1
|
Quam VG, Belacic ZA, Long S, Rice HC, Dhar MS, Durgam S. Equine bone marrow MSC-derived extracellular vesicles mitigate the inflammatory effects of interleukin-1β on navicular tissues in vitro. Equine Vet J 2025; 57:232-242. [PMID: 38587145 PMCID: PMC11458820 DOI: 10.1111/evj.14090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Safe, efficacious therapy for treating degenerate deep digital flexor tendon (DDFT) and navicular bone fibrocartilage (NBF) in navicular horses is critically necessary. While archetypal orthobiologic therapies for navicular disease are used empirically, their safety and efficacy are unknown. Mesenchymal stem cell-derived extracellular vesicles (EV) may overcome several limitations of current orthobiologic therapies. OBJECTIVES To (1) characterise cytokine and growth factor profiles of equine bone marrow mesenchymal stem cell (BM-MSC)-derived extracellular vesicles (BM-EV) and (2) evaluate the in vitro anti-inflammatory and extracellular matrix (ECM) protective potentials of BM-EV on DDFT and NBF explant co-cultures in an IL-1β inflammatory environment. STUDY DESIGN In vitro experimental study. METHODS Cytokines (IL-1β, IL-6, IL-10, IL-1ra and TNF-α) and growth factors (TGFβ1, VEGF, IGF1 and PDGF) in equine BM-EV isolated via ultracentrifugation and precipitation methods were profiled. Forelimb DDFT and NBF explant co-cultures from seven horses were exposed to media alone, or media containing 2 × 109 ± 0.1 × 109 particles/mL or 10 μg/mL BM-EV (BM-EV), 10 ng/mL interleukin-1β (IL-1β), or IL-1β + BM-EV for 48 h. Co-culture media IL-6, TNF-α, MMP-3, MMP-13 concentrations and explant sulphated glycosaminoglycan (sGAG) content were quantified. RESULTS IL-6, IGF1 and VEGF concentrations were 102.1 (37.61-256.2) and 182.3 (163.1-226.3), 72.3 (8-175.6) and 2.4 (0.1-2.6), 108.3 (38.3-709.1) and 211.4 (189.1-318.2) pg/mL per 2 × 109 ± 0.1 × 109 particles/mL or 10 μg/mL 10 μg of BM-EV isolated via ultracentrifugation and precipitation methods, respectively. Co-culture media MMP-3 in BM-EV- (p = 0.03) and BM-EV + IL-1β-treated (p = 0.01) groups were significantly lower than the respective media and IL-1β groups. DDFT explant sGAG content of BM-EV (p = 0.003) and BM-EV + IL-1β groups were significantly higher compared with IL-1β group. MAIN LIMITATIONS Specimen numbers are limited, in vitro model may not replicate clinical case conditions, lack of non-MSC-derived EV control group. CONCLUSIONS Equine BM-EV contains IL-6 and growth factors, IGF1 and VEGF. The anti-inflammatory and ECM protective potentials of BM-EV were evident as increased IL-6 and decreased MMP-3 concentrations in the DDFT-NBF explant co-culture media. These results support further evaluation of BM-EV as an acellular and 'off-the-shelf' intra-bursal/intrasynovial therapy for navicular pathologies.
Collapse
Affiliation(s)
- Vivian G. Quam
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
- Ballarat Veterinary Practice Equine ClinicMiners RestVictoriaAustralia
| | - Zarah A. Belacic
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Sidney Long
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Hilary C. Rice
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Madhu S. Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary MedicineUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Sushmitha Durgam
- Department of Veterinary Clinical Sciences, College of Veterinary MedicineThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
2
|
Mitani K, Ito Y, Takene Y, Inaba T. Evaluation of the quality of life-enhancing effect of allogeneic feline adipose mesenchymal stem cells in cats with osteoarthritis: A pilot study. Res Vet Sci 2025; 182:105470. [PMID: 39612738 DOI: 10.1016/j.rvsc.2024.105470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
Osteoarthritis (OA) is a progressive degenerative disease in older cats, and often leads to decreased quality of life (QOL). Mesenchymal stem cells (MSCs) have been used in novel therapies for inflammatory diseases. We aimed to evaluate quantitatively allogeneic adipose-derived MSC (ADSC) therapy in cats with naturally occurring OA, based on QOL assessment resources. To characterize the in vitro properties of ADSCs, we estimated ADSCs from four healthy cats with respect to morphology, differentiation potential, and immunomodulatory potential. Six cats with OA were administered a single intravenous injection of allogeneic ADSCs. Based on the feline musculoskeletal pain index (FMPI), the outcome measure was QOL. The cultured cells were adherent, exhibited a spindle shape without becoming flattened or large, and maintained doubling time until passage 5. After induction, the cells had osteogenic, adipogenic, and chondrogenic phenotypes. These cells expressed CD44 and CD90 and lacked expression of CD14 and CD45, had significantly suppressed the production of interferon -ɤ released from mitogen-stimulated lymphocytes (P < 0.05). The FMPI of all cats with OA significantly increased one month after ADSC therapy (P < 0.05). No adverse effects associated with ADSC administration were observed during follow-up in any of the cats. In conclusion, ADSC therapy with immunomodulatory potential could have beneficial effects on the QOL in cats with OA. Further research is necessary to carry out larger studies of the effectiveness of ADSC therapy.
Collapse
Affiliation(s)
- Kosuke Mitani
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Yuki Ito
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Yukio Takene
- Research and Development Department, J-ARM Co., Ltd., Osaka, Japan
| | - Toshio Inaba
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan.
| |
Collapse
|
3
|
Khatibzadeh SM, Dahlgren LA, Caswell CC, Ducker WA, Werre SR, Bogers SH. Equine bone marrow-derived mesenchymal stromal cells reduce established S. aureus and E. coli biofilm matrix in vitro. PLoS One 2024; 19:e0312917. [PMID: 39480794 PMCID: PMC11527187 DOI: 10.1371/journal.pone.0312917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Biofilms reduce antibiotic efficacy and lead to complications and mortality in human and equine patients with orthopedic infections. Equine bone marrow-derived mesenchymal stromal cells (MSC) kill planktonic bacteria and prevent biofilm formation, but their ability to disrupt established orthopedic biofilms is unknown. Our objective was to evaluate the ability of MSC to reduce established S. aureus or E. coli biofilms in vitro. We hypothesized that MSC would reduce biofilm matrix and colony-forming units (CFU) compared to no treatment and that MSC combined with the antibiotic, amikacin sulfate, would reduce these components more than MSC or amikacin alone. MSC were isolated from 5 adult Thoroughbred horses in antibiotic-free medium. 24-hour S. aureus or E. coli biofilms were co-cultured in triplicate for 24 or 48 hours in a transwell plate system: untreated (negative) control, 30 μg/mL amikacin, 1 x 106 passage 3 MSC, and MSC with 30 μg/mL amikacin. Treated biofilms were photographed and biofilm area quantified digitally. Biomass was quantified via crystal violet staining, and CFU quantified following enzymatic digestion. Data were analyzed using mixed model ANOVA with Tukey post-hoc comparisons (p < 0.05). MSC significantly reduced S. aureus biofilms at both timepoints and E. coli biofilm area at 48 hours compared to untreated controls. MSC with amikacin significantly reduced S. aureus biofilms versus amikacin and E. coli biofilms versus MSC at 48 hours. MSC significantly reduced S. aureus biomass at both timepoints and reduced S. aureus CFU at 48 hours versus untreated controls. MSC with amikacin significantly reduced S. aureus biomass versus amikacin at 24 hours and S. aureus and E. coli CFU versus MSC at both timepoints. MSC primarily disrupted the biofilm matrix but performed differently on S. aureus versus E. coli. Evaluation of biofilm-MSC interactions, MSC dose, and treatment time are warranted prior to testing in vivo.
Collapse
Affiliation(s)
- Sarah M. Khatibzadeh
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Linda A. Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| | - Clayton C. Caswell
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - William A. Ducker
- Department of Chemical Engineering, College of Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - Stephen R. Werre
- Laboratory for Study Design and Statistical Analysis, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - Sophie H. Bogers
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
4
|
Rivera Orsini MA, Ozmen EB, Miles A, Newby SD, Springer N, Millis D, Dhar M. Isolation and Characterization of Canine Adipose-Derived Mesenchymal Stromal Cells: Considerations in Translation from Laboratory to Clinic. Animals (Basel) 2024; 14:2974. [PMID: 39457904 PMCID: PMC11503832 DOI: 10.3390/ani14202974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
In allogeneic MSC implantation, the cells are isolated from a donor different from the recipient. When tested, allogeneic MSCs have several advantages over autologous ones: faster cell growth, sufficient cell concentration, and readily available cells for clinics. To ensure the safe and efficient use of allogeneic MSCs in clinics, the MSCs need to be first tested in vitro. With this study, we paved the way by addressing the in vitro aspects of canine adipose-derived MSCs, considering the limited studies on the clinical use of canine cells. We isolated cAD-MSCs from canine falciform ligament fat and evaluated their viability and proliferation using an MTS assay. Then, we characterized the MSC-specific antigens using immunophenotyping and immunofluorescence and demonstrated their potential for in vitro differentiation. Moreover, we established shipping and cryobanking procedures to lead the study to become an off-the-shelf therapy. During expansion, the cells demonstrated a linear increase in cell numbers, confirming their proliferation quantitatively. The cells showed viability before and after cryopreservation, demonstrating that cell viability can be preserved. From a clinical perspective, the established shipping conditions demonstrated that the cells retain their viability for up to 48 h. This study lays the groundwork for the potential use of allogeneic cAD-MSCs in clinical applications.
Collapse
Affiliation(s)
- Michael A. Rivera Orsini
- Regenerative Medicine and Tissue Engineering, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.A.R.O.); (E.B.O.); (S.D.N.)
| | - Emine Berfu Ozmen
- Regenerative Medicine and Tissue Engineering, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.A.R.O.); (E.B.O.); (S.D.N.)
- Genome Science and Technology, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Alyssa Miles
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (A.M.); (N.S.)
| | - Steven D. Newby
- Regenerative Medicine and Tissue Engineering, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.A.R.O.); (E.B.O.); (S.D.N.)
| | - Nora Springer
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (A.M.); (N.S.)
| | - Darryl Millis
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Madhu Dhar
- Regenerative Medicine and Tissue Engineering, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.A.R.O.); (E.B.O.); (S.D.N.)
| |
Collapse
|
5
|
Hollinshead FK, Hanlon DW, Hou W, Tasma Z, Damani T, Bouma GJ, Murtazina DA, Chamley L. Use of equine embryo -derived mesenchymal stromal cells and their extracellular vesicles as a treatment for persistent breeding-induced endometritis in susceptible mares. J Equine Vet Sci 2024; 139:105079. [PMID: 38718968 DOI: 10.1016/j.jevs.2024.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/22/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024]
Abstract
Persistent breeding induced endometritis (PBIE) is a significant cause of infertility in mares. The development of a safe, universal, readily available therapeutic to manage PBIE and facilitate an optimal uterine environment for embryo development may improve pregnancy rates in susceptible mares. Mesenchymal stromal cells (MSCs) are being used increasingly as a therapeutic mediator for inflammatory conditions such as endometritis, and early gestational tissue provides a unique source of multipotent stem cells for creating MSCs. Extracellular vesicles (EVs) are mediators of cell communication produced by many different cell types. This study utilized embryo-derived mesenchymal stromal cells (EDMSCs) and their EVs as a potential therapeutic modality for PBIE in two groups: a) PBIE-susceptible mares challenged with pooled dead sperm (n=5); and b) client-owned mares diagnosed as susceptible to PBIE (n=37 mares and 40 estrous cycles). Mares pre-treated with intrauterine EDMSCs or their EVs resulted in a significant reduction in the accumulation of intrauterine fluid post-breeding. Nine of 19 (47 %) mares treated with EDMSCs prior to natural breeding and 13 of 20 (65 %) mares treated with EDMSC derived EVs were pregnant after the first cycle and 12 of 18 (67 %) mares treated with EDMSCs, and 15 of 19 (79 %) mares treated with EVs conceived by the end of the breeding season. These preliminary clinical studies are the first reports of the use of EDMSCs or their EVs as a potential intrauterine therapy for the management of PBIE susceptible mares.
Collapse
Affiliation(s)
- F K Hollinshead
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins CO 80521, USA.
| | - D W Hanlon
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins CO 80521, USA
| | - W Hou
- Department of Obstetrics and Gynaecology, Hub for Extracellular Vesicle Investigations, University of Auckland, 85 Park Rd, Grafton, 1010 New Zealand; Hub for Extracellular Vesicle Investigations, University of Auckland, 85 Park Rd, Grafton, 1010, New Zealand
| | - Z Tasma
- Department of Obstetrics and Gynaecology, Hub for Extracellular Vesicle Investigations, University of Auckland, 85 Park Rd, Grafton, 1010 New Zealand; Hub for Extracellular Vesicle Investigations, University of Auckland, 85 Park Rd, Grafton, 1010, New Zealand
| | - T Damani
- Department of Obstetrics and Gynaecology, Hub for Extracellular Vesicle Investigations, University of Auckland, 85 Park Rd, Grafton, 1010 New Zealand; Hub for Extracellular Vesicle Investigations, University of Auckland, 85 Park Rd, Grafton, 1010, New Zealand
| | - G J Bouma
- Department of Biomedical Sciences, Homer Stryker MD School of Medicine, Western Michigan University, 300 Portage Street, Kalamazoo, MI, 49007, USA
| | - D A Murtazina
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 1350 Centre Avenue, Fort Collins, 80521, USA
| | - L Chamley
- Department of Obstetrics and Gynaecology, Hub for Extracellular Vesicle Investigations, University of Auckland, 85 Park Rd, Grafton, 1010 New Zealand; Hub for Extracellular Vesicle Investigations, University of Auckland, 85 Park Rd, Grafton, 1010, New Zealand
| |
Collapse
|
6
|
Reis IL, Lopes B, Sousa P, Sousa AC, Rêma A, Caseiro AR, Briote I, Rocha AM, Pereira JP, Mendonça CM, Santos JM, Lamas L, Atayde LM, Alvites RD, Maurício AC. Case report: Equine metacarpophalangeal joint partial and full thickness defects treated with allogenic equine synovial membrane mesenchymal stem/stromal cell combined with umbilical cord mesenchymal stem/stromal cell conditioned medium. Front Vet Sci 2024; 11:1403174. [PMID: 38840629 PMCID: PMC11150641 DOI: 10.3389/fvets.2024.1403174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Here, we describe a case of a 5-year-old show-jumping stallion presented with severe lameness, swelling, and pain on palpation of the left metacarpophalangeal joint (MCj). Diagnostic imaging revealed full and partial-thickness articular defects over the lateral condyle of the third metacarpus (MC3) and the dorsolateral aspect of the first phalanx (P1). After the lesion's arthroscopic curettage, the patient was subjected to an innovative regenerative treatment consisting of two intra-articular injections of equine synovial membrane mesenchymal stem/stromal cells (eSM-MSCs) combined with umbilical cord mesenchymal stem/stromal cells conditioned medium (UC-MSC CM), 15 days apart. A 12-week rehabilitation program was accomplished, and lameness, pain, and joint effusion were remarkably reduced; however, magnetic resonance imaging (MRI) and computed tomography (CT) scan presented incomplete healing of the MC3's lesion, prompting a second round of treatment. Subsequently, the horse achieved clinical soundness and returned to a higher level of athletic performance, and imaging exams revealed the absence of lesions at P1, fulfillment of the osteochondral lesion, and cartilage-like tissue formation at MC3's lesion site. The positive outcomes suggest the effectiveness of this combination for treating full and partial cartilage defects in horses. Multipotent mesenchymal stem/stromal cells (MSCs) and their bioactive factors compose a novel therapeutic approach for tissue regeneration and organ function restoration with anti-inflammatory and pro-regenerative impact through paracrine mechanisms.
Collapse
Affiliation(s)
- I. L. Reis
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra, Gandra, Portugal
| | - B. Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - P. Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - A. C. Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - A. Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - A. R. Caseiro
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama (EUVG), Coimbra, Portugal
- Centro de Investigação Vasco da Gama (CIVG), Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, Coimbra, Portugal
| | - I. Briote
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Vairão, Portugal
| | - A. M. Rocha
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Vairão, Portugal
| | - J. P. Pereira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Vairão, Portugal
| | - C. M. Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Vairão, Portugal
| | - J. M. Santos
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - L. Lamas
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- CIISA—Centro Interdisciplinar-Investigação em Saúde Animal, Faculdade de Medicina Veterinária, Av. Universidade Técnica de Lisboa, Lisboa, Portugal
| | - L. M. Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Vairão, Portugal
| | - R. D. Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Avenida Central de Gandra, Gandra, Portugal
| | - A. C. Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
- Campus Agrário de Vairão, Centro Clínico de Equinos de Vairão (CCEV), Vairão, Portugal
| |
Collapse
|
7
|
Pérez-Nogués M, Manso-Díaz G, Spirito M, López-Sanromán J. Treatment Comparison for Medial Femoral Condyle Subchondral Cystic Lesions and Prognosis in Yearling Thoroughbred Racehorse Prospects. Animals (Basel) 2024; 14:1122. [PMID: 38612360 PMCID: PMC11010810 DOI: 10.3390/ani14071122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Subchondral cystic lesions (SCL) in the medial femoral condyle are a usual finding in Thoroughbred survey and auction repository radiographs. Several treatments with different outcomes have been studied over the years to improve soundness and racing prognosis. Our objective was to report the racing prognosis in Thoroughbred yearlings intended for racing that were diagnosed with SCL in the medial femoral condyle and were treated using four current and different techniques: intralesional injection of corticosteroids, SCL debridement through the joint with a drill bit, translesional cortical screw placement, and absorbable hydroxyapatite implant placement. Data from 182 Thoroughbred yearlings treated for SCL in the medial femoral condyle were collected from 2014 to 2020. Limb affected, age at surgery, sex, and radiographic measurements of the SCL were recorded. Auction price and racing performance were collected for treated horses and compared to 154 maternal siblings free of medial femoral condyle SCL. Analyses were conducted to assess if racing prognosis was affected by SCL size, to detect differences in auction price and selected flat racing outcome parameters between cases and controls, and to compare racing prognosis between the studied treatments. Mares and lesions located in the right stifle were significantly overrepresented. The auction price of treated horses was significantly lower than that of their siblings. Horses treated for SCL had significantly lower chances to start in a race than controls (59% vs. 74% respectively). Wider SCL negatively affected the chances to start at least in one race, and negatively affected the earnings made in the 2-year-olds' racing year. Horses with SCL treated using a bioabsorbable implant had a significantly higher median in starts as 3-year-olds (seven starts) than horses that had the SCL debrided with a drill bit (three starts). In conclusion, Thoroughbred yearlings treated for a medial femoral condyle SCL had lower auction prices and decreased ability to start a race compared to siblings' wider cysts had worse prognosis to start a race and might affect earnings as 2-year-olds; and horses treated with bioabsorbable composite implant placement had more starts as 3-year-olds than with other techniques.
Collapse
Affiliation(s)
| | - Gabriel Manso-Díaz
- Department of Animal Medicine and Surgery, Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain;
| | - Michael Spirito
- Hagyard Equine Medical Institute, 4250 Iron Works Pike, Lexington, KY 40511, USA;
| | - Javier López-Sanromán
- Department of Animal Medicine and Surgery, Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain;
| |
Collapse
|
8
|
Andersen C, Walters M, Bundgaard L, Berg LC, Vonk LA, Lundgren-Åkerlund E, Henriksen BL, Lindegaard C, Skovgaard K, Jacobsen S. Intraarticular treatment with integrin α10β1-selected mesenchymal stem cells affects microRNA expression in experimental post-traumatic osteoarthritis in horses. Front Vet Sci 2024; 11:1374681. [PMID: 38596460 PMCID: PMC11002141 DOI: 10.3389/fvets.2024.1374681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Osteoarthritis (OA) remains a major cause of lameness in horses, which leads to lost days of training and early retirement. Still, the underlying pathological processes are poorly understood. MicroRNAs (miRNAs) are small non-coding RNAs that serve as regulators of many biological processes including OA. Analysis of miRNA expression in diseased joint tissues such as cartilage and synovial membrane may help to elucidate OA pathology. Since integrin α10β1-selected mesenchymal stem cell (integrin α10-MSC) have shown mitigating effect on equine OA we here investigated the effect of integrin α10-MSCs on miRNA expression. Cartilage and synovial membrane was harvested from the middle carpal joint of horses with experimentally induced, untreated OA, horses with experimentally induced OA treated with allogeneic adipose-derived MSCs selected for the marker integrin α10-MSCs, and from healthy control joints. miRNA expression in cartilage and synovial membrane was established by quantifying 70 pre-determined miRNAs by qPCR. Differential expression of the miRNAs was evaluated by comparing untreated OA and control, untreated OA and MSC-treated OA, and joints with high and low pathology score. A total of 60 miRNAs were successfully quantified in the cartilage samples and 55 miRNAs were quantified in the synovial membrane samples. In cartilage, miR-146a, miR-150 and miR-409 had significantly higher expression in untreated OA joints than in control joints. Expression of miR-125a-3p, miR-150, miR-200c, and miR-499-5p was significantly reduced in cartilage from MSC-treated OA joints compared to the untreated OA joints. Expression of miR-139-5p, miR-150, miR-182-5p, miR-200a, miR-378, miR-409-3p, and miR-7177b in articular cartilage reflected pathology score. Several of these miRNAs are known from research in human patients with OA and from murine OA models. Our study shows that these miRNAs are also differentially expressed in experimental equine OA, and that expression depends on OA severity. Moreover, MSC treatment, which resulted in less severe OA, also affected miRNA expression in cartilage.
Collapse
Affiliation(s)
- Camilla Andersen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Marie Walters
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Louise Bundgaard
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Lise Charlotte Berg
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | | | | | | | - Casper Lindegaard
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
9
|
Velot É, Balmayor ER, Bertoni L, Chubinskaya S, Cicuttini F, de Girolamo L, Demoor M, Grigolo B, Jones E, Kon E, Lisignoli G, Murphy M, Noël D, Vinatier C, van Osch GJVM, Cucchiarini M. Women's contribution to stem cell research for osteoarthritis: an opinion paper. Front Cell Dev Biol 2023; 11:1209047. [PMID: 38174070 PMCID: PMC10762903 DOI: 10.3389/fcell.2023.1209047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/18/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Émilie Velot
- Laboratory of Molecular Engineering and Articular Physiopathology (IMoPA), French National Centre for Scientific Research, University of Lorraine, Nancy, France
| | - Elizabeth R. Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Lélia Bertoni
- CIRALE, USC 957, BPLC, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Flavia Cicuttini
- Musculoskeletal Unit, Monash University and Rheumatology, Alfred Hospital, Melbourne, VIC, Australia
| | - Laura de Girolamo
- IRCCS Ospedale Galeazzi - Sant'Ambrogio, Orthopaedic Biotechnology Laboratory, Milan, Italy
| | - Magali Demoor
- Normandie University, UNICAEN, BIOTARGEN, Caen, France
| | - Brunella Grigolo
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio RAMSES, Bologna, Italy
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, United Kingdom
| | - Elizaveta Kon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department ofBiomedical Sciences, Humanitas University, Milan, Italy
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | - Mary Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Danièle Noël
- IRMB, University of Montpellier, Inserm, CHU Montpellier, Montpellier, France
| | - Claire Vinatier
- Nantes Université, Oniris, INSERM, Regenerative Medicine and Skeleton, Nantes, France
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Sports Medicine and Department of Otorhinolaryngology, Department of Biomechanical Engineering, University Medical Center Rotterdam, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
10
|
Cassano JM, Leonard BC, Martins BC, Vapniarsky N, Morgan JT, Dow SW, Wotman KL, Pezzanite LM. Preliminary evaluation of safety and migration of immune activated mesenchymal stromal cells administered by subconjunctival injection for equine recurrent uveitis. Front Vet Sci 2023; 10:1293199. [PMID: 38162475 PMCID: PMC10757620 DOI: 10.3389/fvets.2023.1293199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Equine recurrent uveitis (ERU), an immune mediated disease characterized by repeated episodes of intra-ocular inflammation, affects 25% of horses in the USA and is the most common cause of glaucoma, cataracts, and blindness. Mesenchymal stromal cells (MSCs) have immunomodulatory properties, which are upregulated by preconditioning with toll-like receptor agonists. The objective was to evaluate safety and migration of TLR-3 agonist polyinosinic, polycytidylic acid (pIC)-activated MSCs injected subconjunctivally in healthy horses prior to clinical application in horses with ERU. We hypothesized that activated allogeneic MSCs injected subconjunctivally would not induce ocular or systemic inflammation and would remain in the conjunctiva for >14 days. Methods Bulbar subconjunctiva of two horses was injected with 10 × 106 pIC-activated (10 μg/mL, 2 h) GFP-labeled MSCs from one donor three times at two-week intervals. Vehicle (saline) control was injected in the contralateral conjunctiva. Horses received physical and ophthalmic exams [slit lamp biomicroscopy, rebound tonometry, fundic examination, and semiquantitative preclinical ocular toxicology scoring (SPOTS)] every 1-3 days. Systemic inflammation was assessed via CBC, fibrinogen, and serum amyloid A (SAA). Horses were euthanized 14 days following final injection. Full necropsy and histopathology were performed to examine ocular tissues and 36 systemic organs for MSC presence via IVIS Spectrum. Anti-GFP immunohistochemistry was performed on ocular tissues. Results No change in physical examinations was noted. Bloodwork revealed fibrinogen 100-300 mg/dL (ref 100-400) and SAA 0-25 μg/mL (ref 0-20). Ocular effects of the subjconjucntival injection were similar between MSC and control eyes on SPOTS grading system, with conjunctival hypermia, chemosis and ocular discharge noted bilaterally, which improved without intervention within 14 days. All other ocular parameters were unaffected throughout the study. Necropsy and histopathology revealed no evidence of systemic inflammation. Ocular histopathology was similar between MSC and control eyes. Fluorescent imaging analysis did not locate MSCs. Immunohistochemistry did not identify intact MSCs in the conjunctiva, but GFP-labeled cellular components were present in conjunctival phagocytic cells. Discussion Allogeneic pIC-activated conjunctival MSC injections were well tolerated. GFP-labeled tracking identified MSC components phagocytosed by immune cells subconjunctivally. This preliminary safety and tracking information is critical towards advancing immune conditioned cellular therapies to clinical trials in horses.
Collapse
Affiliation(s)
- Jennifer M. Cassano
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Brian C. Leonard
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Bianca C. Martins
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Natalia Vapniarsky
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, Riverside, CA, United States
| | - Steven W. Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Kathryn L. Wotman
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lynn M. Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
11
|
Watts AE. Use of Stem Cells for the Treatment of Musculoskeletal Injuries in Horses. Vet Clin North Am Equine Pract 2023; 39:475-487. [PMID: 37625917 DOI: 10.1016/j.cveq.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are used as a regenerative therapy in horses for musculoskeletal injury since the late 1990s and in some regions are standard of care for certain injuries. Yet, there is no Food and Drug Administration-approved MSC therapeutic in the United States for horses. In humans, lack of regulatory approval in the United States has been caused by failure of late-phase clinical trials to demonstrate consistent efficacy, perhaps because of nonuniformity of MSC preparation and application techniques. This article discusses clinical evidence for musculoskeletal applications of MSCs in the horse and current challenges to marketing approval.
Collapse
|
12
|
Pezzanite LM, Chow L, Dow SW, Goodrich LR, Gilbertie JM, Schnabel LV. Antimicrobial Properties of Equine Stromal Cells and Platelets and Future Directions. Vet Clin North Am Equine Pract 2023; 39:565-578. [PMID: 37442729 DOI: 10.1016/j.cveq.2023.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023] Open
Abstract
Increasing antimicrobial resistance in veterinary practice has driven the investigation of novel therapeutic strategies including regenerative and biologic therapies to treat bacterial infection. Integration of biological approaches such as platelet lysate and mesenchymal stromal cell (MSC) therapy may represent adjunctive treatment strategies for bacterial infections that minimize systemic side effects and local tissue toxicity associated with traditional antibiotics and that are not subject to antibiotic resistance. In this review, we will discuss mechanisms by which biological therapies exert antimicrobial effects, as well as potential applications and challenges in clinical implementation in equine practice.
Collapse
Affiliation(s)
- Lynn M Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Steven W Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA; Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Laurie R Goodrich
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jessica M Gilbertie
- Department of Microbiology and Immunology, Edward Via College of Osteopathic Medicine, Blacksburg, VA, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, North Carolina State University, Raleigh, NC, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
13
|
Li X, Li D, Li J, Wang G, Yan L, Liu H, Jiu J, Li JJ, Wang B. Preclinical Studies and Clinical Trials on Cell-Based Treatments for Meniscus Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:634-670. [PMID: 37212339 DOI: 10.1089/ten.teb.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study aims at performing a thorough review of cell-based treatment strategies for meniscus regeneration in preclinical and clinical studies. The PubMed, Embase, and Web of Science databases were searched for relevant studies (both preclinical and clinical) published from the time of database construction to December 2022. Data related to cell-based therapies for in situ regeneration of the meniscus were extracted independently by two researchers. Assessment of risk of bias was performed according to the Cochrane Handbook for Systematic Reviews of Interventions. Statistical analyses based on the classification of different treatment strategies were performed. A total of 5730 articles were retrieved, of which 72 preclinical studies and 6 clinical studies were included in this review. Mesenchymal stem cells (MSCs), especially bone marrow MSCs (BMSCs), were the most commonly used cell type. Among preclinical studies, rabbit was the most commonly used animal species, partial meniscectomy was the most commonly adopted injury pattern, and 12 weeks was the most frequently chosen final time point for assessing repair outcomes. A range of natural and synthetic materials were used to aid cell delivery as scaffolds, hydrogels, or other morphologies. In clinical trials, there was large variation in the dose of cells, ranging from 16 × 106 to 150 × 106 cells with an average of 41.52 × 106 cells. The selection of treatment strategy for meniscus repair should be based on the nature of the injury. Cell-based therapies incorporating various "combination" strategies such as co-culture, composite materials, and extra stimulation may offer greater promise than single strategies for effective meniscal tissue regeneration, restoring natural meniscal anisotropy, and eventually achieving clinical translation. Impact Statement This review provides an up-to-date and comprehensive overview of preclinical and clinical studies that tested cell-based treatments for meniscus regeneration. It presents novel perspectives on studies published in the past 30 years, giving consideration to the cell sources and dose selection, delivery methods, extra stimulation, animal models and injury patterns, timing of outcome assessment, and histological and biomechanical outcomes, as well as a summary of findings for individual studies. These unique insights will help to shape future research on the repair of meniscus lesions and inform the clinical translation of new cell-based tissue engineering strategies.
Collapse
Affiliation(s)
- Xiaoke Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Dijun Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Guishan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Lei Yan
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jingwei Jiu
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Andersen C, Jacobsen S, Uvebrant K, Griffin JF, Vonk LA, Walters M, Berg LC, Lundgren-Åkerlund E, Lindegaard C. Integrin α10β1-Selected Mesenchymal Stem Cells Reduce Pain and Cartilage Degradation and Increase Immunomodulation in an Equine Osteoarthritis Model. Cartilage 2023:19476035231209402. [PMID: 37990503 DOI: 10.1177/19476035231209402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE Integrin α10β1-selected mesenchymal stem cells (integrin α10-MSCs) have previously shown potential in treating cartilage damage and osteoarthritis (OA) in vitro and in animal models in vivo. The aim of this study was to further investigate disease-modifying effects of integrin α10-MSCs. DESIGN OA was surgically induced in 17 horses. Eighteen days after surgery, horses received 2 × 107 integrin α10-MSCs intra-articularly or were left untreated. Lameness and response to carpal flexion was assessed weekly along with synovial fluid (SF) analysis. On day 52 after treatment, horses were euthanized, and carpi were evaluated by computed tomography (CT), MRI, histology, and for macroscopic pathology and integrin α10-MSCs were traced in the joint tissues. RESULTS Lameness and response to carpal flexion significantly improved over time following integrin α10-MSC treatment. Treated horses had milder macroscopic cartilage pathology and lower cartilage histology scores than the untreated group. Prostaglandin E2 and interleukin-10 increased in the SF after integrin α10-MSC injection. Integrin α10-MSCs were found in SF from treated horses up to day 17 after treatment, and in the articular cartilage and subchondral bone from 5 of 8 treated horses after euthanasia at 52 days after treatment. The integrin α10-MSC injection did not cause joint flare. CONCLUSION This study demonstrates that intra-articular (IA) injection of integrin α10-MSCs appears to be safe, alleviate pathological changes in the joint, and improve joint function in an equine post-traumatic osteoarthritis (PTOA) model. The results suggest that integrin α10-MSCs hold promise as a disease-modifying osteoarthritis drug (DMOAD).
Collapse
Affiliation(s)
- Camilla Andersen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
- Xintela AB, Lund, Sweden
| | - Stine Jacobsen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | | | - John F Griffin
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | | | - Marie Walters
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | - Lise Charlotte Berg
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| | | | - Casper Lindegaard
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
15
|
Li H, Xiong S, Masieri FF, Monika S, Lethaus B, Savkovic V. Mesenchymal Stem Cells Isolated from Equine Hair Follicles Using a Method of Air-Liquid Interface. Stem Cell Rev Rep 2023; 19:2943-2956. [PMID: 37733199 PMCID: PMC10661790 DOI: 10.1007/s12015-023-10619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/22/2023]
Abstract
Equine mesenchymal stem cells (MSC) of various origins have been identified in horses, including MSCs from the bone marrow and adipose tissue. However, these stem cell sources are highly invasive in sampling, which thereby limits their clinical application in equine veterinary medicine. This study presents a novel method using an air-liquid interface to isolate stem cells from the hair follicle outer root sheath of the equine forehead skin. These stem cells cultured herewith showed high proliferation and asumed MSC phenotype by expressing MSC positive biomarkers (CD29, CD44 CD90) while not expressing negative markers (CD14, CD34 and CD45). They were capable of differentiating towards chondrogenic, osteogenic and adipogenic lineages, which was comparable with MSCs from adipose tissue. Due to their proliferative phenotype in vitro, MSC-like profile and differentiation capacities, we named them equine mesenchymal stem cells from the hair follicle outer root sheath (eMSCORS). eMSCORS present a promising alternative stem cell source for the equine veterinary medicine.
Collapse
Affiliation(s)
- Hanluo Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Shiwen Xiong
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, Hubei University of Technology, Wuhan, 430068, Hubei Province, China
| | | | - Seltenhammer Monika
- Institute of Livestock Sciences (NUWI), University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33/II, A-1180, Vienna, Austria
| | - Bernd Lethaus
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Vuk Savkovic
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
16
|
Jammes M, Cassé F, Velot E, Bianchi A, Audigié F, Contentin R, Galéra P. Pro-Inflammatory Cytokine Priming and Purification Method Modulate the Impact of Exosomes Derived from Equine Bone Marrow Mesenchymal Stromal Cells on Equine Articular Chondrocytes. Int J Mol Sci 2023; 24:14169. [PMID: 37762473 PMCID: PMC10531906 DOI: 10.3390/ijms241814169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Osteoarthritis (OA) is a widespread osteoarticular pathology characterized by progressive hyaline cartilage degradation, exposing horses to impaired well-being, premature career termination, alongside substantial financial losses for horse owners. Among the new therapeutic strategies for OA, using mesenchymal stromal cell (MSC)-derived exosomes (MSC-exos) appears to be a promising option for conveying MSC therapeutic potential, yet avoiding the limitations inherent to cell therapy. Here, we first purified and characterized exosomes from MSCs by membrane affinity capture (MAC) and size-exclusion chromatography (SEC). We showed that intact MSC-exos are indeed internalized by equine articular chondrocytes (eACs), and then evaluated their functionality on cartilaginous organoids. Compared to SEC, mRNA and protein expression profiles revealed that MAC-exos induced a greater improvement of eAC-neosynthesized hyaline-like matrix by modulating collagen levels, increasing PCNA, and decreasing Htra1 synthesis. However, because the MAC elution buffer induced unexpected effects on eACs, an ultrafiltration step was included to the isolation protocol. Finally, exosomes from MSCs primed with equine pro-inflammatory cytokines (IL-1β, TNF-α, or IFN-γ) further improved the eAC hyaline-like phenotype, particularly IL-1β and TNF-α. Altogether, these findings indicate the importance of the exosome purification method and further demonstrate the potential of pro-inflammatory priming in the enhancement of the therapeutic value of MSC-exos for equine OA treatment.
Collapse
Affiliation(s)
- Manon Jammes
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| | - Frédéric Cassé
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| | - Emilie Velot
- Molecular Engineering and Articular Physiopathology (IMoPA), French National Center for Scientific Research (CNRS), Université de Lorraine, 54000 Nancy, France; (E.V.); (A.B.)
| | - Arnaud Bianchi
- Molecular Engineering and Articular Physiopathology (IMoPA), French National Center for Scientific Research (CNRS), Université de Lorraine, 54000 Nancy, France; (E.V.); (A.B.)
| | - Fabrice Audigié
- Center of Imaging and Research in Locomotor Affections on Equines, Veterinary School of Alfort, 14430 Goustranville, France;
| | - Romain Contentin
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| | - Philippe Galéra
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| |
Collapse
|
17
|
Pezzanite LM, Chow L, Griffenhagen GM, Bass L, Goodrich LR, Impastato R, Dow S. Distinct differences in immunological properties of equine orthobiologics revealed by functional and transcriptomic analysis using an activated macrophage readout system. Front Vet Sci 2023; 10:1109473. [PMID: 36876001 PMCID: PMC9978772 DOI: 10.3389/fvets.2023.1109473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Multiple biological therapies for orthopedic injuries are marketed to veterinarians, despite a lack of rigorous comparative biological activity data to guide informed decisions in selecting a most effective compound. Therefore, the goal of this study was to use relevant bioassay systems to directly compare the anti-inflammatory and immunomodulatory activity of three commonly used orthobiological therapies (OTs): mesenchymal stromal cells (MSC), autologous conditioned serum (ACS), and platelet rich plasma (PRP). Methods Equine monocyte-derived macrophages were used as the readout system to compare therapies, including cytokine production and transcriptomic responses. Macrophages were stimulated with IL-1ß and treated 24 h with OTs, washed and cultured an additional 24 h to generate supernatants. Secreted cytokines were measured by multiplex immunoassay and ELISA. To assess global transcriptomic responses to treatments, RNA was extracted from macrophages and subjected to full RNA sequencing, using an Illumina-based platform. Data analysis included comparison of differentially expressed genes and pathway analysis in treated vs. untreated macrophages. Results All treatments reduced production of IL-1ß by macrophages. Secretion of IL-10 was highest in MSC-CM treated macrophages, while PRP lysate and ACS resulted in greater downregulation of IL-6 and IP-10. Transcriptomic analysis revealed that ACS triggered multiple inflammatory response pathways in macrophages based on GSEA, while MSC generated significant downregulation of inflammatory pathways, and PRP lysate induced a mixed immune response profile. Key downregulated genes in MSC-treated cultures included type 1 and type 2 interferon response, TNF-α and IL-6. PRP lysate cultures demonstrated downregulation of inflammation-related genes IL-1RA, SLAMF9, ENSECAG00000022247 but concurrent upregulation of TNF-α, IL-2 signaling, and Myc targets. ACS induced upregulation of inflammatory IL-2 signaling, TNFα and KRAS signaling and hypoxia, but downregulation of MTOR signaling and type 1 interferon signaling. Discussion These findings, representing the first comprehensive look at immune response pathways for popular equine OTs, reveal distinct differences between therapies. These studies address a critical gap in our understanding of the relative immunomodulatory properties of regenerative therapies commonly used in equine practice to treat musculoskeletal disease and will serve as a platform from which further in vivo comparisons may build.
Collapse
Affiliation(s)
- Lynn M. Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Gregg M. Griffenhagen
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Luke Bass
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Laurie R. Goodrich
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Renata Impastato
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
18
|
Jammes M, Contentin R, Cassé F, Galéra P. Equine osteoarthritis: Strategies to enhance mesenchymal stromal cell-based acellular therapies. Front Vet Sci 2023; 10:1115774. [PMID: 36846261 PMCID: PMC9950114 DOI: 10.3389/fvets.2023.1115774] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that eventually leads to the complete degradation of articular cartilage. Articular cartilage has limited intrinsic capacity for self-repair and, to date, there is no curative treatment for OA. Humans and horses have a similar articular cartilage and OA etiology. Thus, in the context of a One Health approach, progress in the treatment of equine OA can help improve horse health and can also constitute preclinical studies for human medicine. Furthermore, equine OA affects horse welfare and leads to significant financial losses in the equine industry. In the last few years, the immunomodulatory and cartilage regenerative potentials of mesenchymal stromal cells (MSCs) have been demonstrated, but have also raised several concerns. However, most of MSC therapeutic properties are contained in their secretome, particularly in their extracellular vesicles (EVs), a promising avenue for acellular therapy. From tissue origin to in vitro culture methods, various aspects must be taken into consideration to optimize MSC secretome potential for OA treatment. Immunomodulatory and regenerative properties of MSCs can also be enhanced by recreating a pro-inflammatory environment to mimic an in vivo pathological setting, but more unusual methods also deserve to be investigated. Altogether, these strategies hold substantial potential for the development of MSC secretome-based therapies suitable for OA management. The aim of this mini review is to survey the most recent advances on MSC secretome research with regard to equine OA.
Collapse
Affiliation(s)
- Manon Jammes
- BIOTARGEN, UNICAEN, Normandie University, Caen, France
| | | | | | | |
Collapse
|
19
|
He H, Palm-Vlasak LS, Chen C, Banks SA, Biedrzycki AH. Quantification of equine stifle passive kinematics. Am J Vet Res 2023; 84:ajvr.22.10.0171. [PMID: 36576802 DOI: 10.2460/ajvr.22.10.0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This study aims to quantitatively characterize the passive kinematics of the healthy, soft tissue-intact equine stifle to establish an objective foundation for providing insights into the etiology of stifle disorders and developing a possible surgical treatment for stifle degenerative disease. ANIMALS 5 whole-horse specimens. PROCEDURES Reflective markers with intracortical bone pins and a motion capture system were used to investigate the stifle joint kinematics. Kinematics of 5 whole-horse specimens euthanized within 2 hours were calculated for internal/external rotation, adduction/abduction, and cranial/caudal translation of the medial and lateral femoral condyles and estimated joint contact centroids as functions of joint extension angle. RESULTS From 41.7° to 121.6° (mean ± SD, range of motion: 107.5° ± 7.2°) of joint extension, 13° ± 3.7° of tibial external rotation and 6° ± 2.7° of adduction were observed. The lateral femoral condyle demonstrated significantly greater cranial translation than the medial during extension (23.7 mm ± 9.3 mm vs. 14.3 mm ± 7.0 mm, P = .01). No significant difference was found between the cranial/caudal translation of estimated joint contact centroids in the medial and lateral compartment (13.3 mm ± 7.7 mm vs. 16.4 mm ± 5.8 mm, P = .16). CLINICAL RELEVANCE The findings share similarities with kinematics for human knees and sheep and dog stifles, suggesting it may be possible to translate what has been learned in human arthroplasty to treatment for equine stifles.
Collapse
Affiliation(s)
- Hongjia He
- Large Animal Veterinary Medicine, University of Florida, Gainesville, FL
| | | | - Cong Chen
- Orthopaedics and Sports Medicine, University of Florida, Gainesville, FL
| | - Scott A Banks
- Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL
| | - Adam H Biedrzycki
- Large Animal Veterinary Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
20
|
Cassano JM, Marycz K, Horna M, Nogues MP, Morgan JM, Herrmann DB, Galuppo LD, Vapniarsky N. Evaluating the Safety of Intra-Articular Mitotherapy in the Equine Model: A Potential Novel Treatment for Osteoarthritis. J Equine Vet Sci 2023; 120:104164. [PMID: 36384191 DOI: 10.1016/j.jevs.2022.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
No current treatments available halt osteoarthritis progression in horses or humans. Intra-articular injection of mitochondria is a novel treatment that has the potential to improve cell metabolism and decrease inflammation, but safety of this treatment has yet to be established in the horse. Autologous blood-derived mitochondria isolated using a commercially available kit were injected into the left carpus joint of 3 horses which were monitored for 28 days. Horses received physical examinations, video recorded gait evaluations, joint diameter measurement, synovial fluid collection, and blood collection on day 0 (baseline prior to mitotherapy, day of mitochondria injection), 1, 3, 7, 14, and 28. Systemic inflammation was assessed via complete blood count, fibrinogen, and plasma serum amyloid A (SAA). Local inflammation was assessed via synovial fluid cytology and physical examination parameters. Physical exam parameters remained stable and no joint swelling was observed after mitotherapy. No change was noted in video recorded gait evaluations as determined by a blinded evaluator. Complete blood counts revealed no significant increase in white blood cells. SAA only increased mildly in 1 horse. Fibrinogen became slightly elevated above reference range in 2 horses at day 7, but later normalized. Mild increases in synovial fluid nucleated cell counts and total protein occurred on day 1 and 3, but resolved within 7 days without intervention. Autologous mitochondria injection into the equine intercarpal joint was well tolerated with no signs of inflammation. This safety information allows for future studies evaluating mitotherapy efficacy.
Collapse
Affiliation(s)
- Jennifer M Cassano
- Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA.
| | - Krzysztof Marycz
- Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA; International Institute of Translational Medicine (MIMT), Malin, Wisznia Mała, Poland
| | - Marta Horna
- Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA
| | - Marcos Perez Nogues
- Department of Surgical and Radiological Sciences, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA
| | - Jessica M Morgan
- Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA
| | - Daniel B Herrmann
- Department of Veterinary Medicine and Epidemiology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA
| | - Larry D Galuppo
- Department of Surgical and Radiological Sciences, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA
| | - Natalia Vapniarsky
- Department of Pathology, Microbiology and Immunology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, CA
| |
Collapse
|
21
|
Mayet A, Zablotski Y, Roth SP, Brehm W, Troillet A. Systematic review and meta-analysis of positive long-term effects after intra-articular administration of orthobiologic therapeutics in horses with naturally occurring osteoarthritis. Front Vet Sci 2023; 10:1125695. [PMID: 36908512 PMCID: PMC9997849 DOI: 10.3389/fvets.2023.1125695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/31/2023] [Indexed: 02/25/2023] Open
Abstract
Equine veterinarians face challenges in treating horses with osteoarthritic joint pain in routine veterinary practice. All common treatment options aim to reduce the clinical consequences of osteoarthritis (OA) characterized by persistent synovitis and progressive degradation of articular cartilage. A range of joint-associated cell types and extracellular matrices are involved in the not yet entirely understood chronic inflammatory process. Regeneration of articular tissues to re-establish joint hemostasis is the future perspective when fundamental healing of OA is the long-term goal. The use of intra-articular applied biologic therapeutics derived from blood or mesenchymal stroma cell (MSC) sources is nowadays a well-accepted treatment option. Although this group of therapeutics is not totally consistent due to the lack of clear definitions and compositions, they all share a potential regenerative effect on articular tissues as described in in vivo and in vitro studies. However, the current stage of science in regenerative medicine needs to be supported by clinical reports as in fact, in vitro studies as well as studies using induced OA models still represent a fragment of the complex pathomechanism of naturally occurring OA. This systemic review aims to determine the long-term effect of orthobiologic therapeutics in horses suffering naturally occurring OA. Thereby, a meta-analysis of randomized controlled trials (RCTs) is conducted to describe the efficiency and safety of intra-articular applied orthobiologics in terms of lameness reduction in the long-term. Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines, thirteen studies met the inclusion criteria for the systemic review. Four of those studies have further been evaluated by the meta-analysis comparing the long-term effect in lameness reduction. Each study was examined for risk of bias. For data evaluation, a random-effects model was used, describing the overall outcome in a forest plot. The I2 statistic was used to assess heterogeneity. Results indicate, that orthobiologic therapies represent an effective long-term and safe OA treatment option. Due to the inhomogeneity of included studies, no statements are provided addressing specific orthobiologic therapies, affected joints, OA stage and horse's intended use. Future clinical trials should follow standardized study designs to provide comparable data.
Collapse
Affiliation(s)
- Anna Mayet
- Department for Horses, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Yury Zablotski
- Center for Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Susanne Pauline Roth
- Department for Horses, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Walter Brehm
- Department for Horses, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Antonia Troillet
- Department for Horses, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
22
|
Wolkowski DD, McCarthy RD, Schoonover MJ, Taylor JD, Eastman TG. Effects of intra-articular injection of an acellular equine liquid amniotic allograft in healthy equine joints. Vet Surg 2023; 52:62-68. [PMID: 36408850 DOI: 10.1111/vsu.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Evaluate effects of acellular equine liquid amnion allograft (ELAA) injected into healthy equine joints. STUDY DESIGN Randomized, blinded, controlled experiment. ANIMALS Eight healthy adult horses. METHODS One intercarpal joint (ICJ) of each horse was randomly assigned to be injected with 1.5 ml of ELAA (treatment) while the contralateral ICJ was injected with 1.5 ml of 0.9% NaCl (control). Subjective lameness evaluation, force plate analysis, and synovial fluid analysis, including interleukin-1 receptor antagonist (IL-1ra) analysis, were performed before (day 0) and at days 1, 3, 5, and 10. Synovial fluid analysis was also performed on days 20 and 30. RESULTS No difference in subjective lameness (P = .75) and no decrease in peak vertical force or vertical impulse were seen in any limb on any day. Total nucleated cell count (TNCC) was increased in treatment joints on days 1 (P = .0007; T: 6039 cells/μl, C: 240 cells/μl) and 3 (P < .0001; T: 1119 cells/μl, C: 240 cells/μl). Log-10 transformed values for IL-1ra were higher in treated joints on days 1 (P = .0005; T: 3553.7 pg/ml, C: 1890.1 pg/ml) and 3 (P = .01; T: 2283.2 pg/ml, C: 1250.7 pg/ml). CONCLUSION Injection of ELAA into the ICJ caused an increase in synovial fluid TNCC in comparison with saline control but no lameness was observed. There was increased IL-1ra on days 1 and 3 after ELAA injection. CLINICAL SIGNIFICANCE Intra-articular injection of ELAA into healthy equine joints results in no significant safety concerns. The observed increase in IL-1ra may provide beneficial effects in inflamed joints.
Collapse
Affiliation(s)
| | - Robert D McCarthy
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mike J Schoonover
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jared D Taylor
- Department of Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma, USA
| | | |
Collapse
|
23
|
El-Husseiny HM, Mady EA, Helal MAY, Tanaka R. The Pivotal Role of Stem Cells in Veterinary Regenerative Medicine and Tissue Engineering. Vet Sci 2022; 9:648. [PMID: 36423096 PMCID: PMC9698002 DOI: 10.3390/vetsci9110648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 07/30/2023] Open
Abstract
The introduction of new regenerative therapeutic modalities in the veterinary practice has recently picked up a lot of interest. Stem cells are undifferentiated cells with a high capacity to self-renew and develop into tissue cells with specific roles. Hence, they are an effective therapeutic option to ameliorate the ability of the body to repair and engineer damaged tissues. Currently, based on their facile isolation and culture procedures and the absence of ethical concerns with their use, mesenchymal stem cells (MSCs) are the most promising stem cell type for therapeutic applications. They are becoming more and more well-known in veterinary medicine because of their exceptional immunomodulatory capabilities. However, their implementation on the clinical scale is still challenging. These limitations to their use in diverse affections in different animals drive the advancement of these therapies. In the present article, we discuss the ability of MSCs as a potent therapeutic modality for the engineering of different animals' tissues including the heart, skin, digestive system (mouth, teeth, gastrointestinal tract, and liver), musculoskeletal system (tendons, ligaments, joints, muscles, and nerves), kidneys, respiratory system, and eyes based on the existing knowledge. Moreover, we highlighted the promises of the implementation of MSCs in clinical use in veterinary practice.
Collapse
Affiliation(s)
- Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Mahmoud A. Y. Helal
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
- Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ryou Tanaka
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi 183-8509, Tokyo, Japan
| |
Collapse
|
24
|
Punzón E, Salgüero R, Totusaus X, Mesa-Sánchez C, Badiella L, García-Castillo M, Pradera A. Equine umbilical cord mesenchymal stem cells demonstrate safety and efficacy in the treatment of canine osteoarthritis: a randomized placebo-controlled trial. J Am Vet Med Assoc 2022; 260:1947-1955. [PMID: 36198051 DOI: 10.2460/javma.22.06.0237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To demonstrate the efficacy and safety of mesenchymal stem cells (MSCs) for xenogeneic use with intra-articular administration in dogs with osteoarthritis. ANIMALS 80 client-owned dogs with naturally occurring osteoarthritis in elbow or hip. PROCEDURES A multicentric, double-blinded, parallel, randomized and placebo-controlled clinical trial was performed. After intra-articular injection of equine umbilical cord MSCs, dogs were reexamined at weeks 4, 8, and 12 using a force platform (gait analysis), orthopedic assessment, and validated owner questionnaire. Eighteen months after treatment, a long-term follow-up was done. RESULTS Best results were obtained 8 weeks after treatment, where 63% of the patients showed an improvement in the gait analysis. Also 8 weeks after treatment, 77% of the dogs improved in the orthopedic examination; 65% of the owners considered that the treatment improved their pet's quality of life 8 weeks after treatment. The long-term follow-up revealed that 59% of the owners observed a duration of effect longer than 6 months after a single intra-articular injection of equine umbilical cord MSCs. No systemic or permanent adverse events were detected at any time point. CLINICAL RELEVANCE Results of this study demonstrated the safety and efficacy of intra-articular administration of xenogeneic MSCs for the treatment of canine osteoarthritis.
Collapse
Affiliation(s)
| | - Raquel Salgüero
- 2Departament de Diagnóstico por Imágenes, Hospital Veterinario Veterios, Madrid, Spain.,4VetOracle Teleradiology, Diss, UK
| | | | | | - Llorenç Badiella
- 6Servei d'Estadística Aplicada, Universitat Autònoma de Barcelona, Cerdanyola, Spain.,7Departament de Matemàtiques, Universitat Autònoma de Barcelona, Cerdanyola, Spain
| | | | | |
Collapse
|
25
|
Mahmoud EE, Mawas AS, Mohamed AA, Noby MA, Abdel-Hady ANA, Zayed M. Treatment strategies for meniscal lesions: from past to prospective therapeutics. Regen Med 2022; 17:547-560. [PMID: 35638397 DOI: 10.2217/rme-2021-0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Menisci play an important role in the biomechanics of knee joint function, including loading transmission, joint lubrication, prevention of soft tissue impingement during motion and joint stability. Meniscal repair presents a challenge due to a lack of vascularization that limits the healing capacity of meniscal tissue. In this review, the authors aimed to untangle the available treatment options for repairing meniscal tears. Various surgical procedures have been developed to treat meniscal tears; however, clinical outcomes are limited. Consequently, numerous researchers have focused on different treatments such as the application of exogenous and/or autologous growth factors, scaffolds including tissue-derived matrix, cell-based therapy and miRNA-210. The authors present current and prospective treatment strategies for meniscal lesions.
Collapse
Affiliation(s)
- Elhussein E Mahmoud
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Amany S Mawas
- Department of Pathology & Clinical Pathology, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Alsayed A Mohamed
- Department of Anatomy & Embryology, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mohammed A Noby
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | | | - Mohammed Zayed
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
26
|
Kearney CM, Khatab S, van Buul GM, Plomp SGM, Korthagen NM, Labberté MC, Goodrich LR, Kisiday JD, Van Weeren PR, van Osch GJVM, Brama PAJ. Treatment Effects of Intra-Articular Allogenic Mesenchymal Stem Cell Secretome in an Equine Model of Joint Inflammation. Front Vet Sci 2022; 9:907616. [PMID: 35812845 PMCID: PMC9257274 DOI: 10.3389/fvets.2022.907616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundAllogenic mesenchymal stem cell (MSC) secretome is a novel intra-articular therapeutic that has shown promise in in vitro and small animal models and warrants further investigation.ObjectivesTo investigate if intra-articular allogenic MSC-secretome has anti-inflammatory effects using an equine model of joint inflammation.Study DesignRandomized positively and negatively controlled experimental study.MethodIn phase 1, joint inflammation was induced bilaterally in radiocarpal joints of eight horses by injecting 0.25 ng lipopolysaccharide (LPS). After 2 h, the secretome of INFy and TNFα stimulated allogeneic equine MSCs was injected in one randomly assigned joint, while the contralateral joint was injected with medium (negative control). Clinical parameters (composite welfare scores, joint effusion, joint circumference) were recorded, and synovial fluid samples were analyzed for biomarkers (total protein, WBCC; eicosanoid mediators, CCL2; TNFα; MMP; GAGs; C2C; CPII) at fixed post-injection hours (PIH 0, 8, 24, 72, and 168 h). The effects of time and treatment on clinical and synovial fluid parameters and the presence of time-treatment interactions were evaluated. For phase 2, allogeneic MSC-secretome vs. allogeneic equine MSCs (positive control) was tested using a similar methodology.ResultsIn phase 1, the joint circumference was significantly (p < 0.05) lower in the MSC-secretome treated group compared to the medium control group at PIH 24, and significantly higher peak synovial GAG values were noted at PIH 24 (p < 0.001). In phase 2, no significant differences were noted between the treatment effects of MSC-secretome and MSCs.Main LimitationsThis study is a controlled experimental study and therefore cannot fully reflect natural joint disease. In phase 2, two therapeutics are directly compared and there is no negative control.ConclusionsIn this model of joint inflammation, intra-articular MSC-secretome injection had some clinical anti-inflammatory effects. An effect on cartilage metabolism, evident as a rise in GAG levels was also noted, although it is unclear whether this could be considered a beneficial or detrimental effect. When directly comparing MSC-secretome to MSCs in this model results were comparable, indicating that MSC-secretome could be a viable off-the-shelf alternative to MSC treatment.
Collapse
Affiliation(s)
- Clodagh M. Kearney
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- *Correspondence: Clodagh M. Kearney
| | - Sohrab Khatab
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Gerben M. van Buul
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Beacon Hospital, Dublin, Ireland
| | - Saskia G. M. Plomp
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Nicoline M. Korthagen
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Margot C. Labberté
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Laurie R. Goodrich
- Equine Orthopaedic Research Center, Colorado State University, Fort Collins, CO, United States
| | - John D. Kisiday
- Equine Orthopaedic Research Center, Colorado State University, Fort Collins, CO, United States
| | - P. R. Van Weeren
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Pieter A. J. Brama
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
27
|
Soukup R, Gerner I, Gültekin S, Baik H, Oesterreicher J, Grillari J, Jenner F. Characterisation of Extracellular Vesicles from Equine Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:5858. [PMID: 35628667 PMCID: PMC9145091 DOI: 10.3390/ijms23105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized lipid bilayer-encapsulated particles secreted by virtually all cell types. EVs play an essential role in cellular crosstalk in health and disease. The cellular origin of EVs determines their composition and potential therapeutic effect. Mesenchymal stem/stromal cell (MSC)-derived EVs have shown a comparable therapeutic potential to their donor cells, making them a promising tool for regenerative medicine. The therapeutic application of EVs circumvents some safety concerns associated with the transplantation of viable, replicating cells and facilitates the quality-controlled production as a ready-to-go, off-the-shelf biological therapy. Recently, the International Society for Extracellular Vesicles (ISEV) suggested a set of minimal biochemical, biophysical and functional standards to define extracellular vesicles and their functions to improve standardisation in EV research. However, nonstandardised EV isolation methods and the limited availability of cross-reacting markers for most animal species restrict the application of these standards in the veterinary field and, therefore, the species comparability and standardisation of animal experiments. In this study, EVs were isolated from equine bone-marrow-derived MSCs using two different isolation methods, stepwise ultracentrifugation and size exclusion chromatography, and minimal experimental requirements for equine EVs were established and validated. Equine EVs were characterised using a nanotracking analysis, fluorescence-triggered flow cytometry, Western blot and transelectron microscopy. Based on the ISEV standards, minimal criteria for defining equine EVs are suggested as a baseline to allow the comparison of EV preparations obtained by different laboratories.
Collapse
Affiliation(s)
- Robert Soukup
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria; (R.S.); (I.G.); (S.G.); (H.B.)
| | - Iris Gerner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria; (R.S.); (I.G.); (S.G.); (H.B.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Sinan Gültekin
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria; (R.S.); (I.G.); (S.G.); (H.B.)
| | - Hayeon Baik
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria; (R.S.); (I.G.); (S.G.); (H.B.)
| | - Johannes Oesterreicher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria;
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1090 Vienna, Austria
| | - Florien Jenner
- VETERM, Equine Surgery Unit, Department for Companion Animals and Horses, Vetmeduni, 1210 Vienna, Austria; (R.S.); (I.G.); (S.G.); (H.B.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
28
|
Davis JG, García-López JM. Arthroscopic findings and long-term outcomes in 76 sport horses with meniscal injuries (2008-2018). Vet Surg 2022; 51:409-417. [PMID: 35178749 DOI: 10.1111/vsu.13784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/10/2022] [Accepted: 01/30/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To report the findings and long-term outcome of 76 sport horses with meniscal injury. STUDY DESIGN Retrospective case series. ANIMALS Seventy-six horses with 93 meniscal injuries in 85 stifles. METHODS Medical records of sport horses diagnosed with meniscal injury during arthroscopy were reviewed. Owner follow up was obtained via telephone interview ≥1.5 years postoperatively. Preoperative and intraoperative findings, and postoperative treatments, were analyzed for potential association with return to athletic performance. RESULTS The medial meniscus was involved in 82.8% of cases, with grade 1 injuries diagnosed in 76.3% of menisci. Overall, 85.5% of horses returned to athletic performance, with 40% returning to their previous level. The grade of meniscal injury was associated with long-term outcome (P = .023). The presence of preoperative radiographic abnormalities (P = .259) or additional joint pathology (P = 1.00) was not associated with long-term outcomes. Fifty-nine stifles were treated with an orthobiologic: autologous conditioned serum, platelet-rich plasma, or marrow-derived mesenchymal stem cells. There was no association between the use of any orthobiologic and long-term outcome (P = .394). CONCLUSION This is the first report on long-term outcome of sport horses with meniscal injuries following arthroscopic surgery. Overall, the long-term prognosis was fair, with 40% of horses returning to their previous level of use. Severity of the meniscal injury was a prognostic indicator for return to work. The presence of radiographic abnormalities or additional joint pathology, or the use of orthobiologics, was not associated with long-term outcome. CLINICAL SIGNIFICANCE These findings can help in prognostication for sport horses with meniscal injuries.
Collapse
Affiliation(s)
- Joseph G Davis
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - José M García-López
- Department of Clinical Sciences, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| |
Collapse
|
29
|
Klein CE, Bramlage LR, Stefanovski D, Ruggles AJ, Embertson RM, Hopper SA. Comparative results of 3 treatments for medial femoral condyle subchondral cystic lesions in Thoroughbred racehorses. Vet Surg 2022; 51:455-463. [PMID: 35167130 DOI: 10.1111/vsu.13782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/31/2021] [Accepted: 01/25/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To compare 3 different methods for treatment of medial femoral condyle (MFC) subchondral cystic lesions in Thoroughbred horses <24 months old based on the criterion of ability to race post-treatment. STUDY DESIGN Retrospective cohort study. ANIMALS Thoroughbreds (n = 107, age < 24 months) diagnosed with MFC subchondral cystic lesions. METHODS Medical records between January 2004 and December 2017 were reviewed. Three treatment methods were used in these horses during that time frame: arthroscopic debridement, intralesional autologous mesenchymal stem cell (MSC) injection, and intralesional corticosteroid injection. The outcome evaluated was the ability to compete in a pari-mutuel race. RESULTS Seventy-eight of 107 Thoroughbreds (73%) raced post-treatment; 41/57 (72%) of horses treated by arthroscopic debridement raced; 16/19 (84%) of horses treated with intralesional MSCs raced; 21/31 (68%) of horses treated with intralesional corticosteroids raced. There was no difference between groups in the ability to start a race. Sex, limb affected, and lesion size also had no effect on the ability to start a race. There was a trend for increasing lesion size reducing the probability of racing. CONCLUSIONS Seventy-three percent of the horses raced, but there was no difference in the ability of unraced Thoroughbreds to race after treatment of MFC subchondral cystic lesions with arthroscopic debridement, intralesional mesenchymal stem cells, or intralesional corticosteroids. CLINICAL SIGNIFICANCE The 3 reported treatment options may be considered for treatment of MFC subchondral cystic lesions with a good prognosis for racing post-treatment. Owners should be advised that increasing lesion size decreases the probability of racing.
Collapse
Affiliation(s)
| | | | - Darko Stefanovski
- New Bolton Center, Department of Clinical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alan J Ruggles
- Rood and Riddle Equine Hospital, Lexington, Kentucky, USA
| | | | - Scott A Hopper
- Rood and Riddle Equine Hospital, Lexington, Kentucky, USA
| |
Collapse
|
30
|
Platelet Lysate for Mesenchymal Stromal Cell Culture in the Canine and Equine Species: Analogous but Not the Same. Animals (Basel) 2022; 12:ani12020189. [PMID: 35049811 PMCID: PMC8773277 DOI: 10.3390/ani12020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Regenerative medicine using platelet-based blood products or adult stem cells offers the prospect of better clinical outcomes with many diseases. In veterinary medicine, most progress has been made with the development and therapeutic use of these regenerative therapeutics in horses, but the clinical need is given in dogs as well. Our aim was to transfer previous advances in the development of horse regenerative therapeutics, specifically the use of platelet lysate for feeding stem cell cultures, to the dog. Here, we describe the scalable production of canine platelet lysate, which could be used in regenerative biological therapies. We also evaluated the canine platelet lysate for its suitability in feeding canine stem cell cultures in comparison to equine platelet lysate used for equine stem cell cultures. Platelet lysate production from canine blood was successful, but the platelet lysate did not support stem cell culture in dogs in the same beneficial way observed with the equine platelet lysate and stem cells. In conclusion, canine platelet lysate can be produced in large scales as described here, but further research is needed to improve the cultivation of canine stem cells. Abstract Platelet lysate (PL) is an attractive platelet-based therapeutic tool and has shown promise as xeno-free replacement for fetal bovine serum (FBS) in human and equine mesenchymal stromal cell (MSC) culture. Here, we established a scalable buffy-coat-based protocol for canine PL (cPL) production (n = 12). The cPL was tested in canine adipose MSC (n = 5) culture compared to FBS. For further comparison, equine adipose MSC (n = 5) were cultured with analogous equine PL (ePL) or FBS. During canine blood processing, platelet and transforming growth factor-β1 concentrations increased (p < 0.05 and p < 0.001), while white blood cell concentrations decreased (p < 0.05). However, while equine MSC showed good results when cultured with 10% ePL, canine MSC cultured with 2.5% or 10% cPL changed their morphology and showed decreased metabolic activity (p < 0.05). Apoptosis and necrosis in canine MSC were increased with 2.5% cPL (p < 0.05). Surprisingly, passage 5 canine MSC showed less genetic aberrations after culture with 10% cPL than with FBS. Our data reveal that using analogous canine and equine biologicals does not entail the same results. The buffy-coat-based cPL was not adequate for canine MSC culture, but may still be useful for therapeutic applications.
Collapse
|
31
|
Voga M, Majdic G. Articular Cartilage Regeneration in Veterinary Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:23-55. [DOI: 10.1007/5584_2022_717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
32
|
Tendon Tissue Repair in Prospective of Drug Delivery, Regenerative Medicines, and Innovative Bioscaffolds. Stem Cells Int 2021; 2021:1488829. [PMID: 34824586 PMCID: PMC8610661 DOI: 10.1155/2021/1488829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
The natural healing capacity of the tendon tissue is limited due to the hypovascular and cellular nature of this tissue. So far, several conventional approaches have been tested for tendon repair to accelerate the healing process, but all these approaches have their own advantages and limitations. Regenerative medicine and tissue engineering are interdisciplinary fields that aspire to develop novel medical devices, innovative bioscaffold, and nanomedicine, by combining different cell sources, biodegradable materials, immune modulators, and nanoparticles for tendon tissue repair. Different studies supported the idea that bioscaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potentiality. However, available data are lacking to allow definitive conclusion on the use of bioscaffolds for tendon regeneration and repairing. In this review, we provide an overview of the current basic understanding and material science in the field of bioscaffolds, nanomedicine, and tissue engineering for tendon repair.
Collapse
|
33
|
Tomlinson F, Terschuur J, Henson F. Use of autologous products for the treatment of joint and soft tissue disease in horses: A systematic review. Vet Rec 2021; 188:e9. [PMID: 34651853 DOI: 10.1002/vetr.9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/27/2020] [Accepted: 10/27/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Soft tissue injuries and joint disease are the predominate causes of lameness in the equine athlete and these pathologies carry a guarded prognosis for a return to previous performance. Recently the use of autologous products has become more widespread as a treatment in equine sports medicine. However, the efficacy of these products is yet to be fully established. OBJECTIVE To evaluate the current published evidence base regarding the efficacy of autologous products in soft tissue injuries and joint disease. METHODS A systematic review of English articles using MEDLINE, EMBASE and Web of Science databases from 1980 to 2017. The search strategy identified 1594 papers for review. RESULTS Fifty-eight papers were included in this review, 28 of which were randomised controlled trials. Significant benefit was reported under several parameters, most notably in the use of autologous chondrocytes in artificially induced cartilage defects on histology. One paper documented a significant clinical response under lameness examination. CONCLUSION The current literature shows that the treatment of soft tissue injury and cartilage disease with autologous products is safe and that the use of some products can give significant benefit on some outcome measures. True clinical significance is yet to be demonstrated with any product.
Collapse
Affiliation(s)
| | - Janine Terschuur
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Frances Henson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
34
|
Rowland AL, Burns ME, Levine GJ, Watts AE. Preparation Technique Affects Recipient Immune Targeting of Autologous Mesenchymal Stem Cells. Front Vet Sci 2021; 8:724041. [PMID: 34595230 PMCID: PMC8478329 DOI: 10.3389/fvets.2021.724041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
Fetal bovine serum (FBS) is used for MSC preparation in pre-clinical animal models and veterinary applications, recently in US clinical trials, and for MSC products with current foreign market authorizations. The effect of anti-bovine titers, which are common in animals and humans, has not been investigated. In the equine model, where anti-bovine titers are universally high due to routine vaccination, we evaluated the recipient immune response to autologous MSCs prepared with and without FBS. Preparation of MSCs with FBS resulted in post injection inflammation and antibody mediated cytotoxicity of MSCs when compared to MSCs prepared without FBS. Importantly, synovial MSC concentrations were reduced and LPS induced pain was higher, when FBS was used to prepare MSCs, demonstrating reduced efficacy of FBS prepared MSCs. Fetal bovine serum should no longer be utilized for MSC preparation in pre-clinical study, clinical study, or veterinary applications. The use of FBS in previously reported studies, and in MSC therapeutics with current foreign market authorization, should be considered when interpreting results.
Collapse
Affiliation(s)
- Aileen L Rowland
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Madison E Burns
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - Gwendolyn J Levine
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Ashlee E Watts
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
35
|
Rhim HC, Jeon OH, Han SB, Bae JH, Suh DW, Jang KM. Mesenchymal stem cells for enhancing biological healing after meniscal injuries. World J Stem Cells 2021; 13:1005-1029. [PMID: 34567422 PMCID: PMC8422933 DOI: 10.4252/wjsc.v13.i8.1005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
The meniscus is a semilunar fibrocartilage structure that plays important roles in maintaining normal knee biomechanics and function. The roles of the meniscus, including load distribution, force transmission, shock absorption, joint stability, lubrication, and proprioception, have been well established. Injury to the meniscus can disrupt overall joint stability and cause various symptoms including pain, swelling, giving-way, and locking. Unless treated properly, it can lead to early degeneration of the knee joint. Because meniscal injuries remain a significant challenge due to its low intrinsic healing potential, most notably in avascular and aneural inner two-thirds of the area, more efficient repair methods are needed. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential in vitro and in vivo. Thus far, the application of MSCs, including bone marrow-derived, synovium-derived, and adipose-derived MSCs, has shown promising results in preclinical studies in different animal models. These preclinical studies could be categorized into intra-articular injection and tissue-engineered construct application according to delivery method. Despite promising results in preclinical studies, there is still a lack of clinical evidence. This review describes the basic knowledge, current treatment, and recent studies regarding the application of MSCs in treating meniscal injuries. Future directions for MSC-based approaches to enhance meniscal healing are suggested.
Collapse
Affiliation(s)
- Hye Chang Rhim
- T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, United States
| | - Ok Hee Jeon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| | - Seung-Beom Han
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| | - Ji Hoon Bae
- Department of Orthopaedic Surgery, Guro Hospital, Korea University College of Medicine, Seoul 08308, Seoul, South Korea
| | - Dong Won Suh
- Department of Orthopaedic Surgery, Barunsesang Hospital, Seongnam 13497, South Korea
| | - Ki-Mo Jang
- Department of Orthopaedic Surgery, Anam Hospital, Korea University College of Medicine, Seoul 02841, Seoul, South Korea
| |
Collapse
|
36
|
Repeated intra-articular administration of equine allogeneic peripheral blood-derived mesenchymal stem cells does not induce a cellular and humoral immune response in horses. Vet Immunol Immunopathol 2021; 239:110306. [PMID: 34365135 DOI: 10.1016/j.vetimm.2021.110306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The use of mesenchymal stem cells (MSCs) for the treatment of equine joint disease is widely investigated because of their regenerative and immunomodulatory potential. Allogeneic MSCs provide a promising alternative to autologous MSCs, since the former are immediately available and enable a thorough donor screening. However, questions have been raised concerning the immunogenic potential of allogeneic MSCs, especially after repeated administration. METHODS Current retrospective study assessed the cellular and humoral immunogenicity of ten jumping and dressage horses with naturally occurring degenerative joint disease which were treated 3 times intra-articularly with a 1 mL stem cell suspension containing 1.4-2.5 million chondrogenic induced equine allogeneic peripheral blood-derived MSCs (ciMSCs) combined with 1 mL equine allogeneic plasma. Stem cells from 2 donor horses were used. Horses were clinically evaluated for joint effusion, presence of pain to palpation and skin surface temperature at the local injection site, joint range of motion, occurrence of adverse events and the presence of ectopic tissue. The cellular immune response was analyzed using a modified mixed lymphocyte reaction and the humoral immune response was investigated using a flow cytometric crossmatch assay by which the presence of alloantibodies against the ciMSCs was evaluated. Presence of anti-bovine serum albumin antibodies was detected via ELISA. RESULTS Clinical evaluation of the horses revealed no serious adverse effects or suspected adverse drug reactions and no ectopic tissue formation at the local injection site or in other areas of the body. Generally, repeated administration led to a decrease of horses with joint effusion of the affected joint. Pain to palpation, skin surface temperature and joint range of motion did not increase or even decreased after treatment administration. Allogeneic ciMSCs did not induce a cellular immune response and no alloantibodies were detected in the recipients' serum, regardless the presence of BSA antibodies in 70 % of the horses. CONCLUSION Repeated intra-articular injections with allogeneic equine ciMSCs did not elicit clinically relevant adverse events. Furthermore, current study indicates the absence of a cellular or a humoral immune response following repeated intra-articular injections.
Collapse
|
37
|
Zayed M, Adair S, Dhar M. Effects of Normal Synovial Fluid and Interferon Gamma on Chondrogenic Capability and Immunomodulatory Potential Respectively on Equine Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22126391. [PMID: 34203758 PMCID: PMC8232615 DOI: 10.3390/ijms22126391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Synovial fluid contains cytokines, growth factors and resident mesenchymal stem cells (MSCs). The present study aimed to (1) determine the effects of autologous and allogeneic synovial fluid on viability, proliferation and chondrogenesis of equine bone marrow MSCs (BMMSCs) and (2) compare the immunomodulatory properties of equine synovial fluid MSCs (SFMSCs) and BMMSCs after stimulation with interferon gamma (INF-γ). To meet the first aim of the study, the proliferation and viability of MSCs were evaluated by MTS and calcein AM staining assays. To induce chondrogenesis, MSCs were cultured in a medium containing TGF-β1 or different concentrations of synovial fluid. To meet the second aim, SFMSCs and BMMSCs were stimulated with IFN-γ. The concentration of indoleamine-2,3-dioxygenase (IDO) and nitric oxide (NO) were examined. Our results show that MSCs cultured in autologous or allogeneic synovial fluid could maintain proliferation and viability activities. Synovial fluid affected chondrocyte differentiation significantly, as indicated by increased glycosaminoglycan contents, compared to the chondrogenic medium containing 5 ng/mL TGF-β1. After culturing with IFN-γ, the conditioned media of both BMMSCs and SFMSCs showed increased concentrations of IDO, but not NO. Stimulating MSCs with synovial fluid or IFN-γ could enhance chondrogenesis and anti-inflammatory activity, respectively, suggesting that the joint environment is suitable for chondrogenesis.
Collapse
Affiliation(s)
- Mohammed Zayed
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.Z.); (S.A.)
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Steve Adair
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.Z.); (S.A.)
| | - Madhu Dhar
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.Z.); (S.A.)
- Correspondence:
| |
Collapse
|
38
|
Pezzanite L, Chow L, Griffenhagen G, Dow S, Goodrich L. Impact of Three Different Serum Sources on Functional Properties of Equine Mesenchymal Stromal Cells. Front Vet Sci 2021; 8:634064. [PMID: 33996964 PMCID: PMC8119767 DOI: 10.3389/fvets.2021.634064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Culture and expansion of equine mesenchymal stromal cells (MSCs) are routinely performed using fetal bovine serum (FBS) as a source of growth factors, nutrients, and extracellular matrix proteins. However, the desire to minimize introduction of xenogeneic bovine proteins or pathogens and to standardize cellular products intended for clinical application has driven evaluation of alternatives to FBS. Replacement of FBS in culture for several days before administration has been proposed to reduce antigenicity and potentially prolong survival after injection. However, the functional consequences of MSC culture in different serum types have not been fully evaluated. The objective of this study was to compare the immunomodulatory and antibacterial properties of MSCs cultured in three serum sources: FBS or autologous or allogeneic equine serum. We hypothesized that continuous culture in FBS would generate MSCs with improved functionality compared to equine serum and that there would not be important differences between MSCs cultured in autologous vs. allogeneic equine serum. To address these questions, MSCs from three healthy donor horses were expanded in medium with FBS and then switched to culture in FBS or autologous or allogeneic equine serum for 72 h. The impact of this 72-h culture period in different sera on cell viability, cell doubling time, cell morphology, bactericidal capability, chondrogenic differentiation, and production of cytokines and antimicrobial peptides was assessed. Altering serum source did not affect cell viability or morphology. However, cells cultured in FBS had shorter cell doubling times and secreted more interleukin 4 (IL-4), IL-5, IL-17, RANTES, granulocyte–macrophage colony-stimulating factor, fibroblast growth factor 2, eotaxin, and antimicrobial peptide cathelicidin/LL-37 than cells cultured in either source of equine serum. Cells cultured in FBS also exhibited greater spontaneous bactericidal activity. Notably, significant differences in any of these parameters were not observed when autologous vs. allogeneic equine serum was used for cell culture. Chondrogenic differentiation was not different between different serum sources. These results indicate that MSC culture in FBS will generate more functional cells based on a number of parameters and that the theoretical risks of FBS use in MSC culture should be weighed against the loss of MSC function likely to be incurred from culture in equine serum.
Collapse
Affiliation(s)
- Lynn Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Gregg Griffenhagen
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States.,Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Laurie Goodrich
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
39
|
Evaluation of Allogeneic Bone-Marrow-Derived and Umbilical Cord Blood-Derived Mesenchymal Stem Cells to Prevent the Development of Osteoarthritis in An Equine Model. Int J Mol Sci 2021; 22:ijms22052499. [PMID: 33801461 PMCID: PMC7958841 DOI: 10.3390/ijms22052499] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a significant cause of pain in both humans and horses with a high socio-economic impact. The horse is recognized as a pertinent model for human OA. In both species, regenerative therapy with allogeneic mesenchymal stem cells (MSCs) appears to be a promising treatment but, to date, no in vivo studies have attempted to compare the effects of different cell sources on the same individuals. The objective of this study is to evaluate the ability of a single blinded intra-articular injection of allogeneic bone-marrow (BM) derived MSCs and umbilical cord blood (UCB) derived MSC to limit the development of OA-associated pathological changes compared to placebo in a post-traumatic OA model applied to all four fetlock joints of eight horses. The effect of the tissue source (BM vs. UCB) is also assessed on the same individuals. Observations were carried out using clinical, radiographic, ultrasonographic, and magnetic resonance imaging methods as well as biochemical analysis of synovial fluid and postmortem microscopic and macroscopic evaluations of the joints until Week 12. A significant reduction in the progression of OA-associated changes measured with imaging techniques, especially radiography, was observed after injection of bone-marrow derived mesenchymal stem cells (BM-MSCs) compared to contralateral placebo injections. These results indicate that allogeneic BM-MSCs are a promising treatment for OA in horses and reinforce the importance of continuing research to validate these results and find innovative strategies that will optimize the therapeutic potential of these cells. However, they should be considered with caution given the low number of units per group.
Collapse
|
40
|
Hagen A, Lehmann H, Aurich S, Bauer N, Melzer M, Moellerberndt J, Patané V, Schnabel CL, Burk J. Scalable Production of Equine Platelet Lysate for Multipotent Mesenchymal Stromal Cell Culture. Front Bioeng Biotechnol 2021; 8:613621. [PMID: 33553119 PMCID: PMC7859354 DOI: 10.3389/fbioe.2020.613621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/16/2020] [Indexed: 12/22/2022] Open
Abstract
Translation of multipotent mesenchymal stromal cell (MSC)-based therapies is advancing in human and veterinary medicine. One critical issue is the in vitro culture of MSC before clinical use. Using fetal bovine serum (FBS) as supplement to the basal medium is still the gold standard for cultivation of many cell types including equine MSC. Alternatives are being explored, with substantial success using platelet lysate-supplemented media for human MSC. However, progress lags behind in the veterinary field. The aim of this study was to establish a scalable protocol for equine platelet lysate (ePL) production and to test the ePL in equine MSC culture. Whole blood was harvested into blood collection bags from 20 healthy horses. After checking sample materials for pathogen contamination, samples from 19 animals were included. Platelet concentrates were prepared using a buffy coat method. Platelets, platelet-derived growth factor BB, and transforming growth factor β1 concentrations were increased in the concentrates compared with whole blood or serum (p < 0.05), while white blood cells were reduced (p < 0.05). The concentrates were lysed using freeze/thaw cycles, which eliminated the cells while growth factor concentrations were maintained. Donor age negatively correlated with platelet and growth factor concentrations after processing (p < 0.05). Finally, all lysates were pooled and the ePL was evaluated as culture medium supplement in comparison with FBS, using adipose-derived MSC from four unrelated donor horses. MSC proliferated well in 10% FBS as well as in 10% ePL. However, using 5 or 2.5% ePL entailed highly inconsistent proliferation or loss of proliferation, with significant differences in generation times and confluencies (p < 0.05). MSC expressed the surface antigens CD90, CD44, and CD29, but CD73 and CD105 detection was low in all culture media. Adipogenic and osteogenic differentiation led to similar results in MSC from different culture media. The buffy coat method is useful to produce equine platelet concentrate with increased platelet and reduced white blood cell content in large scales. The ePL obtained supports MSC expansion similar as FBS when used at the same concentration (10%). Further investigations into equine MSC functionality in culture with ePL should follow.
Collapse
Affiliation(s)
- A Hagen
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - H Lehmann
- Department of Veterinary Clinical Sciences, Small Animal Clinic, Justus-Liebig-University Giessen, Giessen, Germany
| | - S Aurich
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, Giessen, Germany
| | - N Bauer
- Department of Veterinary Clinical Sciences, Clinical Pathology and Clinical Pathophysiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - M Melzer
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - J Moellerberndt
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| | - V Patané
- Department of Veterinary Clinical Sciences, Clinical Pathology and Clinical Pathophysiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - C L Schnabel
- Faculty of Veterinary Medicine, Institute of Immunology, Leipzig University, Leipzig, Germany
| | - J Burk
- Equine Clinic (Surgery, Orthopedics), Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
41
|
Kamm JL, Riley CB, Parlane N, Gee EK, McIlwraith CW. Interactions Between Allogeneic Mesenchymal Stromal Cells and the Recipient Immune System: A Comparative Review With Relevance to Equine Outcomes. Front Vet Sci 2021; 7:617647. [PMID: 33521090 PMCID: PMC7838369 DOI: 10.3389/fvets.2020.617647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Despite significant immunosuppressive activity, allogeneic mesenchymal stromal cells (MSCs) carry an inherent risk of immune rejection when transferred into a recipient. In naïve recipients, this immune response is initially driven by the innate immune system, an immediate reaction to the foreign cells, and later, the adaptive immune system, a delayed response that causes cell death due to recognition of specific alloantigens by host cells and antibodies. This review describes the actions of MSCs to both suppress and activate the different arms of the immune system. We then review the survival and effectiveness of the currently used allogeneic MSC treatments.
Collapse
Affiliation(s)
- J Lacy Kamm
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Christopher B Riley
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Natalie Parlane
- Hopkirk Laboratory, AgResearch, Palmerston North, New Zealand
| | - Erica K Gee
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - C Wayne McIlwraith
- Orthopaedic Research Center, C. Wayne McIlwraith Translational Medical Institute, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
42
|
Velloso Alvarez A, Boone LH, Braim AP, Taintor JS, Caldwell F, Wright JC, Wooldridge AA. A Survey of Clinical Usage of Non-steroidal Intra-Articular Therapeutics by Equine Practitioners. Front Vet Sci 2020; 7:579967. [PMID: 33195592 PMCID: PMC7642446 DOI: 10.3389/fvets.2020.579967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/10/2020] [Indexed: 11/24/2022] Open
Abstract
There are several non-steroidal intra-articular therapeutics (NSIATs) available for use by equine practitioners for the treatment of performance-limiting joint-related pathology. Information is limited on perceived clinical efficacy, recommended treatment protocols, and associated complications. Our objective with this cross-sectional survey was to investigate the current clinical usage of NSIATs by equine practitioners. An electronic cross-sectional convenience survey inquiring about the use of steroidal and NSIATS (platelet-rich plasma, autologous conditioned serum, autologous protein solution, cellular therapies, and polyacrylamide hydrogel) was distributed internationally to equine practitioners. A total of 353 surveys were completed. NSIATs were used by 87.5% of the participants. Corticosteroids and hyaluronic acid remain the intra-articular therapeutic of choice among practitioners, followed by autologous conditioned serum, platelet-rich plasma and autologous conditioned protein. Polyacrylamide hydrogel was the least used. Practitioners were more likely to use NSIATs if their caseload was > 50% equine (P < 0.001), they treated more than 10 horses intra-articularly per month (P < 0.001), and horses treated were considered English sport horses (P = 0.02). Years in practice and practice location did not influence the use of NSIATs. One of the most common reasons why NSIATs were chosen was to treat acute articular pathologies. As survey limitations, answers to questions regarding clinical response and complication rates were based on subjective estimation and practitioners recall, not clinical records. In conclusion, corticosteroids remain the most widely used intra-articular therapeutic. Among the NSIATs, blood-based products are more commonly used by practitioners, followed by cellular and synthetic products. Equine practitioners frequently use NSIATs, choosing to treat acute joint pathology more than previously reported.
Collapse
Affiliation(s)
- Ana Velloso Alvarez
- Department of Clinical Sciences, Auburn University, Auburn, AL, United States
| | - Lindsey H Boone
- Department of Clinical Sciences, Auburn University, Auburn, AL, United States
| | | | - Jenifer S Taintor
- Department of Clinical Sciences, Auburn University, Auburn, AL, United States
| | - Fred Caldwell
- Department of Clinical Sciences, Auburn University, Auburn, AL, United States
| | - James C Wright
- Department of Pathobiology, Auburn University, Auburn, AL, United States
| | - Anne A Wooldridge
- Department of Clinical Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
43
|
Winkler PW, Rothrauff BB, Buerba RA, Shah N, Zaffagnini S, Alexander P, Musahl V. Meniscal substitution, a developing and long-awaited demand. J Exp Orthop 2020; 7:55. [PMID: 32712722 PMCID: PMC7382673 DOI: 10.1186/s40634-020-00270-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
The menisci represent indispensable intraarticular components of a well-functioning knee joint. Sports activities, traumatic incidents, or simply degenerative conditions can cause meniscal injuries, which often require surgical intervention. Efforts in biomechanical and clinical research have led to the recommendation of a meniscus-preserving rather than a meniscus-resecting treatment approach. Nevertheless, partial or even total meniscal resection is sometimes inevitable. In such circumstances, techniques of meniscal substitution are required. Autologous, allogenic, and artificial meniscal substitutes are available which have evolved in recent years. Basic anatomical and biomechanical knowledge, clinical application, radiological and clinical outcomes as well as future perspectives of meniscal substitutes are presented in this article. A comprehensive knowledge of the different approaches to meniscal substitution is required in order to integrate these evolving techniques in daily clinical practice to prevent the devastating effects of lost meniscal tissue.
Collapse
Affiliation(s)
- Philipp W Winkler
- Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, 3200 S. Water St, Pittsburgh, PA, 15203, USA.,Department for Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Benjamin B Rothrauff
- Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, 3200 S. Water St, Pittsburgh, PA, 15203, USA.,Center for Cellular and Molecular Engineering, University of Pittsburgh, 450 Technology Drive, Suite 239, Pittsburgh, PA, 15219, USA
| | - Rafael A Buerba
- Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, 3200 S. Water St, Pittsburgh, PA, 15203, USA
| | - Neha Shah
- Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, 3200 S. Water St, Pittsburgh, PA, 15203, USA
| | - Stefano Zaffagnini
- 2° Clinica Ortopedica e Traumatologica, Istituto Ortopedico Rizzoli, IRCCS, University of Bologna, Bologna, Italy
| | - Peter Alexander
- Center for Cellular and Molecular Engineering, University of Pittsburgh, 450 Technology Drive, Suite 239, Pittsburgh, PA, 15219, USA
| | - Volker Musahl
- Department of Orthopaedic Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, 3200 S. Water St, Pittsburgh, PA, 15203, USA.
| |
Collapse
|
44
|
Case Report of a Complex Lateral Femorotibial Joint Injury With Popliteal Tendonitis in a Foal. J Equine Vet Sci 2020; 91:103144. [PMID: 32684272 DOI: 10.1016/j.jevs.2020.103144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/09/2020] [Accepted: 05/15/2020] [Indexed: 11/23/2022]
Abstract
A two-month-old, Spanish breed, foal was referred with right hind limb lameness of two weeks duration. Clinical examinations confirmed a complex combination of lesions within the lateral femorotibial joint, including a subchondral bone cyst in the lateral femoral condyle, a severe popliteal tendonitis, and a delayed cartilage detachment of the lateral femoral condyle. Because of the complex association of these lesions, poor prognosis for an athletic career was given to the owner. Four years later, the filly is pasture sound. Lesions of the popliteal tendon in the horse are uncommon. The popliteal tendon should also be investigated in cases of trauma to the lateral femorotibial joint, as it could be associated with other affected structures.
Collapse
|
45
|
Mocchi M, Dotti S, Del Bue M, Villa R, Bari E, Perteghella S, Torre ML, Grolli S. Veterinary Regenerative Medicine for Musculoskeletal Disorders: Can Mesenchymal Stem/Stromal Cells and Their Secretome Be the New Frontier? Cells 2020; 9:E1453. [PMID: 32545382 PMCID: PMC7349187 DOI: 10.3390/cells9061453] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
Regenerative medicine aims to restore the normal function of diseased or damaged cells, tissues, and organs using a set of different approaches, including cell-based therapies. In the veterinary field, regenerative medicine is strongly related to the use of mesenchymal stromal cells (MSCs), which belong to the body repair system and are defined as multipotent progenitor cells, able to self-replicate and to differentiate into different cell types. This review aims to take stock of what is known about the MSCs and their use in the veterinary medicine focusing on clinical reports on dogs and horses in musculoskeletal diseases, a research field extensively reported in the literature data. Finally, a perspective regarding the use of the secretome and/or extracellular vesicles (EVs) in the veterinary field to replace parental MSCs is provided. The pharmaceuticalization of EVs is wished due to the realization of a Good Manufacturing Practice (GMP product suitable for clinical trials.
Collapse
Affiliation(s)
- Michela Mocchi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (M.M.); (E.B.); (S.P.)
| | - Silvia Dotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 25124 Brescia, Italy; (S.D.); (R.V.)
| | | | - Riccardo Villa
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 25124 Brescia, Italy; (S.D.); (R.V.)
| | - Elia Bari
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (M.M.); (E.B.); (S.P.)
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (M.M.); (E.B.); (S.P.)
- PharmaExceed S.r.l., 27100 Pavia, Italy
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (M.M.); (E.B.); (S.P.)
- PharmaExceed S.r.l., 27100 Pavia, Italy
| | - Stefano Grolli
- Department of Veterinary Medical Science, University of Parma, 43121 Parma, Italy;
| |
Collapse
|
46
|
Voga M, Adamic N, Vengust M, Majdic G. Stem Cells in Veterinary Medicine-Current State and Treatment Options. Front Vet Sci 2020; 7:278. [PMID: 32656249 PMCID: PMC7326035 DOI: 10.3389/fvets.2020.00278] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine is a branch of medicine that develops methods to grow, repair, or replace damaged or diseased cells, organs or tissues. It has gained significant momentum in recent years. Stem cells are undifferentiated cells with the capability to self—renew and differentiate into tissue cells with specialized functions. Stem cell therapies are therefore used to overcome the body's inability to regenerate damaged tissues and metabolic processes after acute or chronic insult. The concept of stem cell therapy was first introduced in 1991 by Caplan, who proposed that massive differentiation of cells into the desired tissue could be achieved by isolation, cultivation, and expansion of stem cells in in vitro conditions. Among different stem cell types, mesenchymal stem cells (MSC) currently seem to be the most suitable for therapeutic purposes, based on their simple isolation and culturing techniques, and lack of ethical issues regarding their usage. Because of their remarkable immunomodulatory abilities, MSCs are increasingly gaining recognition in veterinary medicine. Developments are primarily driven by the limitations of current treatment options for various medical problems in different animal species. MSCs represent a possible therapeutic option for many animal diseases, such as orthopedic, orodental and digestive tract diseases, liver, renal, cardiac, respiratory, neuromuscular, dermal, olfactory, and reproductive system diseases. Although we are progressively gaining an understanding of MSC behavior and their mechanisms of action, some of the issues considering their use for therapy are yet to be resolved. The aim of this review is first to summarize the current knowledge and stress out major issues in stem cell based therapies in veterinary medicine and, secondly, to present results of clinical usage of stem cells in veterinary patients.
Collapse
Affiliation(s)
- Metka Voga
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Neza Adamic
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Modest Vengust
- Faculty of Veterinary Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | |
Collapse
|
47
|
Koch DW, Barrett MF, Jackman BR, MacDonald D, Goodrich LR. Comparison of lameness outcomes in horses with acute or chronic digital lameness that underwent magnetic resonance imaging. N Z Vet J 2020; 68:283-288. [PMID: 32248754 DOI: 10.1080/00480169.2020.1750499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aims: To compare the outcome, in terms of lameness score or return to athletic function, of horses with acute vs. chronic digital lameness that underwent magnetic resonance imaging (MRI) of the distal limb and to compare the proportion of horses that received intra-articular therapy of the distal interphalangeal (DIP) joint and pattern of diagnostic analgesia in these groups. Methods: This is a retrospective study of horses (n = 95) with acute (≤12 weeks; n = 46) or chronic (>12 weeks; n = 49) digital lameness that underwent MRI of the distal limb from 2009-2016, at two equine referral centres in the USA. Criteria for inclusion in the study were that a majority of lameness localised distal to the fetlock, and that lameness assessments for ≥12 months following MRI could be obtained from the medical record or the owner could be interviewed regarding their horse's athletic function. Outcome was characterised by an improvement score where 2 = return to work at a previous or higher level or lameness improved by one grade or more, 1 = return to work at a lower level or lameness improved by less than one grade, and 0 = did not return to work or lameness grade worsened. Whether horses had received intra-articular therapy of the DIP joint and the pattern of diagnostic analgesia prior to MRI was also obtained from medical records or by interviewing the owner. Results: There was a difference (p = 0.004) in the proportion of horses assigned to improvement scores of 0, 1 and 2 between horses with acute or chronic lameness. There was no evidence of a difference in the likelihood of having received intra-articular therapy of the DIP joint prior to MRI between horses with chronic or acute lameness (p = 0.085). Similarly, there was no evidence of a difference in the pattern of diagnostic analgesia prior to MRI between the two groups (p = 0.94). Eighty-two percent of owners of horses with acute and 62% of those with horses with chronic lameness had a positive opinion of the utility of MRI as a diagnostic modality. Conclusion: In a population of horses with digital lameness undergoing MRI, a difference in the outcome, in terms of lameness score or return to athletic function was identified between horses with acute lameness compared to those with chronic lameness. Clinical relevance: Horses with digital lameness that undergo MRI when the lameness is acute may have an improved prognosis due to accurate diagnosis and earlier application of appropriate therapy.
Collapse
Affiliation(s)
- D W Koch
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - M F Barrett
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | - L R Goodrich
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
48
|
Bundgaard L, Stensballe A, Elbæk KJ, Berg LC. Mass spectrometric analysis of the in vitro secretome from equine bone marrow-derived mesenchymal stromal cells to assess the effect of chondrogenic differentiation on response to interleukin-1β treatment. Stem Cell Res Ther 2020; 11:187. [PMID: 32434555 PMCID: PMC7238576 DOI: 10.1186/s13287-020-01706-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/14/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background Similar to humans, the horse is a long-lived, athletic species. The use of mesenchymal stromal cells (MSCs) is a relatively new frontier, but has been used with promising results in treating joint diseases, e.g., osteoarthritis. It is believed that MSCs exert their main therapeutic effects through secreted trophic biomolecules. Therefore, it has been increasingly important to characterize the MSC secretome. It has been shown that the effect of the MSCs is strongly influenced by the environment in the host compartment, and it is a crucial issue when considering MSC therapy. The aim of this study was to investigate differences in the in vitro secreted protein profile between naïve and chondrogenic differentiating bone marrow-derived (BM)-MSCs when exposed to an inflammatory environment. Methods Equine BM-MSCs were divided into a naïve group and a chondrogenic group. Cells were treated with normal expansion media or chondrogenic media. Cells were treated with IL-1β for a period of 5 days (stimulation), followed by 5 days without IL-1β (recovery). Media were collected after 48 h and 10 days. The secretomes were digested and analyzed by nanoLC-MS/MS to unravel the orchestration of proteins. Results The inflammatory proteins IL6, CXCL1, CXCL6, CCL7, SEMA7A, SAA, and haptoglobin were identified in the secretome after 48 h from all cells stimulated with IL-1β. CXCL8, OSM, TGF-β1, the angiogenic proteins VCAM1, ICAM1, VEGFA, and VEGFC, the proteases MMP1 and MMP3, and the protease inhibitor TIMP3 were among the proteins only identified in the secretome after 48 h from cells cultured in normal expansion media. After 10-day incubation, the proteins CXCL1, CXCL6, and CCL7 were still identified in the secretome from BM-MSCs stimulated with IL-1β, but the essential inducer of inflammation, IL6, was only identified in the secretome from cells cultured in normal expansion media. Conclusion The findings in this study indicate that naïve BM-MSCs have a more extensive inflammatory response at 48 h to stimulation with IL-1β compared to BM-MSCs undergoing chondrogenic differentiation. This extensive inflammatory response decreased after 5 days without IL-1β (day 10), but a difference in composition of the secretome between naïve and chondrogenic BM-MSCs was still evident.
Collapse
Affiliation(s)
- Louise Bundgaard
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, 2630, Taastrup, Denmark.
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7E, 9220, Aalborg Ø, Denmark
| | - Kirstine Juul Elbæk
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7E, 9220, Aalborg Ø, Denmark
| | - Lise Charlotte Berg
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, 2630, Taastrup, Denmark
| |
Collapse
|
49
|
Delco ML, Goodale M, Talts JF, Pownder SL, Koff MF, Miller AD, Nixon B, Bonassar LJ, Lundgren-Åkerlund E, Fortier LA. Integrin α10β1-Selected Mesenchymal Stem Cells Mitigate the Progression of Osteoarthritis in an Equine Talar Impact Model. Am J Sports Med 2020; 48:612-623. [PMID: 32004077 DOI: 10.1177/0363546519899087] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Early intervention with mesenchymal stem cells (MSCs) after articular trauma has the potential to limit progression of focal lesions and prevent ongoing cartilage degeneration by modulating the joint environment and/or contributing to repair. Integrin α10β1 is the main collagen type II binding receptor on chondrocytes, and MSCs that are selected for high expression of the α10 subunit have improved chondrogenic potential. The ability of α10β1-selected (integrin α10high) MSCs to protect cartilage after injury has not been investigated. PURPOSE To investigate integrin α10high MSCs to prevent posttraumatic osteoarthritis in an equine model of impact-induced talar injury. STUDY DESIGN Controlled laboratory study. METHODS Focal cartilage injuries were created on the tali of horses (2-5 years, n = 8) by using an impacting device equipped to measure impact stress. Joints were treated with 20 × 106 allogenic adipose-derived α10high MSCs or saline vehicle (control) 4 days after injury. Synovial fluid was collected serially and analyzed for protein content, cell counts, markers of inflammation (prostaglandin E2, tumor necrosis factor α) and collagen homeostasis (procollagen II C-propeptide, collagen type II cleavage product), and glycosaminoglycan content. Second-look arthroscopy was performed at 6 weeks, and horses were euthanized at 6 months. Joints were imaged with radiographs and quantitative 3-T magnetic resonance imaging. Postmortem examinations were performed, and India ink was applied to the talar articular surface to identify areas of cartilage fibrillation. Synovial membrane and osteochondral histology was performed, and immunohistochemistry was used to assess type I and II collagen and lubricin. A mixed effect model with Tukey post hoc and linear contrasts or paired t tests were used, as appropriate. RESULTS Integrin α10high MSC-treated joints had less subchondral bone sclerosis on radiographs (P = .04) and histology (P = .006) and less cartilage fibrillation (P = .04) as compared with control joints. On gross pathology, less India ink adhered to impact sites in treated joints than in controls, which may be explained by the finding of more prominent lubricin immunostaining in treated joints. Prostaglandin E2 concentration in synovial fluid and mononuclear cell synovial infiltrate were increased in treated joints, suggesting possible immunomodulation by integrin α10high MSCs. CONCLUSION Intra-articular administration of integrin α10high MSCs is safe, and evidence suggests that the cells mitigate the effects of joint trauma. CLINICAL RELEVANCE This preclinical study indicates that intra-articular therapy with integrin α10high MSCs after joint trauma may be protective against posttraumatic osteoarthritis.
Collapse
|
50
|
Twomey-Kozak J, Jayasuriya CT. Meniscus Repair and Regeneration: A Systematic Review from a Basic and Translational Science Perspective. Clin Sports Med 2020; 39:125-163. [PMID: 31767102 DOI: 10.1016/j.csm.2019.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Meniscus injuries are among the most common athletic injuries and result in functional impairment in the knee. Repair is crucial for pain relief and prevention of degenerative joint diseases like osteoarthritis. Current treatments, however, do not produce long-term improvements. Thus, recent research has been investigating new therapeutic options for regenerating injured meniscal tissue. This review comprehensively details the current methodologies being explored in the basic sciences to stimulate better meniscus injury repair. Furthermore, it describes how these preclinical strategies may improve current paradigms of how meniscal injuries are clinically treated through a unique and alternative perspective to traditional clinical methodology.
Collapse
Affiliation(s)
- John Twomey-Kozak
- Department of Orthopaedics, Brown University/Rhode Island Hospital, Box G-A1, Providence, RI 02912, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Brown University/Rhode Island Hospital, Box G-A1, Providence, RI 02912, USA.
| |
Collapse
|