1
|
Granholm L, Todkar A, Bergman S, Nilsson K, Comasco E, Nylander I. The expression of opioid genes in non-classical reward areas depends on early life conditions and ethanol intake. Brain Res 2017; 1668:36-45. [PMID: 28511993 DOI: 10.1016/j.brainres.2017.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/21/2017] [Accepted: 05/08/2017] [Indexed: 12/28/2022]
Abstract
The young brain is highly sensitive to environmental influences that can cause long-term changes in neuronal function, possibly through altered gene expression. The endogenous opioid system continues to mature after birth and because of its involvement in reward, an inadequate maturation of this system could lead to enhanced susceptibility for alcohol use disorder. Recent studies show that the classical reward areas nucleus accumbens and ventral tegmental area are less affected by early life stress whereas endogenous opioids in non-classical areas, e.g. dorsal striatum and amygdala, are highly responsive. The aim was to investigate the interaction between early life conditions and adult voluntary ethanol intake on opioid gene expression. Male Wistar rats were exposed to conventional rearing, 15, or 360min of daily maternal separation (MS) postnatal day 1-21, and randomly assigned to ethanol or water drinking postnatal week 10-16. Rats exposed to early life stress (MS360) had increased opioid receptor gene (Oprm1, Oprd1 and Oprk1) expression in the dorsal striatum. Ethanol drinking was associated with lower striatal Oprd1 and Oprk1 expression solely in rats exposed to early life stress. Furthermore, rats exposed to early life stress had high inherent Pomc expression in the amygdala but low expression after ethanol intake. Thus, adverse events early in life induced changes in opioid gene expression and also influenced the central molecular response to ethanol intake. These long-term consequences of early life stress can contribute to the enhanced risk for excessive ethanol intake and alcohol use disorder seen after exposure to childhood adversity.
Collapse
Affiliation(s)
- Linnea Granholm
- Neuropharmacology, Addiction and Behaviour, Dept. Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Aniruddah Todkar
- Neuropsychopharmacology, Dept. Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Sofia Bergman
- Neuropsychopharmacology, Dept. Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Kent Nilsson
- Västerås Centre for Clinical Research, Uppsala University, Uppsala, Sweden.
| | - Erika Comasco
- Neuropsychopharmacology, Dept. Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Ingrid Nylander
- Neuropharmacology, Addiction and Behaviour, Dept. Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Fritz BM, Boehm SL. Rodent models and mechanisms of voluntary binge-like ethanol consumption: Examples, opportunities, and strategies for preclinical research. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:297-308. [PMID: 26021391 PMCID: PMC4668238 DOI: 10.1016/j.pnpbp.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 05/02/2015] [Accepted: 05/21/2015] [Indexed: 02/03/2023]
Abstract
Binge ethanol consumption has widespread negative consequences for global public health. Rodent models offer exceptional power to explore the neurobiology underlying and affected by binge-like drinking as well as target potential prevention, intervention, and treatment strategies. An important characteristic of these models is their ability to consistently produce pharmacologically-relevant blood ethanol concentration. This review examines the current available rodent models of voluntary, pre-dependent binge-like ethanol consumption and their utility in various research strategies. Studies have demonstrated that a diverse array of neurotransmitters regulate binge-like drinking, resembling some findings from other drinking models. Furthermore, repeated binge-like drinking recruits neuroadaptive mechanisms in mesolimbocortical reward circuitry. New opportunities that these models offer in the current context of mechanistic research are also discussed.
Collapse
Affiliation(s)
| | - Stephen L Boehm
- Indiana Alcohol Research Center, Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States.
| |
Collapse
|
3
|
Alongkronrusmee D, Chiang T, van Rijn RM. Delta Opioid Pharmacology in Relation to Alcohol Behaviors. Handb Exp Pharmacol 2016; 247:199-225. [PMID: 27316912 DOI: 10.1007/164_2016_30] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Delta opioid receptors (DORs) are heavily involved in alcohol-mediated processes in the brain. In this chapter we provide an overview of studies investigating how alcohol directly impacts DOR pharmacology and of early studies indicating DOR modulation of alcohol behavior. We will offer a brief summary of the different animal species used in alcohol studies investigating DORs followed by a broader overview of the types of alcohol behaviors modulated by DORs. We will highlight a small set of studies investigating the relationship between alcohol and DORs in analgesia. We will then provide an anatomical overview linking DOR expression in specific brain regions to different alcohol behaviors. In this section, we will provide two models that try to explain how endogenous opioids acting at DORs may influence alcohol behaviors. Next, we will provide an overview of studies investigating certain new aspects of DOR pharmacology, including the formation of heteromers and biased signaling. Finally, we provide a short overview of the genetics of the DORs in relation to alcohol use disorders (AUDs) and a short statement on the potential of using DOR-based therapeutics for treatment of AUDs.
Collapse
Affiliation(s)
- Doungkamol Alongkronrusmee
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Terrance Chiang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Richard M van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Henderson-Redmond A, Czachowski C. Effects of systemic opioid receptor ligands on ethanol- and sucrose seeking and drinking in alcohol-preferring (P) and Long Evans rats. Psychopharmacology (Berl) 2014; 231:4309-21. [PMID: 24770627 PMCID: PMC4209193 DOI: 10.1007/s00213-014-3571-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 04/05/2014] [Indexed: 10/25/2022]
Abstract
The endogenous opioid system has been implicated in mediating the reinforcing effects of ethanol (EtOH). Naltrexone (NTX), an opioid antagonist with concentration-dependent selectivity for the mu receptor, naltrindole (NTI), a selective delta receptor antagonist, and U50,488H, a selective kappa receptor agonist were examined in both alcohol-preferring (P) and nonselected (Long Evans (LE)) rats to determine whether they differentially affected the seeking and consumption of EtOH and sucrose. Using the sipper-tube model, rats reinforced with either 2% sucrose or 10% EtOH were injected with vehicle and either NTI (2.5, 5.0, or 10.0 mg/kg), U50 (2.5, 5.0, or 10.0 mg/kg), low-dose NTX (0.1, 0.3, or 1.0 mg/kg), or high-dose NTX (1.0, 3.0, or 10.0 mg/kg). Subsequent intakes (consummatory) or lever responses (seeking) were assessed. Overall, NTI, U50, and NTX attenuated intake and responding for sucrose and EtOH, with EtOH-reinforced P rats being the most sensitive to the effects of NTI on intake and seeking. U50 treatment decreased intake and seeking in both P and LE rats but did not selectively reduce EtOH intake or seeking in either line. P rats were more sensitive than LE rats to lower doses of NTX, and these doses more selectively attenuated responding for EtOH than sucrose. Higher doses of NTX suppressed intake and responding across both lines and reinforcers. These results suggest that drugs selective for the opioid receptors may be good pharmacotherapeutic targets, particularly in those with an underlying genetic predisposition for greater EtOH preference/intake.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/administration & dosage
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/administration & dosage
- Analgesics, Non-Narcotic/pharmacology
- Animals
- Behavior, Addictive/metabolism
- Behavior, Animal/drug effects
- Ethanol/administration & dosage
- Ethanol/pharmacology
- Ligands
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/administration & dosage
- Narcotic Antagonists/pharmacology
- Rats
- Rats, Long-Evans
- Receptors, Opioid/metabolism
- Sucrose/pharmacology
Collapse
Affiliation(s)
| | - Cristine Czachowski
- Department of Psychology, Indiana University Purdue University, Indianapolis, Indianapolis, IN, USA
| |
Collapse
|
5
|
Mitchell JM, Margolis EB, Coker AR, Allen DC, Fields HL. Intra-VTA deltorphin, but not DPDPE, induces place preference in ethanol-drinking rats: distinct DOR-1 and DOR-2 mechanisms control ethanol consumption and reward. Alcohol Clin Exp Res 2013; 38:195-203. [PMID: 24033469 DOI: 10.1111/acer.12246] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/05/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND While there is a growing body of evidence that the delta opioid receptor (DOR) modulates ethanol (EtOH) consumption, development of DOR-based medications is limited in part because there are 2 pharmacologically distinct DOR subtypes (DOR-1 and DOR-2) that can have opposing actions on behavior. METHODS We studied the behavioral influence of the DOR-1-selective agonist [D-Pen(2) ,D-Pen(5) ]-Enkephalin (DPDPE) and the DOR-2-selective agonist deltorphin microinjected into the ventral tegmental area (VTA) on EtOH consumption and conditioned place preference (CPP) and the physiological effects of these 2 DOR agonists on GABAergic synaptic transmission in VTA-containing brain slices from Lewis rats. RESULTS Neither deltorphin nor DPDPE induced a significant place preference in EtOH-naïve Lewis rats. However, deltorphin (but not DPDPE) induced a significant CPP in EtOH-drinking rats. In contrast to the previous finding that intra-VTA DOR-1 activity inhibits EtOH consumption and that this inhibition correlates with a DPDPE-induced inhibition of GABA release, here we found no effect of DOR-2 activity on EtOH consumption nor was there a correlation between level of drinking and deltorphin-induced change in GABAergic synaptic transmission. CONCLUSIONS These data indicate that the therapeutic potential of DOR agonists for alcohol abuse is through a selective action at the DOR-1 form of the receptor.
Collapse
Affiliation(s)
- Jennifer M Mitchell
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, California; Department of Neurology, University of California, San Francisco, California
| | | | | | | | | |
Collapse
|
6
|
Wand GS, Weerts EM, Kuwabara H, Wong DF, Xu X, McCaul ME. The relationship between naloxone-induced cortisol and delta opioid receptor availability in mesolimbic structures is disrupted in alcohol-dependent subjects. Addict Biol 2013; 18:181-92. [PMID: 22264217 PMCID: PMC3337889 DOI: 10.1111/j.1369-1600.2011.00430.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis responses following naloxone administration have been assumed to provide a measure of opioid receptor activity. Employing positron emission tomography (PET) using the mu opioid receptor (MOR) selective ligand [(11)C] carfentanil (CFN), we demonstrated that cortisol responses to naloxone administration were negatively correlated with MOR availability. In this study, we examined whether naloxone-induced cortisol and adrenocorticotropin (ACTH) responses in 15 healthy control and 20 recently detoxified alcohol-dependent subjects correlated with delta opioid receptor (DOR) availability in 15 brain regions using the DOR-selective ligand [(11)C] methyl-naltrindole (MeNTL) and PET imaging. The day after the scan, cortisol responses to cumulative doses of naloxone were determined. Peak cortisol and ACTH levels and area under the cortisol and ACTH curve did not differ by group. There were negative relationships between cortisol area under curve to naloxone and [(11)C] MeNTL-binding potential (BP(ND)) in the ventral striatum, anterior cingulate, fusiform cortices, temporal cortex, putamen and a trend in the hypothalamus of healthy control subjects. However, in alcohol-dependent subjects, cortisol responses did not correlate with [(11)C]MeNTL BP(ND) in any brain region. Plasma ACTH levels did not correlate with [(11)C]MeNTL BP(ND) in either group. The study demonstrates that naloxone provides information about individual differences in DOR availability in several mesolimbic structures. The data also show that the HPA axis is intimately connected with mesolimbic stress pathways through opioidergic neurotransmission in healthy subjects but this relationship is disrupted during early abstinence in alcohol-dependent subjects.
Collapse
Affiliation(s)
- Gary S Wand
- Departments of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Lerma-Cabrera JM, Carvajal F, de la Torre L, de la Fuente L, Navarro M, Thiele TE, Cubero I. Control of food intake by MC4-R signaling in the lateral hypothalamus, nucleus accumbens shell and ventral tegmental area: interactions with ethanol. Behav Brain Res 2012; 234:51-60. [PMID: 22713514 DOI: 10.1016/j.bbr.2012.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/17/2012] [Accepted: 06/10/2012] [Indexed: 11/19/2022]
Abstract
The melanocortin system is involved in animal models of obesity and anorexia-cachexia and MC4 receptors (MC4-R) are currently a target system for the development of drugs aimed to treat obesity and eating disorders in humans. Previous evidence suggest that feeding peptides might lack their orexigenic activity while stimulate ethanol intake. The present study comparatively evaluated food intake (4-h interval) in Sprague-Dawley (SD) rats drinking ethanol (6% w/v, 2 bottle choice paradigm) (EE group) and ethanol-naïve (EN) rats in response to bilateral infusion of the selective MC4-R antagonist HS014 (0, 0.02 or 0.05 μg/0.5 μl/site) or the selective MC4-R agonist cyclo(NH-CH(2)-CH(2)-CO-His-d-Phe-Arg-Trp-Glu)-NH(2) (0, 0.75 or 1.5 μg/0.5 μl/site), into the lateral hypothalamus (LH), the nucleus accumbens (NAc), or the ventral tegmental area (VTA). The main findings in the study are: (1) LH-infusions of the MC4-R antagonist increased and the agonist reduced feeding and total calories consumed, while ethanol intake remained unaltered. (2) NAc- and VTA-infusions of the selective agonist reduced food, ethanol and total calories intake. (3) NAc- and VTA-infusions of the MC4-R antagonist increased feeding in EN rats, but not in EE animals which showed a mild increase in ethanol intake, while total calories consumed remained unaltered. Present data show that having ethanol available reduces feeding elicited by NAc and VTA-MC4-R blockade. Additionally, while MC4-R signaling in the LH appears to modulate homeostatic aspects of feeding, it may contribute to non-homeostatic aspects of ingestive behaviors in the VTA and the NAc.
Collapse
Affiliation(s)
- Jose M Lerma-Cabrera
- Departamento de Neurociencia y Ciencias de Salud, Universidad de Almería, Almería, 04120, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Weerts EM, Wand GS, Kuwabara H, Munro CA, Dannals RF, Hilton J, Frost JJ, McCaul ME. Positron emission tomography imaging of mu- and delta-opioid receptor binding in alcohol-dependent and healthy control subjects. Alcohol Clin Exp Res 2011; 35:2162-73. [PMID: 21689118 DOI: 10.1111/j.1530-0277.2011.01565.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND The endogenous opioid system plays a significant role in alcohol dependence. The goal of the current study was to investigate regional brain mu-opioid receptor (MOR) and delta-opioid receptor (DOR) availability in recently abstinent alcohol-dependent and age-matched healthy control men and women with positron emission tomography (PET) imaging. METHODS Alcohol-dependent subjects completed an inpatient protocol, which included medically supervised withdrawal and PET imaging on day 5 of abstinence. Control subjects completed PET imaging following an overnight stay. PET scans with the MOR-selective ligand [(11)C]carfentanil (CFN) were completed in 25 alcohol-dependent and 30 control subjects. Most of these same subjects (20 alcohol-dependent subjects and 18 controls) also completed PET scans with the DOR-selective ligand [(11)C]methylnaltrindole (MeNTL). RESULTS Volumes of interest and statistical parametric mapping analyses indicated that alcohol-dependent subjects had significantly higher [(11)C]CFN binding potential (BP(ND) ) than healthy controls in multiple brain regions including the ventral striatum when adjusting for age, gender, and smoking status. There was an inverse relationship between [(11)C]CFN BP(ND) and craving in several brain regions in alcohol-dependent subjects. Groups did not differ in [(11)C]MeNTL BP(ND) ; however, [(11)C]MeNTL BP(ND) in caudate was positively correlated with recent alcohol drinking in alcohol-dependent subjects. CONCLUSIONS Our observation of higher [(11)C]CFN BP(ND) in alcohol-dependent subjects can result from up-regulation of MOR and/or reduction in endogenous opioid peptides following long-term alcohol consumption, dependence, and/or withdrawal. Alternatively, the higher [(11)C]CFN BP(ND) in alcohol-dependent subjects may be an etiological difference that predisposed these individuals to alcohol dependence or may have developed as a result of increased exposure to childhood adversity, stress, and other environmental factors known to increase MOR. Although the direction of group differences in [(11)C]MeNTL BP(ND) was similar in many brain regions, differences did not achieve statistical significance, perhaps as a result of our limited sample size. Additional research is needed to further clarify these relationships. The finding that alcohol-dependent subjects had higher [(11)C]CFN BP(ND) is consistent with a prominent role of the MOR in alcohol dependence.
Collapse
Affiliation(s)
- Elise M Weerts
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Jupp B, Lawrence AJ. New horizons for therapeutics in drug and alcohol abuse. Pharmacol Ther 2010; 125:138-68. [DOI: 10.1016/j.pharmthera.2009.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 11/25/2022]
|
10
|
The delta(1) opioid receptor is a heterodimer that opposes the actions of the delta(2) receptor on alcohol intake. Biol Psychiatry 2009; 66:777-84. [PMID: 19576572 PMCID: PMC2757485 DOI: 10.1016/j.biopsych.2009.05.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/07/2009] [Accepted: 05/08/2009] [Indexed: 12/22/2022]
Abstract
BACKGROUND Opioid receptors are clinically important targets for both pain and alcohol abuse. Three opioid receptors have been cloned: mu, delta, and kappa, all of which effect alcohol consumption in animal models. Naltrexone is a nonselective opioid antagonist used for alcoholism, the clinical utility of which is limited by poor efficacy and adverse side effects. Here, we demonstrate that the therapeutic limitations of naltrexone may reflect its poor selectivity. Despite decades of research, several mysteries surround the pharmacology of these receptors. For example, two pharmacologically defined subtypes of delta receptors exist in vivo. METHODS Effects of delta subtype-selective ligands (naltrindole, naltriben, tan-67, 7-benzylidene naltrexone) were measured on ethanol consumption in C57BL/6 wildtype and opioid receptor knockout mice using a limited access two-bottle choice paradigm. Affinity and efficacy of naltriben, 7-benzylidenenaltrexone and tan-67 was measured in vitro using radioligand binding and Ca(2+)-mobilizationa assays. RESULTS We show that the subtypes of the delta receptor, delta(1) and delta(2), have opposing effects on ethanol consumption. We find that these effects are synergistic; thereby suggesting that delta(1) and delta(2) receptors are distinct molecular targets. Indeed, we provide both in vitro as well as in vivo evidence that the delta(1) subtype is a micro-delta heterodimer and that the delta(2) subtype is most likely a delta homomer. CONCLUSIONS Together these data provide insight into the limited actions of the clinically important drug naltrexone and identify a novel target with improved specificity and efficacy for the development of new therapeutics for the treatment of alcoholism.
Collapse
|
11
|
Nielsen CK, Simms JA, Pierson HB, Li R, Saini SK, Ananthan S, Bartlett SE. A novel delta opioid receptor antagonist, SoRI-9409, produces a selective and long-lasting decrease in ethanol consumption in heavy-drinking rats. Biol Psychiatry 2008; 64:974-81. [PMID: 18774553 PMCID: PMC3888668 DOI: 10.1016/j.biopsych.2008.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 07/12/2008] [Accepted: 07/18/2008] [Indexed: 11/28/2022]
Abstract
BACKGROUND Naltrexone, a compound with high affinity for the mu opioid receptor (MOP-R) reduces alcohol consumption. SoRI-9409 is a derivative of naltrexone that has highest affinity at delta opioid receptors (DOP-Rs). We have investigated the effects of SoRI-9409 on ethanol consumption to determine the consequences of altering the naltrexone compound to a form with increased efficacy at DOP-Rs. METHODS Effects of the opioid receptor antagonists, SoRI-9409 (0-30 mg/kg, IP), naltrexone (0-30 mg/kg, IP), or naltrindole (0-10 mg/kg, IP) on ethanol consumption was measured in high- and low-ethanol-consuming rats with two different drinking paradigms. SoRI-9409-, naltrexone-, and naltrindole-mediated inhibition of DOP-R-stimulated [(35)S]GTP gamma S binding was measured in brain membranes prepared from high-ethanol-consuming rats. The effects of SoRI-9409 on morphine-mediated analgesia, conditioned place preference, and anxiety were also examined. RESULTS In high- but not low-ethanol-consuming animals, SoRI-9409 is threefold more effective and selective at reducing ethanol consumption when compared with naltrexone or naltrindole for up to 24 hours. SoRI-9409 administered daily for 28 days continuously reduced ethanol consumption, and when the administration of SoRI-9409 was terminated, the amount of ethanol consumed remained lower compared with vehicle-treated animals. Furthermore, SoRI-9409 inhibits DOP-R-stimulated [(35)S]GTP gamma S binding in brain membranes of high-ethanol-consuming rats. CONCLUSIONS SoRI-9409 causes selective and long-lasting reductions of ethanol consumption. This suggests that compounds that have high affinity for DOP-Rs such as SoRI-9409 might be promising candidates for development as a novel therapeutic for the treatment of alcoholism.
Collapse
Affiliation(s)
- Carsten K Nielsen
- Ernest Gallo Clinic and Research Center, University of California San Francisco, Emeryville, California 94608, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Weerts EM, Kim YK, Wand GS, Dannals RF, Lee JS, Frost JJ, McCaul ME. Differences in delta- and mu-opioid receptor blockade measured by positron emission tomography in naltrexone-treated recently abstinent alcohol-dependent subjects. Neuropsychopharmacology 2008; 33:653-65. [PMID: 17487229 DOI: 10.1038/sj.npp.1301440] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Blockade of brain mu-opioid receptor (mu-OR) and delta-opioid receptor (delta-OR) was investigated in recently abstinent alcohol-dependent subjects (N=21) maintained on naltrexone. Subjects completed a 19-day inpatient protocol, which included alcohol abstinence followed by naltrexone treatment (50 mg) on days 15-19. Blood samples were collected after the first administration of naltrexone to evaluate serum levels of naltrexone and 6-beta-naltrexol. Regional brain mu-OR binding potential (BP) and delta-OR Ki was measured using [11C]carfentanil (CAR) positron emission tomography (PET) and [11C]methyl naltrindole ([11C]MeNTI) PET, respectively, before (day 5) and during naltrexone treatment (day 18). Naltrexone inhibition of [11C]CAR BP was near maximal across all brain regions of interest with little variability across subjects (mean+SD% inhibition=94.9+4.9%). Naltrexone only partially inhibited the [11C]MeNTI Ki and there was more variability across subjects (mean+SD% inhibition=21.1+14.49%). Peak serum levels of naltrexone were positively correlated with % inhibition of delta-OR Ki in neocortex and basal ganglia. Peak serum levels of naltrexone were not correlated with % inhibition of mu-OR BP. Peak levels of 6-beta-naltrexol were not significantly correlated with % inhibition of mu-OR BP or delta-OR Ki. Thus, the FDA recommended therapeutic dose of naltrexone was sufficient to produce near complete inhibition of the mu-OR in recently abstinent alcohol dependent subjects. The lower percent inhibition of delta-OR and greater variability in delta-OR blockade by naltrexone across subjects may contribute to individual differences in treatment outcomes to naltrexone. Further investigations on the relationship between individual differences in delta-OR blockade by naltrexone and clinical outcomes should be explored.
Collapse
Affiliation(s)
- Elise M Weerts
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Nizhnikov ME, Varlinskaya EI, Petrov ES, Spear NE. Reinforcing properties of ethanol in neonatal rats: involvement of the opioid system. Behav Neurosci 2006; 120:267-80. [PMID: 16719691 DOI: 10.1037/0735-7044.120.2.267] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Toward understanding why infant rats ingest high levels of ethanol without initiation procedures, the authors tested effects of mu and kappa receptor antagonists on ethanol reinforcement in neonatal rats. After an intracisternal injection of CTOP (micro antagonist), nor-Binaltorphimine (kappa antagonist), or saline, newborn (3-hr-old) rats were given conditioning pairings of an odor with intraorally infused ethanol or a surrogate nipple with ethanol administered intraperitoneally (to minimize ethanol's gustatory attributes). In each case, these opioid antagonists reduced or eliminated ethanol's reinforcement effect. The same effects occurred with saccharin as the reinforcer in olfactory conditioning. The results imply that activation of mu and kappa receptors, apparently acting jointly, is necessary for reinforcement or that antagonists of this activity impair basic conditioning.
Collapse
Affiliation(s)
- Michael E Nizhnikov
- Center for Developmental Psychobiology, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY 139002-6000, USA.
| | | | | | | |
Collapse
|
14
|
Pastor R, Aragon CMG. The role of opioid receptor subtypes in the development of behavioral sensitization to ethanol. Neuropsychopharmacology 2006; 31:1489-99. [PMID: 16237389 DOI: 10.1038/sj.npp.1300928] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nonspecific blockade of opioid receptors has been found to prevent development of behavioral sensitization to ethanol. Whether this effect is achieved through a specific opioid receptor subtype, however, is not clear. The present study investigated, for the first time, the role of specific opioid receptor subtypes in the development of ethanol-(2.5 g/kg/day; six sessions) induced locomotor sensitization in mice. We confirmed previous results showing that the nonspecific antagonism of opioid receptors (naltrexone; 0-2 mg/kg) prevented the development of behavioral sensitization to ethanol, an effect attained at doses presumed to occupy only mu opioid receptors. This was confirmed by using the selective mu opioid receptor antagonist CTOP (0-1.5 mg/kg), which also blocked sensitization to ethanol. The selective delta receptor antagonist, naltrindole (0-10 mg/kg), however, did not alter sensitization. We further assessed the role of mu opioid receptors in sensitization to ethanol by exploring the involvement of mu(1), mu(1+2), and mu(3) opioid receptor subtypes. Results of these experiments revealed that the blockade of mu(1) (naloxonazine; 0-30 mg/kg) or mu(3) opioid receptors (3-methoxynaltrexone; 0-6 mg/kg) did not prevent locomotor sensitization to ethanol. Using naloxonazine under treatment conditions that block mu(1+2) opioid receptor subtypes we observed a retarded sensitization. The present data suggest that the concurrent inactivation of all mu opioid receptor subtypes may be required to prevent the neural adaptations underlying the development of behavioral sensitization to ethanol. In addition, these results support previous data suggesting a putative role for the mu opioid receptor endogenous ligand, beta-endorphin, and the hypothalamic arcuate nucleus in ethanol sensitization.
Collapse
Affiliation(s)
- Raúl Pastor
- Area de Psicobiología, Universitat Jaume I, Castelló, Spain
| | | |
Collapse
|
15
|
Escher T, Mittleman G. Schedule-induced alcohol drinking: non-selective effects of acamprosate and naltrexone. Addict Biol 2006; 11:55-63. [PMID: 16759337 DOI: 10.1111/j.1369-1600.2006.00004.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acamprosate and naltrexone are therapeutically effective drugs that promote abstinence and prevent drinking relapse among alcohol-dependent patients, and dose-dependently decrease alcohol self-administration in animals. The purpose of this experiment was to investigate the behavioral specificity of acamprosate and naltrexone treatment in mice on alcohol drinking elicited in a schedule-induced polydipsia (SIP) task. Food-deprived male C57BL/6J (B6) mice were divided into three groups assigned to a 5% alcohol SIP, water SIP, or a 1-hour limited access regulatory water drinking task. Injections (intraperitoneal) of acute (0, 50, 100, 200, 400 mg/kg) and chronic (2 x 100 mg/kg, 10 days) acamprosate, or naltrexone (0, 1.0, 2.5, 5.0 mg/kg) were administered. Behavioral drug specificity was determined by comparing alterations in alcohol or water consumption in SIP with alterations in limited access drinking. Additionally, drug effects on drinking-specific measures (g/kg consumption and lick efficiency) were compared with those of non-drinking measures (head entries for food and locomotor activity) during SIP. In comparison with saline injections, acute acamprosate (400 mg/kg) reduced both alcohol and water drinking in both SIP and the regulatory drinking conditions, but had no significant effects on non-drinking measures. Chronic administration of acamprosate reduced both alcohol and water drinking during SIP, but did not significantly affect regulatory drinking or non-drinking measures. Naltrexone (1.0, 2.5, 5.0 mg/kg) reduced alcohol and water drinking in both paradigms, and at the highest dose, significantly reduced head entries for food. These results indicate that acamprosate (acute and chronic) and naltrexone are relatively non-selective in their effects on alcohol self-administration in this task.
Collapse
Affiliation(s)
- Tobie Escher
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, CA 92037, USA.
| | | |
Collapse
|
16
|
Kovacs KM, Szakall I, O'Brien D, Wang R, Vinod KY, Saito M, Simonin F, Kieffer BL, Vadasz C. Decreased oral self-administration of alcohol in kappa-opioid receptor knock-out mice. Alcohol Clin Exp Res 2005; 29:730-8. [PMID: 15897716 DOI: 10.1097/01.alc.0000164361.62346.d6] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Although a large body of evidence suggests a role for the opioid system in alcoholism, the precise role of mu-, delta-, kappa-, and ORL1-opioid receptors and the physiological significance of their natural genetic variation have not been identified. The method of targeted gene disruption by homologous recombination has been used to knock out (KO) genes coding for opioid receptors, and study their effects on alcohol self-administration. Here we examined the effects of targeted disruption of kappa-opioid receptor (KOR) on oral alcohol self-administration and other behaviors. METHODS Oral alcohol, saccharin and quinine self-administration was assessed in a two-bottle choice paradigm using escalating concentrations of alcohol, or tastant solutions. In preference tests 12% alcohol, 0.033% and 0.066% saccharin, and 0.03 mM and 0.1 mM quinine solutions were used. Open-field activity was determined in an arena equipped with a computer-controlled activity-detection system. Subjects were tested for three consecutive days. Locomotor activity was assessed on days 1 and 2 (after saline injection, i.p.) and on day 3 (after alcohol injection, i.p.). Alcohol-induced locomotor activity was determined as the difference in activity between day 3 and day 2. RESULTS Male KOR KO mice in preference tests with 12% alcohol consumed about half as much alcohol as wild-type (WT) or heterozygous (HET) mice, showed lower preference for saccharin (0.033% and 0.066%) and higher preference to quinine (0.1 mM) than WT mice. Female KOR KO mice showed similar reduction in alcohol consumption in comparison to WT and HET mice. Partial deletion of KOR in HET mice did not change alcohol consumption in comparison to WT mice. In all genotype-groups females drank significantly more alcohol than males. MANOVA of locomotor activity among KO, WT, and HET mice indicated that strain and sex effects were not significant for alcohol-induced activation (p > 0.05), while strain x sex interaction effects on alcohol-induced activation could be detected (F(1,55) = 6.07, p < 0.05). CONCLUSION Our results indicating decreased alcohol consumption, lower saccharin preference, and higher quinine preference in KOR KO mice are in line with previous observations of opioid involvement in maintenance of food intake and raise the possibility that the deficient dynorphin/KOR system affects orosensory reward through central mechanisms which reduce alcohol intake and disrupt tastant responses, either as direct effects of absence of kappa-opioid receptors, or as effects of indirect developmental compensatory changes.
Collapse
Affiliation(s)
- Krisztina M Kovacs
- Laboratory of Neurobehavioral GeneticsNathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Manzanares J, Ortiz S, Oliva JM, Pérez-Rial S, Palomo T. INTERACTIONS BETWEEN CANNABINOID AND OPIOID RECEPTOR SYSTEMS IN THE MEDIATION OF ETHANOL EFFECTS. Alcohol Alcohol 2004; 40:25-34. [PMID: 15550451 DOI: 10.1093/alcalc/agh112] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the past few years, advances in the investigation of the neurochemical circuits involved in the development and treatment of alcohol dependence have identified peptides and receptors as potential key targets in the treatment of problems related to alcohol consumption. The endogenous opioid system is modified by alcohol intake in areas of the brain related to reward systems, and differential basal levels of opioid gene expression are found in rodents with a high preference for ethanol. This suggests a greater vulnerability to alcohol consumption in relation to differences in genetic background. Further evidence of the involvement of opioid peptides in alcohol dependence is the ability of the opioid antagonist naltrexone to reduce alcohol intake in animal models of dependence and in alcohol-dependent patients. Abundant evidence indicates that the activation of cannabinoid receptors stimulates the release of opioid peptides, therefore the cannabinoid receptor antagonists may presumably alter opioid peptide release, thus facilitating the reduction of ethanol consumption. However, little is known about the effects of ethanol on the endogenous cannabinoid system, the vulnerability of cannabinoid receptors to alcohol intake or their neurochemical implications in reducing consumption of alcohol. In this paper, we review the role of opioid and cannabinoid receptor systems, their vulnerability to alcohol intake and the development of dependence, and the targeting of these systems in the treatment of alcoholism.
Collapse
Affiliation(s)
- Jorge Manzanares
- Edificio Materno-Infantil, Planta 6, 613-A, Hospital Universitario 12 de Octubre, Avda. Cordoba s/n, 28041 Madrid, Spain.
| | | | | | | | | |
Collapse
|
18
|
Rosin A, Kitchen I, Georgieva J. Effects of single and dual administration of cocaine and ethanol on opioid and ORL1 receptor expression in rat CNS: an autoradiographic study. Brain Res 2003; 978:1-13. [PMID: 12834892 DOI: 10.1016/s0006-8993(03)02674-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The co-abuse of cocaine and ethanol is common among human addicts and has been reported to produce a stronger increase of euphoria as compared to either drug given alone. Both cocaine and ethanol increase the extracellular dopamine concentration in the nucleus accumbens, a terminal region in the mesolimbic dopamine pathway. In addition, both cocaine and ethanol affect the endogenous opioid system, which in turn alters the activity of the mesolimbic dopamine pathway. We have carried out quantitative autoradiography mapping of the opioid receptors as well as the opioid receptor-like 1 receptor in the brains of rats treated with both single and dual cocaine and ethanol. Rats received acute cocaine, ethanol or both drugs in combination. Ethanol alone or in combination with cocaine modulated the receptor densities in rat central nervous system. The kappa receptor densities were generally decreased, while both the mu and the opioid receptor-like 1 receptors were up-regulated. The mu opioid receptor levels were mainly increased in non-cortical regions, whereas the opioid receptor-like 1 receptors were increased in cortical structures. No changes in delta opioid receptors were observed. Cocaine alone did not influence the receptor levels in any of the treatment groups.
Collapse
Affiliation(s)
- Asa Rosin
- Department of Clinical Neuroscience, Experimental Drug Addiction Research Section, Karolinska Institutet, CMM L8: 01, S-171 76, Stockholm, Sweden
| | | | | |
Collapse
|
19
|
Koob GF, Roberts AJ, Kieffer BL, Heyser CJ, Katner SN, Ciccocioppo R, Weiss F. Animal models of motivation for drinking in rodents with a focus on opioid receptor neuropharmacology. RECENT DEVELOPMENTS IN ALCOHOLISM : AN OFFICIAL PUBLICATION OF THE AMERICAN MEDICAL SOCIETY ON ALCOHOLISM, THE RESEARCH SOCIETY ON ALCOHOLISM, AND THE NATIONAL COUNCIL ON ALCOHOLISM 2003; 16:263-81. [PMID: 12638642 DOI: 10.1007/0-306-47939-7_19] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Ethanol, like other drugs of abuse, has motivating properties that can be developed as animal models of self-administration. A major strength of the operant approach where an animal must work to obtain ethanol is that it reduces confounds due to palatability and controls for nonspecific malaise-inducing effects. In the domain of opioid peptide systems, limited access paradigms have good predictive validity. In addition, animal models of excessive drinking-either environmentally or genetically induced-also appear sensitive to blockade or inactivation of opioid peptide receptors. Ethanol availability can be predicted by cues associated with positive reinforcement, and these models are sensitive to the administration of opioid antagonists. Perhaps most exciting are the recent results suggesting that the key element in opioid peptide systems that is important for the positive reinforcing effects of ethanol is the mu-opioid receptor. How exactly ethanol modulates mu-receptor function will be a major challenge of future research. Nevertheless, the apparently critical role of the mu receptor in ethanol reinforcement refocuses the neuropharmacology of ethanol reinforcement in the opioid peptide domain and opens a novel avenue for exploring medications for treating alcoholism.
Collapse
Affiliation(s)
- George F Koob
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Koistinen M, Tuomainen P, Hyytia P, Kiianmaa K. Naltrexone Suppresses Ethanol Intake in 6-Hydroxydopamine-Treated Rats. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02167.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
|
23
|
Roberts AJ, Gold LH, Polis I, McDonald JS, Filliol D, Kieffer BL, Koob GF. Increased Ethanol Self-Administration in delta-Opioid Receptor Knockout Mice. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02344.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Lindholm S, Werme M, Brené S, Franck J. The selective kappa-opioid receptor agonist U50,488H attenuates voluntary ethanol intake in the rat. Behav Brain Res 2001; 120:137-46. [PMID: 11182162 DOI: 10.1016/s0166-4328(00)00368-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-selective opioid receptor antagonists are increasingly used in the treatment of alcohol dependence. The clinical effects are significant but the effect size is rather small and unpleasant side effects may limit the benefits of the compounds. Ligands acting at mu- and/or delta- receptors can alter the voluntary intake of ethanol in various animal models. Therefore, the attenuating effects of selective opioid receptor ligands on ethanol intake may be of clinical interest in the treatment of alcoholism. The objective of this study was to examine the effects of a selective kappa-receptor agonist, U50,488H on voluntary ethanol intake in the rat. We used a restricted access model with a free choice between an ethanol solution (10% v/v) and water. During the 3-days baseline period, the rats received a daily saline injection (1 ml/kg, i.p.) 15 min before the 2 h access to ethanol. The animals had free access to water at all times. The control group received a daily saline injection during the 4-days treatment-period, whereas the treatment groups received a daily dose of U50,488H (2.5, 5.0 or 10 mg/kg per day). Animals treated with U50,488H dose-dependently decreased their ethanol intake. The effect of the highest dose of U50,488H was reduced by pre-treatment with the selective kappa-antagonist nor-binaltorphimine (nor-BNI). These results demonstrate that activation of kappa-opioid receptors can attenuate voluntary ethanol intake in the rat, and the data suggest that the brain dynorphin/kappa-receptor systems may represent a novel target for pharmacotherapy in the treatment of alcohol dependence.
Collapse
Affiliation(s)
- S Lindholm
- Department of Clinical Neuroscience, Karolinska Institutet, Beroendecentrum Nord, Magnus Huss M4, SE-171 76 Stockholm, Sweden
| | | | | | | |
Collapse
|
25
|
Quantitative Autoradiography of Mu-Opioid Receptors in the CNS of High???Alcohol-Drinking (HAD) and Low???Alcohol-Drinking (LAD) Rats. Alcohol Clin Exp Res 2001. [DOI: 10.1097/00000374-200104000-00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Learn JE, Chernet E, McBride WJ, Lumeng L, Li TK. Quantitative Autoradiography of Mu-Opioid Receptors in the CNS of High-Alcohol-Drinking (HAD) and Low-Alcohol-Drinking (LAD) Rats. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02246.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Lindholm S, Ploj K, Franck J, Nylander I. Repeated ethanol administration induces short- and long-term changes in enkephalin and dynorphin tissue concentrations in rat brain. Alcohol 2000; 22:165-71. [PMID: 11163124 DOI: 10.1016/s0741-8329(00)00118-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Recently, we have shown that rats repeatedly treated with ethanol and/or cocaine have decreased kappa-opioid receptor mRNA levels in the mesolimbic system. The aim of the present study was to investigate the short- and long-term effects of repeated ethanol administration on opioid peptide concentrations in brain tissue of male Sprague-Dawley rats. Dynorphin B (1-13) (Dyn B) and Met-enkephalinArg(6)Phe(7) (MEAP), endogenous ligands to kappa- and delta-opioid receptors, respectively, were measured using radioimmunoassays. The rats were given either ethanol [intraperitoneal (ip), twice daily, 2 g/kg bw/dose] or saline for 13 consecutive days. Thirty minutes after the last ethanol dose on Day 13, the Dyn B tissue concentration was significantly decreased in the cingulate cortex. The MEAP tissue concentration was decreased in the hippocampus 5 days after the last ethanol injection as compared to saline-treated controls. Furthermore, the Dyn B and the MEAP concentrations were increased in the periaqueductal grey area (PAG) at this time point. Of particular interest were the significant increases in Dyn B tissue concentrations found in the nucleus accumbens (NAcc) at 30 min and at 21 days after the last ethanol dose. The results suggest that repeated ethanol administration induces both short- and long-term changes in the tissue concentrations of opioids in certain brain regions associated with motivation and reward.
Collapse
Affiliation(s)
- S Lindholm
- Clinical Alcohol and Drug Addiction Research, Department of Clinical Neuroscience, Magnus Huss, M4:02, Karolinska Hospital, Karolinska Institutet, SE-171 76 Stockholm, Sweden.
| | | | | | | |
Collapse
|
28
|
Hutchinson AC, Simpson GR, Randall JF, Zhang X, Calderon SN, Rice KC, Riley AL. Assessment of SNC 80 and naltrindole within a conditioned taste aversion design. Pharmacol Biochem Behav 2000; 66:779-87. [PMID: 10973516 DOI: 10.1016/s0091-3057(00)00278-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although compounds with relative selectivity for the mu and kappa opiate receptors subtypes have been reported to condition taste aversions, it is not known whether systemically administered delta compounds have the ability to produce aversions. To that end, female Long-Evans rats were adapted to water deprivation and were given pairings of a novel saccharin solution and various doses of the selective delta agonist SNC 80 (0.32-10.0 mg/kg; Experiment 1) or the selective delta antagonist naltrindole (1.0-18.0 mg/kg; Experiment 2). For comparison, the relatively selective mu agonist morphine (Experiment 1) and mu antagonist naloxone (Experiment 2) were assessed under identical conditions. Both SNC 80 (Experiment 1) and naltrindole (Experiment 2) were effective as unconditioned stimuli within this design, inducing dose-dependent taste aversions with repeated conditioning trials. Although at no dose did animals injected with SNC 80 differ from those injected with morphine, aversions induced by SNC 80 were acquired at a faster rate than those induced by morphine. Subjects injected with naloxone drank significantly less than those injected with naltrindole at the 10 mg/kg dose, and aversions induced by naloxone at 5.6 and 10 mg/kg were acquired at a faster rate than those induced by naltrindole. Although the basis for opioid agonist- and antagonist-induced taste aversions is not known, the differences between aversions induced by SNC 80 and naltrindole and those induced by morphine and naloxone, respectively, may be a function of their relative selectivity for specific opiate receptor subtypes.
Collapse
Affiliation(s)
- A C Hutchinson
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, DC 20016, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Middaugh LD, Kelley BM, Groseclose CH, Cuison ER. Delta-opioid and 5-HT3 receptor antagonist effects on ethanol reward and discrimination in C57BL/6 mice. Pharmacol Biochem Behav 2000; 65:145-54. [PMID: 10638648 DOI: 10.1016/s0091-3057(99)00184-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effects of the receptor antagonists MDL 72222 (MDL, 5-HT3) and naltrindole (delta-opioid) on ethanol reward and its discrimination were examined in ethanol-preferring C57BL/6 (C57) mice. MDL attenuated lever responding for 12% ethanol delivered on a fixed-ratio 8 reinforcement schedule at a dose that did not influence responding for water reward, thus confirming a previous report that ICS 205-930 reduced ethanol reward for Long-Evans rats. Our study in combination with the reduced ethanol consumption reported for C57 mice injected with odansetron indicates that 5-HT3 receptor systems are involved in mediating behavior directed toward obtaining ethanol as well as its consumption. By attenuating the rewarding effects of ethanol or of ethanol conditioned cues (e.g., the operant environment), 5-HT3 antagonists may be useful in the treatment of alcohol abuse. The 5-HT3 antagonist effects in this study are comparable with the effects of naltrexone on ethanol reward in C57 mice, although higher doses were required to reduce operant responding for ethanol reward. In contrast to the 5-HT3 antagonist and naltrexone effects, naltrindole, an antagonist with greater specificity for the delta-opioid receptor, was without effect on ethanol reward. This result and recent reports for rats and monkeys suggests that the general antagonists might be more efficacious in attenuating ethanol reward. Both MDL and naltrindole produced only slight reductions in the ethanol discriminative cue, suggesting that the rewarding and discriminative effects of ethanol are not likely mediated by identical neural mechanisms as previously suggested.
Collapse
Affiliation(s)
- L D Middaugh
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston 29425, USA
| | | | | | | |
Collapse
|
30
|
Abstract
This paper is the twenty-first installment of our annual review of research concerning the opiate system. It summarizes papers published during 1998 that studied the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress; tolerance and dependence; eating and drinking; alcohol; gastrointestinal, renal, and hepatic function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurologic disorders; electrical-related activity; general activity and locomotion; sex, pregnancy, and development; immunologic responses; and other behaviors.
Collapse
Affiliation(s)
- A L Vaccarino
- Department of Psychology, University of New Orleans, LA 70148, USA.
| | | | | | | |
Collapse
|