1
|
Gut Microbiota: Target for Modulation of Gut-Liver-Adipose Tissue Axis in Ethanol-Induced Liver Disease. Mediators Inflamm 2022; 2022:4230599. [PMID: 35633655 PMCID: PMC9142314 DOI: 10.1155/2022/4230599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/19/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
Consumption of alcohol (ethanol) in various forms has been an integral part of human civilization. Since ages, it also has been an important cause of death and health impairment across the globe. Ethanol-mediated liver injury, known as alcoholic liver disease (ALD), is caused by surplus intake of alcohol. Several studies have proposed the different pathways that may be lead to ALD. One of the factors that may affect the cytochrome P450 (CYP2E1) metabolic pathway is gut dysbiosis. The gut microbiota produces various compounds that play an important role in regulating healthy functions of distal organs such as the adipose tissue and liver. Dysbiosis causes bacteremia, hepatic encephalopathy, and increased intestinal permeability. Recent clinical studies have found better understanding of the gut and liver axis. Another factor that may affect the ALD pathway is dysfunction of adipose tissue metabolism. Moreover, dysfunction of adipose tissue leads to ectopic fat deposition within the liver and disturbs lipid metabolism by increasing lipolysis/decreasing lipogenesis and impaired glucose tolerance of adipose tissue which leads to ectopic fat deposition within the liver. Adipokine secretion of resistin, leptin, and adiponectin is adversely modified upon prolonged alcohol consumption. In the combination of these two factors, a proinflammatory state is developed within the patient leading to the progression of ALD. Thus, the therapeutic approach for treatments and prevention for liver cirrhosis patients must be focused on the gut-liver-adipose tissue network modification with the use of probiotics, synbiotics, and prebiotics. This review is aimed at the effect of ethanol on gut and adipose tissue in both rodent and human alcoholic models.
Collapse
|
2
|
Cui ZY, Han X, Jiang YC, Dou JY, Yao KC, Hu ZH, Yuan MH, Bao XX, Zhou MJ, Liu Y, Lian LH, Zhang X, Nan JX, Wu YL. Allium victorialis L. Extracts Promote Activity of FXR to Ameliorate Alcoholic Liver Disease: Targeting Liver Lipid Deposition and Inflammation. Front Pharmacol 2021; 12:738689. [PMID: 34690775 PMCID: PMC8531498 DOI: 10.3389/fphar.2021.738689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/09/2021] [Indexed: 12/20/2022] Open
Abstract
Allium victorialis L. (AVL) is a traditional medicinal plant recorded in the Compendium of Materia Medica (the Ming Dynasty). In general, it is used for hemostasis, analgesia, anti-inflammation, antioxidation, and to especially facilitate hepatoprotective effect. In recent years, it has received more and more attention due to its special nutritional and medicinal value. The present study investigates the effect and potential mechanism of AVL against alcoholic liver disease (ALD). C57BL/6 mice were fed Lieber-DeCarli liquid diet containing 5% ethanol plus a single ethanol gavage (5 g/kg), and followed up with the administration of AVL or silymarin. AML12 cells were stimulated with ethanol and incubated with AVL. AVL significantly reduced serum transaminase and triglycerides in the liver and attenuated histopathological changes caused by ethanol. AVL significantly inhibited SREBP1 and its target genes, regulated lipin 1/2, increased PPARα and its target genes, and decreased PPARγ expression caused by ethanol. In addition, AVL significantly enhanced FXR, LXRs, Sirt1, and AMPK expressions compared with the EtOH group. AVL also inhibited inflammatory factors, NLRP3, and F4/80 and MPO, macrophage and neutrophil markers. In vitro, AVL significantly reduced lipid droplets, lipid metabolism enzymes, and inflammatory factors depending on FXR activation. AVL could ameliorate alcoholic steatohepatitis, lipid deposition and inflammation in ALD by targeting FXR activation.
Collapse
Affiliation(s)
- Zhen-Yu Cui
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Xin Han
- Chinese Medicine Processing Centre, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu-Chen Jiang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Jia-Yi Dou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Kun-Chen Yao
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Zhong-He Hu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Ming-Hui Yuan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Xiao-Xue Bao
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Mei-Jie Zhou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Yue Liu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Xian Zhang
- Agricultural College, Yanbian University, Yanji, China
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.,Clinical Research Center, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| |
Collapse
|
3
|
Syed Javid Hasan SAH, Pawirotaroeno RAO, Syed Javid Hasan SAH, Abzianidze E. Role of Chronic Alcoholism Causing Cancer in Omnivores and Vegetarians through Epigenetic Modifications. Glob Med Genet 2021; 7:80-86. [PMID: 33392610 PMCID: PMC7772008 DOI: 10.1055/s-0040-1721814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
One of the significant consequences of alcohol consumption is cancer formation via several contributing factors such as action of alcohol metabolites, vitamin deficiencies, and oxidative stress. All these factors have been shown to cause epigenetic modifications via DNA hypomethylation, thus forming a basis for cancer development. Several published reviews and studies were systematically reviewed. Omnivores and vegetarians differ in terms of nutritional intake and deficiencies. As folate deficiency was found to be common among the omnivores, chronic alcoholism could possibly cause damage and eventually cancer in an omnivorous individual via DNA hypomethylation due to folate deficiency. Furthermore, as niacin was found to be deficient among vegetarians, damage in vegetarian chronic alcoholics could be due to increased NADH/NAD
+
ratio, thus slowing alcohol metabolism in liver leading to increased alcohol and acetaldehyde which inhibit methyltransferase enzymes, eventually leading to DNA hypomethylation. Hence correcting the concerned deficiency and supplementation with S-adenosyl methionine could prove to be protective in chronic alcohol use.
Collapse
Affiliation(s)
| | | | | | - Elene Abzianidze
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| |
Collapse
|
4
|
Liu KD, Acharjee A, Hinz C, Liggi S, Murgia A, Denes J, Gulston MK, Wang X, Chu Y, West JA, Glen RC, Roberts LD, Murray AJ, Griffin JL. Consequences of Lipid Remodeling of Adipocyte Membranes Being Functionally Distinct from Lipid Storage in Obesity. J Proteome Res 2020; 19:3919-3935. [PMID: 32646215 DOI: 10.1021/acs.jproteome.9b00894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Obesity is a complex disorder where the genome interacts with diet and environmental factors to ultimately influence body mass, composition, and shape. Numerous studies have investigated how bulk lipid metabolism of adipose tissue changes with obesity and, in particular, how the composition of triglycerides (TGs) changes with increased adipocyte expansion. However, reflecting the analytical challenge posed by examining non-TG lipids in extracts dominated by TGs, the glycerophospholipid composition of cell membranes has been seldom investigated. Phospholipids (PLs) contribute to a variety of cellular processes including maintaining organelle functionality, providing an optimized environment for membrane-associated proteins, and acting as pools for metabolites (e.g. choline for one-carbon metabolism and for methylation of DNA). We have conducted a comprehensive lipidomic study of white adipose tissue in mice which become obese either through genetic modification (ob/ob), diet (high fat diet), or a combination of the two, using both solid phase extraction and ion mobility to increase coverage of the lipidome. Composition changes in seven classes of lipids (free fatty acids, diglycerides, TGs, phosphatidylcholines, lyso-phosphatidylcholines, phosphatidylethanolamines, and phosphatidylserines) correlated with perturbations in one-carbon metabolism and transcriptional changes in adipose tissue. We demonstrate that changes in TGs that dominate the overall lipid composition of white adipose tissue are distinct from diet-induced alterations of PLs, the predominant components of the cell membranes. PLs correlate better with transcriptional and one-carbon metabolism changes within the cell, suggesting that the compositional changes that occur in cell membranes during adipocyte expansion have far-reaching functional consequences. Data are available at MetaboLights under the submission number: MTBLS1775.
Collapse
Affiliation(s)
- Ke-di Liu
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
| | - Animesh Acharjee
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, Birmingham B15 2TT, U.K
- Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, Birmingham B15 2TT, U.K
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham B15 2WB, U.K
| | - Christine Hinz
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Sonia Liggi
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Antonio Murgia
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Julia Denes
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Melanie K Gulston
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
| | - Xinzhu Wang
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
| | - Yajing Chu
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
| | - James A West
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
| | - Robert C Glen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K
| | - Lee D Roberts
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, U.K
| | - Julian L Griffin
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, U.K
- MRC, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, U.K
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, U.K
| |
Collapse
|
5
|
Song Q, Chen Y, Wang J, Hao L, Huang C, Griffiths A, Sun Z, Zhou Z, Song Z. ER stress-induced upregulation of NNMT contributes to alcohol-related fatty liver development. J Hepatol 2020; 73:783-793. [PMID: 32389809 PMCID: PMC8301603 DOI: 10.1016/j.jhep.2020.04.038] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS N-nicotinamide methyltransferase (NNMT) is emerging as an important enzyme in the regulation of metabolism. NNMT is highly expressed in the liver. However, the exact regulatory mechanism(s) underlying NNMT expression remains unclear and its potential involvement in alcohol-related liver disease (ALD) is completely unknown. METHODS Both traditional Lieber-De Carli and the NIAAA mouse models of ALD were employed. A small-scale chemical screening assay and a chromatin immunoprecipitation assay were performed. NNMT inhibition was achieved via both genetic (adenoviral short hairpin RNA delivery) and pharmacological approaches. RESULTS Chronic alcohol consumption induces endoplasmic reticulum (ER) stress and upregulates NNMT expression in the liver. ER stress inducers upregulated NNMT expression in both AML12 hepatocytes and mice. PERK-ATF4 pathway activation is the main contributor to ER stress-mediated NNMT upregulation in the liver. Alcohol consumption fails to upregulate NNMT in liver-specific Atf4 knockout mice. Both adenoviral NNMT knockdown and NNMT inhibitor administration prevented fatty liver development in response to chronic alcohol feeding; this was also associated with the downregulation of an array of genes involved in de novo lipogenesis, including Srebf1, Acaca, Acacb and Fasn. Further investigations revealed that activation of the lipogenic pathway by NNMT was independent of its NAD+-enhancing action; however, increased cellular NAD+, resulting from NNMT inhibition, was associated with marked liver AMPK activation. CONCLUSIONS ER stress, specifically PERK-ATF4 pathway activation, is mechanistically involved in hepatic NNMT upregulation in response to chronic alcohol exposure. Overexpression of NNMT in the liver plays an important role in the pathogenesis of ALD. LAY SUMMARY In this study, we show that nicotinamide methyltransferase (NNMT) - the enzyme that catalyzes nicotinamide degradation - is a pathological regulator of alcohol-related fatty liver development. NNMT inhibition protects against alcohol-induced fatty liver development and is associated with suppressed de novo lipogenic activity and enhanced AMPK activation. Thus, our data suggest that NNMT may be a potential therapeutic target for the treatment of alcohol-related liver disease.
Collapse
Affiliation(s)
- Qing Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Yingli Chen
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.,College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, Heilongjiang, PR. China
| | - Jun Wang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.,Department of Gastroenterology, Tongji Medical College and The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, Hubei, PR. China
| | - Liuyi Hao
- Center for Translational Biomedical Research and Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Chuyi Huang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexandra Griffiths
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhangxiang Zhou
- Center for Translational Biomedical Research and Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Abstract
Hepatic lipid metabolism is a series of complex processes that control influx and efflux of not only hepatic lipid pools, but also organismal pools. Lipid homeostasis is usually tightly controlled by expression, substrate supply, oxidation and secretion that keep hepatic lipid pools relatively constant. However, perturbations of any of these processes can lead to lipid accumulation in the liver. Although it is thought that these responses are hepatic arms of the 'thrifty genome', they are maladaptive in the context of chronic fatty liver diseases. Ethanol is likely unique among toxins, in that it perturbs almost all aspects of hepatic lipid metabolism. This complex response is due in part to the large metabolic demand placed on the organ by alcohol metabolism, but also appears to involve more nuanced changes in expression and substrate supply. The net effect is that steatosis is a rapid response to alcohol abuse. Although transient steatosis is largely an inert pathology, the chronicity of alcohol-related liver disease seems to require steatosis. Better and more specific understanding of the mechanisms by which alcohol causes steatosis may therefore translate into targeted therapies to treat alcohol-related liver disease and/or prevent its progression.
Collapse
|
7
|
You M, Zhou Z, Daniels M, Jogasuria A. Endocrine Adiponectin-FGF15/19 Axis in Ethanol-Induced Inflammation and Alcoholic Liver Injury. Gene Expr 2018; 18:103-113. [PMID: 29096734 PMCID: PMC5953845 DOI: 10.3727/105221617x15093738210295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) is the most prevalent form of liver disease, encompassing a spectrum of progressive pathological changes from steatosis to steatohepatitis to fibrosis/cirrhosis and hepatocellular carcinoma. Alcoholic steatosis/steatohepatitis is the initial stage of ALD and a major risk factor for advanced liver injuries. Adiponectin is a hormone secreted from adipocytes. Fibroblast growth factor (FGF) 15 (human homolog, FGF19) is an ileum-derived hormone. Adipocyte-derived adiponectin and gut-derived FGF15/19 regulate each other, share common signaling cascades, and exert similar beneficial functions. Emerging evidence has revealed that dysregulated adiponectin-FGF15/19 axis and impaired hepatic adiponectin-FGF15/19 signaling are associated with alcoholic liver damage in rodents and humans. More importantly, endocrine adiponectin-FGF15/19 signaling confers protection against ethanol-induced liver damage via fine tuning the adipose-intestine-liver crosstalk, leading to limited hepatic inflammatory responses, and ameliorated alcoholic liver injury. This review is focused on the recently discovered endocrine adiponectin-FGF15/19 axis that is emerging as an essential adipose-gut-liver coordinator involved in the development and progression of alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Min You
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Zhou Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Michael Daniels
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Alvin Jogasuria
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
8
|
Shim K, Jacobi S, Odle J, Lin X. Pharmacologic activation of peroxisome proliferator-activating receptor-α accelerates hepatic fatty acid oxidation in neonatal pigs. Oncotarget 2018; 9:23900-23914. [PMID: 29844861 PMCID: PMC5963623 DOI: 10.18632/oncotarget.25199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 04/02/2018] [Indexed: 01/22/2023] Open
Abstract
Up-regulation of peroxisome proliferator-activating receptor-α (PPARα) and increasing fatty acid oxidation are important for reducing pre-weaning mortality of pigs. We examined the time-dependent regulatory effects of PPARα activation via oral postnatal clofibrate administration (75 mg/(kg-BW·d) for up to 7 days) on mitochondrial and peroxisomal fatty acid oxidation in pigs, a species with limited hepatic fatty acid oxidative capacity due to low ketogenesis. Hepatic oxidation was increased by 44-147% (depending on fatty acid chain-length) and was attained after only 4 days of clofibrate treatment. Acyl-CoA oxidase (ACO) and carnitine palmitoyltransferase I (CPTI) activities accelerated in parallel. The increase in CPTI activity was accompanied by a rapid reduction in the sensitivity of CPTI to malonyl-CoA inhibition. The mRNA abundance of CPTI and ACO, as well as peroxisomal keto-acyl-CoA thiolase (KetoACoA) and mitochondrial malonyl-CoA decarboxylase (MCD), also were augmented greatly. However, the increase in ACO activity and MCD expression were different from CPTI, and significant interactions were observed between postnatal age and clofibrate administration. Furthermore, the expression of acetyl-CoA carboxylase β (ACCβ) decreased with postnatal age and clofibrate had no effect on its expression. Collectively these results demonstrate that the expression of PPARα target genes and the increase in fatty acid oxidation induced by clofibrate are time- and age-dependent in the liver of neonatal pigs. Although the induction patterns of CPTI, MCD, ACO, KetoACoA, and ACCβ are different during the early postnatal period, 4 days of exposure to clofibrate were sufficient to robustly accelerate fatty acid oxidation.
Collapse
Affiliation(s)
- Kwanseob Shim
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA.,Current/Present address: Department of Animal Biotechnology, Chonbuk National University, Jeonju, 561-756 Republic of Korea
| | - Sheila Jacobi
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA.,Current/Present address: Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Xi Lin
- Laboratory of Developmental Nutrition, Department of Animal Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
9
|
Jan AU, Hadi F, Nawaz MA, Rahman K. Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 116:139-149. [PMID: 28558283 DOI: 10.1016/j.plaphy.2017.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 05/07/2023]
Abstract
Potassium and zinc are essential elements in plant growth and metabolism and plays a vital role in salt stress tolerance. To investigate the physiological mechanism of salt stress tolerance, a pot experiment was conducted. Potassium and zinc significantly minimize the oxidative stress and increase root, shoot and spike length in wheat varieties. Fresh and dry biomass were significantly increased by potassium followed by zinc as compared to control C. The photosynthetic pigment and osmolyte regulator (proline, total phenolic, and total carbohydrate) were significantly enhanced by potassium and zinc. Salt stress increases MDA content in wheat varieties while potassium and zinc counteract the adverse effect of salinity and significantly increased membrane stability index. Salt stress decreases the activities of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) while the exogenous application of potassium and zinc significantly enhanced the activities of these enzymes. A significant positive correlation was found of spike length with proline (R2 = 0.966 ∗∗∗), phenolic (R2 = 0.741∗) and chlorophyll (R2 = 0.853∗∗). The MDA content showed significant negative correlation (R2 = 0.983∗∗∗) with MSI. It is concluded that potassium and zinc reduced toxic effect of salinity while its combine application showed synergetic effect and significantly enhanced salt tolerance.
Collapse
Affiliation(s)
- Amin Ullah Jan
- Department of Biotechnology, Faculty of Sciences, Shaheed Benazir Bhutto University Sheringal Dir Upper, 18800, Pakistan.
| | - Fazal Hadi
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara, 18800, Pakistan
| | - Muhammad Asif Nawaz
- Department of Biotechnology, Faculty of Sciences, Shaheed Benazir Bhutto University Sheringal Dir Upper, 18800, Pakistan
| | - Khaista Rahman
- Department of Botany, University of Malakand, Chakdara, Dir (L), Khyber-Pakhtunkhwa, Pakistan
| |
Collapse
|
10
|
Weng Q, Wang J, Wang J, Tan B, Wang J, Wang H, Zheng T, Lu QR, Yang B, He Q. Folate Metabolism Regulates Oligodendrocyte Survival and Differentiation by Modulating AMPKα Activity. Sci Rep 2017; 7:1705. [PMID: 28496133 PMCID: PMC5431811 DOI: 10.1038/s41598-017-01732-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/03/2017] [Indexed: 01/13/2023] Open
Abstract
Folate, an essential micronutrient, is a critical cofactor in one-carbon metabolism for many cellular pathways including DNA synthesis, metabolism and maintenance. Folate deficiency has been associated with an increased risk of neurological disease, cancer and cognitive dysfunction. Dihydrofolate reductase (DHFR) is a key enzyme to regulate folate metabolism, however folate/DHFR activity in oligodendrocyte development has not been fully understood. Here we show that folate enhances oligodendrocyte maturation both in vitro and in vivo, which is accompanied with upregulation of oligodendrocyte-specific DHFR expression. On the other hand, pharmacological inhibition of DHFR by methotrexate (MTX) causes severe defects in oligodendrocyte survival and differentiation, which could be reversed by folate intake. We further demonstrate that folate activates a metabolic regulator AMPKα to promote oligodendrocyte survival and differentiation. Moreover, activation of AMPKα partially rescues oligodendrocyte defects caused by DHFR-inhibition both in vitro and in vivo. Taken together, these findings identify a previously uncharacterized role of folate/DHFR/AMPKα axis in regulating oligodendrocyte survival and myelination during CNS development.
Collapse
Affiliation(s)
- Qinjie Weng
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Center for drug safety Evaluation and Research, Zhejiang University, Hangzhou, China
| | - Jiajia Wang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jiaying Wang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Biqin Tan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jing Wang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haibo Wang
- Department of Pediatrics, Brain Tumor Center, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Tao Zheng
- School of Preclinical and Forensic Medicine, West China Second Hospital, Sichuan University, Chengdu, China
| | - Q Richard Lu
- Department of Pediatrics, Brain Tumor Center, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China. .,Center for drug safety Evaluation and Research, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Steiner JL, Lang CH. Alcohol, Adipose Tissue and Lipid Dysregulation. Biomolecules 2017; 7:biom7010016. [PMID: 28212318 PMCID: PMC5372728 DOI: 10.3390/biom7010016] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/10/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic alcohol consumption perturbs lipid metabolism as it increases adipose tissue lipolysis and leads to ectopic fat deposition within the liver and the development of alcoholic fatty liver disease. In addition to the recognition of the role of adipose tissue derived fatty acids in liver steatosis, alcohol also impacts other functions of adipose tissue and lipid metabolism. Lipid balance in response to long-term alcohol intake favors adipose tissue loss and fatty acid efflux as lipolysis is upregulated and lipogenesis is either slightly decreased or unchanged. Study of the lipolytic and lipogenic pathways has identified several regulatory proteins modulated by alcohol that contribute to these effects. Glucose tolerance of adipose tissue is also impaired by chronic alcohol due to decreased glucose transporter-4 availability at the membrane. As an endocrine organ, white adipose tissue (WAT) releases several adipokines that are negatively modulated following chronic alcohol consumption including adiponectin, leptin, and resistin. When these effects are combined with the enhanced expression of inflammatory mediators that are induced by chronic alcohol, a proinflammatory state develops within WAT, contributing to the observed lipodystrophy. Lastly, while chronic alcohol intake may enhance thermogenesis of brown adipose tissue (BAT), definitive mechanistic evidence is currently lacking. Overall, both WAT and BAT depots are impacted by chronic alcohol intake and the resulting lipodystrophy contributes to fat accumulation in peripheral organs, thereby enhancing the pathological state accompanying chronic alcohol use disorder.
Collapse
Affiliation(s)
- Jennifer L Steiner
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
12
|
King AL, Mantena SK, Andringa KK, Millender-Swain T, Dunham-Snary KJ, Oliva CR, Griguer CE, Bailey SM. The methyl donor S-adenosylmethionine prevents liver hypoxia and dysregulation of mitochondrial bioenergetic function in a rat model of alcohol-induced fatty liver disease. Redox Biol 2016; 9:188-197. [PMID: 27566282 PMCID: PMC5007436 DOI: 10.1016/j.redox.2016.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction and bioenergetic stress play an important role in the etiology of alcoholic liver disease. Previous studies from our laboratory show that the primary methyl donor S-Adenosylmethionine (SAM) minimizes alcohol-induced disruptions in several mitochondrial functions in the liver. Herein, we expand on these earlier observations to determine whether the beneficial actions of SAM against alcohol toxicity extend to changes in the responsiveness of mitochondrial respiration to inhibition by nitric oxide (NO), induction of the mitochondrial permeability transition (MPT) pore, and the hypoxic state of the liver. METHODS For this, male Sprague-Dawley rats were pair-fed control and alcohol-containing liquid diets with and without SAM for 5 weeks and liver hypoxia, mitochondrial respiration, MPT pore induction, and NO-dependent control of respiration were examined. RESULTS Chronic alcohol feeding significantly enhanced liver hypoxia, whereas SAM supplementation attenuated hypoxia in livers of alcohol-fed rats. SAM supplementation prevented alcohol-mediated decreases in mitochondrial state 3 respiration and cytochrome c oxidase activity. Mitochondria isolated from livers of alcohol-fed rats were more sensitive to calcium-mediated MPT pore induction (i.e., mitochondrial swelling) than mitochondria from pair-fed controls, whereas SAM treatment normalized sensitivity for calcium-induced swelling in mitochondria from alcohol-fed rats. Liver mitochondria from alcohol-fed rats showed increased sensitivity to NO-dependent inhibition of respiration compared with pair-fed controls. In contrast, mitochondria isolated from the livers of SAM treated alcohol-fed rats showed no change in the sensitivity to NO-mediated inhibition of respiration. CONCLUSION Collectively, these findings indicate that the hepato-protective effects of SAM against alcohol toxicity are mediated, in part, through a mitochondrial mechanism involving preservation of key mitochondrial bioenergetic parameters and the attenuation of hypoxic stress.
Collapse
Affiliation(s)
- Adrienne L King
- Departments of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Sudheer K Mantena
- Departments of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Kelly K Andringa
- Departments of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Telisha Millender-Swain
- Departments of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Kimberly J Dunham-Snary
- Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Claudia R Oliva
- Departments of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Corinne E Griguer
- Departments of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - Shannon M Bailey
- Departments of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Departments of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
13
|
Abstract
OBJECTIVES To explore the effect of betaine on alcoholic pancreatic steatosis and its mechanism. METHODS Rats were randomly assigned to control, ethanol, or ethanol + betaine groups. Changes in pancreatic morphology; serum lipid levels; and pancreatic lipid, amylase and lipase levels were determined. The serum and adipose tissue adiponectin level was measured by an enzyme-linked immunoassay. Adiponectin receptor-1 (AdipoR1), AdipoR2, sterol regulatory element binding protein-1c (SREBP-1c), SREBP-2, and fatty acid synthetase expression levels were quantified. The SREBP-1c expression in SW1990 cells treated with various concentrations of ethanol or ethanol plus betaine and/or adiponectin was assessed. RESULTS Alcohol-induced changes in pancreatic morphology were attenuated by betaine. Pancreatic triglyceride, free fatty acid and expression levels of SREBP-1c and fatty acid synthetase were elevated after ethanol feeding but remained at control levels after betaine supplementation. Alcohol-induced decreases in serum and adipose tissue adiponectin, pancreatic AdipoR1, amylase, and lipase were attenuated by betaine. Serum triglyceride and free fatty acid levels were elevated after alcohol consumption and remained higher after betaine supplementation compared with controls. Betaine and/or adiponectin suppressed alcohol-induced SREBP-1c upregulation in vitro. CONCLUSIONS Betaine attenuated alcoholic-induced pancreatic steatosis most likely by suppressing pancreatic SREBP-1c both directly and through the restoration of adiponectin signaling.
Collapse
|
14
|
Vecchione G, Grasselli E, Compalati AD, Ragazzoni M, Cortese K, Gallo G, Voci A, Vergani L. Ethanol and fatty acids impair lipid homeostasis in an in vitro model of hepatic steatosis. Food Chem Toxicol 2016; 90:84-94. [PMID: 26854922 DOI: 10.1016/j.fct.2016.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 01/27/2023]
Abstract
Excess ethanol consumption and fatty acid intake lead to a cumulative effect on liver steatosis through still unclear mechanisms. This study aimed to characterize the lipid homoeostasis alterations under the exposure of hepatocytes to ethanol alone or combined with fatty acids. FaO hepatoma cells were incubated in the absence (C) or in the presence of 100 mM ethanol (EtOH) or 0.35 mM oleate/palmitate (FFA) alone or in the combination (FFA/EtOH). Content of intra- and extra-cellular triglycerides (TAGs) and of lipid droplets (LDs), expression of lipogenic and lipolytic genes, and oxidative stress-related parameters were evaluated. Exposure to either FFAs or EtOH given separately led to steatosis which was augmented when they were combined. Our results show that FFA/EtOH: (i) increased the LD number, but reduced their size compared to separate treatments; (ii) up-regulated PPARγ and SREBP-1c and down-regulated sirtuin-1 (SIRT1); (iii) impaired FFA oxidation; (iv) did not change lipid secretion and oxidative stress. Our findings indicate that one of the major mechanisms of the metabolic interference between ethanol and fat excess is the impairment of FFA oxidation, in addition to lipogenic pathway stimulation. Interestingly, ethanol combined with FFAs led to a shift from macrovesicular to microvesicular steatosis that represents a more dangerous condition.
Collapse
Affiliation(s)
- Giulia Vecchione
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genova, Genova, Italy
| | - Elena Grasselli
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genova, Genova, Italy; INBB, Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Andrea D Compalati
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genova, Genova, Italy
| | - Milena Ragazzoni
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genova, Genova, Italy
| | - Katia Cortese
- DIMES, Dipartimento di Medicina Sperimentale, University of Genova, Genova, Italy
| | - Gabriella Gallo
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genova, Genova, Italy
| | - Adriana Voci
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genova, Genova, Italy
| | - Laura Vergani
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, University of Genova, Genova, Italy; INBB, Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy.
| |
Collapse
|
15
|
Kema VH, Mojerla NR, Khan I, Mandal P. Effect of alcohol on adipose tissue: a review on ethanol mediated adipose tissue injury. Adipocyte 2015; 4:225-31. [PMID: 26451277 PMCID: PMC4573182 DOI: 10.1080/21623945.2015.1017170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Alcohol consumption has been in existence in the world for many centuries and it is the major cause of death and injury worldwide. Alcoholic liver disease (ALD) is caused due to excess and chronic alcohol intake. Studies across the globe have identified several pathways leading to ALD. Adipose tissue which has been considered as an energy storage organ is also found to play a major role in ALD progression by secreting hormones and cytokines known as adipokines or adipocytokines. Ethanol affects the metabolic and innate immune activities of adipose tissue contributing to alcohol-induced injury of the tissues. OBJECTIVE We aimed at 1) summarizing the metabolism and progression of ALD 2) summarizing about the structure and effect of ethanol induced oxidative stress on adipose tissue 3) reviewing the available data on the effect of ethanol on adipose tissue mass and adipokine secretion in both rodent models and alcoholic patients. METHODS The article is summarized based on the original literature and reviews in studying the effect of ethanol on adipose tissue. RESULTS Studies on alcoholic patients and rodent models has shown that chronic ethanol consumption reduces adipose tissue mass and causes CYP2E1 mediated oxidative stress and inflammation of adipose tissue. Further hyperlipolysis is observed in adipose tissue that leads to excess fatty acid release that gets transported and deposited in the liver resulting in hepatic steatosis. CONCLUSION Studies show that adipose tissue plays a major role in the progression of ALD. So understanding of the mechanisms linking ethanol induced adipose tissue injury with ALD progression would help us in identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Venkata Harini Kema
- Department of Biological Sciences; BITS Pilani; Hyderabad Campus; Hyderabad, India
| | | | - Imran Khan
- Department of Biological Sciences; BITS Pilani; Hyderabad Campus; Hyderabad, India
| | - Palash Mandal
- Department of Biological Sciences; BITS Pilani; Hyderabad Campus; Hyderabad, India
| |
Collapse
|
16
|
Rossi RE, Conte D, Massironi S. Diagnosis and treatment of nutritional deficiencies in alcoholic liver disease: Overview of available evidence and open issues. Dig Liver Dis 2015; 47:819-25. [PMID: 26164399 DOI: 10.1016/j.dld.2015.05.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/28/2015] [Accepted: 05/30/2015] [Indexed: 02/08/2023]
Abstract
Malnutrition is common in alcoholic liver disease and is associated with high rates of complications and mortality. In this article, the current literature was reviewed to highlight the relevance of proper nutritional management providing levels of evidence, when available. A PubMed search was performed for English-language publications from 1980 through 2014 with the keywords: alcoholic liver disease, nutritional deficiencies, nutritional support, enteral nutrition, parenteral nutrition, and protein-energy malnutrition. Manuscripts focused on nutritional approach in patients with alcoholic liver disease were selected. Although nutritional support for malnourished patients improves the outcome of hospitalization, surgery, transplantation and reduces the complications of liver disease and the length of hospital stay, specific guidelines are scanty. Both enteral and parenteral nutrition appear to improve nutritional parameters and liver function; however data on survival is often conflicting. As micronutrient depletion is common in alcoholic liver disease and each deficiency produces specific sequelae, all cirrhotic patients should be screened at baseline for deficiencies of micronutrient and supplemented as needed. In summary, protein-energy malnutrition and micronutrient depletion are clinical concerns in alcoholic liver disease. Nutritional therapy, including enteral nutrition, parenteral nutrition and micronutrient supplementation should be part of the multidisciplinary management of these patients.
Collapse
Affiliation(s)
- Roberta Elisa Rossi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| | - Dario Conte
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Sara Massironi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Italy
| |
Collapse
|
17
|
Zhang P, Ma D, Wang Y, Zhang M, Qiang X, Liao M, Liu X, Wu H, Zhang Y. Berberine protects liver from ethanol-induced oxidative stress and steatosis in mice. Food Chem Toxicol 2015; 74:225-32. [PMID: 25455889 DOI: 10.1016/j.fct.2014.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/04/2014] [Accepted: 10/08/2014] [Indexed: 12/11/2022]
Abstract
Alcohol consumption is customary in many cultures and it is a common human behavior worldwide. Binge ethanol and chronic alcohol consumption, two usual drinking patterns of human beings, produce a state of oxidative stress in liver and disturb the liver function. However, a safe and effective therapy for alcoholic liver disease in humans is still elusive. This study identified the natural product berberine as a potential agent for treating or preventing ethanol-induced liver injury. We demonstrated that berberine attenuated oxidative stress resulted from binge drinking in liver by reducing hepatic lipid peroxidation, glutathione exhaust and mitochondrial oxidative damage. Furthermore, berberine also prevented the oxidative stress and macrosteatosis in response to chronic ethanol exposure in mice. Either the total cytochrome P450 2E1 or the mitochondria-located cytochrome P450 2E1, which is implicated in ethanol-mediated oxidative stress, was suppressed by berberine. On the other hand, berberine significantly blunted the lipid accumulation in liver due to chronic alcohol consumption, at least partially, through restoring peroxisome proliferator-activated receptor α/peroxisome proliferator-activated receptor-gamma Co-activator-1α and hepatocyte nuclear factor 4α/microsomal triglyceride transfer protein pathways. These findings suggested that berberine could serve as a potential agent for preventing or treating human alcoholic liver disease.
Collapse
Affiliation(s)
- Pengcheng Zhang
- State Key Laboratory of Natural Medicines, Department of Biochemistry, China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Song BJ, Akbar M, Jo I, Hardwick JP, Abdelmegeed MA. Translational Implications of the Alcohol-Metabolizing Enzymes, Including Cytochrome P450-2E1, in Alcoholic and Nonalcoholic Liver Disease. ADVANCES IN PHARMACOLOGY 2015; 74:303-72. [PMID: 26233911 DOI: 10.1016/bs.apha.2015.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fat accumulation (hepatic steatosis) in alcoholic and nonalcoholic fatty liver disease is a potentially pathologic condition which can progress to steatohepatitis (inflammation), fibrosis, cirrhosis, and carcinogenesis. Many clinically used drugs or some alternative medicine compounds are also known to cause drug-induced liver injury, which can further lead to fulminant liver failure and acute deaths in extreme cases. During liver disease process, certain cytochromes P450 such as the ethanol-inducible cytochrome P450-2E1 (CYP2E1) and CYP4A isozymes can be induced and/or activated by alcohol and/or high-fat diets and pathophysiological conditions such as fasting, obesity, and diabetes. Activation of these P450 isozymes, involved in the metabolism of ethanol, fatty acids, and various drugs, can produce reactive oxygen/nitrogen species directly and/or indirectly, contributing to oxidative modifications of DNA/RNA, proteins and lipids. In addition, aldehyde dehydrogenases including the mitochondrial low Km aldehyde dehydrogenase-2 (ALDH2), responsible for the metabolism of acetaldehyde and lipid aldehydes, can be inactivated by various hepatotoxic agents. These highly reactive acetaldehyde and lipid peroxides, accumulated due to ALDH2 suppression, can interact with cellular macromolecules DNA/RNA, lipids, and proteins, leading to suppression of their normal function, contributing to DNA mutations, endoplasmic reticulum stress, mitochondrial dysfunction, steatosis, and cell death. In this chapter, we specifically review the roles of the alcohol-metabolizing enzymes including the alcohol dehydrogenase, ALDH2, CYP2E1, and other enzymes in promoting liver disease. We also discuss translational research opportunities with natural and/or synthetic antioxidants, which can prevent or delay the onset of inflammation and liver disease.
Collapse
Affiliation(s)
- Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | - Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - James P Hardwick
- Biochemistry and Molecular Pathology in Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Lee HI, Lee MK. Coordinated regulation of scopoletin at adipose tissue-liver axis improved alcohol-induced lipid dysmetabolism and inflammation in rats. Toxicol Lett 2015; 237:210-8. [PMID: 26115886 DOI: 10.1016/j.toxlet.2015.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 01/05/2023]
Abstract
There is increasing evidence that alcohol-induced white adipose tissue (WAT) dysfunction contributes to disturbance of hepatic lipid metabolism. This study investigated the effects of scopoletin on lipid homeostasis and inflammation at the WAT and liver in chronic alcohol-fed rats. Rats were fed a liquid diet containing 5% alcohol with or without two doses of scopoletin (0.001% and 0.005%) for 8 weeks. Scopoletin decreased serum triglyceride and cytokines (TNFα and IL-6) levels and hepatic and WAT lipid levels, whereas it increased WAT adiponectin mRNA and serum adiponectin levels, up-regulated hepatic gene and protein expression of AdipoR2 and activated AMPK. Additionally, scopoletin inhibited the expression of lipogenic genes (SREBP-1c and Fasn) and increased the expression of fatty acid oxidative genes (PPARα, Acsl1, CPT, Acox, and Acaa1a) in both WAT and liver. Alcohol led to significant up-regulation of WAT lipolysis and hepatic Cidea gene expression, whereas it decreased the WAT Cidea gene level; however, scopoletin reversed these changes. Scopoletin significantly down-regulated TLR4 signaling genes such as MyD88, TRIF, NFκB, TNFα and IL-6 in WAT and liver. These results indicated that coordinated regulation of scopoletin at the WAT-liver axis may play an important role in improvement of alcohol-induced lipid dysregulation and inflammation.
Collapse
Affiliation(s)
- Hae-In Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon, 540-950, South Korea.
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon, 540-950, South Korea
| |
Collapse
|
20
|
Ji C. Advances and New Concepts in Alcohol-Induced Organelle Stress, Unfolded Protein Responses and Organ Damage. Biomolecules 2015; 5:1099-121. [PMID: 26047032 PMCID: PMC4496712 DOI: 10.3390/biom5021099] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/23/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022] Open
Abstract
Alcohol is a simple and consumable biomolecule yet its excessive consumption disturbs numerous biological pathways damaging nearly all organs of the human body. One of the essential biological processes affected by the harmful effects of alcohol is proteostasis, which regulates the balance between biogenesis and turnover of proteins within and outside the cell. A significant amount of published evidence indicates that alcohol and its metabolites directly or indirectly interfere with protein homeostasis in the endoplasmic reticulum (ER) causing an accumulation of unfolded or misfolded proteins, which triggers the unfolded protein response (UPR) leading to either restoration of homeostasis or cell death, inflammation and other pathologies under severe and chronic alcohol conditions. The UPR senses the abnormal protein accumulation and activates transcription factors that regulate nuclear transcription of genes related to ER function. Similarly, this kind of protein stress response can occur in other cellular organelles, which is an evolving field of interest. Here, I review recent advances in the alcohol-induced ER stress response as well as discuss new concepts on alcohol-induced mitochondrial, Golgi and lysosomal stress responses and injuries.
Collapse
Affiliation(s)
- Cheng Ji
- GI/Liver Division, Research Center for Liver Disease, Department of Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
21
|
You M, Jogasuria A, Taylor C, Wu J. Sirtuin 1 signaling and alcoholic fatty liver disease. Hepatobiliary Surg Nutr 2015; 4:88-100. [PMID: 26005675 DOI: 10.3978/j.issn.2304-3881.2014.12.06] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022]
Abstract
Alcoholic fatty liver disease (AFLD) is one of the most prevalent forms of liver disease worldwide and can progress to inflammation (hepatitis), fibrosis/cirrhosis, and ultimately lead to end stage liver injury. The mechanisms, by which ethanol consumption leads to AFLD, are complicated and multiple, and remain incompletely understood. Nevertheless, understanding its pathogenesis will facilitate the development of effective pharmacological or nutritional therapies for treating human AFLD. Chronic ethanol consumption causes steatosis and inflammation in rodents or humans by disturbing several important hepatic transcriptional regulators, including AMP-activated kinase (AMPK), lipin-1, sterol regulatory element binding protein 1 (SREBP-1), PPARγ co-activator-1α (PGC-1α), and nuclear transcription factor-κB (NF-κB). Remarkably, the effects of ethanol on these regulators are mediated in whole or in part by inhibition of a central signaling molecule, sirtuin 1 (SIRT1), which is a nicotinamide adenine dinucleotide (NAD(+), NADH)-dependent class III protein deacetylase. In recent years, SIRT1 has emerged as a pivotal molecule controlling the pathways of hepatic lipid metabolism, inflammatory responses and in the development of AFLD in rodents and in humans. Ethanol-mediated SIRT1 inhibition suppresses or stimulates the activities of above described transcriptional regulators and co-regulators, thereby deregulating diverse lipid metabolism and inflammatory response pathways including lipogenesis, fatty acid β-oxidation, lipoprotein uptake and secretion and expression of pro-inflammatory cytokines in the liver. This review aims to highlight our current understanding of SIRT1 regulatory mechanisms and its response to ethanol-induced toxicity, thus, affirming significant role of SIRT1 signaling in the development of AFLD.
Collapse
Affiliation(s)
- Min You
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Alvin Jogasuria
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Charles Taylor
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Jiashin Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
22
|
Carr RM, Correnti J. Insulin resistance in clinical and experimental alcoholic liver disease. Ann N Y Acad Sci 2015; 1353:1-20. [PMID: 25998863 DOI: 10.1111/nyas.12787] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcoholic liver disease (ALD) is the number one cause of liver failure worldwide; its management costs billions of healthcare dollars annually. Since the advent of the obesity epidemic, insulin resistance (IR) and diabetes have become common clinical findings in patients with ALD; and the development of IR predicts the progression from simple steatosis to cirrhosis in ALD patients. Both clinical and experimental data implicate the impairment of several mediators of insulin signaling in ALD, and experimental data suggest that insulin-sensitizing therapies improve liver histology. This review explores the contribution of impaired insulin signaling in ALD and summarizes the current understanding of the synergistic relationship between alcohol and nutrient excess in promoting hepatic inflammation and disease.
Collapse
Affiliation(s)
- Rotonya M Carr
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason Correnti
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Jiang Z, Zhou J, Zhou D, Zhu Z, Sun L, Nanji AA. The adiponectin-SIRT1-AMPK pathway in alcoholic fatty liver disease in the rat. Alcohol Clin Exp Res 2015; 39:424-33. [PMID: 25703252 DOI: 10.1111/acer.12641] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/25/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Our previous work showed that binge drinking in the rat induced hepatic steatosis which correlated with reduced expression of AMP-activated protein kinase (AMPK). In this study, we used the rat model to investigate the role of adiponectin (Adip), sirtuin 1 (SIRT1), AMPK, and lipin 1 (LIP 1) signaling, a central controlling pathway of lipid metabolism in hepatic steatosis. METHODS The serum Adip and tumor necrosis factor-alpha (TNF-α) as well as liver Adip receptors (AdipoR1 and AdipoR2) SIRT1, AMPK, phosphorylated AMPK (p-AMPK), sterol regulatory element-binding proteins (SREBPs), acetyl-CoA carboxylase (ACC), LIP 1, lipocalin-2 (LCN2), and serum amyloid A1 were assessed in the rat model where 16 weeks of gavaged alcohol were administered. RESULTS In this model of ethanol (EtOH) administration, hepatic steatosis, necrosis, as well as inflammation were increased over the 16-week period. The level of TNF-α in the serum was increased while the Adip content decreased significantly, and there was an inverse relationship between the content of TNF-α and Adip. The mRNA and protein expression of AdipoR2, SIRT1, and AMPK was suppressed by EtOH in the rats' hepatic tissue. Additionally, EtOH significantly decreased p-AMPK by 90% over the 16-week period. In parallel, there was a 2.53- and 1.82-fold increase of lipogenic genes SREBP1c and ACC, and a 3.22- and 4.12-fold increase of LIP 1 and LIP 1 β mRNA expression, respectively, in the hepatic tissue of the rats. CONCLUSIONS Our present observations demonstrate that the impaired Adip-SIRT1-AMPK signaling pathway contributes, at least in part, to the development of alcoholic fatty liver disease in EtOH binge rats.
Collapse
Affiliation(s)
- ZhiAn Jiang
- Department of Infectious Disease , Third Hospital, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | |
Collapse
|
24
|
Sim WC, Yin HQ, Choi HS, Choi YJ, Kwak HC, Kim SK, Lee BH. L-serine supplementation attenuates alcoholic fatty liver by enhancing homocysteine metabolism in mice and rats. J Nutr 2015; 145:260-7. [PMID: 25644346 DOI: 10.3945/jn.114.199711] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hyperhomocysteinemia plays an important role in the development of hepatic steatosis, and studies indicate that homocysteine-lowering treatment inhibits the development of fatty liver. OBJECTIVE We evaluated the effects of L-serine on alcoholic fatty liver and homocysteine metabolism. METHODS In a binge ethanol study, male C57BL/6 mice were divided into 4 groups: control, ethanol + vehicle, and ethanol + 20 or 200 mg/kg L-serine. Mice were gavaged with ethanol (5 g/kg body weight) 3 times every 12 h with or without L-serine which was given twice 30 min before the last 2 ethanol doses. Control mice were fed isocaloric dextran-maltose. In a chronic ethanol study, male Wistar rats were divided into 3 groups: control, ethanol, and ethanol + L-serine. Rats were fed a standard Lieber-DeCarli ethanol diet (36% ethanol-derived calories) for 4 wk with or without dietary L-serine supplementation (1%; wt:vol) for the last 2 wk. In control rats, the ethanol-derived calories were replaced with dextran-maltose. The effects of L-serine were also tested in AML12 cells manipulated to have high homocysteine concentrations by silencing the genes involved in homocysteine metabolism. RESULTS Binge ethanol treatment increased serum homocysteine and hepatic triglyceride (TG) concentrations by >5-fold vs. controls, which were attenuated in the 200-mg/kg L-serine treatment group by 60.0% and 47.5%, respectively, compared with the ethanol group. In the chronic ethanol study, L-serine also decreased hepatic neutral lipid accumulation by 63.3% compared with the ethanol group. L-serine increased glutathione and S-adenosylmethionine by 94.0% and 30.6%, respectively, compared with the ethanol group. Silencing betaine homocysteine methyltransferase, cystathionine β-synthase, or methionine increased intracellular homocysteine and TG concentrations by >2-fold, which was reversed by L-serine when L-serine-independent betaine homocysteine methyltransferase was knocked down. CONCLUSION These results demonstrate that L-serine ameliorates alcoholic fatty liver by accelerating L-serine-dependent homocysteine metabolism.
Collapse
Affiliation(s)
- Woo-Cheol Sim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; and
| | - Hu-Quan Yin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; and
| | - Ho-Sung Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; and
| | - You-Jin Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; and
| | - Hui Chan Kwak
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sang-Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Byung-Hoon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; and
| |
Collapse
|
25
|
Dietary umbelliferone attenuates alcohol-induced fatty liver via regulation of PPARα and SREBP-1c in rats. Alcohol 2014; 48:707-15. [PMID: 25262573 DOI: 10.1016/j.alcohol.2014.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study investigated the effects of umbelliferone (UF) on alcoholic fatty liver and its underlying mechanism. Rats were fed a Lieber-DeCarli liquid diet with 36% of calories as alcohol with or without UF (0.05 g/L) for 8 weeks. Pair-fed rats received an isocaloric carbohydrate liquid diet. UF significantly reduced the severity of alcohol-induced body weight loss, hepatic lipid accumulation and droplet formation, and dyslipidemia. UF decreased plasma AST, ALT, and γGTP activity. UF significantly reduced hepatic cytochrome P450 2E1 activities and increased alcohol dehydrogenase and aldehyde dehydrogenase 2 activities compared to the alcohol control group, which resulted in a lower plasma acetaldehyde level in the rats that received UF. Chronic alcohol exposure inhibited hepatic AMPK activation compared to the pair-fed rats, which was reversed by UF supplementation. UF also significantly suppressed the lipogenic gene expression (SREBP-1c, SREBP-2, FAS, CIDEA, and PPARγ) and elevated the fatty acid oxidation gene expression (PPARα, Acsl1, CPT, Acox, and Acaa1a) compared to the alcohol control group, which could lead to inhibition of FAS activity and stimulation of CPT and fatty acid β-oxidation activities in the liver of chronic alcohol-fed rats. These results indicated that UF attenuated alcoholic steatosis through down-regulation of SREBP-1c-mediated lipogenesis and up-regulation of PPARα-mediated fatty acid oxidation. Therefore, UF may provide a promising natural therapeutic strategy against alcoholic fatty liver.
Collapse
|
26
|
Yu X, Liu R, Zhao G, Zheng M, Chen J, Wen J. Folate supplementation modifies CCAAT/enhancer-binding protein α methylation to mediate differentiation of preadipocytes in chickens. Poult Sci 2014; 93:2596-603. [PMID: 25037819 DOI: 10.3382/ps.2014-04027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Folate, an essential vitamin participating in 1-carbon metabolism leading to a methyl donor function, is a key factor inducing epigenetic changes. This study sought to determine if folate influences the methylation level of cytosine-guanine (CpG) islands in the promoters of critical adipogenic genes in chickens, and how this might affect gene expression and differentiation of preadipocytes in vitro. Preadipocytes were treated with 0 to 16 mg/L of folate during the induction of differentiation, and cell proliferation and lipid accumulation were assessed. The folate supplementation resulted in enhanced cell proliferation and decreased content of lipid per adipocyte at d 6 of differentiation. The effects of folate on relative expression of genes critical for adipocyte differentiation and 1-carbon metabolism were measured by quantitative reverse-transcription PCR. Folate caused a dose-dependent decrease in transcript abundance of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα) gene expression, and the downstream enzyme fatty acid synthase; in contrast, expression of DNA (cytosine-5)-methyltransferase and methylenetetrahydrofolate reductase was obviously upregulated at d 6 of differentiation (P < 0.05). The DNA methylation was examined with the bisulfite sequencing PCR method. Overall CpG methylation in the C/EBPα gene promoter region was 21.8% lower (P < 0.05) and the gene's expression was 2.7-fold higher in the absence of folate, compared with cells treated with 16 mg/L of folate, whereas methylation of the PPARγ promoter was not affected. Overall, the results show that folate increased the proliferation of adipocytes but reduced per-cell lipid accumulation, thereby influencing differentiation; it increased expression of genes involved in 1-carbon metabolism resulting in greater methylation of the C/EBPα promoter during differentiation and decreased that gene's expression, perhaps accounting for decreased expression of PPARγ.
Collapse
Affiliation(s)
- Xiaoqiong Yu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. ChinaState Key Laboratory of Animal Nutrition, Beijing 100193, P.R. China
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. ChinaState Key Laboratory of Animal Nutrition, Beijing 100193, P.R. China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. ChinaState Key Laboratory of Animal Nutrition, Beijing 100193, P.R. China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. ChinaState Key Laboratory of Animal Nutrition, Beijing 100193, P.R. China
| | - Jilan Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. ChinaState Key Laboratory of Animal Nutrition, Beijing 100193, P.R. China
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. ChinaState Key Laboratory of Animal Nutrition, Beijing 100193, P.R. China
| |
Collapse
|
27
|
Zhou G, Wang J, Zhao M, Xie TX, Tanaka N, Sano D, Patel AA, Ward AM, Sandulache VC, Jasser SA, Skinner HD, Fitzgerald AL, Osman AA, Wei Y, Xia X, Songyang Z, Mills GB, Hung MC, Caulin C, Liang J, Myers JN. Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol Cell 2014; 54:960-974. [PMID: 24857548 DOI: 10.1016/j.molcel.2014.04.024] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 02/18/2014] [Accepted: 04/07/2014] [Indexed: 12/25/2022]
Abstract
Many mutant p53 proteins (mutp53s) exert oncogenic gain-of-function (GOF) properties, but the mechanisms mediating these functions remain poorly defined. We show here that GOF mutp53s inhibit AMP-activated protein kinase (AMPK) signaling in head and neck cancer cells. Conversely, downregulation of GOF mutp53s enhances AMPK activation under energy stress, decreasing the activity of the anabolic factors acetyl-CoA carboxylase and ribosomal protein S6 and inhibiting aerobic glycolytic potential and invasive cell growth. Under conditions of energy stress, GOF mutp53s, but not wild-type p53, preferentially bind to the AMPKα subunit and inhibit AMPK activation. Given the importance of AMPK as an energy sensor and tumor suppressor that inhibits anabolic metabolism, our findings reveal that direct inhibition of AMPK activation is an important mechanism through which mutp53s can gain oncogenic function.
Collapse
Affiliation(s)
- Ge Zhou
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Jiping Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tong-Xin Xie
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Noriaki Tanaka
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daisuke Sano
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ameeta A Patel
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexandra M Ward
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vlad C Sandulache
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samar A Jasser
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Heath D Skinner
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alison Lea Fitzgerald
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abdullah A Osman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuefeng Xia
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Diabetes Research, Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Zhou Songyang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduated Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Carlos Caulin
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiyong Liang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
28
|
Medici V, Schroeder DI, Woods R, LaSalle JM, Geng Y, Shibata NM, Peerson J, Hodzic E, Dayal S, Tsukamoto H, Kharbanda KK, Tillman B, French SW, Halsted CH. Methylation and gene expression responses to ethanol feeding and betaine supplementation in the cystathionine beta synthase-deficient mouse. Alcohol Clin Exp Res 2014; 38:1540-9. [PMID: 24730561 DOI: 10.1111/acer.12405] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/12/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Alcoholic steatohepatitis (ASH) is caused in part by the effects of ethanol (EtOH) on hepatic methionine metabolism. METHODS To investigate the phenotypic and epigenetic consequences of altered methionine metabolism in this disease, we studied the effects of 4-week intragastric EtOH feeding with and without the methyl donor betaine in cystathionine beta synthase (CβS) heterozygous C57BL/6J mice. RESULTS The histopathology of early ASH was induced by EtOH feeding and prevented by betaine supplementation, while EtOH feeding reduced and betaine supplementation maintained the hepatic methylation ratio of the universal methyl donor S-adenosylmethionine (SAM) to the methyltransferase inhibitor S-adenosylhomocysteine (SAH). MethylC-seq genomic sequencing of heterozygous liver samples from each diet group found 2 to 4% reduced methylation in gene bodies, but not promoter regions of all autosomes of EtOH-fed mice, each of which were normalized in samples from mice fed the betaine-supplemented diet. The transcript levels of nitric oxide synthase (Nos2) and DNA methyltransferase 1 (Dnmt1) were increased, while those of peroxisome proliferator receptor-α (Pparα) were reduced in EtOH-fed mice, and each was normalized in mice fed the betaine-supplemented diet. DNA pyrosequencing of CβS heterozygous samples found reduced methylation in a gene body of Nos2 by EtOH feeding that was restored by betaine supplementation and was correlated inversely with its expression and positively with SAM/SAH ratios. CONCLUSIONS The present study has demonstrated relationships among EtOH induction of ASH with aberrant methionine metabolism that was associated with gene body DNA hypomethylation in all autosomes and was prevented by betaine supplementation. The data imply that EtOH-induced changes in selected gene transcript levels and hypomethylation in gene bodies during the induction of ASH are a result of altered methionine metabolism that can be reversed through dietary supplementation of methyl donors.
Collapse
Affiliation(s)
- Valentina Medici
- Department of Internal Medicine, University of California Davis, Sacramento, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lim S, Quon MJ, Koh KK. Modulation of adiponectin as a potential therapeutic strategy. Atherosclerosis 2014; 233:721-728. [PMID: 24603219 DOI: 10.1016/j.atherosclerosis.2014.01.051] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 12/22/2022]
Abstract
Adiponectin is produced predominantly by adipocytes and plays an important role in metabolic and cardiovascular homeostasis through its insulin-sensitizing actions and anti-inflammatory and anti-atherogenic properties. Recently, it has been observed that lower levels of adiponectin can substantially increase the risk of developing type 2 diabetes, metabolic syndrome, atherosclerosis, and cardiovascular disease in patients who are obese. Circulating adiponectin levels are inversely related to the inflammatory process, oxidative stress, and metabolic dysregulation. Intensive lifestyle modifications and pharmacologic agents, including peroxisome proliferator-activated receptor-γ or α agonists, some statins, renin-angiotensin-aldosterone system blockers, some calcium channel blockers, mineralocorticoid receptor blockers, new β-blockers, and several natural compounds can increase adiponectin levels and suppress or prevent disease initiation or progression, respectively, in cardiovascular and metabolic disorders. Therefore, it is important for investigators to have a thorough understanding of the interventions that can modulate adiponectin. Such knowledge may lead to new therapeutic approaches for diseases such as type 2 diabetes, metabolic syndrome, cardiovascular disease, and obesity. This review focuses on recent updates regarding therapeutic interventions that might modulate adiponectin.
Collapse
Affiliation(s)
- Soo Lim
- Division of Endocrinology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Michael J Quon
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kwang Kon Koh
- Cardiology, Gachon University Gil Medical Center, Incheon, Republic of Korea; Gachon Cardiovascular Research Institute, Incheon, Republic of Korea.
| |
Collapse
|
30
|
Abstract
The unfolded protein response (UPR) is a protective cellular response activated under conditions of endoplasmic reticulum (ER) stress. The hepatic UPR is activated in several forms of liver disease including nonalcoholic fatty liver disease (NAFLD). Recent data defining the role of the UPR in hepatic lipid metabolism have identified molecular mechanisms that may underlie the association between UPR activation and NAFLD. It has become increasingly evident that the IRE1α/Xbp1 pathway of the UPR is critical for hepatic lipid homeostasis, and dysregulation of this evolutionarily conserved pathway is associated with human nonalcoholic steatohepatitis (NASH). Although increasing evidence has delineated the importance of UPR pathway signaling in fatty liver disorders, the regulation of the hepatic UPR in normal physiology and fatty liver disorders remains incompletely understood. Understanding the role of the UPR in hepatic lipid metabolism may lead to the identification of novel therapeutic targets for the treatment of NAFLD.
Collapse
Affiliation(s)
- Anne Henkel
- Assistant Professor of Medicine, Division of Gastroenterology and Hepatology, Section of Hepatology, Northwestern University Feinberg School of Medicine, Tarry Building 15-705, 303 East Chicago Avenue, Chicago, IL 60611, Tel: 312-503-3148, Fax: 312-908-9032
| | - Richard M. Green
- Professor of Medicine, Division of Gastroenterology and Hepatology, Section of Hepatology, Northwestern University Feinberg School of Medicine, Tarry Building 15-719, 303 East Chicago Avenue, Chicago, IL 60611, Tel: 312-503-1812, Fax: 312-908-9032
| |
Collapse
|
31
|
Kim SY, Hong SW, Kim MO, Kim HS, Jang JE, Leem J, Park IS, Lee KU, Koh EH. S-adenosyl methionine prevents endothelial dysfunction by inducing heme oxygenase-1 in vascular endothelial cells. Mol Cells 2013; 36:376-84. [PMID: 24046187 PMCID: PMC3887983 DOI: 10.1007/s10059-013-0210-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 01/12/2023] Open
Abstract
S-adenosyl methionine (SAM) is a key intermediate in the metabolism of sulfur amino acids and is a major methyl donor in the cell. Although the low plasma level of SAM has been associated with atherosclerosis, the effect of SAM administration on atherosclerosis is not known. Endothelial dysfunction is an early prerequisite for atherosclerosis. This study was undertaken to investigate the possible preventive effect of SAM on endothelial dysfunction and the molecular mechanism of its action. SAM treatment prevented endothelial dysfunction in high fat diet (HFD)-fed rats. In cultured human aortic endothelial cells, linoleic acid (LA) increased and SAM decreased cell apoptosis and endoplasmic reticulum stress. Both LA and SAM increased heme oxygenase-1 (HO-1) expression in an NF-E2-related factor 2-dependent manner. However, knockdown of HO-1 reversed only the SAM-induced preventive effect of cell apoptosis. The LA-induced HO-1 expression was dependent on PPARα, whereas SAM induced HO-1 in a PPAR-independent manner. These data demonstrate that SAM treatment prevents endothelial dysfunction in HFDfed animals by inducing HO-1 in vascular endothelial cells. In cultured endothelial cells, SAM-induced HO-1 was responsible for the observed prevention of cell apoptosis. We propose that SAM treatment may represent a new therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Sun Young Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Korea
| | - Seok Woo Hong
- Department of Anatomy, College of Medicine, Inha University, Incheon 401-103, Korea
| | - Mi-Ok Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Korea
| | - Hyun-Sik Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Korea
| | - Jung Eun Jang
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Jaechan Leem
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - In-Sun Park
- Department of Anatomy, College of Medicine, Inha University, Incheon 401-103, Korea
| | - Ki-Up Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Eun Hee Koh
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 138-736, Korea
| |
Collapse
|
32
|
Halsted CH. B-Vitamin dependent methionine metabolism and alcoholic liver disease. Clin Chem Lab Med 2013; 51:457-65. [PMID: 23096111 DOI: 10.1515/cclm-2012-0308] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/23/2012] [Indexed: 02/07/2023]
Abstract
Convincing evidence links aberrant B-vitamin dependent hepatic methionine metabolism to the pathogenesis of alcoholic liver disease (ALD). This review focuses on the essential roles of folate and vitamins B6 and B12 in hepatic methionine metabolism, the causes of their deficiencies among chronic alcoholic persons, and how their deficiencies together with chronic alcohol exposure impact on aberrant methionine metabolism in the pathogenesis of ALD. Folate is the dietary transmethylation donor for the production of S-adenosylmethionine (SAM), which is the substrate for all methyltransferases that regulate gene expressions in pathways of liver injury, as well as a regulator of the transsulfuration pathway that is essential for production of glutathione (GSH), the principal antioxidant for defense against oxidative liver injury. Vitamin B12 regulates transmethylation reactions for SAM production and vitamin B6 regulates transsulfuration reactions for GSH production. Folate deficiency accelerates the experimental development of ALD in ethanol-fed animals while reducing liver SAM levels with resultant abnormal gene expression and decreased production of antioxidant GSH. Through its effects on folate metabolism, reduced SAM also impairs nucleotide balance with resultant increased DNA strand breaks, oxidation, hepatocellular apoptosis, and risk of carcinogenesis. The review encompasses referenced studies on mechanisms for perturbations of methionine metabolism in ALD, evidence for altered gene expressions and their epigenetic regulation in the pathogenesis of ALD, and clinical studies on potential prevention and treatment of ALD by correction of methionine metabolism with SAM.
Collapse
Affiliation(s)
- Charles H Halsted
- Department of Internal Medicine, University of California Davis, Davis, CA 95616,USA.
| |
Collapse
|
33
|
Le MD, Enbom E, Traum PK, Medici V, Halsted CH, French SW. Alcoholic liver disease patients treated with S-adenosyl-L-methionine: an in-depth look at liver morphologic data comparing pre and post treatment liver biopsies. Exp Mol Pathol 2013; 95:187-91. [PMID: 23886644 DOI: 10.1016/j.yexmp.2013.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND The objective of this study is to assess if there were any changes in liver biopsies after treatment with S-adenosyl-L-methionine(SAMe) in alcoholic liver disease patients. METHODS Liver biopsies of 14 patients were randomized for SAMe treatment at week 0 (biopsy #1) and at 24 weeks (biopsy #2). Patients received 1.2g of SAMe or placebo by mouth daily and stopped alcohol intake. Biopsies were semi-quantitatively scored for: steatosis, inflammation, necrosis, fibrosis, apoptosis by TUNEL stain, percent fibrosis per square field, smooth muscle actin stain, Kupffer cells, polymorphonuclear leukocytes, lipogranules, lymphocytes, balloon cell formation, Mallory-Denk bodies, and duct metaplasia. RESULTS Comparing treatment arm to placebo arm, no significant difference was found between biopsy #1 and biopsy #2. However, when both study arms were grouped together, there was decrease in smooth muscle actin stain, where the P-value=0.027. CONCLUSION Treatment with SAMe did not show a statistically significant difference in the characteristics studied. However, when both the treatment and placebo arm data were grouped together to increase the n and power, there was a decrease in the smooth muscle actin stain, reflecting a decrease in stellate cells activation, likely due to the alcohol abstinence. This study suggests that it may not be beneficial to wait for more definitive treatment, like liver transplant in alcoholic liver disease patients, since the liver tissue remained largely with the same degree of pathology six months out, regardless of treatment.
Collapse
Affiliation(s)
- Mary D Le
- Harbor-UCLA Medical Center, Department of Pathology, Box 12, 1000 West Carson St, Torrance, CA 90502, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Activation of AMP-activated protein kinase alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells. Neurochem Res 2013; 38:1561-71. [PMID: 23624826 DOI: 10.1007/s11064-013-1057-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 04/11/2013] [Accepted: 04/19/2013] [Indexed: 10/26/2022]
Abstract
Mammalian AMP-activated protein kinase (AMPK) acts as a metabolite-sensing protein kinase in multiple tissues. Recent studies have shown that AMPK activation also regulates intracellular signaling pathways involved in cellular survival and apoptosis. Previously, we have reported that AMPK activation alleviates the endoplasmic reticulum (ER) stress-mediated neurotoxicity and tau hyperphosphorylation caused by palmitate. Therefore, we investigated whether AMPK activation alleviates ER stress-mediated neurotoxicity in SH-SY5Y human neuroblastoma cells incubated with homocysteine. Regulation of AMPK activity by isoflavone was also determined to investigate the underlying mechanism of its neuroprotective effect. Treatment of SH-SY5Y human neuroblastoma cells with N (1)-(β-D-ribofuranosyl)-5-aminoimidazole-4-carboxamide (AICAR), a pharmacological activator of AMPK, significantly protected cells against cytotoxicity imposed by tunicamycin and homocysteine. Homocysteine significantly suppressed AMPK activation, which was alleviated by AICAR. We observed a significant inhibition of the unfolded protein response by AICAR in cells incubated with homocysteine, suggesting a protective role of AMPK activation against ER stress-mediated neurotoxicity. AICAR also significantly reduced tau hyperphosphorylation by inactivating glycogen synthase kinase-3β and c-Jun N-terminal kinase in cells incubated with homocysteine. Furthermore, treatment of cells with soy isoflavone, genistein and daidzein significantly activated AMPK, which was repressed by tunicamycin and homocysteine. Therefore, our results suggest that AMPK activation by isoflavone as well as AICAR alleviates homocysteine-mediated neurotoxicity in SH-SY5Y cells.
Collapse
|
35
|
Regnell SE. Cannabinoid 1 receptor in fatty liver. Hepatol Res 2013; 43:131-8. [PMID: 22994399 DOI: 10.1111/j.1872-034x.2012.01085.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/18/2012] [Accepted: 07/27/2012] [Indexed: 02/08/2023]
Abstract
The role of cannabinoids in fatty liver disease has been increasingly acknowledged in recent years, and it has been suggested that drugs targeting peripheral cannabinoid receptors could have therapeutic use. Development of such drugs would require a good understanding of the mechanisms of fat accumulation caused by cannabinoid receptor activation. This review describes in detail the enzymatic steps that lead from the stimulation of cannabinoid 1 receptor to steatosis. It identifies several signaling pathways that activate sterol regulatory element-binding protein 1c (SREBP-1c), the key transcription factor causing fatty liver. The downstream effects of SREBP-1c leading to increased fatty acid synthesis and decreased fatty acid oxidation are also described.
Collapse
|
36
|
Lakshman MR, Garige M, Gong MA, Leckey L, Varatharajalu R, Redman RS, Seth D, Haber PS, Hirsch K, Amdur R, Shah R. CYP2E1, oxidative stress, post-translational modifications and lipid metabolism. Subcell Biochem 2013; 67:199-233. [PMID: 23400923 DOI: 10.1007/978-94-007-5881-0_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Chronic alcohol-mediated down-regulation of hepatic ST6Gal1 gene leads to defective glycosylation of lipid-carrying apolipoproteins such as apo E and apo J, resulting in defective VLDL assembly and intracellular lipid and lipoprotein transport, which in turn is responsible for alcoholic hepatosteatosis and ALD. The mechanism of ethanol action involves thedepletion of a unique RNA binding protein that specifically interacts with its 3'-UTR region of ST6Gal1 mRNA resulting in its destabilization and consequent appearance of asialoconjugates as alcohol biomarkers. With respect to ETOH effects on Cardio-Vascular Diseases, we conclude that CYP2E1 and ETOH mediated oxidative stress significantly down regulates not only the hepatic PON1 gene expression, but also serum PON1 and HCTLase activities accompanied by depletion of hepatic GSH, the endogenous antioxidant. These results strongly implicate the susceptibility of PON1 to increased ROS production. In contrast, betaine seems to be both hepatoprotective and atheroprotective by reducing hepatosteatosis and restoring not only liver GSH that quenches free radicals, but also the antiatherogenic PON1 gene expression and activity.
Collapse
Affiliation(s)
- M Raj Lakshman
- Department of Biochemistry and Molecular Biology, The George Washington University, Washington, DC, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fardet A, Chardigny JM. Plant-Based Foods as a Source of Lipotropes for Human Nutrition: A Survey of In Vivo Studies. Crit Rev Food Sci Nutr 2013; 53:535-90. [DOI: 10.1080/10408398.2010.549596] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Medici V, Halsted CH. Folate, alcohol, and liver disease. Mol Nutr Food Res 2012; 57:596-606. [PMID: 23136133 DOI: 10.1002/mnfr.201200077] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 06/09/2012] [Accepted: 10/01/2012] [Indexed: 12/23/2022]
Abstract
Alcoholic liver disease (ALD) is typically associated with folate deficiency, which is the result of reduced dietary folate intake, intestinal malabsorption, reduced liver uptake and storage, and increased urinary folate excretion. Folate deficiency favors the progression of liver disease through mechanisms that include its effects on methionine metabolism with consequences for DNA synthesis and stability and the epigenetic regulation of gene expression involved in pathways of liver injury. This paper reviews the pathogenesis of ALD with particular focus on ethanol-induced alterations in methionine metabolism, which may act in synergy with folate deficiency to decrease antioxidant defense as well as DNA stability while regulating epigenetic mechanisms of relevant gene expressions. We also review the current evidence available on potential treatments of ALD based on correcting abnormalities in methionine metabolism and the methylation regulation of relevant gene expressions.
Collapse
Affiliation(s)
- Valentina Medici
- Department of Internal Medicine, University of California Davis, Davis, CA 95817, USA.
| | | |
Collapse
|
39
|
Tan X, Sun X, Li Q, Zhao Y, Zhong W, Sun X, Jia W, McClain CJ, Zhou Z. Leptin deficiency contributes to the pathogenesis of alcoholic fatty liver disease in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1279-86. [PMID: 22841822 DOI: 10.1016/j.ajpath.2012.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/29/2012] [Accepted: 06/11/2012] [Indexed: 02/06/2023]
Abstract
White adipose tissue (WAT) secretes adipokines, which critically regulate lipid metabolism. The present study investigated the effects of alcohol on adipokines and the mechanistic link between adipokine dysregulation and alcoholic fatty liver disease. Mice were fed alcohol for 2, 4, or 8 weeks to document changes in adipokines over time. Alcohol exposure reduced WAT mass and body weight in association with hepatic lipid accumulation. The plasma adiponectin concentration was increased at 2 weeks, but declined to normal at 4 and 8 weeks. Alcohol exposure suppressed leptin gene expression in WAT and reduced the plasma leptin concentration at all times measured. There is a highly positive correlation between plasma leptin concentration and WAT mass or body weight. To determine whether leptin deficiency mediates alcohol-induced hepatic lipid dyshomeostasis, mice were fed alcohol for 8 weeks with or without leptin administration for the last 2 weeks. Leptin administration normalized the plasma leptin concentration and reversed alcoholic fatty liver. Alcohol-perturbed genes involved in fatty acid β-oxidation, very low-density lipoprotein secretion, and transcriptional regulation were attenuated by leptin. Leptin also normalized alcohol-reduced phosphorylation levels of signal transducer Stat3 and adenosine monophosphate-activated protein kinase. These data demonstrated for the first time that leptin deficiency in association with WAT mass reduction contributes to the pathogenesis of alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Xiaobing Tan
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina 28081, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Medici V, Virata MC, Peerson JM, Stabler SP, French SW, Gregory JF, Albanese A, Bowlus CL, Devaraj S, Panacek EA, Richards JR, Halsted CH. S-adenosyl-L-methionine treatment for alcoholic liver disease: a double-blinded, randomized, placebo-controlled trial. Alcohol Clin Exp Res 2012; 35:1960-5. [PMID: 22044287 DOI: 10.1111/j.1530-0277.2011.01547.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND S-adenosyl-L-methionine (SAM) is the methyl donor for all methylation reactions and regulates the synthesis of glutathione, the main cellular antioxidant. Previous experimental studies suggested that SAM may benefit patients with established alcoholic liver diseases (ALDs). The aim of this study was to determine the efficacy of SAM in treatment for ALD in a 24-week trial. The primary endpoints were changes in serum aminotransferase levels and liver histopathology scores, and the secondary endpoints were changes in serum levels of methionine metabolites. METHODS We randomized 37 patients with ALD to receive 1.2 g of SAM by mouth or placebo daily. Subjects were required to remain abstinent from alcohol drinking. A baseline liver biopsy was performed in 24 subjects, and a posttreatment liver biopsy was performed in 14 subjects. RESULTS Fasting serum SAM levels were increased over timed intervals in the SAM treatment group. The entire cohort showed an overall improvement of AST, ALT, and bilirubin levels after 24 weeks of treatment, but there were no differences between the treatment groups in any clinical or biochemical parameters nor any intra- or intergroup differences or changes in liver histopathology scores for steatosis, inflammation, fibrosis, and Mallory-Denk hyaline bodies. CONCLUSIONS Whereas abstinence improved liver function, 24 weeks of therapy with SAM was no more effective than placebo in the treatment for ALD.
Collapse
Affiliation(s)
- Valentina Medici
- Department of Internal Medicine, University of California Davis, Sacramento, California 95817, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Alcoholic liver disease (ALD) is associated with a spectrum of liver injury ranging from steatosis and steatohepatitis to fibrosis and cirrhosis. While multifactorial pathogenesis plays a role in the disease progression, enhanced inflammation in the liver during ethanol exposure is a major feature of ALD. Dysregulated cytokine metabolism and activity are crucial to the initiation of alcohol-induced liver injury. The pro-inflammatory cytokine tumor necrosis factor (TNF-α) has been demonstrated to be one of the key factors in the various aspects of pathophysiology of ALD. The immunomodulatory cytokines such as interleukin 10 and interleukin 6 play roles in exerting hepatic protective effects. Adiponectin is an adipose tissue-derived hormone, which displays protective actions on ethanol-induced liver injury. Treatment for mice with adiponectin decreases TNF-α expression, steatosis and prevents alcohol-induced liver injury. Adiponectin exerts its anti-inflammatory effects via suppression of TNF-α expression and induction of anti-inflammatory cytokines such as IL-10. Adiponectin attenuates alcoholic liver injury by the complex network of multiple signaling pathways in the liver, leading to enhanced fatty acid oxidation and reduced steatosis. Interactions between pro- and anti-inflammatory cytokines such as TNFα and adiponectin and other cytokines are likely to play important roles in the development and progression of alcoholic liver disease.
Collapse
|
42
|
Brunt EM, Neuschwander-Tetri BA, Burt AD. Fatty liver disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2012:293-359. [DOI: 10.1016/b978-0-7020-3398-8.00006-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
43
|
Aberrant hepatic methionine metabolism and gene methylation in the pathogenesis and treatment of alcoholic steatohepatitis. Int J Hepatol 2012; 2012:959746. [PMID: 22007317 PMCID: PMC3168767 DOI: 10.1155/2012/959746] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/08/2011] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of alcoholic steatohepatitis (ASH) involves ethanol-induced aberrations in hepatic methionine metabolism that decrease levels of S-adenosylmethionine (SAM), a compound which regulates the synthesis of the antioxidant glutathione and is the principal methyl donor in the epigenetic regulation of genes relevant to liver injury. The present paper describes the effects of ethanol on the hepatic methionine cycle, followed by evidence for the central role of reduced SAM in the pathogenesis of ASH according to clinical data and experiments in ethanol-fed animals and in cell models. The efficacy of supplemental SAM in the prevention of ASH in animal models and in the clinical treatment of ASH will be discussed.
Collapse
|
44
|
Frederico MJ, Vitto MF, Cesconetto PA, Engelmann J, De Souza DR, Luz G, Pinho RA, Ropelle ER, Cintra DE, De Souza CT. Short-term inhibition of SREBP-1c expression reverses diet-induced non-alcoholic fatty liver disease in mice. Scand J Gastroenterol 2011; 46:1381-8. [PMID: 21936721 DOI: 10.3109/00365521.2011.613945] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The present study investigates the level of Sterol-regulatory element-binding proteins (SREBP-1c) and related proteins in obese mice (DIO) treated with SREBP-1c antisense oligonucleotide (ASO) to observe a reversal of steatosis. MATERIALS AND METHODS Swiss mice were fed on chow containing 61 kJ% saturated fat for 8 weeks to develop obesity. After this period, one group of animals was used to assess the molecular effects of SREBP-1c antisense oligonucleotide treatment by immunoblot analysis in a dose-response curve (0; 1.0; 2.0; 3.0; 4.0 nmol/day). After the dose (3.0 nmol/day) was determined, another group was treated for 14 days. After a period of 24 h following the last injection mice were killed and plasma and hepatic tissue were obtained to evaluate plasma triglycerides and total liver fat. Western blot was performed to evaluate SREBP-1c, FAS, SCD-1, PPARγ and CPT1 expression and AMPK[Thr172] and ACC[Ser79] phosphorylation. Livers were stained using the hematoxylin and eosin method for histological analysis. RESULTS Body weight, epididymal fat and glucose levels were not affected by one daily dose of ASO. However, total plasma triglycerides and total liver fat were significantly reduced. Also, this treatment inhibited SREBP-1c and reduced protein levels of a series of proteins involved in lipogenesis, including ACC, FAS and SCD-1. Moreover, mice treated with ASO presented a significant reduction in macroscopic and microscopic features of hepatic steatosis. CONCLUSION Our results demonstrate that the inhibition of SREBP-1c decreased the expression of lipogenic enzymes, reducing the accumulation of triglycerides and, finally, reversing hepatic steatosis in mice.
Collapse
Affiliation(s)
- Marisa Js Frederico
- Laboratory of Exercise Biochemistry and Physiology, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Halsted CH, Medici V. Vitamin-dependent methionine metabolism and alcoholic liver disease. Adv Nutr 2011; 2:421-7. [PMID: 22332083 PMCID: PMC3183592 DOI: 10.3945/an.111.000661] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence indicates that ethanol-induced alterations in hepatic methionine metabolism play a central role in the pathogenesis of alcoholic liver disease (ALD). Because malnutrition is a universal clinical finding in this disease and hepatic methionine metabolism is dependent upon dietary folate and vitamins B-6 and B-12, ALD can be considered an induced nutritional disorder that is conditioned by alcohol abuse. The present review describes the etiologies of these 3 vitamin deficiencies in ALD and how they interact with chronic ethanol exposure to alter hepatic methionine metabolism. Subsequent sections focus on molecular mechanisms for the interactions of aberrant methionine metabolism with ethanol in the pathogenesis of ALD, in particular the role of S-adenosylmethionine (SAM) in regulating the epigenetic expressions of genes relevant to pathways of liver injury. The review will conclude with descriptions of studies on the efficacy of SAM in the treatment of ALD and with discussion of potentially fruitful future avenues of research.
Collapse
|
46
|
Li Y, Na K, Lee HJ, Lee EY, Paik YK. Contribution of sams-1 and pmt-1 to lipid homoeostasis in adult Caenorhabditis elegans. J Biochem 2011; 149:529-38. [PMID: 21389045 DOI: 10.1093/jb/mvr025] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accumulation of lipids inside the cell is primarily caused by disorders of lipid metabolism. S-adenosylmethionine synthetase (SAMS) produces SAM, an important methyl donor in various phospholipid methyltransferase reactions catalysed by phosphoethanolamine N-methyltransferase (PMT-1). A gel-based, quantitative proteomic analysis of the RNA interference (RNAi)-mediated inactivation of the pod-2 gene, which encodes acetyl-CoA carboxylase, showed a substantial down-regulation of SAMS-1. Consequently, RNAi of either sams-1 or pmt-1 caused a significant increase in lipid droplet size in the intestine of Caenorhabditis elegans. Lipid droplets exhibited increased triacylglycerol (TG) and decreased phosphatidylcholine (PC) levels, suggesting a reciprocal relationship between TG and PC regulation. These lipid-associated phenotypes were rescued by choline feeding. Among the five fat metabolism-related genes examined, two genes were highly induced by inactivation of sams-1 or pmt-1: pod-2 and stearoyl-CoA desaturase (fat-7). Thus, both SAMS-1 and PMT-1 were shown to contribute to the homoeostasis of TG and PC levels in C. elegans, which would provide an important survival strategy under harsh environmental conditions.
Collapse
Affiliation(s)
- Yingxiu Li
- Department of Biochemistry, College of Life Science and Biotechnology, World Class University Program of Graduate School, Yonsei Proteome Research Center, Yonsei University, 134 Shinchon-dong, Sudaemoon-ku, Seoul, 120-749, Korea
| | | | | | | | | |
Collapse
|
47
|
Medici V, M.Peerson J, Stabler SP, French SW, Gregory JF, Virata MC, Albanese A, Bowlus CL, Devaraj S, Panacek EA, Rahim N, Richards JR, Rossaro L, Halsted CH. Impaired homocysteine transsulfuration is an indicator of alcoholic liver disease. J Hepatol 2010; 53:551-7. [PMID: 20561703 PMCID: PMC2923260 DOI: 10.1016/j.jhep.2010.03.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/17/2010] [Accepted: 03/24/2010] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Although abnormal hepatic methionine metabolism plays a central role in the pathogenesis of experimental alcoholic liver disease (ALD), its relationship to the risk and severity of clinical ALD is not known. The aim of this clinical study was to determine the relationship between serum levels of methionine metabolites in chronic alcoholics and the risk and pathological severity of ALD. METHODS Serum levels of liver function biochemical markers, vitamin B6, vitamin B12, folate, homocysteine, methionine, S-adenosylmethionine, S-adenosylhomocysteine, cystathionine, cysteine, alpha-aminobutyrate, glycine, serine, and dimethylglycine were measured in 40 ALD patients, of whom 24 had liver biopsies, 26 were active drinkers without liver disease, and 28 were healthy subjects. RESULTS Serum homocysteine was elevated in all alcoholics, whereas ALD patients had low vitamin B6 with elevated cystathionine and decreased alpha-aminobutyrate/cystathionine ratios, consistent with decreased activity of vitamin B6 dependent cystathionase. The alpha-aminobutyrate/cystathionine ratio predicted the presence of ALD, while cystathionine correlated with the stage of fibrosis in all ALD patients. CONCLUSIONS The predictive role of the alpha-aminobutyrate/cystathionine ratio for the presence of ALD and the correlation between cystathionine serum levels with the severity of fibrosis point to the importance of the homocysteine transsulfuration pathway in ALD and may have important diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Valentina Medici
- Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA.
| | - Janet M.Peerson
- Department of Nutrition, University of California Davis, Sacramento, CA
| | - Sally P. Stabler
- Department of Medicine, University of Colorado Health Sciences Center, Denver, CO
| | - Samuel W. French
- Department of Pathology, UCLA/Harbor Medical Center, Torrance, CA
| | - Jesse F. Gregory
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL
| | | | - Antony Albanese
- Gastroenterology Section, Sacramento Veterans Affairs Medical Center, Sacramento, CA
| | | | - Sridevi Devaraj
- Department of Pathology, University of California Davis, Sacramento, CA
| | - Edward A. Panacek
- Department of Emergency Medicine, University of California Davis, Sacramento, CA
| | - Nazir Rahim
- Department of Internal Medicine, University of California Davis, Sacramento, CA
| | - John R. Richards
- Department of Emergency Medicine, University of California Davis, Sacramento, CA
| | - Lorenzo Rossaro
- Department of Internal Medicine, University of California Davis, Sacramento, CA
| | - Charles H. Halsted
- Department of Internal Medicine, University of California Davis, Sacramento, CA,Department of Nutrition, University of California Davis, Sacramento, CA
| |
Collapse
|
48
|
Wang Z, Yao T, Song Z. Involvement and mechanism of DGAT2 upregulation in the pathogenesis of alcoholic fatty liver disease. J Lipid Res 2010; 51:3158-65. [PMID: 20739640 DOI: 10.1194/jlr.m007948] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms involved in the development of alcoholic liver disease (ALD) are not well established. We investigated the involvement of acyl-CoA: diacylglycerol acyltransferase 2 (DGAT2) upregulation in mediating hepatic fat accumulation induced by chronic alcohol consumption. Chronic alcohol feeding caused fatty liver and increased hepatic DGAT2 gene and protein expression, concomitant with a significant suppression of hepatic MAPK/ERK kinase/extracellular regulated kinase 1/2 (MEK/ERK1/2) activation. In vitro studies demonstrated that specific inhibitors of the MEK/ERK1/2 pathway increased DGAT2 gene expression and triglyceride (TG) contents in HepG2 cells, whereas epidermal growth factor, a strong ERK1/2 activator, had the opposite effect. Moreover, chronic alcohol feeding decreased hepatic S-adenosylmethionine (SAM): S-adenosylhomocysteine (SAH) ratio, an indicator of disrupted transmethylation reactions. Mechanistic investigations revealed that N-acetyl-S-farnesyl-L-cysteine, a potent inhibitor of isoprenylcysteine carboxyl methyltransferase, suppressed ERK1/2 activation, followed by an enhanced DGAT2 expression and an elevated TG content in HepG2 cells. Lastly, we demonstrated that the beneficial effects of betaine supplementation in ALD were associated with improved SAM/SAH ratio, alleviated ERK1/2 inhibition, and attenuated DGAT2 upregulation. In conclusion, our data suggest that upregulation of DGAT2 plays an important role in the pathogenesis of ALD, and that abnormal methionine metabolism contributes, at least partially, to DGAT2 upregulation via suppression of MEK/ERK1/2 activation.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | |
Collapse
|
49
|
Gyamfi MA, Wan YJY. Pathogenesis of alcoholic liver disease: the role of nuclear receptors. Exp Biol Med (Maywood) 2010; 235:547-60. [PMID: 20463294 DOI: 10.1258/ebm.2009.009249] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ethanol consumption causes fatty liver, which can lead to inflammation, fibrosis, cirrhosis and even liver cancer. The molecular mechanisms by which ethanol exerts its damaging effects are extensively studied, but not fully understood. It is now evident that nuclear receptors (NRs), including retinoid x receptor alpha and peroxisome proliferator-activated receptors, play key roles in the regulation of lipid homeostasis and inflammation during the pathogenesis of alcoholic liver disease (ALD). Given their pivotal roles in physiological processes, NRs represent potential therapeutic targets for the treatment and prevention of numerous metabolic and lipid-related diseases including ALD. This review summarizes the factors that contribute to ALD and the molecular mechanisms of ALD with a focus on the role of NRs.
Collapse
Affiliation(s)
- Maxwell Afari Gyamfi
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, Kansas 66160-7417, USA
| | | |
Collapse
|
50
|
Cederbaum AI. Hepatoprotective effects of S-adenosyl-L-methionine against alcohol- and cytochrome P450 2E1-induced liver injury. World J Gastroenterol 2010; 16:1366-76. [PMID: 20238404 PMCID: PMC2842529 DOI: 10.3748/wjg.v16.i11.1366] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
S-adenosyl-L-methionine (SAM) acts as a methyl donor for methylation reactions and participates in the synthesis of glutathione. SAM is also a key metabolite that regulates hepatocyte growth, differentiation and death. Hepatic SAM levels are decreased in animal models of alcohol liver injury and in patients with alcohol liver disease or viral cirrhosis. This review describes the protection by SAM against alcohol and cytochrome P450 2E1-dependent cytotoxicity both in vitro and in vivo and evaluates mechanisms for this protection.
Collapse
|