanol exposure produces major changes in the normal physiological levels of the neurotrophin receptors throughout the CNS. These changes in the receptor complement during critical prenatal stages could relate to the anomalous development of the CNS seen in the fetal alcohol syndrome. This relationship is discussed, together with the potential biological effects of such dramatic changes in neurotrophin receptor expression.
Collapse
Affiliation(s)
- D Blaine Moore
- Department of Biology, Kalamazoo College, Michigan 49006-3295, USA
| | | | | | | |
Collapse
|
16
|
Kampov-Polevoy AB, Ziedonis D, Steinberg ML, Pinsky I, Krejci J, Eick C, Boland G, Khalitov E, Crews FT. Association Between Sweet Preference and Paternal History of Alcoholism in Psychiatric and Substance Abuse Patients. Alcohol Clin Exp Res 2003; 27:1929-36. [PMID: 14691380 DOI: 10.1097/01.alc.0000099265.60216.23] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The relationship between preference for stronger sweet solutions and propensity to excessive alcohol drinking is supported by both animal and human studies. This study was designed to test the hypothesis that sweet preference is associated with the genetic risk of alcoholism as measured by a paternal history of alcoholism. METHODS Participants were 180 patients admitted to a residential treatment program for the treatment of alcoholism, drug dependence, or psychiatric conditions. In addition to a routine medical examination, patients completed the standard sweet preference test twice (on the 9th and 24th days after admission), and the family history of alcoholism was evaluated. RESULTS Sweet preference was shown to be stable over time. It was strongly associated with a paternal history of alcoholism, with family history-positive patients approximately 5 times more likely to prefer stronger sweet solutions than family history-negative subjects. Such factors as dependence on alcohol, cocaine, opiates, cannabis, other drugs (including prescription drugs), and tobacco smoking, as well as demographics (gender and age), did not significantly interfere with association between sweet preference and paternal history of alcoholism. CONCLUSIONS These findings provide some support for the hypothesis that preference for stronger sweet solutions is associated with a genetic predisposition to alcoholism as measured by a paternal history of alcoholism.
Collapse
Affiliation(s)
- A B Kampov-Polevoy
- Mount Sinai School of Medicine, Division of Psychiatry, Bronx Veterans Affairs Medical Center, New York 10468, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Webb B, Walker DW, Heaton MB. Nerve growth factor and chronic ethanol treatment alter calcium homeostasis in developing rat septal neurons. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 143:57-71. [PMID: 12763581 DOI: 10.1016/s0165-3806(03)00100-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chronic ethanol treatment (CET) during development produces cellular adaptations resulting in tolerance to the acute effects of ethanol (EtOH). The objectives of this study were to determine whether CET during the prenatal period (PCET) followed by a period of in vitro CET (PCET-CET) altered intracellular calcium [Ca(2+)](i) and produced tolerance to acute EtOH treatment (AET), and whether nerve growth factor (NGF) modulated the effects of PCET-CET in cultured developing rat septal neurons. Fetuses were obtained from EtOH-fed and sucrose-fed (diet-control) female rats. Neurons from PCET fetuses were cultured in the presence of NGF (+NGF) and 200 mg/dl (mg %) EtOH and diet-control cultures received NGF and no EtOH. PCET and diet-control cultures were then divided into two groups, +NGF and -NGF (withdrawn from NGF), and exposed acutely to one of five doses of EtOH during stimulation with potassium (K(+)) chloride. [Ca(2+)](i) was measured using fura-2. PCET-CET did not affect resting [Ca(2+)](i). PCET-CET decreased and acute EtOH withdrawal increased overall K(+)-stimulated changes in [Ca(2+)](i), but only in +NGF PCET neurons. Reducing the level of EtOH from 200 to 100 mg % decreased overall K(+)-stimulated [Ca(2+)](i) in -NGF PCET neurons. The effects of PCET-CET or PCET-CET combined with NGF on overall K(+)-stimulated changes in [Ca(2+)](i) occurred mostly in the early and middle phases of the K(+)-response. NGF reduced overall K(+)-stimulated changes in [Ca(2+)](i) in PCET neurons during EtOH withdrawal and during AET with 200 mg % EtOH and increased overall K(+)-stimulated changes in [Ca(2+)](i) during AET with 400 and 800 mg % EtOH. There was no effect of NGF on overall K(+)-stimulated changes in [Ca(2+)](i) in diet-control neurons with the exception that NGF-treatment decreased overall K(+)-stimulated changes in [Ca(2+)](i) during AET with 400 mg % EtOH. The effects of AET on overall K(+)-stimulated changes in [Ca(2+)](i) mostly occurred in +NGF PCET neurons. In conclusion, CET during development of the brain could adversely affect Ca(2+)-dependent functions such as neuronal migration, neurite outgrowth, and synaptogenesis in neurons even in the presence of neurotrophin support.
Collapse
Affiliation(s)
- Barbara Webb
- Department of Neuroscience, Center for Alcohol Research, Gainesville, FL, USA
| | | | | |
Collapse
|
18
|
Hsiao SH, Parrish AR, Nahm SS, Abbott LC, McCool BA, Frye GD. Effects of early postnatal ethanol intubation on GABAergic synaptic proteins. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 138:177-85. [PMID: 12354645 DOI: 10.1016/s0165-3806(02)00470-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fetal alcohol syndrome includes brain damage from aberrant synaptogenesis, altered cell-cell signaling and blunted plasticity in surviving neurons. Distortion of neurotrophic GABA signals by ethanol-mediated allosteric modulation of GABA(A) receptor (GABA(A)R) activity during brain maturation may play a role. In this regard, early postnatal binge-like ethanol treatment on postnatal days (PDs) 4-9 acutely inhibits whole cell GABA(A)R Cl(-) current and subsequently blunts GABA(A)R function in medial septum/diagonal band (MS/DB) neurons and cerebellar Purkinje cells [Dev. Brain Res. 130 (2001) 25-40; Brain Res. 810 (1998) 100-113; Brain Res. 832 (1999) 124-135]. In light of these functional changes, we hypothesized that ethanol treatment also would decrease levels of proteins important for assembly of GABAergic synapses in maturing brain. To test this relationship, binge-like ethanol intubation was administered to rat pups on PDs 4-9 producing peak blood ethanol concentrations in the range of 302.5+/-6.3 mg/dl. GABAergic synaptic proteins were measured in brain tissue on PDs 13-14 when GABA(A)R currents in individual MS/DB neurons are reduced, but those of cerebellar Purkinje neurons are not yet altered [Dev. Brain Res. 130 (2001) 25-40; Brain Res. 810 (1998) 100-113; Brain Res. 832 (1999) 124-135]. Surprisingly, ethanol did not decrease protein levels of GABA(A)R alpha1/beta2 subunits, GAD(67) or gephyrin in MS/DB at this time when whole cell recordings indicate GABA(A)R function is impaired in acutely dissociated individual neurons. However, in cerebellum where ethanol treated Purkinje cell GABA(A)R function remains normal on PDs 13-14 [Brain Res. 832 (1999) 124-135], reduced levels of several GABAergic synaptic proteins including: GAD(67), GABA(A)R alpha1 subunit, ClC-2 a voltage-gated Cl(-) channel, synaptotagmin a synaptic vesicle protein, and N-cadherin, a synapse associated cell adhesion molecule, were found. These results indicate that binge-like ethanol exposure differentially decreases GABAergic synaptic proteins in some brain areas in a pattern that does not parallel reductions in GABA(A)R function of individual neurons that survive this ethanol insult.
Collapse
Affiliation(s)
- Shu-Huei Hsiao
- Department of Medical Pharmacology and Toxicology, College of Medicine, Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | | | | | |
Collapse
|
19
|
Prendergast MA, Harris BR, Blanchard JA, Mayer S, Gibson DA, Littleton JM. In Vitro Effects of Ethanol Withdrawal and Spermidine on Viability of Hippocampus From Male and Female Rat. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb01990.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Barron S, Segar TM, Yahr JS, Baseheart BJ, Willford JA. The effects of neonatal ethanol and/or cocaine exposure on isolation-induced ultrasonic vocalizations. Pharmacol Biochem Behav 2000; 67:1-9. [PMID: 11113477 DOI: 10.1016/s0091-3057(00)00304-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Isolation-induced ultrasonic vocalizations (USVs) are emitted by young rat pups when isolated from their dam and conspecifics. These USVs play an important role in maternal/offspring interactions, and have been used as an indicator of response to stress and isolation. This study examined the effects of neonatal ethanol and/or cocaine exposure on USVs in neonatal rats. The neonatal exposure paradigm serves as a model for the "human third trimester of pregnancy" in terms of CNS development. There were five treatment groups including an artificially reared (AR) ethanol-exposed group (6 g/kg/day), an AR cocaine-exposed group (60 mg/kg/day), an AR ethanol- and cocaine-exposed group (6 g/kg/day+60 mg/kg/day), an AR isocaloric control, and a normally reared control. Both groups that received ethanol took longer to vocalize, and displayed fewer vocalizations than non-ethanol-exposed pups when tested on clean bedding (Experiment 1) or on chips from the nest of a lactating dam (Experiment 2). These results suggest that neonatal ethanol exposure alters the pup's immediate response to isolation. This could have direct effects on maternal/infant interactions, and might help explain some of the long-term effects of ethanol exposure on social behaviors.
Collapse
Affiliation(s)
- S Barron
- Psychology Department, University of Kentucky, Kastle Hall, Room 208, Lexington, KY 40506-0044, USA.
| | | | | | | | | |
Collapse
|
21
|
Mitchell JJ, Paiva M, Heaton MB. Effect of neonatal ethanol exposure on parvalbumin-expressing GABAergic neurons of the rat medial septum and cingulate cortex. Alcohol 2000; 21:49-57. [PMID: 10946157 DOI: 10.1016/s0741-8329(99)00101-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study was performed to determine the long-term effects of ethanol exposure during the brain growth spurt (postnatal days 4-10) on the number of parvalbumin-immunoreactive (PA+) GABAergic neurons in the adult (P60) rat medial septum and anterior cingulate cortex. Significant loss of neurons within each of these populations has previously been demonstrated following prenatal ethanol exposure. In the present study, no significant differences in the number of PA+ neurons were found in either the medial septum or the cingulate cortex when control and ethanol-exposed animals were compared. The cellular densities and volumetric measures in both brain regions were also similar in the two groups. We speculate that compensatory up-regulative mechanisms may have accounted for the protection of the PA neuronal populations in these two areas following the early neonatal exposure.
Collapse
Affiliation(s)
- J J Mitchell
- University of Florida Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610-0244, USA
| | | | | |
Collapse
|
22
|
Hsiao SH, Mahoney JC, West JR, Frye GD. Development of GABAA receptors on medial septum/diagonal band (MS/DB) neurons after postnatal ethanol exposure. Brain Res 1998; 810:100-13. [PMID: 9813263 DOI: 10.1016/s0006-8993(98)00891-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The impact of 'binge-like' ethanol exposure on postnatal days (PD) 4-9 was examined on development of gamma-aminobutyric acid type A receptors (GABAAR) during the first month of life in the rat. Whole-cell patch-clamp recordings in acutely isolated medial septum/diagonal band (MS/DB) neurons were used to define effects of rapidly applied ethanol and other allosteric modulators on bicuculline-sensitive GABA currents. Three age groups were examined including 'pups' (PD 4-10), 'juveniles' (PD 11-16) and 'young adults' (PD 25-35). In untreated neurons, maximum responses to GABA and the apparent GABA EC50 increased approximately 2-fold during the first month of life. Potentiation of GABA responses by pentobarbital, midazolam, and loreclezole all increased with age, while Zn2+ inhibition declined. Initial inhibition by ethanol switched to potentiation of GABA responses during this time. In vivo, binge-like ethanol treatment (4.5 g kg-1 day-1 divided into two doses, 2 h apart on PD 4-9) reduced both the GABA maximal response and GABA EC50 measured on PD 11-16. These measures returned to control levels by PD 25-35. After binge-like postnatal ethanol exposure, age-dependent loss of Zn2+ inhibition of GABA responses was increased, while potentiating actions of in vitro ethanol were blocked. GABAAR modulation by other drugs was unaffected. These data suggest that early postnatal ethanol exposure disrupts the expected developmental pattern of GABAAR function in MS/DB neurons, an action that could contribute to neurobehavioral deficits associated with the fetal alcohol syndrome. Whether these changes are due to cellular damage, delayed gene expression or post-translational modification needs to be determined.
Collapse
Affiliation(s)
- S H Hsiao
- Department of Medical Pharmacology and Toxicology, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
23
|
Moore DB, Quintero MA, Ruygrok AC, Walker DW, Heaton MB. Prenatal ethanol exposure reduces parvalbumin-immunoreactive GABAergic neuronal number in the adult rat cingulate cortex. Neurosci Lett 1998; 249:25-8. [PMID: 9672380 DOI: 10.1016/s0304-3940(98)00378-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of prenatal ethanol exposure on the number of parvalbumin-immunoreactive (PA+) GABAergic neurons in the adult rat anterior cingulate cortex was determined. Pregnant Long-Evans rats were maintained on one of three diets throughout gestation: an ethanol-containing liquid diet, a similar, control liquid diet with the isocaloric substitution of sucrose for ethanol, or a lab chow control diet. Offspring were euthanized on postnatal day 60 and brains were prepared for parvalbumin immunocytochemistry. Rats exposed to the ethanol-containing diet contained 45% fewer PA+ neurons in the anterior cingulate cortex compared with sucrose and chow controls. This reduction occurred in the absence of changes in structure volume, and occurred in the absence of changes in PA+ neuronal size.
Collapse
Affiliation(s)
- D B Moore
- Center for Alcohol Research, Department of Neuroscience, University of Florida College of Medicine and the University of Florida Brain Institute, Gainesville 32610, USA.
| | | | | | | | | |
Collapse
|
24
|
Moore DB, Lee P, Paiva M, Walker DW, Heaton MB. Effects of neonatal ethanol exposure on cholinergic neurons of the rat medial septum. Alcohol 1998; 15:219-26. [PMID: 9539379 DOI: 10.1016/s0741-8329(97)00123-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The objective of this study was to determine the long-term effects of neonatal ethanol exposure on the cholinergic neurons in the medial septum (MS) of the rat. On postnatal day 4 (P4) pups were assigned to one of three groups: an ethanol-receiving, gastrostomized group (EtOH); a pair-fed, gastrostomized control group (GC); and a dam-reared suckle control group (SC). Gastrostomized pups were infused with ethanol-containing or control diet as a 9.1% v/v solution for two feedings on each day from P4 to P10. Choline acetyltransferase (ChAT) immunocytochemistry was analyzed at P60. Ethanol treatment resulted in long-lasting microencephaly in P60 EtOH animals. Ethanol exposure did not directly reduce ChAT-expressing (ChAT+) neuronal number, nor were changes noted in MS volume, mean area/section, or cell density as a result of ethanol treatment. Ethanol exposure reduced ChAT+ neuronal size in EtOH males compared with GC males but not SC males. No differences in ChAT+ neuronal size were noted in females. Thus, neonatal ethanol exposure, whereas producing long-lived microencephaly, has little effect on the cholinergic neurons of the adult rat MS.
Collapse
Affiliation(s)
- D B Moore
- Center for Alcohol Research, Department of Neuroscience, University of Florida College of Medicine, University of Florida Brain Institute, Gainesville 32610, USA.
| | | | | | | | | |
Collapse
|