1
|
Beane CR, Lewis DG, Bruns Vi N, Pikus KL, Durfee MH, Zegarelli RA, Perry TW, Sandoval O, Radke AK. Cholinergic mu-opioid receptor deletion alters reward preference and aversion-resistance. Neuropharmacology 2024; 255:110019. [PMID: 38810926 DOI: 10.1016/j.neuropharm.2024.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/26/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
The endogenous opioid system has been implicated in alcohol consumption and preference in both humans and animals. The mu opioid receptor (MOR) is expressed on multiple cells in the striatum, however little is known about the contributions of specific MOR populations to alcohol drinking behaviors. The current study used mice with a genetic deletion of MOR in cholinergic cells (ChAT-Cre/Oprm1fl/fl) to examine the role of MORs expressed in cholinergic interneurons (CINs) in home cage self-administration paradigms. Male and female ChAT-Cre/Oprm1fl/fl mice were generated and heterozygous Cre+ (knockout) and Cre- (control) mice were tested for alcohol consumption in two drinking paradigms: limited access "Drinking in the Dark" and intermittent access. Quinine was added to the drinking bottles in the DID experiment to test aversion-resistant, "compulsive" drinking. Nicotine and sucrose drinking were also assessed so comparisons could be made with other rewarding substances. Cholinergic MOR deletion did not influence consumption or preference for ethanol (EtOH) in either drinking task. Differences were observed in aversion-resistance in males with Cre + mice tolerating lower concentrations of quinine than Cre-. In contrast to EtOH, preference for nicotine was reduced following cholinergic MOR deletion while sucrose consumption and preference was increased in Cre+ (vs. Cre-) females. Locomotor activity was also greater in females following the deletion. These results suggest that cholinergic MORs participate in preference for rewarding substances. Further, while they are not required for consumption of alcohol alone, cholinergic MORs may influence the tendency to drink despite negative consequences.
Collapse
Affiliation(s)
- Cambria R Beane
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Delainey G Lewis
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Nicolaus Bruns Vi
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Kat L Pikus
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Mary H Durfee
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Roman A Zegarelli
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Thomas W Perry
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Oscar Sandoval
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Anna K Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA.
| |
Collapse
|
2
|
Carvour HM, Roemer CA, Underwood DP, Padilla ES, Sandoval O, Robertson M, Miller M, Parsadanyan N, Perry TW, Radke AK. Mu-opioid receptor knockout on Foxp2-expressing neurons reduces aversion-resistant alcohol drinking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.29.569252. [PMID: 38077082 PMCID: PMC10705460 DOI: 10.1101/2023.11.29.569252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Mu-opioid receptors (MORs) in the amygdala and striatum are important in addictive and rewarding behaviors. The transcription factor Foxp2 is a genetic marker of intercalated (ITC) cells in the amygdala and a subset of striatal medium spiny neurons (MSNs), both of which express MORs in wild-type mice and are neuronal subpopulations of potential relevance to alcohol-drinking behaviors. For the current series of studies, we characterized the behavior of mice with genetic deletion of the MOR gene Oprm1 in Foxp2-expressing neurons (Foxp2-Cre/Oprm1fl/fl). Male and female Foxp2-Cre/Oprm1fl/fl mice were generated and heterozygous Cre+ (knockout) and homozygous Cre- (control) animals were tested for aversion-resistant alcohol consumption using an intermittent access (IA) task, operant responding for a sucrose reward, conditioned place aversion (CPA) to morphine withdrawal, and locomotor sensitization to morphine. The results demonstrate that deletion of MOR on Foxp2-expressing neurons renders mice more sensitive to quinine-adulterated ethanol (EtOH). Mice with the deletion (vs. Cre- controls) also consumed less alcohol during the final sessions of the IA task, responded less for sucrose under an FR3 schedule, and were less active at baseline and following morphine injection. Foxp2-MOR deletion did not impair the ability to learn to respond for reward or develop a conditioned aversion to morphine withdrawal. Together, these investigations demonstrate that Foxp2-expressing neurons may be involved in escalation of alcohol consumption and the development of compulsive-like alcohol drinking.
Collapse
|
3
|
Beane CR, Lewis DG, Bruns NK, Pikus KL, Durfee MH, Zegarelli RA, Perry TW, Sandoval O, Radke AK. Cholinergic mu-opioid receptor deletion alters reward preference and aversion-resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.566881. [PMID: 38014065 PMCID: PMC10680803 DOI: 10.1101/2023.11.13.566881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Heavy alcohol use and binge drinking are important contributors to alcohol use disorder (AUD). The endogenous opioid system has been implicated in alcohol consumption and preference in both humans and animals. The mu opioid receptor (MOR) is expressed on multiple cells in the striatum, however little is known about the contributions of specific MOR populations to alcohol drinking behaviors. The current study used mice with a genetic deletion of MOR in cholinergic cells (ChAT-Cre/Oprm1fl/fl) to examine the role of MORs expressed in cholinergic interneurons (CINs) in home cage self-administration paradigms. Male and female ChAT-Cre/Oprm1fl/fl mice were generated and heterozygous Cre+ (knockout) and Cre- (control) mice were tested for alcohol and nicotine consumption. In Experiment 1, binge-like and quinine-resistant drinking was tested using 15% ethanol (EtOH) in a two-bottle, limited-access Drinking in the Dark paradigm. Experiment 2 involved a six-week intermittent access paradigm in which mice received 20% EtOH, nicotine, and then a combination of the two drugs. Experiment 3 assessed locomotor activity, sucrose preference, and quinine sensitivity. Deleting MORs in cholinergic cells did not alter consumption of EtOH in Experiment 1 or 2. In Experiment 1, the MOR deletion resulted in greater consumption of quinine-adulterated EtOH in male Cre+ mice (vs. Cre-). In Experiment 2, Cre+ mice demonstrated a significantly lower preference for nicotine but did not differ from Cre- mice in nicotine or nicotine + EtOH consumption. Overall fluid consumption was also heightened in the Cre+ mice. In Experiment 3, Cre+ females were found to have greater locomotor activity and preference for sucrose vs. Cre- mice. These data suggest that cholinergic MORs are not required for EtOH, drinking behaviors but may contribute to aversion resistant EtOH drinking in a sex-dependent manner.
Collapse
|
4
|
Searles CT, Harder HJ, Vogt ME, Murphy AZ. Perigestational Opioid Exposure Alters Alcohol-Driven Reward Behaviors in Adolescent Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567041. [PMID: 38014019 PMCID: PMC10680700 DOI: 10.1101/2023.11.14.567041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Every fifteen minutes, a baby is born in the U.S. experiencing neonatal opioid withdrawal syndrome (NOWS). Since 2004, the rate of NOWS has increased 7-fold. Clinical studies have established intrauterine exposure to drugs of abuse as a risk factor for adverse health outcomes in adult life, including the propensity for future illicit drug use. Despite extensive knowledge about common mechanisms of action in the neural circuitry that drives opioid and alcohol reward, there is little data on the risks that those born with NOWS face regarding alcohol use later in life. Here, we investigate the impact of perigestational opioid exposure (POE) on the mesolimbic reward system of male and female Sprague Dawley rats at postnatal and adolescent ages. Our laboratory has developed a clinically relevant model for morphine exposure spanning pre-conception to the first week of life. Using this model, we found that POE increased alcohol consumption in female rats under noncontingent conditions, and inversely, reduced alcohol consumption in both male and female rats during operant conditioning sessions. Operant responding was also reduced for sucrose, suggesting that the impact of POE on reward-seeking behaviors is not limited to drugs of abuse. Expression of µ-opioid receptors was also significantly altered in the nucleus accumbens and medial habenula, regions previously shown to play a significant role in reward/aversion circuitry. Significance Statement Early life exposure to opioids is known to alter future drug behavior in rats. In the present study, female rats exposed to morphine via their mothers throughout and after pregnancy exhibited increased alcohol consumption when allowed to consume freely. During operant conditioning, however, male and female rats exposed to gestational morphine decreased consumption of alcohol as well as sucrose. We also observed that gestational morphine exposure altered µ-opioid receptor expression in reward-related brain regions. Our study provides the first evidence of changes in alcohol-directed reward behavior in a gestational opioid exposure rat model.
Collapse
|
5
|
Li C, Dai W, Miao S, Xie W, Yu S. Medication overuse headache and substance use disorder: A comparison based on basic research and neuroimaging. Front Neurol 2023; 14:1118929. [PMID: 36937526 PMCID: PMC10017752 DOI: 10.3389/fneur.2023.1118929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
It has yet to be determined whether medication overuse headache (MOH) is an independent disorder or a combination of primary headache and substance addiction. To further explore the causes of MOH, we compared MOH with substance use disorder (SUD) in terms of the brain regions involved to draw more targeted conclusions. In this review, we selected alcohol use disorder (AUD) as a representative SUD and compared MOH and AUD from two aspects of neuroimaging and basic research. We found that in neuroimaging studies, there were many overlaps between AUD and MOH in the reward circuit, but the extensive cerebral cortex damage in AUD was more serious than that in MOH. This difference was considered to reflect the sensitivity of the cortex structure to alcohol damage. In future research, we will focus on the central amygdala (CeA), prefrontal cortex (PFC), orbital-frontal cortex (OFC), hippocampus, and other brain regions for interventions, which may have unexpected benefits for addiction and headache symptoms in MOH patients.
Collapse
|
6
|
Alcohol Withdrawal and the Associated Mood Disorders-A Review. Int J Mol Sci 2022; 23:ijms232314912. [PMID: 36499240 PMCID: PMC9738481 DOI: 10.3390/ijms232314912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022] Open
Abstract
Recreational use of alcohol is a social norm in many communities worldwide. Alcohol use in moderation brings pleasure and may protect the cardiovascular system. However, excessive alcohol consumption or alcohol abuse are detrimental to one's health. Three million deaths due to excessive alcohol consumption were reported by the World Health Organization. Emerging evidence also revealed the danger of moderate consumption, which includes the increased risk to cancer. Alcohol abuse and periods of withdrawal have been linked to depression and anxiety. Here, we present the effects of alcohol consumption (acute and chronic) on important brain structures-the frontal lobe, the temporal lobe, the limbic system, and the cerebellum. Apart from this, we also present the link between alcohol abuse and withdrawal and mood disorders in this review, thus drawing a link to oxidative stress. In addition, we also discuss the positive impacts of some pharmacotherapies used. Due to the ever-rising demands of life, the cycle between alcohol abuse, withdrawal, and mood disorders may be a never-ending cycle of destruction. Hence, through this review, we hope that we can emphasise the importance and urgency of managing this issue with the appropriate approaches.
Collapse
|
7
|
Keller BN, Hajnal A, Browning KN, Arnold AC, Silberman Y. Involvement of the Dorsal Vagal Complex in Alcohol-Related Behaviors. Front Behav Neurosci 2022; 16:801825. [PMID: 35330845 PMCID: PMC8940294 DOI: 10.3389/fnbeh.2022.801825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/19/2022] [Indexed: 12/20/2022] Open
Abstract
The neurobiological mechanisms that regulate the development and maintenance of alcohol use disorder (AUD) are complex and involve a wide variety of within and between systems neuroadaptations. While classic reward, preoccupation, and withdrawal neurocircuits have been heavily studied in terms of AUD, viable treatment targets from this established literature have not proven clinically effective as of yet. Therefore, examination of additional neurocircuitries not classically studied in the context of AUD may provide novel therapeutic targets. Recent studies demonstrate that various neuropeptides systems are important modulators of alcohol reward, seeking, and intake behaviors. This includes neurocircuitry within the dorsal vagal complex (DVC), which is involved in the control of the autonomic nervous system, control of intake of natural rewards like food, and acts as a relay of interoceptive sensory information via interactions of numerous gut-brain peptides and neurotransmitter systems with DVC projections to central and peripheral targets. DVC neuron subtypes produce a variety of neuropeptides and transmitters and project to target brain regions critical for reward such as the mesolimbic dopamine system as well as other limbic areas important for the negative reinforcing and aversive properties of alcohol withdrawal such as the extended amygdala. This suggests the DVC may play a role in the modulation of various aspects of AUD. This review summarizes the current literature on neurotransmitters and neuropeptides systems in the DVC (e.g., norepinephrine, glucagon-like peptide 1, neurotensin, cholecystokinin, thyrotropin-releasing hormone), and their potential relevance to alcohol-related behaviors in humans and rodent models for AUD research. A better understanding of the role of the DVC in modulating alcohol related behaviors may lead to the elucidation of novel therapeutic targets for drug development in AUD.
Collapse
|
8
|
Cunningham JI, Todtenkopf MS, Dean RL, Azar MR, Koob GF, Deaver DR, Eyerman DJ. Samidorphan, an opioid receptor antagonist, attenuates drug-induced increases in extracellular dopamine concentrations and drug self-administration in male Wistar rats. Pharmacol Biochem Behav 2021; 204:173157. [PMID: 33647274 DOI: 10.1016/j.pbb.2021.173157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/22/2021] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
Opioid receptors modulate neurochemical and behavioral responses to drugs of abuse in nonclinical models. Samidorphan (SAM) is a new molecular entity that binds with high affinity to human mu- (μ), kappa- (κ), and delta- (δ) opioid receptors and functions as a μ-opioid receptor antagonist with partial agonist activity at κ- and δ-opioid receptors. Based on its in vitro profile, we hypothesized that SAM would block key neurobiological effects of drugs of abuse. Therefore, we assessed the effects of SAM on ethanol-, oxycodone-, cocaine-, and amphetamine-induced increases in extracellular dopamine (DAext) in the nucleus accumbens shell (NAc-sh), and ethanol and cocaine self-administration behavior in rats. In microdialysis studies, administration of SAM alone did not result in measurable changes in NAc-sh DAext when given across a large range of doses. However, SAM markedly decreased average and maximal increases in NAc-sh DAext produced by each of the drugs of abuse tested. In behavioral studies, SAM attenuated fixed-ratio ethanol self-administration and progressive ratio cocaine self-administration. These results highlight the potential of SAM to counteract the neurobiological and behavioral effects of several drugs of abuse with differing mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | - George F Koob
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
9
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Gibula-Tarlowska E, Kotlinska JH. Crosstalk between Opioid and Anti-Opioid Systems: An Overview and Its Possible Therapeutic Significance. Biomolecules 2020; 10:E1376. [PMID: 32998249 PMCID: PMC7599993 DOI: 10.3390/biom10101376] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
Opioid peptides and receptors are broadly expressed throughout peripheral and central nervous systems and have been the subject of intense long-term investigations. Such studies indicate that some endogenous neuropeptides, called anti-opioids, participate in a homeostatic system that tends to reduce the effects of endogenous and exogenous opioids. Anti-opioid properties have been attributed to various peptides, including melanocyte inhibiting factor (MIF)-related peptides, cholecystokinin (CCK), nociceptin/orphanin FQ (N/OFQ), and neuropeptide FF (NPFF). These peptides counteract some of the acute effects of opioids, and therefore, they are involved in the development of opioid tolerance and addiction. In this work, the anti-opioid profile of endogenous peptides was described, mainly taking into account their inhibitory influence on opioid-induced effects. However, the anti-opioid peptides demonstrated complex properties and could show opioid-like as well as anti-opioid effects. The aim of this review is to detail the phenomenon of crosstalk taking place between opioid and anti-opioid systems at the in vivo pharmacological level and to propose a cellular and molecular basis for these interactions. A better knowledge of these mechanisms has potential therapeutic interest for the control of opioid functions, notably for alleviating pain and/or for the treatment of opioid abuse.
Collapse
Affiliation(s)
- Ewa Gibula-Tarlowska
- Department of Pharmacology and Pharmacodynamics, Medical University, 20-059 Lublin, Poland;
| | | |
Collapse
|
11
|
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Health Care System, Columbia, SC, United States
| | - Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
12
|
Hamida SB, Boulos LJ, McNicholas M, Charbogne P, Kieffer BL. Mu opioid receptors in GABAergic neurons of the forebrain promote alcohol reward and drinking. Addict Biol 2019; 24:28-39. [PMID: 29094432 PMCID: PMC5932272 DOI: 10.1111/adb.12576] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/07/2017] [Accepted: 10/06/2017] [Indexed: 01/21/2023]
Abstract
Mu opioid receptors (MORs) are widely distributed throughout brain reward circuits and their role in drug and social reward is well established. Substantial evidence has implicated MOR and the endogenous opioid system in alcohol reward, but circuit mechanisms of MOR-mediated alcohol reward and intake behavior remain elusive, and have not been investigated by genetic approaches. We recently created conditional knockout (KO) mice targeting the Oprm1 gene in GABAergic forebrain neurons. These mice (Dlx-MOR KO) show a major MOR deletion in the striatum, whereas receptors in midbrain (including the Ventral Tegmental Area or VTA) and hindbrain are intact. Here, we compared alcohol-drinking behavior and rewarding effects in total (MOR KO) and conditional KO mice. Concordant with our previous work, MOR KO mice drank less alcohol in continuous and intermittent two-bottle choice protocols. Remarkably, Dlx-MOR KO mice showed reduced drinking similar to MOR KO mice, demonstrating that MOR in the forebrain is responsible for the observed phenotype. Further, alcohol-induced conditioned place preference was detected in control but not MOR KO mice, indicating that MOR is essential for alcohol reward and again, Dlx-MOR KO recapitulated the MOR KO phenotype. Taste preference and blood alcohol levels were otherwise unchanged in mutant lines. Together, our data demonstrate that MOR expressed in forebrain GABAergic neurons is essential for alcohol reward-driven behaviors, including drinking and place conditioning. Challenging the prevailing VTA-centric hypothesis, this study reveals another mechanism of MOR-mediated alcohol reward and consumption, which does not necessarily require local VTA MORs but rather engages striatal MOR-dependent mechanisms.
Collapse
Affiliation(s)
- Sami Ben Hamida
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
- Douglas Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, H4H 1R3, Canada
| | - Laura-Joy Boulos
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
- Douglas Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, H4H 1R3, Canada
| | - Michael McNicholas
- Douglas Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, H4H 1R3, Canada
| | - Pauline Charbogne
- Douglas Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, H4H 1R3, Canada
| | - Brigitte Lina Kieffer
- Département de Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U-964, CNRS UMR-7104, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
- Douglas Research Center, Department of Psychiatry, Faculty of Medicine, McGill University, Montréal, H4H 1R3, Canada
| |
Collapse
|
13
|
Granholm L, Todkar A, Bergman S, Nilsson K, Comasco E, Nylander I. The expression of opioid genes in non-classical reward areas depends on early life conditions and ethanol intake. Brain Res 2017; 1668:36-45. [PMID: 28511993 DOI: 10.1016/j.brainres.2017.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/21/2017] [Accepted: 05/08/2017] [Indexed: 12/28/2022]
Abstract
The young brain is highly sensitive to environmental influences that can cause long-term changes in neuronal function, possibly through altered gene expression. The endogenous opioid system continues to mature after birth and because of its involvement in reward, an inadequate maturation of this system could lead to enhanced susceptibility for alcohol use disorder. Recent studies show that the classical reward areas nucleus accumbens and ventral tegmental area are less affected by early life stress whereas endogenous opioids in non-classical areas, e.g. dorsal striatum and amygdala, are highly responsive. The aim was to investigate the interaction between early life conditions and adult voluntary ethanol intake on opioid gene expression. Male Wistar rats were exposed to conventional rearing, 15, or 360min of daily maternal separation (MS) postnatal day 1-21, and randomly assigned to ethanol or water drinking postnatal week 10-16. Rats exposed to early life stress (MS360) had increased opioid receptor gene (Oprm1, Oprd1 and Oprk1) expression in the dorsal striatum. Ethanol drinking was associated with lower striatal Oprd1 and Oprk1 expression solely in rats exposed to early life stress. Furthermore, rats exposed to early life stress had high inherent Pomc expression in the amygdala but low expression after ethanol intake. Thus, adverse events early in life induced changes in opioid gene expression and also influenced the central molecular response to ethanol intake. These long-term consequences of early life stress can contribute to the enhanced risk for excessive ethanol intake and alcohol use disorder seen after exposure to childhood adversity.
Collapse
Affiliation(s)
- Linnea Granholm
- Neuropharmacology, Addiction and Behaviour, Dept. Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Aniruddah Todkar
- Neuropsychopharmacology, Dept. Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Sofia Bergman
- Neuropsychopharmacology, Dept. Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Kent Nilsson
- Västerås Centre for Clinical Research, Uppsala University, Uppsala, Sweden.
| | - Erika Comasco
- Neuropsychopharmacology, Dept. Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Ingrid Nylander
- Neuropharmacology, Addiction and Behaviour, Dept. Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
14
|
Zhou Y, Rubinstein M, Low MJ, Kreek MJ. Hypothalamic-specific proopiomelanocortin deficiency reduces alcohol drinking in male and female mice. GENES BRAIN AND BEHAVIOR 2017; 16:449-461. [PMID: 27870313 DOI: 10.1111/gbb.12362] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/07/2016] [Accepted: 11/16/2016] [Indexed: 01/21/2023]
Abstract
Opioid receptor antagonist naltrexone reduces alcohol consumption and relapse in both humans and rodents. This study investigated whether hypothalamic proopiomelanocortin (POMC) neurons (producing beta-endorphin and melanocortins) play a role in alcohol drinking behaviors. Both male and female mice with targeted deletion of two neuronal Pomc enhancers nPE1 and nPE2 (nPE-/-), resulting in hypothalamic-specific POMC deficiency, were studied in short-access (4-h/day) drinking-in-the-dark (DID, alcohol in one bottle, intermittent access (IA, 24-h cycles of alcohol access every other day, alcohol vs. water in a two-bottle choice) and alcohol deprivation effect (ADE) models. Wild-type nPE+/+ exposed to 1-week DID rapidly established stable alcohol drinking behavior with more intake in females, whereas nPE-/- mice of both sexes had less intake and less preference. Although nPE-/- showed less saccharin intake and preference than nPE+/+, there was no genotype difference in sucrose intake or preference in the DID paradigm. After 3-week IA, nPE+/+ gradually escalated to high alcohol intake and preference, with more intake in females, whereas nPE-/- showed less escalation. Pharmacological blockade of mu-opioid receptors with naltrexone reduced intake in nPE+/+ in a dose-dependent manner, but had blunted effects in nPE-/- of both sexes. When alcohol was presented again after 1-week abstinence from IA, nPE+/+ of both sexes displayed significant increases in alcohol intake (ADE or relapse-like drinking), with more pronounced ADE in females, whereas nPE-/- did not show ADE in either sex. Our results suggest that neuronal POMC is involved in modulation of alcohol 'binge' drinking, escalation and 'relapse', probably via hypothalamic-mediated mechanisms, with sex differences.
Collapse
Affiliation(s)
- Y Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - M Rubinstein
- INGEBI/CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - M J Low
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - M J Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| |
Collapse
|
15
|
Van't Veer A, Smith KL, Cohen BM, Carlezon WA, Bechtholt AJ. Kappa-opioid receptors differentially regulate low and high levels of ethanol intake in female mice. Brain Behav 2016; 6:e00523. [PMID: 27688945 PMCID: PMC5036438 DOI: 10.1002/brb3.523] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/21/2016] [Accepted: 05/28/2016] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Studies in laboratory animals and humans indicate that endogenous opioids play an important role in regulating the rewarding value of various drugs, including ethanol (EtOH). Indeed, opioid antagonists are currently a front-line treatment for alcoholism in humans. Although roles for mu- and delta-opioid receptors have been characterized, the contribution of kappa-opioid receptors (KORs) is less clear. There is evidence that changes in KOR system function can decrease or increase EtOH drinking, depending on test conditions. For example, female mice lacking preprodynorphin - the precursor to the endogenous KOR ligand dynorphin - have reduced EtOH intake. Considering that KORs can regulate dopamine (DA) transmission, we hypothesized that KORs expressed on DA neurons would play a prominent role in EtOH intake in females. METHODS We used a Cre/loxP recombination strategy to ablate KORs throughout the body or specifically on dopamine uptake transporter (DAT)-expressing neurons to investigate the role of KORs on preference for and intake of EtOH (2-bottle choice), the transition from moderate to excessive EtOH drinking (intermittent EtOH access), and binge EtOH drinking (drinking in the dark [DID]). RESULTS KOR deletion decreased preference for EtOH, although this effect was less pronounced when EtOH intake increased beyond relatively low levels. DISCUSSION Our findings indicate that KOR activation increases EtOH drinking via effects mediated, at least in part, by KORs on DA neurons. While the mechanisms of this regulation remain unknown, previous work suggests that alterations in negative reinforcement processes or sensitivity to the sensory properties of EtOH can affect preference and intake.
Collapse
Affiliation(s)
- Ashlee Van't Veer
- Department of Psychiatry Harvard Medical School McLean Hospital Belmont MA USA; National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda MD USA
| | - Karen L Smith
- Department of Psychiatry Harvard Medical School McLean Hospital Belmont MA USA
| | - Bruce M Cohen
- Department of Psychiatry Harvard Medical School McLean Hospital Belmont MA USA
| | - William A Carlezon
- Department of Psychiatry Harvard Medical School McLean Hospital Belmont MA USA
| | - Anita J Bechtholt
- Department of Psychiatry Harvard Medical School McLean Hospital Belmont MA USA; National Institute on Alcohol Abuse and Alcoholism National Institutes of Health Bethesda MD USA
| |
Collapse
|
16
|
Uhari-Väänänen J, Raasmaja A, Bäckström P, Oinio V, Airavaara M, Piepponen P, Kiianmaa K. Accumbal μ-Opioid Receptors Modulate Ethanol Intake in Alcohol-Preferring Alko Alcohol Rats. Alcohol Clin Exp Res 2016; 40:2114-2123. [PMID: 27508965 DOI: 10.1111/acer.13176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/09/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND The nucleus accumbens shell is a key brain area mediating the reinforcing effects of ethanol (EtOH). Previously, it has been shown that the density of μ-opioid receptors in the nucleus accumbens shell is higher in alcohol-preferring Alko Alcohol (AA) rats than in alcohol-avoiding Alko Non-Alcohol rats. In addition, EtOH releases opioid peptides in the nucleus accumbens and opioid receptor antagonists are able to modify EtOH intake, all suggesting an opioidergic mechanism in the control of EtOH consumption. As the exact mechanisms of opioidergic involvement remains to be elucidated, the aim of this study was to clarify the role of accumbal μ- and κ-opioid receptors in controlling EtOH intake in alcohol-preferring AA rats. METHODS Microinfusions of the μ-opioid receptor antagonist CTOP (0.3 and 1 μg/site), μ-opioid receptor agonist DAMGO (0.03 and 0.1 μg/site), nonselective opioid receptor agonist morphine (30 μg/site), and κ-opioid receptor agonist U50488H (0.3 and 1 μg/site) were administered via bilateral guide cannulas into the nucleus accumbens shell of AA rats that voluntarily consumed 10% EtOH solution in an intermittent, time-restricted (90-minute) 2-bottle choice access paradigm. RESULTS CTOP (1 μg/site) significantly increased EtOH intake. Conversely, DAMGO resulted in a decreasing trend in EtOH intake. Neither morphine nor U50488H had any effect on EtOH intake in the used paradigm. CONCLUSIONS The results provide further evidence for the role of accumbens shell μ-opioid receptors but not κ-opioid receptors in mediating reinforcing effects of EtOH and in regulating EtOH consumption. The results also provide support for views suggesting that the nucleus accumbens shell has a major role in mediating EtOH reward.
Collapse
Affiliation(s)
- Johanna Uhari-Väänänen
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland. .,Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Atso Raasmaja
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Pia Bäckström
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| | - Ville Oinio
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland.,Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petteri Piepponen
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kalervo Kiianmaa
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland
| |
Collapse
|
17
|
Modulation of nucleus accumbens connectivity by alcohol drinking and naltrexone in alcohol-preferring rats: A manganese-enhanced magnetic resonance imaging study. Eur Neuropsychopharmacol 2016; 26:445-55. [PMID: 26851200 DOI: 10.1016/j.euroneuro.2016.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/31/2015] [Accepted: 01/15/2016] [Indexed: 11/23/2022]
Abstract
The nonselective opioid receptor antagonist naltrexone is now used for the treatment of alcoholism, yet naltrexone's central mechanism of action remains poorly understood. One line of evidence suggests that opioid antagonists regulate alcohol drinking through interaction with the mesolimbic dopamine system. Hence, our goal here was to examine the role of the nucleus accumbens connectivity in alcohol reinforcement and naltrexone's actions using manganese-enhanced magnetic resonance imaging (MEMRI). Following long-term free-choice drinking of alcohol and water, AA (Alko Alcohol) rats received injections of MnCl2 into the nucleus accumbens for activity-dependent tracing of accumbal connections. Immediately after the accumbal injections, rats were imaged using MEMRI, and then allowed to drink either alcohol or water for the next 24h. Naltrexone was administered prior to the active dark period, and the second MEMRI was performed 24h after the first scan. Comparison of signal intensity at 1 and 24h after accumbal MnCl2 injections revealed an ipsilateral continuum through the ventral pallidum, bed nucleus of the stria terminalis, globus pallidus, and lateral hypothalamus to the substantia nigra and ventral tegmental area. Activation was also seen in the rostral part of the insular cortex and regions of the prefrontal cortex. Alcohol drinking resulted in enhanced activation of these connections, whereas naltrexone suppressed alcohol-induced activity. These data support the involvement of the accumbal connections in alcohol reinforcement and mediation of naltrexone's suppressive effects on alcohol drinking through their deactivation.
Collapse
|
18
|
Chung L. Modulation of neural circuit actvity by ethanol in basolateral amygdala. Dev Reprod 2015; 16:265-70. [PMID: 25949099 PMCID: PMC4282243 DOI: 10.12717/dr.2012.16.4.265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/23/2012] [Accepted: 11/27/2012] [Indexed: 11/17/2022]
Abstract
Ethanol actions in the amygdala formation may underlie in part the reinforcing effects of ethanol consumption. Previously a physiological phenomenon in the basolateral amygdala (BLA) that is dependent on neuronal network activity, compound postsynaptic potentials (cPSPs) were characterized. Effects of acute ethanol application on the frequency of cPSPs were subsequently investigated. Whole cell patch clamp recordings were performed from identified projection neurons in a rat brain slice preparation containing the amygdala formation. Acute ethanol exposure had complex effects on cPSP frequency, with both increases and decreases dependent on concentration, duration of exposure and age of the animal. Ethanol produces complex biphasic effects on synaptically-driven network activity in the BLA. These findings may relate to subjective effects of ethanol on arousal and anxiolysis in humans.
Collapse
Affiliation(s)
- Leeyup Chung
- Dept. of Pediatrics, Duke University School of Medicine, Durham, NC27710, USA
| |
Collapse
|
19
|
Abstract
Alcoholism, more generically drug addiction, can be defined as a chronically relapsing disorder characterized by: (1) compulsion to seek and take the drug (alcohol); (2) loss of control in limiting (alcohol) intake; and (3) emergence of a negative emotional state (e.g., dysphoria, anxiety, irritability), reflecting a motivational withdrawal syndrome, when access to the drug (alcohol) is prevented (defined here as dependence). The compulsive drug seeking associated with alcoholism can be derived from multiple neuroadaptations, but the thesis argued here, derived largely from animal models, is that a key component involves decreased brain reward function, increased brain stress function, and compromised executive function, all of which contribute to the construct of negative reinforcement. Negative reinforcement is defined as drug taking that alleviates a negative emotional state. The negative emotional state that drives such negative reinforcement is hypothesized to derive from decreases in reward neurotransmission in the ventral striatum, such as decreased dopamine and opioid peptide function in the nucleus accumbens (ventral striatum), but also recruitment of brain stress systems, such as corticotropin-releasing factor (CRF), in the extended amygdala. Data from animal models that support this thesis show that acute withdrawal from chronic alcohol, sufficient to produce dependence, increases reward thresholds, increases anxiety-like responses, decreases dopamine system function, and increases extracellular levels of CRF in the central nucleus of the amygdala. CRF receptor antagonists also block excessive drug intake produced by dependence. Alcoholism also involves substantial neuroadaptations that persist beyond acute withdrawal and trigger relapse and deficits in cognitive function that can also fuel compulsive drinking. A brain stress response system is hypothesized to be activated by acute excessive drug intake, to be sensitized during repeated withdrawal, to persist into protracted abstinence, and to contribute to the compulsivity of alcoholism. Other components of brain stress systems in the extended amygdala that interact with CRF and may contribute to the negative motivational state of withdrawal include increases in norepinephrine function, increases in dynorphin activity, and decreases in neuropeptide Y. The combination of impairment of function in reward circuitry and recruitment of brain stress system circuitry provides a powerful neurochemical basis for the negative emotional states that are responsible for the negative reinforcement that drives the compulsivity of alcoholism.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
20
|
Zorrilla EP, Koob GF. Amygdalostriatal projections in the neurocircuitry for motivation: a neuroanatomical thread through the career of Ann Kelley. Neurosci Biobehav Rev 2013; 37:1932-45. [PMID: 23220696 PMCID: PMC3838492 DOI: 10.1016/j.neubiorev.2012.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/28/2012] [Indexed: 01/25/2023]
Abstract
In MacLean's triune brain, the amygdala putatively subserves motivated behavior by modulating the "reptilian" basal ganglia. Accordingly, Ann Kelley, with Domesick and Nauta, influentially showed that amygdalostriatal projections are much more extensive than were appreciated. They highlighted that amygdalar projections to the rostral ventromedial striatum converged with projections from the ventral tegmental area and cingulate cortex, forming a "limbic striatum". Caudal of the anterior commissure, the entire striatum receives afferents from deep basal nuclei of the amygdala. Orthologous topographic projections subsequently were observed in fish, amphibians, and reptiles. Subsequent functional studies linked acquired value to action via this neuroanatomical substrate. From Dr. Kelley's work evolved insights into components of the distributed, interconnected network that subserves motivated behavior, including the nucleus accumbens shell and core and the striatal-like extended amygdala macrostructure. These heuristic frameworks provide a neuroanatomical basis for adaptively translating motivation into behavior. The ancient amygdala-to-striatum pathways remain a current functional thread not only for stimulus-response valuation, but also for the psychopathological plasticity that underlies addiction-related memory, craving and relapse.
Collapse
Affiliation(s)
- Eric P Zorrilla
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
21
|
Kim HK, Kim SG, Lee JS, Lee SS, Jung WY, Han SI, Kim BJ. Effect of Feeding with High γ-Aminobutyric Acid (GABA) Containing Giant Embryo Black Sticky Rice (Oryza sativa L.) on Alcohol Intake in C57BL/6 Mice. ACTA ACUST UNITED AC 2013. [DOI: 10.5352/jls.2013.23.5.698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Besheer J, Fisher KR, Lindsay TG, Cannady R. Transient increase in alcohol self-administration following a period of chronic exposure to corticosterone. Neuropharmacology 2013; 72:139-47. [PMID: 23643750 DOI: 10.1016/j.neuropharm.2013.04.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/16/2013] [Accepted: 04/20/2013] [Indexed: 10/26/2022]
Abstract
Stressful life events and chronic stressors have been associated with escalations in alcohol drinking. Stress exposure leads to the secretion of glucocorticoids (cortisol in the human; corticosterone (CORT) in the rodent). To model a period of heightened elevations in CORT, the present work assessed the effects of chronic exposure to the stress hormone CORT on alcohol self-administration. Male Long Evans rats were trained to self-administer a sweetened alcohol solution (2% sucrose/15% alcohol) resulting in moderate levels of daily alcohol intake (0.5-0.7 g/kg). Following stable baseline operant self-administration, rats received CORT in the drinking water for 7 days. A transient increase in alcohol self-administration was observed on the first self-administration session following CORT exposure, and behavior returned to control levels by the second session. Control experiments determined that this increase in alcohol self-administration was specific to alcohol, unrelated to general motor activation, and functionally dissociated from decreased CORT levels at the time of testing. These results indicate that repeated exposure to heightened levels of stress hormone (e.g., as may be experienced during stressful episodes) has the potential to lead to exacerbated alcohol intake in low to moderate drinkers. Given that maladaptive drinking patterns, such as escalated alcohol drinking following stressful episodes, have the potential to put an individual at risk for future drinking disorders, utilization of this model will be important for examination of neuroadaptations that occur as a consequence of CORT exposure in order to better understand escalated drinking following stressful episodes in nondependent individuals.
Collapse
Affiliation(s)
- Joyce Besheer
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 2759, USA.
| | | | | | | |
Collapse
|
23
|
Navarro M, Cubero I, Thiele TE. Decreased immunoreactivity of the polypeptide precursor pro-opiomelanocortin (POMC) and the prohormone convertase pc1/3 after chronic ethanol exposure in Sprague-Dawley rats. Alcohol Clin Exp Res 2013; 37:399-406. [PMID: 23050949 PMCID: PMC3543756 DOI: 10.1111/j.1530-0277.2012.01951.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/17/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND The melanocortin (MC) peptides and opioid peptide β-endorphin are cleaved from the polypeptide precursor pro-opiomelanocortin (POMC). POMC-derived peptides are generated by extensive posttranslational processing that involves several enzymes including prohormone convertase 1/3 and 2 (PC1/3 and PC2). Because ethanol (EtOH) decreases POMC mRNA levels, we determined whether the exposure to an EtOH-containing diet (ED) would significantly reduce central immunoreactivity (IR) of POMC, PC1/3, PC2, and β-endorphin. METHODS Male Sprague-Dawley rats were given 18 days of access to a normal rodent chow or a control diet (CD), or short-term (4 days) or long-term (18 days) access to an ED. At the end of the study, rats were perfused with 4% paraformaldehyde, and their brains were sectioned into sets for processing with POMC, PC1/3, PC2, and β-endorphin IR. RESULTS Rats exposed to an ED for 18 days (ED18) exhibited significant reductions of POMC and PC1/3 IR in the arcuate nucleus of the hypothalamus (Arc) relative to rats pair-fed a CD. On the other hand, rats exposed to an ED did not show any changes of central β-endorphin or PC2 IR relative to rats pair-fed a CD, regardless of length of exposure. Because there were no differences in body weights or caloric intake between the CD and ED groups, reductions of POMC and PC1/3 IR in ED-treated rats are best explained by EtOH exposure rather than altered energy balance. CONCLUSIONS This study shows that EtOH site-specifically reduces POMC and PC1/3 IR in rat brain. These observations are consistent with EtOH-induced reductions of α-melanocyte-stimulating hormone (α-MSH) and POMC IR that were previously reported. As MC agonists have been shown to blunt EtOH intake in rodents, exogenous MC receptor agonists, as well as targets that may increase the synthesis of endogenous α-MSH (e.g., PC1/3), may have therapeutic value for treating alcohol abuse disorders and alcoholism.
Collapse
Affiliation(s)
- Montserrat Navarro
- Department of Psychology, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC, 27599-3270, USA
| | - Inmaculada Cubero
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, Almería, 04120, Spain
| | - Todd E. Thiele
- Department of Psychology, University of North Carolina at Chapel Hill, CB#3270, Chapel Hill, NC, 27599-3270, USA
| |
Collapse
|
24
|
Abstract
Naltrexone is an opioid receptor antagonist that has been shown to be effective for maintaining abstinence in alcohol-dependent persons. It is particularly effective in a subset of persons who suffer from high craving, as it reduces craving for alcohol. Family history has been shown to be a predictor of treatment response and, indeed, allelic variation in the mu opioid receptor gene predicts treatment response to naltrexone. The therapeutic effects of naltrexone are mediated by blockade of central mu opioid receptors. The site of action is under investigation but evidence supports a role of mu opioid receptors in the central nucleus of the amygdala, nucleus accumbens, and ventral tegmental area in the therapeutic actions of naltrexone for alcohol dependence. This article reviews the role of the endogenous opioid system in addictive diseases, especially alcoholism and discusses the pharmacological basis for the use of naltrexone in the treatment of alcohol dependence.
Collapse
|
25
|
Alcohol dependence as a chronic pain disorder. Neurosci Biobehav Rev 2012; 36:2179-92. [PMID: 22975446 DOI: 10.1016/j.neubiorev.2012.07.010] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/18/2012] [Accepted: 07/16/2012] [Indexed: 01/22/2023]
Abstract
Dysregulation of pain neurocircuitry and neurochemistry has been increasingly recognized as playing a critical role in a diverse spectrum of diseases including migraine, fibromyalgia, depression, and PTSD. Evidence presented here supports the hypothesis that alcohol dependence is among the pathologies arising from aberrant neurobiological substrates of pain. In this review, we explore the possible influence of alcohol analgesia and hyperalgesia in promoting alcohol misuse and dependence. We examine evidence that neuroanatomical sites involved in the negative emotional states of alcohol dependence also play an important role in pain transmission and may be functionally altered under chronic pain conditions. We also consider possible genetic links between pain transmission and alcohol dependence. We propose an allostatic load model in which episodes of alcohol intoxication and withdrawal, traumatic stressors, and injury are each capable of dysregulating an overlapping set of neural substrates to engender sensory and affective pain states that are integral to alcohol dependence and comorbid conditions such as anxiety, depression, and chronic pain.
Collapse
|
26
|
Abstract
The identification and functional understanding of the neurocircuitry that mediates alcohol and drug effects that are relevant for the development of addictive behavior is a fundamental challenge in addiction research. Here we introduce an assumption-free construction of a neurocircuitry that mediates acute and chronic drug effects on neurotransmitter dynamics that is solely based on rodent neuroanatomy. Two types of data were considered for constructing the neurocircuitry: (1) information on the cytoarchitecture and neurochemical connectivity of each brain region of interest obtained from different neuroanatomical techniques; (2) information on the functional relevance of each region of interest with respect to alcohol and drug effects. We used mathematical data mining and hierarchical clustering methods to achieve the highest standards in the preprocessing of these data. Using this approach, a dynamical network of high molecular and spatial resolution containing 19 brain regions and seven neurotransmitter systems was obtained. Further graph theoretical analysis suggests that the neurocircuitry is connected and cannot be separated into further components. Our analysis also reveals the existence of a principal core subcircuit comprised of nine brain regions: the prefrontal cortex, insular cortex, nucleus accumbens, hypothalamus, amygdala, thalamus, substantia nigra, ventral tegmental area and raphe nuclei. Finally, by means of algebraic criteria for synchronizability of the neurocircuitry, the suitability for in silico modeling of acute and chronic drug effects is indicated. Indeed, we introduced as an example a dynamical system for modeling the effects of acute ethanol administration in rats and obtained an increase in dopamine release in the nucleus accumbens-a hallmark of drug reinforcement-to an extent similar to that seen in numerous microdialysis studies. We conclude that the present neurocircuitry provides a structural and dynamical framework for large-scale mathematical models and will help to predict chronic drug effects on brain function.
Collapse
Affiliation(s)
- Hamid R. Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim; Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim; Germany
| | - Anita C. Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim; University of Heidelberg; Mannheim; Germany
| |
Collapse
|
27
|
Zhou Y, Colombo G, Niikura K, Carai MAM, Femenía T, García-Gutiérrez MS, Manzanares J, Ho A, Gessa GL, Kreek MJ. Voluntary alcohol drinking enhances proopiomelanocortin gene expression in nucleus accumbens shell and hypothalamus of Sardinian alcohol-preferring rats. Alcohol Clin Exp Res 2012; 37 Suppl 1:E131-40. [PMID: 22724395 DOI: 10.1111/j.1530-0277.2012.01867.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/09/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Evidence obtained in humans and rodents indicates that beta-endorphin (encoded by the proopiomelanocortin [POMC] gene) is critical in the regulation of alcohol drinking behavior. However, the alcohol effect on POMC gene expression has not been studied in rodent mesolimbic regions, such as the nucleus accumbens (NAc). METHODS In this study, we first utilized POMC-enhanced green fluorescent protein (EGFP) transgenic mice to visualize POMC neurons and found that POMC-EGFP cells were modestly distributed throughout the NAc shell and core, in addition to the hypothalamic arcuate nucleus. POMC mRNA expression in the NAc of mice and rats was confirmed using reverse transcriptase-polymerase chain reaction and solution hybridization assays. We then investigated whether there are genetically determined differences in basal mRNA levels of POMC and mu opioid receptor (MOP-r) between selectively bred Sardinian alcohol-preferring (sP) and nonpreferring (sNP) rats, and whether these mRNA levels are altered in sP rats after alcohol drinking (10%, unlimited access) for 17 days. RESULTS Alcohol-naïve sP rats had higher basal POMC mRNA levels than sNP rats only in hypothalamus. Alcohol drinking increased POMC mRNA levels in both the NAc shell (by 100%) and the hypothalamus (by 50%) of sP rats. Although sP rats had lower basal levels of MOP-r mRNA and GTPγS binding in NAc shell than sNP rats, voluntary alcohol consumption had no effect on MOP-r mRNA levels in the NAc shell. CONCLUSIONS Our results define the distribution of POMC-expressing neurons in the NAc of mice and rats. Higher POMC expression at basal levels in sP rats (genetically determined), along with increases after drinking (alcohol-induced) in the NAc shell and hypothalamus, suggests that the POMC systems play a role in high alcohol preference and consumption.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cruz MT, Herman MA, Kallupi M, Roberto M. Nociceptin/orphanin FQ blockade of corticotropin-releasing factor-induced gamma-aminobutyric acid release in central amygdala is enhanced after chronic ethanol exposure. Biol Psychiatry 2012; 71:666-76. [PMID: 22153590 PMCID: PMC3838304 DOI: 10.1016/j.biopsych.2011.10.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/26/2011] [Accepted: 10/29/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND The central nucleus of the amygdala (CeA) mediates stress- and addiction-related processes. Corticotropin-releasing factor (CRF) and nociceptin/orphanin FQ (nociceptin) regulate ethanol intake and anxiety-like behavior. In the rat, CRF and ethanol significantly augment CeA gamma-aminobutyric acid (GABA) release, whereas nociceptin diminishes it. METHODS Using electrophysiologic techniques in an in vitro slice preparation, we investigated the interaction of nociceptin and CRF on evoked and spontaneous GABAergic transmission in CeA slices of naive and ethanol-dependent rats and the mechanistic role of protein kinase A. RESULTS In neurons from naive animals, nociceptin dose-dependently diminished basal-evoked GABA(A) receptor-mediated inhibitory postsynaptic potentials (IPSPs) by decreasing GABA release and prevented, as well as reversed, CRF-induced augmentation of IPSPs, actions that required PKA signaling. In neurons from ethanol-dependent animals, nociceptin decreased basal GABAergic transmission and blocked the CRF-induced increase in GABA release to a greater extent than in naive controls. CONCLUSIONS These data provide new evidence for an interaction between the nociceptin and CRF systems in the CeA. Nociceptin opposes CRF effects on CeA GABAergic transmission with sensitization of this effect in dependent animals. These properties of nociceptin may underlie its anti-alcohol and anxiolytic properties and identify the nociceptin receptor as a useful therapeutic target for alcoholism.
Collapse
Affiliation(s)
- Maureen T Cruz
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
29
|
Enhanced sensitivity to attenuation of conditioned reinstatement by the mGluR 2/3 agonist LY379268 and increased functional activity of mGluR 2/3 in rats with a history of ethanol dependence. Neuropsychopharmacology 2011; 36:2762-73. [PMID: 21881571 PMCID: PMC3230501 DOI: 10.1038/npp.2011.174] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent findings implicate group II metabotropic glutamate receptors (mGluR(2/3)) in the reinforcing and dependence-inducing actions of ethanol and identify these receptors as treatment targets for alcoholism. Here, we investigated the effects of mGLuR(2/3) activation on conditioned reinstatement in rats with different ethanol-dependence histories and examined dependence-associated changes in the functional activity of mGluR(2/3). Following ethanol self-administration training and conditioning procedures, rats were made ethanol dependent, using ethanol vapor inhalation, under three conditions: a single intoxication and withdrawal episode (SW), repeated cycles of intoxication and withdrawal (RW), or no intoxication (CTRL). At 1 week after removal from ethanol vapor, self-administration resumed until stable baseline performance was reached, followed by extinction of operant responding and reinstatement tests. Post-withdrawal self-administration was increased in the RW group, but all groups showed conditioned reinstatement. The mGluR(2/3) agonist LY379268 dose -dependently reduced reinstatement in all groups, but was more effective at low doses in the SW and RW groups. The highest dose of LY379268 tested reduced spontaneous locomotor activity and operant responding maintained by a non-drug reinforcer, without differences among groups. The heightened sensitivity to the effects of LY379268 in rats with an ethanol-dependence history was therefore specific to behavior motivated by ethanol-related stimuli. Both the SW and RW groups showed elevated [(35)S]GTPγS binding in the central nucleus of the amygdala (CeA) and bed nucleus of stria terminalis (BNST), relative to the CTRL group. The findings implicate changes in mGluR(2/3) functional activity as a factor in ethanol dependence and support treatment target potential of mGlu(2/3) receptors for craving and relapse prevention.
Collapse
|
30
|
Effects of acute ethanol on corticotropin-releasing hormone and β-endorphin systems at the level of the rat central amygdala. Psychopharmacology (Berl) 2011; 218:229-39. [PMID: 21597991 DOI: 10.1007/s00213-011-2337-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 04/19/2011] [Indexed: 12/27/2022]
Abstract
RATIONALE The endogenous opioid and corticotropin-releasing hormone (CRH) systems, present in the central amygdala (CeA), are implicated in alcohol consumption. OBJECTIVES The purpose of this study is to investigate the hypothesis that, in CeA, alcohol stimulates CRH release, which then stimulates β-endorphin release. MATERIALS AND METHODS Rats were unilaterally implanted with a guide cannula to aim microdialysis probes in CeA. Experiment 1: rats received an intraperitoneal (IP) injection of various ethanol doses (0.0, 2.0, 2.4, or 2.8 g ethanol/kg body weight) and microdialysates were sampled at 30-min intervals to determine the effects over time of acute alcohol on the extracellular CRH concentrations in CeA. Experiment 2: phosphate-buffered saline, CRH, or CRH receptor (CRHR) antagonists (antalarmin or anti-sauvagine-30) was microinjected into CeA followed by a saline or 2.8 g/kg ethanol IP injection to determine the effects of CRHR activation or blockade in CeA on the basal and alcohol-stimulated release of β-endorphin. CRH and β-endorphin dialysate contents were determined using specific radioimmunoassays. RESULTS Acute alcohol induced a delayed increase in the extracellular CRH levels in CeA. Behavioural data showed no difference in locomotion between alcohol- and saline-treated rats. However, a transient increase in grooming was observed which did not correspond with alcohol-induced changes in CRH. Local CRH microinjections increased the extracellular β-endorphin concentrations in CeA. CRHR1 and CRHR2 blockade with microinjections of antalarmin and anti-sauvagine-30, respectively, attenuated the alcohol-induced increase of extracellular β-endorphin in CeA. CONCLUSIONS Acute alcohol exerts indirect actions on CRH release and induced interactions of the CRH and β-endorphin systems in CeA.
Collapse
|
31
|
Pastor R, Font L, Miquel M, Phillips TJ, Aragon CMG. Involvement of the beta-endorphin neurons of the hypothalamic arcuate nucleus in ethanol-induced place preference conditioning in mice. Alcohol Clin Exp Res 2011; 35:2019-29. [PMID: 22014186 PMCID: PMC4151392 DOI: 10.1111/j.1530-0277.2011.01553.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Increasing evidence indicates that mu- and delta-opioid receptors are decisively involved in the retrieval of memories underlying conditioned effects of ethanol. The precise mechanism by which these receptors participate in such effects remains unclear. Given the important role of the proopiomelanocortin (POMc)-derived opioid peptide beta-endorphin, an endogenous mu- and delta-opioid receptor agonist, in some of the behavioral effects of ethanol, we hypothesized that beta-endorphin would also be involved in ethanol conditioning. METHODS In this study, we treated female Swiss mice with estradiol valerate (EV), which induces a neurotoxic lesion of the beta-endorphin neurons of the hypothalamic arcuate nucleus (ArcN). These mice were compared to saline-treated controls to investigate the role of beta-endorphin in the acquisition, extinction, and reinstatement of ethanol (0 or 2 g/kg; intraperitoneally)-induced conditioned place preference (CPP). RESULTS Immunohistochemical analyses confirmed a decreased number of POMc-containing neurons of the ArcN with EV treatment. EV did not affect the acquisition or reinstatement of ethanol-induced CPP, but facilitated its extinction. Behavioral sensitization to ethanol, seen during the conditioning days, was not present in EV-treated animals. CONCLUSIONS The present data suggest that ArcN beta-endorphins are involved in the retrieval of conditioned memories of ethanol and are implicated in the processes that underlie extinction of ethanol-cue associations. Results also reveal a dissociated neurobiology supporting behavioral sensitization to ethanol and its conditioning properties, as a beta-endorphin deficit affected sensitization to ethanol, while leaving acquisition and reinstatement of ethanol-induced CPP unaffected.
Collapse
Affiliation(s)
- Raúl Pastor
- Area de Psicobiología, Universitat Jaume I, Castellón, Spain.
| | | | | | | | | |
Collapse
|
32
|
Besheer J, Grondin JJ, Cannady R, Sharko AC, Faccidomo S, Hodge CW. Metabotropic glutamate receptor 5 activity in the nucleus accumbens is required for the maintenance of ethanol self-administration in a rat genetic model of high alcohol intake. Biol Psychiatry 2010; 67:812-22. [PMID: 19897175 PMCID: PMC2854174 DOI: 10.1016/j.biopsych.2009.09.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/04/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Systemic modulation of Group I and II metabotropic glutamate receptors (mGluRs) regulate ethanol self-administration in a variety of animal models. Although these receptors are expressed in reward-related brain regions, the anatomical specificity of their functional involvement in ethanol self-administration remains to be characterized. This study sought to evaluate the functional role of Group I (mGluR5) and Group II (mGluR2/3) in mesocorticolimbic brain regions in ethanol self-administration. METHODS Alcohol-preferring (P) rats, a genetic model of high alcohol drinking, were trained to self-administer ethanol (15% v/v) versus water in operant conditioning chambers. Effects of brain site-specific infusion of the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) and the mGluR2/3 agonist were then assessed on the maintenance of self-administration. RESULTS Microinjection of the mGluR5 antagonist MPEP in the nucleus accumbens reduced ethanol self-administration at a dose that did not alter locomotor activity. By contrast, infusion of the mGluR2/3 agonist LY379268 in the nucleus accumbens reduced self-administration and produced nonspecific reductions in locomotor activity. The mGluR5 involvement showed anatomical specificity as evidenced by lack of effect of MPEP infusion in the dorsomedial caudate or medial prefrontal cortex on ethanol self-administration. To determine reinforcer specificity, P-rats were trained to self-administer sucrose (.4% w/v) versus water, and effects of intra-accumbens MPEP were tested. The MPEP did not alter sucrose self-administration or motor behavior. CONCLUSIONS These results suggest that mGluR5 activity specifically in the nucleus accumbens is required for the maintenance of ethanol self-administration in individuals with genetic risk for high alcohol consumption.
Collapse
|
33
|
Chang GQ, Barson JR, Karatayev O, Chang SY, Chen YW, Leibowitz SF. Effect of chronic ethanol on enkephalin in the hypothalamus and extra-hypothalamic areas. Alcohol Clin Exp Res 2010; 34:761-70. [PMID: 20184566 DOI: 10.1111/j.1530-0277.2010.01148.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ethanol may be consumed for reasons such as reward, anxiety reduction, or caloric content, and the opioid enkephalin (ENK) appears to be involved in many of these functions. Previous studies in Sprague-Dawley rats have demonstrated that ENK in the hypothalamic paraventricular nucleus (PVN) is stimulated by voluntary consumption of ethanol. This suggests that this opioid peptide may be involved in promoting the drinking of ethanol, consistent with our recent findings that PVN injections of ENK analogs stimulate ethanol intake. To broaden our understanding of how this peptide functions throughout the brain to promote ethanol intake, we measured, in rats trained to drink 9% ethanol, the expression of the ENK gene in additional brain areas outside the hypothalamus, namely, the ventral tegmental area (VTA), nucleus accumbens shell (NAcSh) and core (NAcC), medial prefrontal cortex (mPFC), and central nucleus of the amygdala (CeA). METHODS In the first experiment, the brains of rats chronically drinking 1 g/kg/d ethanol, 3 g/kg/d ethanol, or water were examined using real-time quantitative polymerase chain reaction (qRT-PCR). In the second experiment, a more detailed, anatomic analysis of changes in gene expression, in rats chronically drinking 3 g/kg/d ethanol compared to water, was performed using radiolabeled in situ hybridization (ISH). The third experiment employed digoxigenin-labeled ISH (DIG) to examine changes in the density of cells expressing ENK and, for comparison, dynorphin (DYN) in rats chronically drinking 3 g/kg/d ethanol versus water. RESULTS With qRT-PCR, the rats chronically drinking ethanol plus water compared to water alone showed significantly higher levels of ENK mRNA, not only in the PVN but also in the VTA, NAcSh, NAcC, and mPFC, although not in the CeA. Using radiolabeled ISH, levels of ENK mRNA in rats drinking ethanol were found to be elevated in all areas examined, including the CeA. The experiment using DIG confirmed this effect of ethanol, showing an increase in density of ENK-expressing cells in all areas studied. It additionally revealed a similar change in DYN mRNA in the PVN, mPFC, and CeA, although not in the NAcSh or NAcC. CONCLUSIONS While distinguishing the NAc as a site where ENK and DYN respond differentially, these findings lead us to propose that these opioids, in response to voluntary ethanol consumption, are generally elevated in extra-hypothalamic as well as hypothalamic areas, possibly to carry out specific area-related functions that, in turn, drive animals to further consume ethanol. These functions include calorie ingestion in the PVN, reward and motivation in the VTA and NAcSh, response-reinforcement learning in the NAcC, stress reduction in the CeA, and behavioral control in the mPFC.
Collapse
Affiliation(s)
- Guo-Qing Chang
- The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
34
|
Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology 2010; 35:217-38. [PMID: 19710631 PMCID: PMC2805560 DOI: 10.1038/npp.2009.110] [Citation(s) in RCA: 3511] [Impact Index Per Article: 250.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 12/29/2022]
Abstract
Drug addiction is a chronically relapsing disorder that has been characterized by (1) compulsion to seek and take the drug, (2) loss of control in limiting intake, and (3) emergence of a negative emotional state (eg, dysphoria, anxiety, irritability) reflecting a motivational withdrawal syndrome when access to the drug is prevented. Drug addiction has been conceptualized as a disorder that involves elements of both impulsivity and compulsivity that yield a composite addiction cycle composed of three stages: 'binge/intoxication', 'withdrawal/negative affect', and 'preoccupation/anticipation' (craving). Animal and human imaging studies have revealed discrete circuits that mediate the three stages of the addiction cycle with key elements of the ventral tegmental area and ventral striatum as a focal point for the binge/intoxication stage, a key role for the extended amygdala in the withdrawal/negative affect stage, and a key role in the preoccupation/anticipation stage for a widely distributed network involving the orbitofrontal cortex-dorsal striatum, prefrontal cortex, basolateral amygdala, hippocampus, and insula involved in craving and the cingulate gyrus, dorsolateral prefrontal, and inferior frontal cortices in disrupted inhibitory control. The transition to addiction involves neuroplasticity in all of these structures that may begin with changes in the mesolimbic dopamine system and a cascade of neuroadaptations from the ventral striatum to dorsal striatum and orbitofrontal cortex and eventually dysregulation of the prefrontal cortex, cingulate gyrus, and extended amygdala. The delineation of the neurocircuitry of the evolving stages of the addiction syndrome forms a heuristic basis for the search for the molecular, genetic, and neuropharmacological neuroadaptations that are key to vulnerability for developing and maintaining addiction.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
35
|
Lam MP, Nurmi H, Rouvinen N, Kiianmaa K, Gianoulakis C. Effects of acute ethanol on beta-endorphin release in the nucleus accumbens of selectively bred lines of alcohol-preferring AA and alcohol-avoiding ANA rats. Psychopharmacology (Berl) 2010; 208:121-30. [PMID: 19940981 DOI: 10.1007/s00213-009-1733-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 10/23/2009] [Indexed: 11/25/2022]
Abstract
RATIONALE The selectively bred lines of alcohol-preferring alko alcohol (AA) and alcohol-avoiding alko nonalcohol (ANA) rats have been used to demonstrate differences in relevant neurotransmitters which could account for their difference in alcohol consumption. Studies have demonstrated differences in distinct components of the endogenous opioid system in various brain regions associated with the process of reinforcement between the AA and ANA lines of rats. OBJECTIVES The goal of this current study was to investigate the hypotheses that the AA and ANA rats will show differences in the release of beta-endorphin at the level of nucleus accumbens (NAC) and in locomotor activity in response to acute systemic administration of ethanol. MATERIALS AND METHODS AA and ANA rats were unilaterally implanted with a guide cannula to aim microdialysis probes at the level of NAC. Intraperitoneal injections of 0.0, 1.5, 2.0, and 2.5 g ethanol/kg body weight were administered. Dialysate samples were collected at 30-min intervals prior to and following the injection. Radioimmunoassay specific for beta-endorphin was used to determine the dialysate beta-endorphin content. RESULTS The 2.5-g/kg ethanol dose induced a transient increase in extracellular beta-endorphin at the level of NAC of AA but not of ANA rats. The 2.5-g/kg ethanol dose also attenuated locomotor activity in the AA but not in the ANA rats. CONCLUSIONS The lack of an increase in the beta-endorphin concentration in the NAC of ANA rats in response to ethanol may partially account for their lower alcohol consumption and lower alcohol-induced attenuation of locomotor activity compared to AA rats.
Collapse
Affiliation(s)
- Minh P Lam
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
36
|
Le Merrer J, Becker JAJ, Befort K, Kieffer BL. Reward processing by the opioid system in the brain. Physiol Rev 2009; 89:1379-412. [PMID: 19789384 DOI: 10.1152/physrev.00005.2009] [Citation(s) in RCA: 679] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides processed from three protein precursors, proopiomelanocortin, proenkephalin, and prodynorphin. Opioid receptors are recruited in response to natural rewarding stimuli and drugs of abuse, and both endogenous opioids and their receptors are modified as addiction develops. Mechanisms whereby aberrant activation and modifications of the opioid system contribute to drug craving and relapse remain to be clarified. This review summarizes our present knowledge on brain sites where the endogenous opioid system controls hedonic responses and is modified in response to drugs of abuse in the rodent brain. We review 1) the latest data on the anatomy of the opioid system, 2) the consequences of local intracerebral pharmacological manipulation of the opioid system on reinforced behaviors, 3) the consequences of gene knockout on reinforced behaviors and drug dependence, and 4) the consequences of chronic exposure to drugs of abuse on expression levels of opioid system genes. Future studies will establish key molecular actors of the system and neural sites where opioid peptides and receptors contribute to the onset of addictive disorders. Combined with data from human and nonhuman primate (not reviewed here), research in this extremely active field has implications both for our understanding of the biology of addiction and for therapeutic interventions to treat the disorder.
Collapse
Affiliation(s)
- Julie Le Merrer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Département Neurobiologie et Génétique, Illkirch, France
| | | | | | | |
Collapse
|
37
|
Karatayev O, Barson JR, Chang GQ, Leibowitz SF. Hypothalamic injection of non-opioid peptides increases gene expression of the opioid enkephalin in hypothalamic and mesolimbic nuclei: Possible mechanism underlying their behavioral effects. Peptides 2009; 30:2423-31. [PMID: 19782113 PMCID: PMC2787664 DOI: 10.1016/j.peptides.2009.09.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
The peptides galanin (GAL) and orexin (OX) share common features with the opioid enkephalin (ENK) in their relationship to ingestive behavior, stimulating consumption of a fat-rich diet and ethanol when injected into the hypothalamus. Since receptors for GAL and OX are dense in areas where ENK-expressing neurons are concentrated, these non-opioid peptides may exert their effects, in part, through the stimulation of endogenous ENK. This study was conducted to determine whether injection of GAL or OX affects the expression of ENK in hypothalamic and mesolimbic nuclei involved in consummatory behavior. Rats were injected with GAL (1 microg), OX-A (1 microg), or saline vehicle just dorsal to the hypothalamic paraventricular nucleus (PVN). They were sacrificed 1h later for analysis of ENK mRNA levels in the PVN, ventral tegmental area (VTA), central nucleus of the amygdala (CeA), and nucleus accumbens (NAc). Both GAL and OX had similar effects, significantly increasing ENK mRNA expression in each of these areas, except for the NAc. This enhanced ENK expression in the PVN, VTA and CeA was demonstrated with real-time quantitative polymerase chain reaction and confirmed in separate groups using radiolabeled and digoxigenin-labeled in situ hybridization. These findings demonstrate that the non-opioid peptides, GAL or OX, which have similar effects on consummatory behavior, are also similar in their effect on endogenous ENK. In light of published findings showing an opioid antagonist to block GAL- and OX-induced feeding, these results provide additional evidence that ENK is involved in mediating the common behavioral effects of these peptides.
Collapse
Affiliation(s)
- Olga Karatayev
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | | | | | |
Collapse
|
38
|
Barson JR, Carr AJ, Soun JE, Sobhani NC, Leibowitz SF, Hoebel BG. Opioids in the nucleus accumbens stimulate ethanol intake. Physiol Behav 2009; 98:453-9. [PMID: 19647755 DOI: 10.1016/j.physbeh.2009.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/21/2009] [Accepted: 07/23/2009] [Indexed: 11/16/2022]
Abstract
The nucleus accumbens (NAc) participates in the control of both motivation and addiction. To test the possibility that opioids in the NAc can cause rats to select ethanol in preference to food, Sprague-Dawley rats with ethanol, food, and water available, were injected with two doses each of morphine, the mu-receptor agonist [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-Enkephalin (DAMGO), the delta-receptor agonist D-Ala-Gly-Phe-Met-NH2 (DALA), the k-receptor agonist (+/-)-trans-U-50488 methanesulfonate (U-50,488H), or the opioid antagonist naloxone methiodide (m-naloxone). As an anatomical control for drug reflux, injections were also made 2mm above the NAc. The main result was that morphine in the NAc significantly increased ethanol and food intake, whereas m-naloxone reduced ethanol intake without affecting food or water intake. Of the selective receptor agonists, DALA in the NAc increased ethanol intake in preference to food. This is in contrast to DAMGO, which stimulated food but not ethanol intake, and the k-agonist U-50,488H, which had no effect on intake. When injected in the anatomical control site 2mm dorsal to the NAc, the opioids had no effects on ethanol intake. These results demonstrate that ethanol intake produced by morphine in the NAc is driven in large part by the delta-receptor. In light of other studies showing ethanol intake to increase enkephalin expression in the NAc, the present finding of enkephalin-induced ethanol intake suggests the existence of a positive feedback loop that fosters alcohol abuse. Naltrexone therapy for alcohol abuse may then act, in part, in the NAc by blocking this opioid-triggered cycle of alcohol intake.
Collapse
Affiliation(s)
- Jessica R Barson
- Department of Psychology and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
39
|
Ghirmai S, Azar MR, Cashman JR. Synthesis and pharmacological evaluation of 6-naltrexamine analogs for alcohol cessation. Bioorg Med Chem 2009; 17:6671-81. [PMID: 19683449 DOI: 10.1016/j.bmc.2009.07.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/23/2009] [Accepted: 07/26/2009] [Indexed: 10/20/2022]
Abstract
A series of substituted aryl amide derivatives of 6-naltrexamine, 3 designed to be metabolically stable were synthesized and used to characterize the structural requirements for their potency to binding and functional activity of human mu (mu), delta (delta) and kappa (kappa) opioid and nociceptin (NOP) receptors. Binding assays showed that 4-10 had subnanomolar K(i) values for mu and kappa opioid receptors. Functional assays for stimulation of [(35)S]GTPgammaS binding showed that several compounds acted as partial or inverse agonists and antagonists of the mu and delta, kappa opioid or NOP receptors. The compounds showed considerable stability in the presence of rat, mouse or human liver preparations and NADPH. The inhibitory activity on the functional activity of human cytochrome P450s was examined to determine any potential inhibition by 4-9. Only modest inhibition of CYP3A4, CYP2C9 and CYP2C19 was observed for a few of the analogs. As a representative example, radiolabeled 6 was examined in vivo and showed reasonable brain penetration. The inhibition of ethanol self-administration in rats trained to self-administer a 10% (w/v) ethanol solution, utilizing operant techniques showed 5-8 to have very potent efficacy (ED(50) values 19-50 microg/kg).
Collapse
Affiliation(s)
- Senait Ghirmai
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | | | | |
Collapse
|
40
|
Jarjour S, Bai L, Gianoulakis C. Effect of Acute Ethanol Administration on the Release of Opioid Peptides From the Midbrain Including the Ventral Tegmental Area. Alcohol Clin Exp Res 2009; 33:1033-43. [DOI: 10.1111/j.1530-0277.2009.00924.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Abstract
Although progress has been made identifying neural mechanisms underlying ethanol's primary reinforcing effects, few studies have examined the mechanisms mediating ethanol-induced conditioned effects. A recent lesion study suggests that expression of ethanol-conditioned behaviors depends upon an intact amygdala and nucleus accumbens core. However, specific mechanisms within these nuclei are unknown. In the present experiments, we used site-specific microinfusions of dopamine and NMDA receptor antagonists to examine the roles of accumbens and amygdala in the expression of ethanol conditioned place preference (CPP) in mice. In experiments 1 and 2, a D1/D2/D3 receptor antagonist (flupenthixol) was infused into accumbens or amygdala before testing, whereas experiment 3 used pretest infusions of an NMDA antagonist (AP-5) to examine the role of intra-accumbens NMDA receptors. Dopamine antagonism of accumbens was without effect, but intra-amygdala infusions of flupenthixol blocked CPP expression. Moreover, this effect was dependent upon dopamine antagonism within the basolateral nucleus but not the central nucleus of the amygdala. Antagonism of NMDA receptors in accumbens also blocked CPP expression. The present findings suggest that expression of the ethanol-conditioned response depends upon amygdala dopamine and accumbens NMDA receptors. These are the first studies in any species to show a role for amygdala dopamine receptors and the first studies in mice to implicate accumbens NMDA receptors in ethanol-induced conditioned effects.
Collapse
|
42
|
Electrolytic lesions of the medial nucleus accumbens shell selectively decrease ethanol consumption without altering preference in a limited access procedure in C57BL/6J mice. Pharmacol Biochem Behav 2009; 92:335-42. [PMID: 19353807 DOI: 10.1016/j.pbb.2008.12.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The central extended amygdala (cExtA) is a limbic region proposed to play a key role in drug and alcohol addiction and to contain the medial nucleus accumbens shell (MNAc shell). The aim of this study was to examine the involvement of the MNAc shell in ethanol and sucrose consumption in a limited and free access procedure in the C57BL/6J (B6) mouse. Separate groups of mice received bilateral electrolytic lesions of the MNAc shell or sham surgery, and following recovery from surgery, were allowed to voluntarily consume ethanol (15% v/v) in a 2 h limited access 2-bottle-choice procedure. Following 1 week of limited access ethanol consumption, mice were given 1 week of limited access sucrose consumption. A separate group of lesioned and sham mice were given free access (24 h) to ethanol in a 2-bottle choice procedure and were run in parallel to the mice receiving limited access consumption. Electrolytic lesions of the MNAc shell decreased ethanol (but not sucrose) consumption in a limited access procedure, but did not alter free access ethanol consumption. These results suggest that the MNAc shell is a component of the underlying neural circuitry contributing to limited access alcohol consumption in the B6 mouse.
Collapse
|
43
|
Mitchell JM, Bergren LJ, Chen KS, Rowbotham MC, Fields HL. Naltrexone aversion and treatment efficacy are greatest in humans and rats that actively consume high levels of alcohol. Neurobiol Dis 2009; 33:72-80. [DOI: 10.1016/j.nbd.2008.09.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/10/2008] [Accepted: 09/12/2008] [Indexed: 11/26/2022] Open
|
44
|
Effects of acute ethanol on opioid peptide release in the central amygdala: an in vivo microdialysis study. Psychopharmacology (Berl) 2008; 201:261-71. [PMID: 18688603 DOI: 10.1007/s00213-008-1267-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 07/19/2008] [Indexed: 12/12/2022]
Abstract
RATIONALE There is experimental evidence that indicates that the endogenous opioid system of the central nucleus of the amygdala (CeA) may mediate some of the reinforcing effects of ethanol. However, the precise interactions of ethanol with the endogenous opioid system at the level of the CeA have not been investigated. OBJECTIVES The aim of the current study was to investigate the hypothesis that acute systemic ethanol administration will increase the release of endogenous opioid peptides at the level of the CeA in a time- and dose-dependent manner. MATERIALS AND METHODS Rats were implanted with a unilateral guide cannula to aim microdialysis probes at the CeA. Intraperitoneal injections of saline and various doses of ethanol (0.8, 1.6, 2.0, 2.4, and 2.8 g ethanol/kg body weight) were administered to the rats. Dialysate samples were collected at 30-min intervals at distinct time points prior to and following treatment. Radioimmunoassays specific for beta-endorphin, met-enkephalin, and dynorphin A1-8 were used to determine the effect of ethanol on the content of the opioid peptides in the dialysate. RESULTS We report that the 2.8-g/kg dose of ethanol induced a long-lasting increase in beta-endorphin release from 60 min onwards following administration and, later, an ongoing increase in dynorphin A1-8 release. None of the ethanol doses tested elicited significant changes in dialysate met-enkephalin content compared to the saline treatment. CONCLUSIONS Acute systemic ethanol administration induced a dose- and time-dependent increase in beta-endorphin and dynorphin A1-8 release at the level of the CeA, which may be involved in ethanol consumption.
Collapse
|
45
|
Kang-Park MH, Kieffer BL, Roberts AJ, Roberto M, Madamba SG, Siggins GR, Moore SD. Mu-opioid receptors selectively regulate basal inhibitory transmission in the central amygdala: lack of ethanol interactions. J Pharmacol Exp Ther 2008; 328:284-93. [PMID: 18854491 DOI: 10.1124/jpet.108.140749] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Endogenous opioid systems are implicated in the actions of ethanol. For example, mu-opioid receptor (MOR) knockout (KO) mice self-administer less alcohol than the genetically intact counterpart wild-type (WT) mice (Roberts et al., 2000). MOR KO mice also exhibit less anxiety-like behavior than WT mice (Filliol et al., 2000). To investigate the neurobiological mechanisms underlying these behaviors, we examined the effect of ethanol in brain slices from MOR KO and WT mice using sharp-electrode and whole-cell patch recording techniques. We focused our study in the central nucleus of the amygdala (CeA) because it is implicated in alcohol drinking behavior and stress behavior. We found that the amplitudes of evoked inhibitory postsynaptic currents (IPSCs) or inhibitory postsynaptic potentials (IPSPs) were significantly greater in MOR KO mice than WT mice. In addition, the baseline frequencies of spontaneous and miniature GABA(A) receptor-mediated inhibitory postsynaptic currents were significantly greater in CeA neurons from MOR KO than WT mice. However, ethanol enhancements of evoked IPSP and IPSC amplitudes and the frequency of miniature IPSCs were comparable between WT and MOR KO mice. Baseline spontaneous and miniature excitatory postsynaptic currents (EPSCs) and ethanol effects on EPSCs were not significantly different between MOR KO and WT mice. Based on knowledge of CeA circuitry and projections, we hypothesize that the role of MOR- and GABA receptor-mediated mechanisms in CeA underlying reinforcing effects of ethanol operate independently, possibly through pathway-specific responses within CeA.
Collapse
Affiliation(s)
- Maeng-Hee Kang-Park
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Economidou D, Hansson AC, Weiss F, Terasmaa A, Sommer WH, Cippitelli A, Fedeli A, Martin-Fardon R, Massi M, Ciccocioppo R, Heilig M. Dysregulation of nociceptin/orphanin FQ activity in the amygdala is linked to excessive alcohol drinking in the rat. Biol Psychiatry 2008; 64:211-8. [PMID: 18367152 PMCID: PMC4275225 DOI: 10.1016/j.biopsych.2008.02.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 02/04/2008] [Accepted: 02/05/2008] [Indexed: 02/01/2023]
Abstract
BACKGROUND Alcoholism is a complex behavioral disorder in which interactions between stressful life events and heritable susceptibility factors contribute to the initiation and progression of disease. Neural substrates of these interactions remain largely unknown. Here, we examined the role of the nociceptin/orphanin FQ (N/OFQ) system, with an animal model in which genetic selection for high alcohol preference has led to co-segregation of elevated behavioral sensitivity to stress (Marchigian Sardinian alcohol-preferring [msP]). METHODS The msP and Wistar rats trained to self-administer alcohol received central injections of N/OFQ. In situ hybridization and receptor binding assays were also performed to evaluate N/OFQ receptor (NOP) function in naïve msP and Wistar rats. RESULTS Intracerebroventricular (ICV) injection of N/OFQ significantly inhibited alcohol self-administration in msP but not in nonselected Wistar rats. The NOP receptor messenger RNA expression and binding was upregulated across most brain regions in msP compared with Wistar rats. However, in msP rats [(35)S]GTPgammaS binding revealed a selective impairment of NOP receptor signaling in the central amygdala (CeA). Ethanol self-administration in msP rats was suppressed after N/OFQ microinjection into the CeA but not into the bed nucleus of the stria terminalis or the basolateral amygdala. CONCLUSIONS These findings indicate that dysregulation of N/OFQ-NOP receptor signaling in the CeA contributes to excessive alcohol intake in msP rats and that this phenotype can be rescued by local administration of pharmacological doses of exogenous N/OFQ. Data are interpreted on the basis of the anti-corticotropin releasing factor (CRF) actions of N/OFQ and the significance of the CRF system in promoting excessive alcohol drinking in msP rats.
Collapse
Affiliation(s)
- Daina Economidou
- Department of Experimental Medicine & Public Health, University of Camerino, 62032, Camerino (MC), Italy
| | - Anita C. Hansson
- Laboratory of Clinical and Translational Studies, NIAAA/NIH, Bethesda, MD 20892, USA
| | - Friedbert Weiss
- The Scripps Research Institute, Molecular and Integrative Neurosciences Department, La Jolla, CA, USA
| | | | - Wolfgang H. Sommer
- Laboratory of Clinical and Translational Studies, NIAAA/NIH, Bethesda, MD 20892, USA
| | - Andrea Cippitelli
- Department of Experimental Medicine & Public Health, University of Camerino, 62032, Camerino (MC), Italy
- Laboratory of Clinical and Translational Studies, NIAAA/NIH, Bethesda, MD 20892, USA
| | - Amalia Fedeli
- Department of Experimental Medicine & Public Health, University of Camerino, 62032, Camerino (MC), Italy
| | - Rèmi Martin-Fardon
- The Scripps Research Institute, Molecular and Integrative Neurosciences Department, La Jolla, CA, USA
| | - Maurizio Massi
- Department of Experimental Medicine & Public Health, University of Camerino, 62032, Camerino (MC), Italy
| | - Roberto Ciccocioppo
- Department of Experimental Medicine & Public Health, University of Camerino, 62032, Camerino (MC), Italy
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, NIAAA/NIH, Bethesda, MD 20892, USA
| |
Collapse
|
47
|
Roth-Deri I, Green-Sadan T, Yadid G. Beta-endorphin and drug-induced reward and reinforcement. Prog Neurobiol 2008; 86:1-21. [PMID: 18602444 DOI: 10.1016/j.pneurobio.2008.06.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 06/11/2008] [Indexed: 01/13/2023]
Abstract
Although drugs of abuse have different acute mechanisms of action, their brain pathways of reward exhibit common functional effects upon both acute and chronic administration. Long known for its analgesic effect, the opioid beta-endorphin is now shown to induce euphoria, and to have rewarding and reinforcing properties. In this review, we will summarize the present neurobiological and behavioral evidences that support involvement of beta-endorphin in drug-induced reward and reinforcement. Currently, evidence supports a prominent role for beta-endorphin in the reward pathways of cocaine and alcohol. The existing information indicating the importance of beta-endorphin neurotransmission in mediating the reward pathways of nicotine and THC, is thus far circumstantial. The studies described herein employed diverse techniques, such as biochemical measurements of beta-endorphin in various brain sites and plasma, and behavioral measurements, conducted following elimination (via administration of anti-beta-endorphin antibodies or using mutant mice) or augmentation (by intracerebral administration) of beta-endorphin. We suggest that the reward pathways for different addictive drugs converge to a common pathway in which beta-endorphin is a modulating element. Beta-endorphin is involved also with distress. However, reviewing the data collected so far implies a discrete role, beyond that of a stress response, for beta-endorphin in mediating the substance of abuse reward pathway. This may occur via interacting with the mesolimbic dopaminergic system and also by its interesting effects on learning and memory. The functional meaning of beta-endorphin in the process of drug-seeking behavior is discussed.
Collapse
Affiliation(s)
- Ilana Roth-Deri
- Neuropharmacology Section, The Mina and Everard Goodman Faculty of Life Sciences and The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|
48
|
Resch GE, Simpson CW. Glycyl-glutamine reduces ethanol intake at three reward sites in P rats. Alcohol 2008; 42:99-106. [PMID: 18358988 PMCID: PMC2421011 DOI: 10.1016/j.alcohol.2007.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 11/09/2007] [Accepted: 11/12/2007] [Indexed: 11/15/2022]
Abstract
beta-endorphin, implicated in modulation of ethyl alcohol reward, has neuron terminals in several reward sites. Alcohol consumption was reduced after ventricular or site-specific injections into the nucleus accumbens of an opioid-derived dipeptide, glycyl-glutamine. The current study examined the effects of this dipeptide after site-specific injections into additional reward sites. Alcohol-preferring (P) rats, stereotaxically implanted with bilateral guide cannulae into the nucleus accumbens, ventral tegmental area, and the central nucleus of the amygdala were given 30% alcohol and water in a 24h voluntary two-bottle choice paradigm. Upon achieving stable baseline intakes, glycyl-glutamine (GQ) doses were injected bilaterally, and the alcohol and water intakes and body weight recorded for the response and recovery. The data show reduced alcohol intake by 32-49.5% after 100-pmol glycyl-glutamine into reward sites (nucleus accumbens, ventral tegmental area, and central nucleus of the amygdala), but not after injections into control sites dorsal to reward sites. The order of sensitivity to the 1-fmol dose was amygdala > or = ventral tegmental area > accumbens. GQ was effective in reducing ethanol intake at reported beta-endorphin terminal regions in each of the three reward sites tested. The effective doses were similar to reported endogenous GQ levels, consistent with the notion that it may function as part of an endogenous counter regulatory mechanism and represent a "stop drinking" signal in the high drinking, P rats at these three reward sites.
Collapse
Affiliation(s)
- Garth E Resch
- School of Biological Sciences, Division of Molecular Biology and Biochemistry, University of Missouri at Kansas City, Kansas City, MO 64110, USA.
| | | |
Collapse
|
49
|
Ghirmai S, Azar MR, Polgar WE, Berzetei-Gurske I, Cashman JR. Synthesis and biological evaluation of alpha- and beta-6-amido derivatives of 17-cyclopropylmethyl-3, 14beta-dihydroxy-4, 5alpha-epoxymorphinan: potential alcohol-cessation agents. J Med Chem 2008; 51:1913-24. [PMID: 18298057 DOI: 10.1021/jm701060e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Substituted aryl and aliphatic amide analogues of 6-naltrexamine were synthesized and used to characterize the binding to and functional activity of human mu-, delta-, and kappa-opioid receptors. Competition binding assays showed 11-25 and 27-31 bound to the mu (K(i) = 0.05-1.2 nM) and kappa (K(i) = 0.06-2.4 nM) opioid receptors. Compounds 11-18 possessed significant binding affinity for the delta receptor (K(i) = 0.8-12.4 nM). Functional assays showed several compounds acted as partial or full agonists of delta or kappa receptors while retaining an antagonist profile at the mu receptor. Structure-activity relationship for aryl amides showed that potent compounds possessed lipophilic groups or substituents capable of hydrogen bonding. Metabolic stability studies showed that 11, 12, and 14 possessed considerable stability in the presence of rat, mouse, or human liver preparations. The ED 50 of inhibition of 10% ethanol self-administration in trained rats, using operant techniques for 11, was 0.5 mg/kg.
Collapse
Affiliation(s)
- Senait Ghirmai
- Human BioMolecular Research Institute, 5310 Eastgate Mall, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
50
|
Dhaher R, Finn D, Snelling C, Hitzemann R. Lesions of the extended amygdala in C57BL/6J mice do not block the intermittent ethanol vapor-induced increase in ethanol consumption. Alcohol Clin Exp Res 2007; 32:197-208. [PMID: 18162080 DOI: 10.1111/j.1530-0277.2007.00566.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The central extended amygdala (cEA) which includes the central nucleus of the amygdala (CeA) and the lateral posterior bed nucleus of the stria terminalis (BNSTLP), has been proposed to play a key role in excessive ethanol consumption in humans (Koob and Le Moal, 2005 Nat Neurosci 8:1442). To examine this relationship, we used a murine model of ethanol dependence (Becker and Lopez, 2004 Alcohol Clin Exp Res 28:1829; Lopez and Becker, 2005 Psychopharmacology (Berl) 181:688) and compared animals with sham lesions and electrolytic lesions of the CeA and BNSTLP. METHODS Male C57BL/6J (B6) mice were first acclimated to a limited-access 2-bottle-choice preference procedure. The access period began 3 hours into the dark phase of the light-dark cycle and continued for 2 hours. Once acclimated (1 week), mice underwent chronic exposure to and intermittent withdrawal from ethanol vapor. The animals were then retested in the limited-access 2-bottle-choice preference procedure. In some experiments, electrolytic and sham lesions of the CeA or BNSTLP were performed prior to initiating the 2-bottle choice procedure. RESULTS In a series of 5 preliminary experiments, mice were randomly assigned either to the standard intermittent ethanol vapor procedure or to the standard procedure but with air in the vapor chamber (control). The air-control procedure produced no change in ethanol intake when compared to baseline consumption. In contrast, intermittent ethanol vapor exposure increased ethanol consumption by almost 50%. The increase in consumption was associated with an increase in total fluid volume consumed and no change in ethanol preference. Lesions of both the BNSTLP and CeA significantly decreased baseline ethanol consumption, the former by decreasing fluid consumption and the latter by decreasing ethanol preference. Intermittent ethanol vapor exposure significantly increased consumption in both the BNSTLP- and CeA-lesioned animals, largely by increasing the total volume of fluid consumed. CONCLUSIONS The results obtained clearly demonstrate that the cEA has a role in the regulation of ethanol consumption in the limited-access procedure. However, neither lesions of the CeA nor BNSTLP prevented the intermittent ethanol vapor-induced increase in consumption. These data do not preclude some role of the cEA in the increased ethanol consumption following intermittent ethanol vapor exposure, but would suggest that other brain regions also must have a significant influence.
Collapse
Affiliation(s)
- Ronnie Dhaher
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|