1
|
Peltier S, Marin M, Dzieciatkowska M, Dussiot M, Roy MK, Bruce J, Leblanc L, Hadjou Y, Georgeault S, Fricot A, Roussel C, Stephenson D, Casimir M, Sissoko A, Paye F, Dokmak S, Ndour PA, Roingeard P, Gautier EF, Spitalnik SL, Hermine O, Buffet PA, D'Alessandro A, Amireault P. Proteostasis and metabolic dysfunction in a distinct subset of storage-induced senescent erythrocytes targeted for clearance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612195. [PMID: 39314353 PMCID: PMC11419012 DOI: 10.1101/2024.09.11.612195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Although refrigerated storage slows the metabolism of volunteer donor RBCs, cellular aging still occurs throughout this in vitro process, which is essential in transfusion medicine. Storage-induced microerythrocytes (SMEs) are morphologically-altered senescent RBCs that accumulate during storage and which are cleared from circulation following transfusion. However, the molecular and cellular alterations that trigger clearance of this RBC subset remain to be identified. Using a staining protocol that sorts long-stored SMEs (i.e., CFSE high ) and morphologically-normal RBCs (CFSE low ), these in vitro aged cells were characterized. Metabolomics analysis identified depletion of energy, lipid-repair, and antioxidant metabolites in CFSE high RBCs. By redox proteomics, irreversible protein oxidation primarily affected CFSE high RBCs. By proteomics, 96 proteins, mostly in the proteostasis family, had relocated to CFSE high RBC membranes. CFSE high RBCs exhibited decreased proteasome activity and deformability; increased phosphatidylserine exposure, osmotic fragility, and endothelial cell adherence; and were cleared from the circulation during human spleen ex vivo perfusion. Conversely, molecular, cellular, and circulatory properties of long-stored CFSE low RBCs resembled those of short-stored RBCs. CFSE high RBCs are morphologically and metabolically altered, have irreversibly oxidized and membrane-relocated proteins, and exhibit decreased proteasome activity. In vitro aging during storage selectively alters metabolism and proteostasis in SMEs, targeting these senescent cells for clearance.
Collapse
|
2
|
Melo D, Ferreira F, Teles MJ, Porto G, Coimbra S, Rocha S, Santos-Silva A. Catalase, Glutathione Peroxidase, and Peroxiredoxin 2 in Erythrocyte Cytosol and Membrane in Hereditary Spherocytosis, Sickle Cell Disease, and β-Thalassemia. Antioxidants (Basel) 2024; 13:629. [PMID: 38929068 PMCID: PMC11201268 DOI: 10.3390/antiox13060629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Catalase (CAT), glutathione peroxidase (GPx), and peroxiredoxin 2 (Prx2) can counteract the deleterious effects of oxidative stress (OS). Their binding to the red blood cell (RBC) membrane has been reported in non-immune hemolytic anemias (NIHAs). Our aim was to evaluate the relationships between CAT, GPx, and Prx2, focusing on their role at the RBC membrane, in hereditary spherocytosis (HS), sickle cell disease (SCD), β-thalassemia (β-thal), and healthy individuals. The studies were performed in plasma and in the RBC cytosol and membrane, evaluating OS biomarkers and the enzymatic activities and/or the amounts of CAT, GPx, and Prx2. The binding of the enzymes to the membrane appears to be the primary protective mechanism against oxidative membrane injuries in healthy RBCs. In HS (unsplenectomized) and β-thal, translocation from the cytosol to the membrane of CAT and Prx2, respectively, was observed, probably to counteract lipid peroxidation. RBCs from splenectomized HS patients showed the highest membrane-bound hemoglobin, CAT, and GPx amounts in the membrane. SCD patients presented the lowest amount of enzyme linkage, possibly due to structural changes induced by sickle hemoglobin. The OS-induced changes and antioxidant response were different between the studied NIHAs and may contribute to the different clinical patterns in these patients.
Collapse
Affiliation(s)
- Daniela Melo
- UCIBIO–Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (A.S.-S.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Fátima Ferreira
- Hematology Service, Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal;
| | - Maria José Teles
- Laboratory Hematology Service, Santo António Hospital, Centro Hospitalar do Porto, 4099-001 Porto, Portugal;
- Imuno-Hemotherapy Service, Santo António Hospital, Centro Hospitalar do Porto, 4099-001 Porto, Portugal;
| | - Graça Porto
- Imuno-Hemotherapy Service, Santo António Hospital, Centro Hospitalar do Porto, 4099-001 Porto, Portugal;
- Center for Predictive and Preventive Genetics (CGPP), Institute for Molecular and Cellular Biology (CGPP/IBMC), 4200-135 Porto, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Susana Coimbra
- UCIBIO–Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (A.S.-S.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
- 1H-TOXRUN–One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
| | - Susana Rocha
- UCIBIO–Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (A.S.-S.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| | - Alice Santos-Silva
- UCIBIO–Applied Molecular Biosciences Unit, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal; (D.M.); (A.S.-S.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4051-401 Porto, Portugal
| |
Collapse
|
3
|
Remigante A, Spinelli S, Patanè GT, Barreca D, Straface E, Gambardella L, Bozzuto G, Caruso D, Falliti G, Dossena S, Marino A, Morabito R. AAPH-induced oxidative damage reduced anion exchanger 1 (SLC4A1/AE1) activity in human red blood cells: protective effect of an anthocyanin-rich extract. Front Physiol 2023; 14:1303815. [PMID: 38111898 PMCID: PMC10725977 DOI: 10.3389/fphys.2023.1303815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction: During their lifespan in the bloodstream, red blood cells (RBCs) are exposed to multiple stressors, including increased oxidative stress, which can affect their morphology and function, thereby contributing to disease. Aim: This investigation aimed to explore the cellular and molecular mechanisms related to oxidative stress underlying anion exchanger 1 activity (band 3, SLC4A1/AE1) in human RBCs. To achieve this aim, the relationship between RBC morphology and functional and metabolic activity has been explored. Moreover, the potential protective effect of an anthocyanin-enriched fraction extracted from Callistemon citrinus flowers was studied. Methods: Cellular morphology, parameters of oxidative stress, as well as the anion exchange capability of band 3 have been analyzed in RBCs treated for 1 h with 50 mM of the pro-oxidant 2,2'-azobis (2-methylpropionamide)-dihydrochloride (AAPH). Before or after the oxidative insult, subsets of cells were exposed to 0.01 μg/mL of an anthocyanin-enriched fraction for 1 h. Results: Exposure to AAPH caused oxidative stress, exhaustion of reduced glutathione, and over-activation of the endogenous antioxidant machinery, resulting in morphological alterations of RBCs, specifically the formation of acanthocytes, increased lipid peroxidation and oxidation of proteins, as well as abnormal distribution and hyper-phosphorylation of band 3. Expected, oxidative stress was also associated with a decreased band 3 ion transport activity and an increase of oxidized haemoglobin, which led to abnormal clustering of band 3. Exposure of cells to the anthocyanin-enriched fraction prior to, but not after, oxidative stress efficiently counteracted oxidative stress-related alterations. Importantly, protection of band3 function from oxidative stress could only be achieved in intact cells and not in RBC ghosts. Conclusion: These findings contribute a) to clarify oxidative stress-related physiological and biochemical alterations in human RBCs, b) propose anthocyanins as natural antioxidants to neutralize oxidative stress-related modifications, and 3) suggest that cell integrity, and therefore a cytosolic component, is required to reverse oxidative stress-related pathophysiological derangements in human mature RBCs.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sara Spinelli
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giuseppe Tancredi Patanè
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Davide Barreca
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Giuseppe Falliti
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | - Angela Marino
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
4
|
D’Alessandro A, Anastasiadi AT, Tzounakas VL, Nemkov T, Reisz JA, Kriebardis AG, Zimring JC, Spitalnik SL, Busch MP. Red Blood Cell Metabolism In Vivo and In Vitro. Metabolites 2023; 13:793. [PMID: 37512500 PMCID: PMC10386156 DOI: 10.3390/metabo13070793] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Red blood cells (RBC) are the most abundant cell in the human body, with a central role in oxygen transport and its delivery to tissues. However, omics technologies recently revealed the unanticipated complexity of the RBC proteome and metabolome, paving the way for a reinterpretation of the mechanisms by which RBC metabolism regulates systems biology beyond oxygen transport. The new data and analytical tools also informed the dissection of the changes that RBCs undergo during refrigerated storage under blood bank conditions, a logistic necessity that makes >100 million units available for life-saving transfusions every year worldwide. In this narrative review, we summarize the last decade of advances in the field of RBC metabolism in vivo and in the blood bank in vitro, a narrative largely influenced by the authors' own journeys in this field. We hope that this review will stimulate further research in this interesting and medically important area or, at least, serve as a testament to our fascination with this simple, yet complex, cell.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Alkmini T. Anastasiadi
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (T.N.); (J.A.R.)
| | - Anastsios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (A.T.A.); (A.G.K.)
| | - James C. Zimring
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA;
| | | | | |
Collapse
|
5
|
Sadowska-Bartosz I, Bartosz G. Peroxiredoxin 2: An Important Element of the Antioxidant Defense of the Erythrocyte. Antioxidants (Basel) 2023; 12:antiox12051012. [PMID: 37237878 DOI: 10.3390/antiox12051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 107 M-1 s-1). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| |
Collapse
|
6
|
Melo D, Coimbra S, Rocha S, Santos-Silva A. Inhibition of erythrocyte's catalase, glutathione peroxidase or peroxiredoxin 2 - Impact on cytosol and membrane. Arch Biochem Biophys 2023; 739:109569. [PMID: 36918042 DOI: 10.1016/j.abb.2023.109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Catalase (CAT), glutathione peroxidase (GPx) and Prx2 (peroxiredoxin 2) are the main antioxidant enzymatic defenses of erythrocytes. They prevent and minimize oxidative injuries in red blood cell (RBC) components, which are continuously exposed to oxidative stress (OS). The crosstalk between CAT, GPx and Prx2 is still not fully disclosed, as well as why these typically cytoplasmic enzymes bind to the RBC membrane. Our aim was to understand the interplay between CAT, GPx and Prx2 in the erythrocyte's cytosol and membrane. Under specific (partial) inhibition of each enzyme and increasing H2O2-induced OS conditions, we evaluated the enzyme activities and amounts, the binding of CAT, GPx and Prx2 to RBC membrane, and biomarkers of OS, such as the reduced and oxidized glutathione levels, thiobarbituric acid reactive substances (TBARS) levels, membrane bound hemoglobin and total antioxidant status. Our results support the hypothesis that when high levels of H2O2 get within the erythrocyte, CAT is the main player in the antioxidant protection of the cell, while Prx2 and GPx have a less striking role. Moreover, we found that CAT, appears to have more importance in the antioxidant protection of cytoplasm than of the membrane components, since when the activity of CAT is disturbed, GPx and Prx2 are both activated in the cytosol and mobilized to the membrane. In more severe OS conditions, the antioxidant activity of GPx is more significant at the membrane, as we found that GPx moves from the cytosol to the membrane, probably to protect it from lipid peroxidation.
Collapse
Affiliation(s)
- Daniela Melo
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Susana Coimbra
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal; TOXRUN- Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal.
| | - Susana Rocha
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| | - Alice Santos-Silva
- UCIBIO, REQUIMTE, Laboratory of Biochemistry, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
7
|
Möller M, Orrico F, Villar S, López AC, Silva N, Donzé M, Thomson L, Denicola A. Oxidants and Antioxidants in the Redox Biochemistry of Human Red Blood Cells. ACS OMEGA 2023; 8:147-168. [PMID: 36643550 PMCID: PMC9835686 DOI: 10.1021/acsomega.2c06768] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/09/2022] [Indexed: 06/01/2023]
Abstract
Red blood cells (RBCs) are exposed to both external and internal sources of oxidants that challenge their integrity and compromise their physiological function and supply of oxygen to tissues. Autoxidation of oxyhemoglobin is the main source of endogenous RBC oxidant production, yielding superoxide radical and then hydrogen peroxide. In addition, potent oxidants from other blood cells and the surrounding endothelium can reach the RBCs. Abundant and efficient enzymatic systems and low molecular weight antioxidants prevent most of the damage to the RBCs and also position the RBCs as a sink of vascular oxidants that allow the body to maintain a healthy circulatory system. Among the antioxidant enzymes, the thiol-dependent peroxidase peroxiredoxin 2, highly abundant in RBCs, is essential to keep the redox balance. A great part of the RBC antioxidant activity is supported by an active glucose metabolism that provides reducing power in the form of NADPH via the pentose phosphate pathway. There are several RBC defects and situations that generate oxidative stress conditions where the defense mechanisms are overwhelmed, and these include glucose-6-phosphate dehydrogenase deficiencies (favism), hemoglobinopathies like sickle cell disease and thalassemia, as well as packed RBCs for transfusion that suffer from storage lesions. These oxidative stress-associated pathologies of the RBCs underline the relevance of redox balance in these anucleated cells that lack a mechanism of DNA-inducible antioxidant response and rely on a complex and robust network of antioxidant systems.
Collapse
Affiliation(s)
- Matias
N. Möller
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Florencia Orrico
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Sebastián
F. Villar
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Ana C. López
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Nicolás Silva
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
- Departamento
de Medicina Transfusional, Hospital de Clínicas, Facultad de
Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Marcel Donzé
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Leonor Thomson
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Ana Denicola
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
8
|
Hyperoxidized Peroxiredoxin 2 Is a Possible Biomarker for the Diagnosis of Obstructive Sleep Apnea. Antioxidants (Basel) 2022; 11:antiox11122486. [PMID: 36552694 PMCID: PMC9774165 DOI: 10.3390/antiox11122486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Peroxiredoxin (Prx) 2 in red blood cells (RBCs) reacts with various reactive oxygen species and changes to hyperoxidized Prx2 (Prx2-SO2/3). Therefore, Prx2 may serve as an indicator of oxidative stress in vivo. This study aimed to analyze Prx2-SO2/3 levels in clinical samples to examine whether the oxidation state of Prx2 in human RBCs reflects the pathological condition of oxidative stress diseases. We first focused on obstructive sleep apnea (OSA), a hypoxic stress-induced disease of the respiratory system, and investigated the levels of Prx2-SO2/3 accumulated in the RBCs of OSA patients. In measurements on a small number of OSA patients and healthy subjects, levels of Prx2-SO2/3 accumulation in patients with OSA were clearly increased compared to those in healthy subjects. Hence, we proceeded to validate these findings with more samples collected from patients with OSA. The results revealed significantly higher levels of erythrocytic Prx2-SO2/3 in patients with OSA than in healthy subjects, as well as a positive correlation between the severity of OSA and Prx2-SO2/3 levels in the RBCs. Moreover, we performed a chromatographic study to show the structural changes of Prx2 due to hyperoxidation. Our findings demonstrated that the Prx2-SO2/3 molecules in RBCs from patients with OSA were considerably more hydrophilic than the reduced form of Prx2. These results implicate Prx2-SO2/3 as a promising candidate biomarker for OSA.
Collapse
|
9
|
Maria E, Das S, Varghese AM, Thangheswaran H, John M. Differentially Expressed Erythrocyte Proteins in Neuromyelitis Optica Spectrum Disorders and Their Functional Annotation Using DAVID Bioinformatics Tool. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422040158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Tzounakas VL, Anastasiadi AT, Arvaniti VZ, Lelli V, Fanelli G, Paronis EC, Apostolidou AC, Balafas EG, Kostomitsopoulos NG, Papageorgiou EG, Papassideri IS, Stamoulis K, Kriebardis AG, Rinalducci S, Antonelou MH. Supplementation with uric and ascorbic acid protects stored red blood cells through enhancement of non-enzymatic antioxidant activity and metabolic rewiring. Redox Biol 2022; 57:102477. [PMID: 36155342 PMCID: PMC9513173 DOI: 10.1016/j.redox.2022.102477] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Redox imbalance and oxidative stress have emerged as generative causes of the structural and functional degradation of red blood cells (RBC) that happens during their hypothermic storage at blood banks. The aim of the present study was to examine whether the antioxidant enhancement of stored RBC units following uric (UA) and/or ascorbic acid (AA) supplementation can improve their storability as well as post-transfusion phenotypes and recovery by using in vitro and animal models, respectively. For this purpose, 34 leukoreduced CPD/SAGM RBC units were aseptically split in 4 satellite units each. UA, AA or their mixture were added in the three of them, while the fourth was used as control. Hemolysis as well as redox and metabolic parameters were studied in RBC units throughout storage. The addition of antioxidants maintained the quality parameters of stored RBCs, (e.g., hemolysis, calcium homeostasis) and furthermore, shielded them against oxidative defects by boosting extracellular and intracellular (e.g., reduced glutathione; GSH) antioxidant powers. Higher levels of GSH seemed to be obtained through distinct metabolic rewiring in the modified units: methionine-cysteine metabolism in UA samples and glutamine production in the other two groups. Oxidatively-induced hemolysis, reactive oxygen species accumulation and membrane lipid peroxidation were lower in all modifications compared to controls. Moreover, denatured/oxidized Hb binding to the membrane was minor, especially in the AA and mix treatments during middle storage. The treated RBC were able to cope against pro-oxidant triggers when found in a recipient mimicking environment in vitro, and retain control levels of 24h recovery in mice circulation. The currently presented study provides (a) a detailed picture of the effect of UA/AA administration upon stored RBCs and (b) insight into the differential metabolic rewiring when distinct antioxidant "enhancers" are used.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alkmini T Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Vasiliki-Zoi Arvaniti
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Veronica Lelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Efthymios C Paronis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Anastasia C Apostolidou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Evangelos G Balafas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Nikolaos G Kostomitsopoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|
11
|
Metabolic reprogramming under hypoxic storage preserves faster oxygen unloading from stored red blood cells. Blood Adv 2022; 6:5415-5428. [PMID: 35736672 DOI: 10.1182/bloodadvances.2022007774] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/11/2022] [Indexed: 11/20/2022] Open
Abstract
Stored red blood cells (RBCs) incur biochemical and morphological changes, collectively termed the storage lesion. Functionally, the storage lesion manifests as slower oxygen unloading from RBCs, which may compromise the efficacy of transfusions where the clinical imperative is to rapidly boost oxygen delivery to tissues. Recent analysis of large real-world data linked longer storage with increased recipient mortality. Biochemical rejuvenation with a formulation of adenosine, inosine, and pyruvate can restore gas-handling properties, but its implementation is impractical for most clinical scenarios. We tested whether storage under hypoxia, previously shown to slow biochemical degradation, also preserves gas-handling properties of RBCs. A microfluidic chamber, designed to rapidly switch between oxygenated and anoxic superfusates, was used for single-cell oxygen saturation imaging on samples stored for up to 49 days. Aliquots were also analyzed flow-cytometrically for side-scatter (a proposed proxy of O2 unloading kinetics), metabolomics, lipidomics and redox proteomics. For benchmarking, units were biochemically rejuvenated at four weeks of standard storage. Hypoxic storage hastened O2 unloading in units stored to 35 days, an effect that correlated with side-scatter but was not linked to post-translational modifications of hemoglobin. Although hypoxic storage and rejuvenation produced distinct biochemical changes, a subset of metabolites including pyruvate, sedoheptulose 1-phosphate, and 2/3 phospho-D-glycerate, was a common signature that correlated with changes in O2 unloading. Correlations between gas-handling and lipidomic changes were modest. Thus, hypoxic storage of RBCs preserves key metabolic pathways and O2 exchange properties, thereby improving the functional quality of blood products and potentially influencing transfusion outcomes.
Collapse
|
12
|
Changing Perspectives from Oxidative Stress to Redox Signaling-Extracellular Redox Control in Translational Medicine. Antioxidants (Basel) 2022; 11:antiox11061181. [PMID: 35740078 PMCID: PMC9228063 DOI: 10.3390/antiox11061181] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 12/07/2022] Open
Abstract
Extensive research has changed the understanding of oxidative stress that has been linked to every major disease. Today we distinguish oxidative eu- and distress, acknowledging that redox modifications are crucial for signal transduction in the form of specific thiol switches. Long underestimated, reactive species and redox proteins of the Thioredoxin (Trx) family are indeed essential for physiological processes. Moreover, extracellular redox proteins, low molecular weight thiols and thiol switches affect signal transduction and cell–cell communication. Here, we highlight the impact of extracellular redox regulation for health, intermediate pathophenotypes and disease. Of note, recent advances allow the analysis of redox changes in body fluids without using invasive and expensive techniques. With this new knowledge in redox biochemistry, translational strategies can lead to innovative new preventive and diagnostic tools and treatments in life sciences and medicine.
Collapse
|
13
|
Oh JY, Bae CY, Kasztan M, Pollock DM, Russell RT, Lebensburger J, Patel RP. Peroxiredoxin-2 recycling is slower in denser and pediatric sickle cell red cells. FASEB J 2022; 36:e22267. [PMID: 35306694 PMCID: PMC10155932 DOI: 10.1096/fj.202200052r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 11/11/2022]
Abstract
Peroxiredoxin-2 (Prx-2) is a critical antioxidant protein in red blood cells (RBC). Prx-2 is oxidized to a disulfide covalently-bound dimer by H2 O2 , and then reduced back by the NADPH-dependent thioredoxin-thioredoxin reductase system. The reduction of oxidized Prx-2 is relatively slow in RBCs. Since Prx-2 is highly abundant, Prx-2s' peroxidase catalytic cycle is not considered to be limiting under normal conditions. However, whether Prx-2 recycling becomes limiting when RBCs are exposed to stress is not known. Using three different model systems characterized by increased oxidative damage to RBCs spanning the physiologic (endogenous RBCs of different ages), therapeutic (cold-stored RBCs in blood banks) and pathologic (RBCs from sickle cell disease (SCD) patients and humanized SCD mice) spectrum, basal levels of Prx-2 oxidation and Prx-2 recycling kinetics after addition of H2 O2 were determined. The reduction of oxidized Prx-2 was significantly slower in older versuin older versus younger RBCs, in RBCs stored for 4-5 weeks compared to 1 week, and in RBC from pediatric SCD patients compared to RBCs from control non-SCD patients. Similarly, the rate of Prx-2 recycling was slower in humanized SCD mice compared to WT mice. Treatment of RBC with carbon monoxide (CO) to limit heme-peroxidase activity had no effect on Prx-2 recycling kinetics. Treatment with glucose attenuated slowed Prx-2 recycling in older RBCs and SCD RBCs, but not stored RBCs. In conclusion, the reduction of oxidized Prx-2 can be further slowed in RBCs, which may limit the protection afforded by this antioxidant protein in settings associated with erythrocyte stress.
Collapse
Affiliation(s)
- Joo-Yeun Oh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chae Yun Bae
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Malgorzata Kasztan
- Pediatric Hematology Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Robert T Russell
- Division of Pediatric Surgery, Department of Surgery, Children's of Alabama, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey Lebensburger
- Pediatric Hematology Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rakesh P Patel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Barzegar S, Asri Kojabad A, Manafi Shabestari R, Barati M, Rezvany MR, Safa M, Amani A, Pourfathollah A, Abbaspour A, Rahgoshay M, Hashemi J, Mohammadi Najafabadi M, Zaker F. Use of antioxidant nanoparticles to reduce oxidative stress in blood storage. Biotechnol Appl Biochem 2021; 69:1712-1722. [PMID: 34415072 DOI: 10.1002/bab.2240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/02/2021] [Indexed: 11/09/2022]
Abstract
Oxidative damage by free radicals has a negative effect on blood quality during storage. Antioxidant nanoparticles can prevent oxidative stress. We use SOD-CAT-Alb-PEG-PLGA- nanoparticles to reduce the effects of oxidative stress in blood storage. Electrospray was employed to prepare nanoparticles. Nanoparticles entered the test bags and were kept for 35 days from the time of donation under standard conditions. On target days, experiments were performed on the samples taken. The examination included blood smear, red blood cells count, hemoglobin, hematocrit, K, Fe, glutathione peroxidase, glutathion reductase, glucose-6-phosphate dehydrogenase, prooxidant-antioxidant balance, malondialdehyde, and flow cytometric assay for phosphatidylserine. The repeated measures analysis was performed on samples every week. Morphological changes were less in the test group compared to the control. The quantitative hemolysis profile test showed significant changes in the test and control groups (p < 0.05) in consecutive weeks except for K and Fe. Oxidative stress parameters too showed a significant change during the target days of the examination (p < 0.05). Also, the phosphatidylserine expression was increased in control groups more than test in consecutive weeks (p < 0.05). It seems that the use of antioxidant nanoparticles improves the quality of stored red blood cells and can prevent posttransfusion complications and blood loss by reducing oxidative stress.
Collapse
Affiliation(s)
- Saeid Barzegar
- Department of Pathobiology and laboratory sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Asri Kojabad
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Rima Manafi Shabestari
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Barati
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Rezvany
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.,Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.,Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska, Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Majid Safa
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Amani
- Department of Biotechnology, School of Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Aliakbar Pourfathollah
- Department of Immunology, School of Medicine, Tarbiat Modares University, Iranian Blood Transfusion Research Center, Tehran, Iran
| | - Alireza Abbaspour
- Department of Pathobiology and laboratory sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahsa Rahgoshay
- Department of Hematology, School of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Hashemi
- Department of Pathobiology and laboratory sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Farhad Zaker
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Bertolone L, Roy MK, Hay AM, Morrison EJ, Stefanoni D, Fu X, Kanias T, Kleinman S, Dumont LJ, Stone M, Nemkov T, Busch MP, Zimring JC, D'Alessandro A. Impact of taurine on red blood cell metabolism and implications for blood storage. Transfusion 2020; 60:1212-1226. [PMID: 32339326 DOI: 10.1111/trf.15810] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Taurine is an antioxidant that is abundant in some common energy drinks. Here we hypothesized that the antioxidant activity of taurine in red blood cells (RBCs) could be leveraged to counteract storage-induced oxidant stress. STUDY DESIGN AND METHODS Metabolomics analyses were performed on plasma and RBCs from healthy volunteers (n = 4) at baseline and after consumption of a whole can of a common, taurine-rich (1000 mg/serving) energy drink. Reductionistic studies were also performed by incubating human RBCs with taurine ex vivo (unlabeled or 13 C15 N-labeled) at increasing doses (0, 100, 500, and 1000 μmol/L) at 37°C for up to 16 hours, with and without oxidant stress challenge with hydrogen peroxide (0.1% or 0.5%). Finally, we stored human and murine RBCs under blood bank conditions in additives supplemented with 500 μmol/L taurine, before metabolomics and posttransfusion recovery studies. RESULTS Consumption of energy drinks increased plasma and RBC levels of taurine, which was paralleled by increases in glycolysis and glutathione (GSH) metabolism in the RBC. These observations were recapitulated ex vivo after incubation with taurine and hydrogen peroxide. Taurine levels in the RBCs from the REDS-III RBC-Omics donor biobank were directly proportional to the total levels of GSH and glutathionylated metabolites and inversely correlated to oxidative hemolysis measurements. Storage of human RBCs in the presence of taurine improved energy and redox markers of storage quality and increased posttransfusion recoveries in FVB mice. CONCLUSION Taurine modulates RBC antioxidant metabolism in vivo and ex vivo, an observation of potential relevance to transfusion medicine.
Collapse
Affiliation(s)
- Lorenzo Bertolone
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA.,University of Verona, Verona, Italy
| | - Micaela Kalani Roy
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA
| | - Ariel M Hay
- University of Virginia, Charlottesville, Virginia, USA
| | - Evan J Morrison
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA
| | - Xiaoyun Fu
- BloodWorks Northwest, Seattle, Washington, USA
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado, USA
| | - Steve Kleinman
- University of British Columbia, Victoria, British Columbia, Canada
| | | | - Mars Stone
- Vitalant Research Institute, San Francisco, California, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA
| | | | | | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus Denver, Aurora, Colorado, USA.,University of Verona, Verona, Italy
| |
Collapse
|
16
|
Yu G, Zhang Y, Liu S, Fan L, Yang Y, Huang Y, Song J. Small interfering RNA targeting of peroxiredoxinⅡ gene enhances formaldehyde-induced toxicity in bone marrow cells isolated from BALB/c mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 181:89-95. [PMID: 31176251 DOI: 10.1016/j.ecoenv.2019.05.086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUDS Formaldehyde (FA) is an important chemicals that can induce sick house syndrome and may be an incentive of childhood leukemia, however the exact mechanism is unclear. Oxidative stress may be an underlying reason of cancer occurring, while diverse antioxidants can protect the bone marrow cells (BMCs) from damaged. PeroxiredoxinⅡ (PrxⅡ) is an important member of the peroxiredoxin family, can remove reactive oxygen species (ROS), and is closely related with the occurrence of tumor. The present study aimed to detect a possible relationship between PrxⅡ gene and FA-induced bone marrow toxicity. METHODS The BMCs were taken out from BALB/c mice, then exposed to control and different doses of FA (50, 100, 200 μmol/L). The cell viability, ROS level and expressions of PrxⅡ gene were examined. Afterwards, we used a small interfering RNA (siRNA) to inhibit the expression of PrxⅡ gene, and chose 100 μmol/L FA for exposure dose, to examine the cell viability, ROS level, cell cycle, apoptotic rate, expressions of PrxⅡ gene in BMCs. RESULTS After a 24 h exposure to different doses of FA, the cell viability, expressions of PrxⅡ gene were decreased with the increasing of FA concentration, while the ROS level was increased. Inhibiting PrxⅡ gene's expression could enhance above FA-induced events. Additionally, siRNA targeting of PrxⅡcould aggravate cell cycle arrest to inhibit cell's growth and development, as well as increase apoptotic rates induced by FA. CONCLUSION These results demonstrated that PrxⅡ gene was involved in FA-induced bone marrow toxicity, and siRNA targeting of PrxⅡcould enhance this toxic process.
Collapse
Affiliation(s)
- Guangyan Yu
- (Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin Province130021, China.
| | - Yixin Zhang
- (Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin Province130021, China
| | - Shimeng Liu
- (Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin Province130021, China
| | - Lida Fan
- (Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin Province130021, China
| | - Yixue Yang
- (Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin Province130021, China
| | - Yulu Huang
- (Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin Province130021, China
| | - Jiayi Song
- (Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, Jilin Province130021, China
| |
Collapse
|
17
|
Schubert P, Culibrk B, Chen D, Serrano K, Levin E, Chen Z, Zoescher P, Goodrich RP, Yoshida T, Devine DV. Improved in vitro quality of stored red blood cells upon oxygen reduction prior to riboflavin/UV light treatment of whole blood. Transfusion 2019; 59:3197-3204. [DOI: 10.1111/trf.15485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 06/10/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Peter Schubert
- Centre for Innovation, Canadian Blood ServicesUniversity of British Columbia Vancouver British Columbia Canada
- Centre for Blood ResearchUniversity of British Columbia Vancouver British Columbia Canada
- Department of Pathology and Laboratory MedicineUniversity of British Columbia Vancouver British Columbia Canada
| | - Brankica Culibrk
- Centre for Innovation, Canadian Blood ServicesUniversity of British Columbia Vancouver British Columbia Canada
- Centre for Blood ResearchUniversity of British Columbia Vancouver British Columbia Canada
| | - Deborah Chen
- Centre for Blood ResearchUniversity of British Columbia Vancouver British Columbia Canada
- Department of Pathology and Laboratory MedicineUniversity of British Columbia Vancouver British Columbia Canada
| | - Katherine Serrano
- Centre for Innovation, Canadian Blood ServicesUniversity of British Columbia Vancouver British Columbia Canada
- Centre for Blood ResearchUniversity of British Columbia Vancouver British Columbia Canada
- Department of Pathology and Laboratory MedicineUniversity of British Columbia Vancouver British Columbia Canada
| | - Elena Levin
- Centre for Innovation, Canadian Blood ServicesUniversity of British Columbia Vancouver British Columbia Canada
- Centre for Blood ResearchUniversity of British Columbia Vancouver British Columbia Canada
- Department of Pathology and Laboratory MedicineUniversity of British Columbia Vancouver British Columbia Canada
| | - Zhongming Chen
- Centre for Innovation, Canadian Blood ServicesUniversity of British Columbia Vancouver British Columbia Canada
- Centre for Blood ResearchUniversity of British Columbia Vancouver British Columbia Canada
| | - Peter Zoescher
- Centre for Blood ResearchUniversity of British Columbia Vancouver British Columbia Canada
| | - Raymond P. Goodrich
- Infectious Disease Research Center at Colorado State University Fort Collins Colorado
| | | | - Dana V. Devine
- Centre for Innovation, Canadian Blood ServicesUniversity of British Columbia Vancouver British Columbia Canada
- Centre for Blood ResearchUniversity of British Columbia Vancouver British Columbia Canada
- Department of Pathology and Laboratory MedicineUniversity of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
18
|
Meng Q, Peng X, Zhao S, Xu T, Wang S, Liu Q, Cai R, Fan Y. Hypoxic storage of erythrocytes slows down storage lesions and prolongs shelf-life. J Cell Physiol 2019; 234:22833-22844. [PMID: 31264213 DOI: 10.1002/jcp.28847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 01/28/2023]
Abstract
Conventional storage conditions of erythrocytes cause storage lesions. We propose that hypoxic storage conditions, involving removal of oxygen and replacement with helium, the changes in stored erythrocytes under hypoxic condition were observed and assessed. Erythrocytes were divided into two equal parts, then stored in conventional and hypoxic conditions, separately. Blood gas analysis, hemorheology, and hemolysis were performed once a week. Energy metabolism and membrane damage were monitored by enzyme-linked immunosorbent assay. Phosphatidylserine exposure was measured by flow cytometry. P50 was measured and the oxygen dissociation curve (ODC) plotted accordingly. Erythrocyte morphology was observed microscopically. In the 9th week of storage, the hemolysis of the hypoxia group was 0.7%; lower (p < .05) than that of the control group and still below the threshold of quality requirements. The dissolved oxygen and pO2 were only 1/4 of that in the control group (p < .01); the adenosine triphosphate, glucose, and lactic acid levels were decreased (p < .05), while the 2,3-diphosphoglycerate levels were increased relative to that in the control group (p < .01). There were no statistically significant differences in membrane damage, deformability, and aggregation between the two groups. In addition, the ODC of the two groups was shifted to the left but this difference was not statistically different. Basically similar to the effect of completely anaerobic conditions. Erythrocytes stored under hypoxic conditions could maintain a relatively stable state with a significant decrease in hemolysis, reduction of storage lesions, and an increase in shelf-life.
Collapse
Affiliation(s)
- Qiang Meng
- Department of Transfusion Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.,Department of Laboratory Medicine and Blood Transfusion, Guiqian International General Hospital, Guiyang, China
| | - Xiaowu Peng
- Department of Laboratory Medicine, Wulongbei Healing Area of Dalian Rehabilitation Center, Dandong, China
| | - Shuming Zhao
- Department of Laboratory Medicine and Blood Transfusion, Guiqian International General Hospital, Guiyang, China
| | - Ting Xu
- Department of Transfusion Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shichun Wang
- Department of Transfusion Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qi Liu
- Department of Transfusion Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yahan Fan
- Department of Transfusion Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
19
|
Morrison EJ, Champagne DP, Dzieciatkowska M, Nemkov T, Zimring JC, Hansen KC, Guan F, Huffman DM, Santambrogio L, D'Alessandro A. Parabiosis Incompletely Reverses Aging-Induced Metabolic Changes and Oxidant Stress in Mouse Red Blood Cells. Nutrients 2019; 11:nu11061337. [PMID: 31207887 PMCID: PMC6627295 DOI: 10.3390/nu11061337] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022] Open
Abstract
Mature red blood cells (RBCs) not only account for ~83% of the total host cells in the human body, but they are also exposed to all body tissues during their circulation in the bloodstream. In addition, RBCs are devoid of de novo protein synthesis capacity and, as such, they represent a perfect model to investigate system-wide alterations of cellular metabolism in the context of aging and age-related oxidant stress without the confounding factor of gene expression. In the present study, we employed ultra-high-pressure liquid chromatography coupled with mass spectrometry (UHPLC–MS)-based metabolomics and proteomics to investigate RBC metabolism across age in male mice (6, 15, and 25 months old). We report that RBCs from aging mice face a progressive decline in the capacity to cope with oxidant stress through the glutathione/NADPH-dependent antioxidant systems. Oxidant stress to tryptophan and purines was accompanied by declines in late glycolysis and methyl-group donors, a potential compensatory mechanism to repair oxidatively damaged proteins. Moreover, heterochronic parabiosis experiments demonstrated that the young environment only partially rescued the alterations in one-carbon metabolism in old mice, although it had minimal to no impact on glutathione homeostasis, the pentose phosphate pathway, and oxidation of purines and tryptophan, which were instead aggravated in old heterochronic parabionts.
Collapse
Affiliation(s)
- Evan J Morrison
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Devin P Champagne
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | | | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
| | - Fangxia Guan
- Departments of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| | - Derek M Huffman
- Departments of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| | - Laura Santambrogio
- Department of Pathology, Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, New York, NY 10461, USA.
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, 12801 East 17th Ave RC1 South, Aurora, CO 80045, USA.
- Department of Medicine-Division of Hematology, University of Colorado Denver-Anschutz Medical Campus, 12469 East 17th Ave RC2, Aurora, CO 80045, USA.
| |
Collapse
|
20
|
Protect, repair, destroy or sacrifice: a role of oxidative stress biology in inter-donor variability of blood storage? BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2019; 17:281-288. [PMID: 31184577 DOI: 10.2450/2019.0072-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022]
Abstract
Red blood cells (RBCs) have been historically regarded as a critical model to investigate cellular and oxidant stress biology. First of all, they are constantly exposed to oxidant stress, as their main function is to transport and deliver oxygen to tissues. Second, they are devoid of de novo protein synthesis capacity, which prevents RBCs from replacing irreversibly oxidised proteins with newly synthesised ones. As such, RBCs have evolved to (i) protect themselves from oxidant stress, in order to prevent oxidant damage from reactive species; (ii) repair oxidatively damaged proteins, through mechanisms that involve glutathione and one-carbon metabolism; (iii) destroy irreversibly oxidised proteins through proteasomal or protease-dependent degradation; and (iv) sacrifice membrane portions through mechanism of vesiculation. In this brief review we will summarize these processes and their relevance to RBC redox biology (within the context of blood storage), with a focus on how polymorphisms in RBC antioxidant responses could contribute to explaining the heterogeneity in the progression and severity of the RBC storage lesion that can be observed across the healthy donor population.
Collapse
|
21
|
D'Alessandro A. From omics technologies to personalized transfusion medicine. Expert Rev Proteomics 2019; 16:215-225. [PMID: 30654673 DOI: 10.1080/14789450.2019.1571917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/08/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Blood transfusion is the single most frequent in-hospital medical procedure, a life-saving intervention for millions of recipients worldwide every year. Storage in the blood bank is an enabling strategy for this critical procedure, as it logistically solves the issue of making ~110 million units available for transfusion every year. Unfortunately, storage in the blood bank promotes a series of biochemical and morphological changes to the red blood cell that compromise the integrity and functionality of the erythrocyte in vitro and in animal models, and could negatively impact transfusion outcomes in the recipient. Areas covered: While commenting on the clinical relevance of the storage lesion is beyond the scope of this manuscript, here we will review recent advancements in our understanding of the storage lesion as gleaned through omics technologies. We will focus on how the omics-scale appreciation of the biological variability at the donor and recipient level is impacting our understanding of red blood cell storage biology. Expert commentary: Omics technologies are paving the way for personalized transfusion medicine, a discipline that promises to revolutionize a critical field in medical practice. The era of recipient-tailored additives, processing, and storage strategies may not be too far distant in the future.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
- b Department of Medicine - Division of Hematology , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
22
|
Oxidative Stress in Autistic Children Alters Erythrocyte Shape in the Absence of Quantitative Protein Alterations and of Loss of Membrane Phospholipid Asymmetry. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6430601. [PMID: 30607218 PMCID: PMC6252219 DOI: 10.1155/2018/6430601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/20/2018] [Indexed: 12/29/2022]
Abstract
Red blood cells (RBCs) from people affected by autism spectrum disorders (ASDs) are a target of oxidative stress. By scanning electron microscopy, we analyzed RBC morphology from 22 ASD children and show here that only 47.5 ± 3.33% of RBC displayed the typical biconcave shape, as opposed to 87.5 ± 1.3% (mean ± SD) of RBC from 21 sex- and age-matched healthy typically developing (TD) controls. Codocytes and star-shaped cells accounted for about 30% of all abnormally shaped ASD erythrocytes. RBC shape alterations were independent of the anticoagulant used (Na2-EDTA or heparin) and of different handling procedures preceding glutaraldehyde fixation, thus suggesting that they were not artefactual. Incubation for 24 h in the presence of antioxidants restored normal morphology in most erythrocytes from ASD patients. By Coomassie staining, as well as Western blotting analysis of relevant proteins playing a key role in the membrane-cytoskeleton organization, we were unable to find differences in RBC ghost composition between ASD and normal subjects. Phosphatidylserine (PS) exposure towards the extracellular membrane domain was examined in both basal and erythroptosis-inducing conditions. No differences were found between ASD and TD samples except when the aminophospholipid translocase was blocked by N-ethylmaleimide, upon which an increased amount of PS was found to face the outer membrane in RBC from ASD. These complex data are discussed in the light of the current understanding of the mode by which oxidative stress might affect erythrocyte shape in ASD and in other pathological conditions.
Collapse
|
23
|
Whole Blood Storage in CPDA1 Blood Bags Alters Erythrocyte Membrane Proteome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6375379. [PMID: 30533175 PMCID: PMC6249999 DOI: 10.1155/2018/6375379] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/02/2018] [Accepted: 09/19/2018] [Indexed: 12/18/2022]
Abstract
Autologous blood transfusion (ABT) has been frequently abused in endurance sport and is prohibited since the mid-1980s by the International Olympic Committee. Apart from any significant performance-enhancing effects, the ABT may pose a serious health issue due to aging erythrocyte-derived "red cell storage lesions." The current study investigated the effect of blood storage in citrate phosphate dextrose adenine (CPDA1) on the red blood cell (RBC) membrane proteome. One unit of blood was collected in CPDA1 blood bags from 6 healthy female volunteers. RBC membrane protein samples were prepared on days 0, 14, and 35 of storage. Proteins were digested in gel and peptides separated by nanoliquid chromatography coupled to tandem mass spectrometry resulting in the confident identification of 33 proteins that quantitatively change during storage. Comparative proteomics suggested storage-induced translocation of cytoplasmic proteins to the membrane while redox proteomics analysis identified 14 proteins prone to storage-induced oxidation. The affected proteins are implicated in the RBC energy metabolism and membrane vesiculation and could contribute to the adverse posttransfusion outcomes. Spectrin alpha chain, band 3 protein, glyceraldehyde-3-phosphate dehydrogenase, and ankyrin-1 were the main proteins affected by storage. Although potential biomarkers of stored RBCs were identified, the stability and lifetime of these markers posttransfusion remain unknown. In summary, the study demonstrated the importance of studying storage-induced alterations in the erythrocyte membrane proteome and the need to understand the clearance kinetics of transfused erythrocytes and identified protein markers.
Collapse
|
24
|
Abonnenc M, Tissot JD, Prudent M. General overview of blood products in vitro quality: Processing and storage lesions. Transfus Clin Biol 2018; 25:269-275. [PMID: 30241785 DOI: 10.1016/j.tracli.2018.08.162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/12/2022]
Abstract
Blood products are issued from blood collection. Collected blood is immediately mixed with anticoagulant solutions that immediately induce chemical and/or biochemical modifications. Collected blood is then transformed into different blood products according to various steps of fabrication. All these steps induce either reversible or irreversible "preparation-related" lesions that combine with "storage-related" lesions. This short paper aims to provide an overview of the alterations that are induced by the "non-physiological" processes used to prepare blood products that are used in clinical practice.
Collapse
Affiliation(s)
- Mélanie Abonnenc
- Transfusion interrégionale CRS, laboratoire de recherche sur les produits sanguins, route de la Corniche 2, 1066 Epalinges, Switzerland
| | - Jean-Daniel Tissot
- Transfusion interrégionale CRS, laboratoire de recherche sur les produits sanguins, route de la Corniche 2, 1066 Epalinges, Switzerland; Faculté de biologie et de médecine, université de Lausanne, Lausanne, Switzerland
| | - Michel Prudent
- Transfusion interrégionale CRS, laboratoire de recherche sur les produits sanguins, route de la Corniche 2, 1066 Epalinges, Switzerland; Faculté de biologie et de médecine, université de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
25
|
Reisz JA, Nemkov T, Dzieciatkowska M, Culp-Hill R, Stefanoni D, Hill RC, Yoshida T, Dunham A, Kanias T, Dumont LJ, Busch M, Eisenmesser EZ, Zimring JC, Hansen KC, D'Alessandro A. Methylation of protein aspartates and deamidated asparagines as a function of blood bank storage and oxidative stress in human red blood cells. Transfusion 2018; 58:2978-2991. [PMID: 30312994 DOI: 10.1111/trf.14936] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Being devoid of de novo protein synthesis capacity, red blood cells (RBCs) have evolved to recycle oxidatively damaged proteins via mechanisms that involve methylation of dehydrated and deamidated aspartate and asparagine residues. Here we hypothesize that such mechanisms are relevant to routine storage in the blood bank. STUDY DESIGN AND METHODS Within the framework of the REDS-III RBC-Omics (Recipient Epidemiology Donor Evaluation Study III Red Blood Cell-Omics) study, packed RBC units (n = 599) were stored under blood bank conditions for 10, 23, and 42 days and profiled for oxidative hemolysis and time-dependent metabolic dysregulation of the trans-sulfuration pathway. RESULTS In these units, methionine consumption positively correlated with storage age and oxidative hemolysis. Mechanistic studies show that this phenomenon is favored by oxidative stress or hyperoxic storage (sulfur dioxide >95%), and prevented by hypoxia or methyltransferase inhibition. Through a combination of proteomics approaches and 13 C-methionine tracing, we observed oxidation-induced increases in both Asn deamidation to Asp and formation of methyl-Asp on key structural proteins and enzymes, including Band 3, hemoglobin, ankyrin, 4.1, spectrin beta, aldolase, glyceraldehyde 3-phosphate dehydrogenase, biphosphoglycerate mutase, lactate dehydrogenase and catalase. Methylated regions tended to map proximal to the active site (e.g., N316 of glyceraldehyde 3-phosphate dehydrogenase) and/or residues interacting with the N-terminal cytosolic domain of Band 3. CONCLUSION While methylation of basic amino acid residues serves as an epigenetic modification in nucleated cells, protein methylation at carboxylate side chains and deamidated asparagines is a nonepigenetic posttranslational sensor of oxidative stress and refrigerated storage in anucleated human RBCs.
Collapse
Affiliation(s)
- Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Tamir Kanias
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Michael Busch
- Blood Systems Research Institute, San Francisco, California
| | - Elan Z Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Culp-Hill R, Srinivasan AJ, Gehrke S, Kamyszek R, Ansari A, Shah N, Welsby I, D'Alessandro A. Effects of red blood cell (RBC) transfusion on sickle cell disease recipient plasma and RBC metabolism. Transfusion 2018; 58:2797-2806. [PMID: 30265764 DOI: 10.1111/trf.14931] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Exchange transfusion is a mainstay in the treatment of sickle cell anemia. Transfusion recipients with sickle cell disease (SCD) can be transfused over 10 units per therapy, an intervention that replaces circulating sickle red blood cells (RBCs) with donor RBCs. Storage of RBCs makes the intervention logistically feasible. The average storage duration for units transfused at the Duke University Medical Center is approximately 2 weeks, a time window that should anticipate the accumulation of irreversible storage lesion to the RBCs. However, no metabolomics study has been performed to date to investigate the impact of exchange transfusion on recipients' plasma and RBC phenotypes. STUDY DESIGN AND METHODS Plasma and RBCs were collected from patients with sickle cell anemia before transfusion and within 5 hours after exchange transfusion with up to 11 units, prior to metabolomics analyses. RESULTS Exchange transfusion significantly decreased plasma levels of markers of systemic hypoxemia like lactate, succinate, sphingosine 1-phosphate, and 2-hydroxyglutarate. These metabolites accumulated in transfused RBCs, suggesting that RBCs may act as scavenger/reservoirs. Transfused RBCs displayed higher glycolysis, total adenylate pools, and 2,3-diphosphoglycerate, consistent with increased capacity to deliver oxygen. Plasma levels of acyl-carnitines and amino acids decreased, while fatty acids and potentially harmful phthalates increased upon exchange transfusion. CONCLUSION Metabolic phenotypes confirm the benefits of the transfusion therapy in transfusion recipients with SCD and the reversibility of some of the metabolic storage lesion upon transfusion in vivo in 2-week-old RBCs. However, results also suggest that potentially harmful plasticizers are transfused.
Collapse
Affiliation(s)
- Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | | | - Sarah Gehrke
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Reed Kamyszek
- Duke University Medical Center, Durham, North Carolina
| | - Andrea Ansari
- Duke University Medical Center, Durham, North Carolina
| | - Nirmish Shah
- Duke University Medical Center, Durham, North Carolina
| | - Ian Welsby
- Duke University Medical Center, Durham, North Carolina
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
27
|
Prudent M, Delobel J, Hübner A, Benay C, Lion N, Tissot JD. Proteomics of Stored Red Blood Cell Membrane and Storage-Induced Microvesicles Reveals the Association of Flotillin-2 With Band 3 Complexes. Front Physiol 2018; 9:421. [PMID: 29780325 PMCID: PMC5945891 DOI: 10.3389/fphys.2018.00421] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
The storage of erythrocyte concentrates (ECs) induces lesions that notably affect metabolism, protein activity, deformability of red blood cells (RBCs), as well as the release of oxygen. Band 3 is one of the proteins affected during the ex vivo aging of RBCs. This membrane protein is an anion transporter, an anchor site for the cytoskeleton and other membrane proteins as well as a binding site for glycolytic enzymes and bears blood group antigens. In the present study, band 3 complexes were isolated from RBCs stored for 7 and 42 days in average (n = 3), as well as from microvesicles (n = 3). After extraction of membrane proteins with a deoxycholate containing buffer, band 3 complexes were co-immunoprecipitated on magnetic beads coated with two anti-band 3 antibodies. Both total membrane protein extracts and eluates (containing band 3 complexes) were separated on SDS-PAGE and analyzed by bottom-up proteomics. It revealed that three proteins were present or absent in band 3 complexes stemming from long-stored or short-stored ECs, respectively, whereas the membrane protein contents remained equivalent. These potential markers for storage-induced RBC aging are adenylosuccinate lyase (ADSL), α-adducin and flotillin-2, and were further analyzed using western blots. ADSL abundance tended to increase during storage in both total membrane protein and band 3 complexes, whereas α-adducin mainly tended to stay onto the membrane extract. Interestingly, flotillin-2 was equivalently present in total membrane proteins whereas it clearly co-immunoprecipitated with band 3 complexes during storage (1.6-fold-change, p = 0.0024). Moreover, flotillin-2 was enriched (almost threefold) in RBCs compared to microvesicles (MVs) (p < 0.001) and the amount found in MVs was associated to band 3 complexes. Different types of band 3 complexes are known to exist in RBCs and further studies will be required to better understand involvement of this protein in microvesiculation during the storage of RBCs.
Collapse
Affiliation(s)
- Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Épalinges, Switzerland.,Faculté de Biologie et de Médecine, Université de Lausanne, Lausanne, Switzerland
| | - Julien Delobel
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Épalinges, Switzerland
| | - Aurélie Hübner
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Épalinges, Switzerland
| | - Corinne Benay
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Épalinges, Switzerland
| | - Niels Lion
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Épalinges, Switzerland.,Faculté de Biologie et de Médecine, Université de Lausanne, Lausanne, Switzerland
| | - Jean-Daniel Tissot
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Épalinges, Switzerland.,Faculté de Biologie et de Médecine, Université de Lausanne, Lausanne, Switzerland
| |
Collapse
|
28
|
Red blood cells ageing markers: a multi-parametric analysis. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2018; 15:239-248. [PMID: 28518051 DOI: 10.2450/2017.0318-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Red blood cells collected in citrate-phosphate-dextrose can be stored for up to 42 days at 4 °C in saline-adenine-glucose-mannitol additive solution. During this controlled, but nevertheless artificial, ex vivo ageing, red blood cells accumulate lesions that can be reversible or irreversible upon transfusion. The aim of the present study is to follow several parameters reflecting cell metabolism, antioxidant defences, morphology and membrane dynamics during storage. MATERIALS AND METHODS Five erythrocyte concentrates were followed weekly during 71 days. Extracellular glucose and lactate concentrations, total antioxidant power, as well as reduced and oxidised intracellular glutathione levels were quantified. Microvesiculation, percentage of haemolysis and haematologic parameters were also evaluated. Finally, morphological changes and membrane fluctuations were recorded using label-free digital holographic microscopy. RESULTS The antioxidant power as well as the intracellular glutathione concentration first increased, reaching maximal values after one and two weeks, respectively. Irreversible morphological lesions appeared during week 5, where discocytes began to transform into transient echinocytes and finally spherocytes. At the same time, the microvesiculation and haemolysis started to rise exponentially. After six weeks (expiration date), intracellular glutathione was reduced by 25%, reflecting increasing oxidative stress. The membrane fluctuations showed decreased amplitudes during shape transition from discocytes to spherocytes. DISCUSSION Various types of lesions accumulated at different chemical and cellular levels during storage, which could impact their in vivo recovery after transfusion. A marked effect was observed after four weeks of storage, which corroborates recent clinical data. The prolonged follow-up period allowed the capture of deep storage lesions. Interestingly, and as previously described, the severity of the changes differed among donors.
Collapse
|
29
|
Liu CW, Bramer L, Webb-Robertson BJ, Waugh K, Rewers MJ, Zhang Q. Temporal expression profiling of plasma proteins reveals oxidative stress in early stages of Type 1 Diabetes progression. J Proteomics 2018; 172:100-110. [PMID: 28993202 PMCID: PMC5726913 DOI: 10.1016/j.jprot.2017.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 02/07/2023]
Abstract
Blood markers other than islet autoantibodies are greatly needed to indicate the pancreatic beta cell destruction process as early as possible, and more accurately reflect the progression of Type 1 Diabetes Mellitus (T1D). To this end, a longitudinal proteomic profiling of human plasma using TMT-10plex-based LC-MS/MS analysis was performed to track temporal proteomic changes of T1D patients (n=11) across 9 serial time points, spanning the period of T1D natural progression, in comparison with those of the matching healthy controls (n=10). To our knowledge, the current study represents the largest (>2000 proteins measured) longitudinal expression profiles of human plasma proteome in T1D research. By applying statistical trend analysis on the temporal expression patterns between T1D and controls, and Benjamini-Hochberg procedure for multiple-testing correction, 13 protein groups were regarded as having statistically significant differences during the entire follow-up period. Moreover, 16 protein groups, which play pivotal roles in response to oxidative stress, have consistently abnormal expression trend before seroconversion to islet autoimmunity. Importantly, the expression trends of two key reactive oxygen species-decomposing enzymes, Catalase and Superoxide dismutase were verified independently by ELISA. BIOLOGICAL SIGNIFICANCE The temporal changes of >2000 plasma proteins (at least quantified in two subjects), spanning the entire period of T1D natural progression were provided to the research community. Oxidative stress related proteins have consistently different dysregulated patterns in T1D group than in age-sex matched healthy controls, even prior to appearance of islet autoantibodies - the earliest sign of islet autoimmunity and pancreatic beta cell stress.
Collapse
Affiliation(s)
- Chih-Wei Liu
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Lisa Bramer
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Bobbie-Jo Webb-Robertson
- Applied Statistics & Computational Modeling, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Kathleen Waugh
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Marian J Rewers
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States; Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, United States.
| |
Collapse
|
30
|
Reisz JA, Tzounakas VL, Nemkov T, Voulgaridou AI, Papassideri IS, Kriebardis AG, D'Alessandro A, Antonelou MH. Metabolic Linkage and Correlations to Storage Capacity in Erythrocytes from Glucose 6-Phosphate Dehydrogenase-Deficient Donors. Front Med (Lausanne) 2018; 4:248. [PMID: 29376053 PMCID: PMC5768619 DOI: 10.3389/fmed.2017.00248] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022] Open
Abstract
Objective In glucose 6-phosphate dehydrogenase (G6PD) deficiency, decreased NADPH regeneration in the pentose phosphate pathway and subnormal levels of reduced glutathione result in insufficient antioxidant defense, increased susceptibility of red blood cells (RBCs) to oxidative stress, and acute hemolysis following exposure to pro-oxidant drugs and infections. Despite the fact that redox disequilibrium is a prominent feature of RBC storage lesion, it has been reported that the G6PD-deficient RBCs store well, at least in respect to energy metabolism, but their overall metabolic phenotypes and molecular linkages to the storability profile are scarcely investigated. Methods We performed UHPLC-MS metabolomics analyses of weekly sampled RBC concentrates from G6PD sufficient and deficient donors, stored in citrate phosphate dextrose/saline adenine glucose mannitol from day 0 to storage day 42, followed by statistical and bioinformatics integration of the data. Results Other than previously reported alterations in glycolysis, metabolomics analyses revealed bioactive lipids, free fatty acids, bile acids, amino acids, and purines as top variables discriminating RBC concentrates for G6PD-deficient donors. Two-way ANOVA showed significant changes in the storage-dependent variation in fumarate, one-carbon, and sulfur metabolism, glutathione homeostasis, and antioxidant defense (including urate) components in G6PD-deficient vs. sufficient donors. The levels of free fatty acids and their oxidized derivatives, as well as those of membrane-associated plasticizers were significantly lower in G6PD-deficient units in comparison to controls. By using the strongest correlations between in vivo and ex vivo metabolic and physiological parameters, consecutively present throughout the storage period, several interactomes were produced that revealed an interesting interplay between redox, energy, and hemolysis variables, which may be further associated with donor-specific differences in the post-transfusion performance of G6PD-deficient RBCs. Conclusion The metabolic phenotypes of G6PD-deficient donors recapitulate the basic storage lesion profile that leads to loss of metabolic linkage and rewiring. Donor-related issues affect the storability of RBCs even in the narrow context of this donor subgroup in a way likely relevant to transfusion medicine.
Collapse
Affiliation(s)
- Julie A Reisz
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO, United States
| | | | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios G Kriebardis
- Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological and Educational Institute of Athens, Athens, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
31
|
Nemkov T, Sun K, Reisz JA, Song A, Yoshida T, Dunham A, Wither MJ, Francis RO, Roach RC, Dzieciatkowska M, Rogers SC, Doctor A, Kriebardis A, Antonelou M, Papassideri I, Young CT, Thomas TA, Hansen KC, Spitalnik SL, Xia Y, Zimring JC, Hod EA, D'Alessandro A. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage. Haematologica 2017; 103:361-372. [PMID: 29079593 PMCID: PMC5792281 DOI: 10.3324/haematol.2017.178608] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1–7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13C1-aspartate or 13C5-adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and – preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo. Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Kaiqi Sun
- Department of Biochemistry, University of Texas Houston - School of Medicine, Houston, TX, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Anren Song
- Department of Biochemistry, University of Texas Houston - School of Medicine, Houston, TX, USA
| | | | | | - Matthew J Wither
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Richard O Francis
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Robert C Roach
- Altitude Research Center, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Stephen C Rogers
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Allan Doctor
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Anastasios Kriebardis
- Department of Medical Laboratories, Technological and Educational Institute of Athens, Greece
| | - Marianna Antonelou
- Department of Biology, National and Kapodistrian University of Athens, Greece
| | | | | | - Tiffany A Thomas
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Steven L Spitalnik
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Yang Xia
- Department of Biochemistry, University of Texas Houston - School of Medicine, Houston, TX, USA
| | | | - Eldad A Hod
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA .,Boettcher Investigator
| |
Collapse
|
32
|
Tzounakas VL, Karadimas DG, Anastasiadi AT, Georgatzakou HT, Kazepidou E, Moschovas D, Velentzas AD, Kriebardis AG, Zafeiropoulos NE, Avgeropoulos A, Lekka M, Stamoulis KE, Papassideri IS, Antonelou MH. Donor-specific individuality of red blood cell performance during storage is partly a function of serum uric acid levels. Transfusion 2017; 58:34-40. [PMID: 29063631 DOI: 10.1111/trf.14379] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Previous investigations in leukoreduced units of red blood cells (RBCs) in mannitol additive solution revealed the close association of uric acid (UA) levels in vivo with the susceptibility of RBCs to storage lesion markers. In this study, we examined whether UA has a similar correlation with the capability of RBCs to cope with the oxidative provocations of storage under different conditions, namely, in CPDA-1 and in the absence of leukoreduction. STUDY DESIGN AND METHODS The UA-dependent antioxidant capacity of the supernatant was measured in nonleukoreduced units of RBCs in CPDA (n = 47). The possible effect of UA variability on the storage lesion profile was assessed by monitoring several physiologic properties of RBCs and supernatant, including cell shape, reactive oxygen species, and size distribution of extracellular vesicles, in units exhibiting the lowest or highest levels of UA activity (n = 16) among donors, throughout the storage period. RESULTS In stored RBC units, the UA-dependent antioxidant activity of the supernatant declined as a function of storage duration but always in strong relation to the UA levels in fresh blood. Contrary to units of poor-UA activity, RBCs with the highest levels of UA activity exhibited better profile of calcium- and oxidative stress-driven modifications, including a significant decrease in the percentages of spherocytes and of 100- to 300-nm-sized vesicles, typically associated with the exovesiculation of stored RBCs. CONCLUSION The antioxidant activity of UA is associated with donor-specific differences in the performance of RBCs under storage in nonleukoreduced CPDA units.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National & Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Dimitrios G Karadimas
- Department of Biology, School of Science, National & Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alkmini T Anastasiadi
- Department of Biology, School of Science, National & Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Hara T Georgatzakou
- Department of Biology, School of Science, National & Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Eleftheria Kazepidou
- Department of Chemistry, School of Science, University of Ioannina, Ioannina, Greece
| | - Dimitris Moschovas
- Department of Materials Science Engineering, University of Ioannina, Ioannina, Greece
| | - Athanassios D Velentzas
- Department of Biology, School of Science, National & Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G Kriebardis
- Department of Medical Laboratories, Technological and Educational Institute of Athens, Athens, Greece
| | | | | | - Marilena Lekka
- Department of Chemistry, School of Science, University of Ioannina, Ioannina, Greece
| | | | - Issidora S Papassideri
- Department of Biology, School of Science, National & Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Marianna H Antonelou
- Department of Biology, School of Science, National & Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
33
|
Nemkov T, Sun K, Reisz JA, Yoshida T, Dunham A, Wen EY, Wen AQ, Roach RC, Hansen KC, Xia Y, D'Alessandro A. Metabolism of Citrate and Other Carboxylic Acids in Erythrocytes As a Function of Oxygen Saturation and Refrigerated Storage. Front Med (Lausanne) 2017; 4:175. [PMID: 29090212 PMCID: PMC5650965 DOI: 10.3389/fmed.2017.00175] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/02/2017] [Indexed: 01/14/2023] Open
Abstract
State-of-the-art proteomics technologies have recently helped to elucidate the unanticipated complexity of red blood cell metabolism. One recent example is citrate metabolism, which is catalyzed by cytosolic isoforms of Krebs cycle enzymes that are present and active in mature erythrocytes and was determined using quantitative metabolic flux analysis. In previous studies, we reported significant increases in glycolytic fluxes in red blood cells exposed to hypoxia in vitro or in vivo, an observation relevant to transfusion medicine owing to the potential benefits associated with hypoxic storage of packed red blood cells. Here, using a combination of steady state and quantitative tracing metabolomics experiments with 13C1,2,3-glucose, 13C6-citrate, 13C515N2-glutamine, and 13C1-aspartate via ultra-high performance liquid chromatography coupled on line with mass spectrometry, we observed that hypoxia in vivo and in vitro promotes consumption of citrate and other carboxylates. These metabolic reactions are theoretically explained by the activity of cytosolic malate dehydrogenase 1 and isocitrate dehydrogenase 1 (abundantly represented in the red blood cell proteome), though moonlighting functions of additional enzymes cannot be ruled out. These observations enhance understanding of red blood cell metabolic responses to hypoxia, which could be relevant to understand systemic physiological and pathological responses to high altitude, ischemia, hemorrhage, sepsis, pulmonary hypertension, or hemoglobinopathies. Results from this study will also inform the design and testing of novel additive solutions that optimize red blood cell storage under oxygen-controlled conditions.
Collapse
Affiliation(s)
- Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Kaiqi Sun
- University of Texas Houston - McGovern Medical School, Houston, TX, United States
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | | | | | - Edward Y Wen
- University of Texas Houston - McGovern Medical School, Houston, TX, United States.,University of California Berkeley, Berkeley, CA, United States
| | - Alexander Q Wen
- University of Texas Houston - McGovern Medical School, Houston, TX, United States
| | - Rob C Roach
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| | - Yang Xia
- University of Texas Houston - McGovern Medical School, Houston, TX, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
34
|
Delobel J, Prudent M, Crettaz D, ElHajj Z, Riederer BM, Tissot JD, Lion N. Cysteine redox proteomics of the hemoglobin-depleted cytosolic fraction of stored red blood cells. Proteomics Clin Appl 2017; 10:883-93. [PMID: 27377365 DOI: 10.1002/prca.201500132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/02/2016] [Accepted: 06/30/2016] [Indexed: 01/17/2023]
Abstract
PURPOSE Erythrocyte concentrates (ECs) represent the most transfused labile blood products. They are stored at 4°C in additive solutions for up to 56 days. Protein oxidation is a marker of oxidative stress and cysteine residues, whose oxidations are required for physiological cell functions, are highly prone to such modification. EXPERIMENTAL DESIGN Five ECs from independent donations were followed. Soluble protein extracts were prepared at days 6, 27, and 41, and cysteines were alkylated, reduced, and labeled with infrared dyes. Samples were mixed two by two (day 6 as reference) and analyzed by 2D-DIGE. Detection of labeled cysteines allows quantitative comparison of oxidative status. Spots of interest were analyzed by proteomics. RESULTS Thirty-two spots containing 43 proteins were classified as increasing, decreasing, or exhibiting a peak of expression during storage. Proteins having catalytic and antioxidant activities were particularly affected during storage, for example, peroxiredoxin-1 and DJ-1 were reversibly oxidized and catalase was irreversibly oxidized. These proteins could be used to evaluate different storage strategies to maintain proper protein function during the overall storage period. CONCLUSIONS AND CLINICAL RELEVANCE This redox-DIGE approach brings new quantitative data on oxidized proteins in stored red blood cells. As previously reported on carbonylation, the oxidative damages differently affect protein functions.
Collapse
Affiliation(s)
- Julien Delobel
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - David Crettaz
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Zeinab ElHajj
- Centre des Neurosciences Psychiatriques, Hôpital de Cery-CHUV, Prilly, Switzerland
| | - Beat M Riederer
- Centre des Neurosciences Psychiatriques, Hôpital de Cery-CHUV, Prilly, Switzerland
| | - Jean-Daniel Tissot
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - Niels Lion
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| |
Collapse
|
35
|
Bardyn M, Tissot JD, Prudent M. Oxidative stress and antioxidant defenses during blood processing and storage of erythrocyte concentrates. Transfus Clin Biol 2017; 25:96-100. [PMID: 28888839 DOI: 10.1016/j.tracli.2017.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 10/18/2022]
Abstract
Oxidative lesions start accumulating in cells when the oxidant attacks overwhelm the antioxidant defenses. This review will briefly describe red blood cell storage lesions with emphasis on the consequences of oxidation and the cellular defense mechanisms, as well as the methods that can be used to monitor them. The sources of variability in red blood cell storage capacity depend on the donor characteristics, the product processing and the storage conditions. Suggestions to improve the product quality in order to ensure the best efficacy and safety for the transfused patient are also discussed.
Collapse
Affiliation(s)
- M Bardyn
- Transfusion interrégionale CRS, laboratoire de recherche sur les produits sanguins, 2, route de la Corniche, 1066 Epalinges, Switzerland
| | - J-D Tissot
- Transfusion interrégionale CRS, laboratoire de recherche sur les produits sanguins, 2, route de la Corniche, 1066 Epalinges, Switzerland; Faculté de biologie et de médecine, Université de Lausanne, Lausanne, Switzerland
| | - M Prudent
- Transfusion interrégionale CRS, laboratoire de recherche sur les produits sanguins, 2, route de la Corniche, 1066 Epalinges, Switzerland; Faculté de biologie et de médecine, Université de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
36
|
Bardyn M, Maye S, Lesch A, Delobel J, Tissot JD, Cortés-Salazar F, Tacchini P, Lion N, Girault HH, Prudent M. The antioxidant capacity of erythrocyte concentrates is increased during the first week of storage and correlated with the uric acid level. Vox Sang 2017; 112:638-647. [PMID: 28833258 DOI: 10.1111/vox.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Red blood cells (RBCs) suffer from lesions during cold storage, depending in part on their ability to counterbalance oxidative stress by activating their antioxidant defence. The aim of this study was to monitor the antioxidant power (AOP) in erythrocyte concentrates (ECs) during cold storage. MATERIALS AND METHODS Six ECs were prepared in saline-adenine-glucose-mannitol (SAGM) additive solution and followed during 43 days. The AOP was quantified electrochemically using disposable electrode strips and compared with results obtained from a colorimetric assay. Haematological data, data on haemolysis and the extracellular concentration of uric acid were also recorded. Additionally, a kinetic model was developed to extract quantitative kinetic data on the AOP behaviour. RESULTS The AOP of total ECs and their extracellular samples attained a maximum after 1 week of storage prior to decaying and reaching a plateau, as shown by the electrochemical measurements. The observed trend was confirmed with a colorimetric assay. Uric acid had a major contribution to the extracellular AOP. Interestingly, the AOP and uric acid levels were linked to the sex of the donors. CONCLUSION The marked increase in AOP during the first week of storage suggests that RBCs are impacted early by the modification of their environment. The AOP behaviour reflects the changes in metabolism activity following the adjustment of the extracellular uric acid level. Knowing the origin, interdonor variability and the effects of the AOP on the RBCs could be beneficial for the storage quality, which will have to be further studied.
Collapse
Affiliation(s)
- M Bardyn
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - S Maye
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, EPFL Valais Wallis, Sion, Switzerland
| | - A Lesch
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, EPFL Valais Wallis, Sion, Switzerland
| | - J Delobel
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - J-D Tissot
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - F Cortés-Salazar
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, EPFL Valais Wallis, Sion, Switzerland
| | - P Tacchini
- EDEL-for-Life, Innovation Park/EPFL, Lausanne, Switzerland
| | - N Lion
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - H H Girault
- Laboratoire d'Electrochimie Physique et Analytique, Ecole Polytechnique Fédérale de Lausanne, EPFL Valais Wallis, Sion, Switzerland
| | - M Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, Epalinges, Switzerland
| |
Collapse
|
37
|
Attenuation of Red Blood Cell Storage Lesions with Vitamin C. Antioxidants (Basel) 2017; 6:antiox6030055. [PMID: 28704937 PMCID: PMC5618083 DOI: 10.3390/antiox6030055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/06/2017] [Accepted: 07/08/2017] [Indexed: 12/19/2022] Open
Abstract
Stored red blood cells (RBCs) undergo oxidative stress that induces deleterious metabolic, structural, biochemical, and molecular changes collectively referred to as “storage lesions”. We hypothesized that vitamin C (VitC, reduced or oxidized) would reduce red cell storage lesions, thus prolonging their storage duration. Whole-blood-derived, leuko-reduced, SAGM (saline-adenine-glucose-mannitol)-preserved RBC concentrates were equally divided into four pediatric storage bags and the following additions made: (1) saline (saline); (2) 0.3 mmol/L reduced VitC (Lo VitC); (3) 3 mmol/L reduced VitC (Hi VitC); or (4) 0.3 mmol/L oxidized VitC (dehydroascorbic acid, DHA) as final concentrations. Biochemical and rheological parameters were serially assessed at baseline (prior to supplementation) and Days 7, 21, 42, and 56 for RBC VitC concentration, pH, osmotic fragility by mechanical fragility index, and percent hemolysis, LDH release, glutathione depletion, RBC membrane integrity by scanning electron microscopy, and Western blot for β-spectrin. VitC exposure (reduced and oxidized) significantly increased RBC antioxidant status with varying dynamics and produced trends in reduction in osmotic fragility and increases in membrane integrity. Conclusion: VitC partially protects RBC from oxidative changes during storage. Combining VitC with other antioxidants has the potential to improve long-term storage of RBC.
Collapse
|
38
|
Chen D, Schubert P, Devine DV. Proteomic analysis of red blood cells from donors exhibiting high hemolysis demonstrates a reduction in membrane-associated proteins involved in the oxidative response. Transfusion 2017. [PMID: 28634986 DOI: 10.1111/trf.14188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The development of hemolysis during ex vivo hypothermic storage is multifaceted. Standardization of collection and production processes is used to minimize variability in biologics manufacturing and to maximize product quality. However, the influence of various donor characteristics on product quality is often difficult to evaluate and to control. Using a proteomic approach, we aimed to decipher relevant donor characteristics that may predict red blood cell (RBC) quality during storage. STUDY DESIGN AND METHODS Ten healthy volunteer donors exhibiting repeated high hemolysis at outdate (>0.8%; RBCHH ) and 10 age- and sex-matched control donors (RBCCtrl ) were studied. Common quality variables were measured on Days 5, 14, 21, 28, and 42 of storage. Protein profiles of hemoglobin-depleted membrane fractions from RBCHH and RBCCtrl donors were analyzed using a quantitative proteomics approach based on iTRAQ (isobaric tags for relative and absolute quantitation). RESULTS Time-dependent lesion development was apparent in both donor populations. RBCHH exhibited reduced 2,3-bisphosphoglycerate levels (p < 0.001) and morphologic score (p < 0.001), but displayed elevated hemolysis level (p < 0.001), RBC-derived microvesicle formation (p < 0.001), and mean corpuscular fragility (p < 0.001) compared to RBCCtrl , indicating notable differences at the membrane between the two donor populations. Proteomic findings revealed a significant reduction in the level of proteins involved in oxidative response pathways at early time points in RBCHH compared to that of RBCCtrl . CONCLUSION The recruitment of these candidate proteins might be part of a response mechanism altered in RBCHH donors and therefore may be useful as a donor screening tool.
Collapse
Affiliation(s)
- Deborah Chen
- Department of Pathology and Laboratory Medicine, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter Schubert
- Department of Pathology and Laboratory Medicine, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Canadian Blood Services' Centre for Innovation, Vancouver, British Columbia, Canada
| | - Dana V Devine
- Department of Pathology and Laboratory Medicine, Vancouver, British Columbia, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada.,Canadian Blood Services' Centre for Innovation, Vancouver, British Columbia, Canada
| |
Collapse
|
39
|
Ishida YI, Aki M, Fujiwara S, Nagahama M, Ogasawara Y. Peroxidatic cysteine residue of peroxiredoxin 2 separated from human red blood cells treated by tert-butyl hydroperoxide is hyperoxidized into sulfinic and sulfonic acids. Hum Cell 2017; 30:279-289. [DOI: 10.1007/s13577-017-0171-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/08/2017] [Indexed: 01/21/2023]
|
40
|
Purinergic control of red blood cell metabolism: novel strategies to improve red cell storage quality. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:535-542. [PMID: 28488967 DOI: 10.2450/2017.0366-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/23/2017] [Indexed: 02/08/2023]
Abstract
Transfusion of stored blood is regarded as one of the great advances in modern medicine. However, during storage in the blood bank, red blood cells (RBCs) undergo a series of biochemical and biomechanical changes that affect cell morphology and physiology and potentially impair transfusion safety and efficacy. Despite reassuring evidence from clinical trials, it is universally accepted that the storage lesion(s) results in the altered physiology of long-stored RBCs and helps explain the rapid clearance of up to one-fourth of long-stored RBCs from the recipient's bloodstream at 24 hours after administration. These considerations explain the importance of understanding and mitigating the storage lesion. With the emergence of new technologies that have enabled large-scale and in-depth screening of the RBC metabolome and proteome, recent studies have provided novel insights into the molecule-level metabolic changes underpinning the accumulation of storage lesions to RBCs in the blood bank and alternative storage strategies to mitigate such lesion(s). These approaches borrow from recent insights on the biochemistry of RBC adaptation to high altitude hypoxia. We recently conducted investigations in genetically modified mice and revealed novel insights into the role of adenosine signalling in response to hypoxia as a previously unrecognised cascade regulating RBC glucose metabolism and increasing O2 release, while decreasing inflammation and tissue injuries in animal models. Here, we will discuss the molecular mechanisms underlying the role of purinergic molecules, including adenosine and adenosine triphosphate in manipulating RBCs and blood vessels in response to hypoxia. We will also speculate about new therapeutic possibilities to improve the quality of stored RBCs and the prognosis after transfusion.
Collapse
|
41
|
Unraveling the Gordian knot: red blood cell storage lesion and transfusion outcomes. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:126-130. [PMID: 28263169 DOI: 10.2450/2017.0313-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/23/2016] [Indexed: 01/28/2023]
Abstract
What is following the impressive progress that has been made? During the last couple of years several tremors have shaken the field of Transfusion Medicine. The epicentres of those tremors were located on novel insights into the RBC storage lesion, on emerging connections between storage lesion and post-transfusion performance and effects, and on acknowledging that storage time is only one (rather than the most prominent) of the parameters which contribute to the progression of storage lesion in any given unit of blood. The optimisation of bio-preservation conditions emerged at the same time with all-new scientific knowledge gained by advances in research tools, implementation of technological innovations, and application of elegant in vitro and in vivo models of transfusion. Simultaneously, one after another, all the reported randomised clinical trials concluded, with spectacular consensus, that there is no significant difference in the rate of adverse clinical events (including death) among patients who underwent transfusion with fresh (and presumably good) or standard of care (and presumably bad) blood. The comparative analysis and comprehension of the aforementioned data would set the context for the next generation of research in blood transfusion science, since the need for safer and more efficient transfusions remains.
Collapse
|
42
|
D'Alessandro A, Seghatchian J. Hitchhiker's guide to the red cell storage galaxy: Omics technologies and the quality issue. Transfus Apher Sci 2017; 56:248-253. [PMID: 28343934 DOI: 10.1016/j.transci.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Red blood cell storage in the blood bank makes millions of units of available for transfusion to civilian and military recipients every year. From glass bottles to plastic bags, from anticoagulants to complex additives, from whole blood to leukocyte filtered packed red blood cells: huge strides have been made in the field of blood component processing and storage in the blood bank during the last century. Still, refrigerated preservation of packed red blood cells under blood bank conditions results in the progressive accumulation of a wide series of biochemical and morphological changes to the stored erythrocytes, collectively referred to as the storage lesion(s). Approximately ten years ago, retrospective clinical evidence had suggested that such lesion(s) may be clinically relevant and mediate some of the untoward transfusion-related effects observed especially in some categories of recipients at risk (e.g. massively or chronically transfused recipients). Since then, randomized clinical trials have failed to prospectively detect any signal related to red cell storage duration and increased morbidity and mortality in several categories of recipients, at the limits of the statistical power of these studies. While a good part of the transfusion community has immediately adopted the take-home message "if it isn't broken, don't fix it" (i.e. no change to the standard of practice should be pursued), decision makers have been further questioning whether there may be room for further improvements in this field. Provocatively, we argue that consensus has yet to be unanimously reached on what makes a good quality marker of the red cell storage lesion and transfusion safety/efficacy. In other words, if it is true that "you can't manage what you can't measure", then future advancements in the field of transfusion medicine will necessarily rely on state of the art analytical omics technologies of well-defined quality parameters. Heavily borrowing from Douglas Adam's imaginary repertoire from the world famous "Hitchhiker's guide to the galaxy", we briefly summarize how some of the principles for intergalactic hitchhikers may indeed apply to inform navigation through the complex universe of red cell storage quality, safety and efficacy.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| | - Jerard Seghatchian
- International Consultancy in Blood Component Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK.
| |
Collapse
|
43
|
D’Alessandro A, Nemkov T, Reisz J, Dzieciatkowska M, Wither MJ, Hansen KC. Omics markers of the red cell storage lesion and metabolic linkage. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:137-144. [PMID: 28263171 PMCID: PMC5336335 DOI: 10.2450/2017.0341-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/28/2016] [Indexed: 01/28/2023]
Abstract
The introduction of omics technologies in the field of Transfusion Medicine has significantly advanced our understanding of the red cell storage lesion. While the clinical relevance of such a lesion is still a matter of debate, quantitative and redox proteomics approaches, as well quantitative metabolic flux analysis and metabolic tracing experiments promise to revolutionise our understanding of the role of blood processing strategies, inform the design and testing of novel additives or technologies (such as pathogen reduction), and evaluate the clinical relevance of donor and recipient biological variability with respect to red cell storability and transfusion outcomes. By reviewing existing literature in this rapidly expanding research endeavour, we highlight for the first time a correlation between metabolic markers of the red cell storage age and protein markers of haemolysis. Finally, we introduce the concept of metabolic linkage, i.e. the appreciation of a network of highly correlated small molecule metabolites which results from biochemical constraints of erythrocyte metabolic enzyme activities. For the foreseeable future, red cell studies will advance Transfusion Medicine and haematology by addressing the alteration of metabolic linkage phenotypes in response to stimuli, including, but not limited to, storage additives, enzymopathies (e.g. glucose 6-phosphate dehydrogenase deficiency), hypoxia, sepsis or haemorrhage.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| | - Julie Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| | - Matthew J. Wither
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
44
|
D'Alessandro A, Zolla L. Proteomic analysis of red blood cells and the potential for the clinic: what have we learned so far? Expert Rev Proteomics 2017; 14:243-252. [PMID: 28162022 DOI: 10.1080/14789450.2017.1291347] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Red blood cells (RBC) are the most abundant host cells in the human body. Mature erythrocytes are devoid of nuclei and organelles and have always been regarded as circulating 'bags of hemoglobin'. The advent of proteomics has challenged this assumption, revealing unanticipated complexity and novel roles for RBCs not just in gas transport, but also in systemic metabolic homeostasis in health and disease. Areas covered: In this review we will summarize the main advancements in the field of discovery mode and redox/quantitative proteomics with respect to RBC biology. We thus focus on translational/clinical applications, such as transfusion medicine, hematology (e.g. hemoglobinopathies) and personalized medicine. Synergy of omics technologies - especially proteomics and metabolomics - are highlighted as a hallmark of clinical metabolomics applications for the foreseeable future. Expert commentary: The introduction of advanced proteomics technologies, especially quantitative and redox proteomics, and the integration of proteomics data with omics information gathered through orthogonal technologies (especially metabolomics) promise to revolutionize many biomedical areas, from hematology and transfusion medicine to personalized medicine and clinical biochemistry.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- a Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , CO , USA
| | - Lello Zolla
- b Department of Ecological and Biological Sciences , Universita' degli Studi della Tuscia , Viterbo , Italy
| |
Collapse
|
45
|
Chen D, Schubert P, Devine DV. Identification of potential protein quality markers in pathogen inactivated and gamma-irradiated red cell concentrates. Proteomics Clin Appl 2017; 11. [DOI: 10.1002/prca.201600121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Deborah Chen
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver BC Canada
- The Centre for Blood Research; University of British Columbia; Vancouver BC Canada
| | - Peter Schubert
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver BC Canada
- The Centre for Blood Research; University of British Columbia; Vancouver BC Canada
- Centre for Innovation; Canadian Blood Services; Vancouver BC Canada
| | - Dana V. Devine
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver BC Canada
- The Centre for Blood Research; University of British Columbia; Vancouver BC Canada
- Centre for Innovation; Canadian Blood Services; Vancouver BC Canada
| |
Collapse
|
46
|
Welbourn EM, Wilson MT, Yusof A, Metodiev MV, Cooper CE. The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane. Free Radic Biol Med 2017; 103:95-106. [PMID: 28007575 PMCID: PMC5282401 DOI: 10.1016/j.freeradbiomed.2016.12.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 12/20/2022]
Abstract
Covalent hemoglobin binding to membranes leads to band 3 (AE1) clustering and the removal of erythrocytes from the circulation; it is also implicated in blood storage lesions. Damaged hemoglobin, with the heme being in a redox and oxygen-binding inactive hemichrome form, has been implicated as the binding species. However, previous studies used strong non-physiological oxidants. In vivo hemoglobin is constantly being oxidised to methemoglobin (ferric), with around 1% of hemoglobin being in this form at any one time. In this study we tested the ability of the natural oxidised form of hemoglobin (methemoglobin) in the presence or absence of the physiological oxidant hydrogen peroxide to initiate membrane binding. The higher the oxidation state of hemoglobin (from Fe(III) to Fe(V)) the more binding was observed, with approximately 50% of this binding requiring reactive sulphydryl groups. The hemoglobin bound was in a high molecular weight complex containing spectrin, ankyrin and band 4.2, which are common to one of the cytoskeletal nodes. Unusually, we showed that hemoglobin bound in this way was redox active and capable of ligand binding. It can initiate lipid peroxidation showing the potential to cause cell damage. In vivo oxidative stress studies using extreme endurance exercise challenges showed an increase in hemoglobin membrane binding, especially in older cells with lower levels of antioxidant enzymes. These are then targeted for destruction. We propose a model where mild oxidative stress initiates the binding of redox active hemoglobin to the membrane. The maximum lifetime of the erythrocyte is thus governed by the redox activity of the cell; from the moment of its release into the circulation the timer is set.
Collapse
Affiliation(s)
| | - Michael T Wilson
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Ashril Yusof
- Dept. of Exercise Science, Sports Centre, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Metodi V Metodiev
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Chris E Cooper
- School of Biological Sciences, University of Essex, Colchester CO4 3SQ, UK.
| |
Collapse
|
47
|
Affiliation(s)
- A. D'Alessandro
- Department of Biochemistry and Molecular Genetics; University of Colorado Denver; Aurora CO USA
| |
Collapse
|
48
|
Antonelou MH, Seghatchian J. Insights into red blood cell storage lesion: Toward a new appreciation. Transfus Apher Sci 2016; 55:292-301. [PMID: 27839967 DOI: 10.1016/j.transci.2016.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Red blood cell storage lesion (RSL) is a multifaceted biological phenomenon. It refers to deterioration in RBC quality that is characterized by lethal and sub-lethal, reversible and irreversible defects. RSL is influenced by prestorage variables and it might be associated with variable clinical outcomes. Optimal biopreservation conditions are expected to offer maximum levels of RBC survival and acceptable functionality and bioreactivity in-bag and in vivo; consequently, full appraisal of RSL requires understanding of how RSL changes interact with each other and with the recipient. Recent technological innovation in MS-based omics, imaging, cytometry, small particle and systems biology has offered better understanding of RSL contributing factors and effects. A number of elegant in vivo and in vitro studies have paved the way for the identification of quality control biomarkers useful to predict RSL profile and posttransfusion performance. Moreover, screening tools for the early detection of good or poor "storers" and donors have been developed. In the light of new perspectives, storage time is not the touchstone to rule on the quality of a packed RBC unit. At least by a biochemical standpoint, the metabolic aging pattern during storage may not correspond to the currently fresh/old distinction of stored RBCs. Finally, although each unit of RBCs is probably unique, a metabolic signature of RSL across storage variables might exist. Moving forward from traditional hematologic measures to integrated information on structure, composition, biochemistry and interactions collected in bag and in vivo will allow identification of points for intervention in a transfusion meaningful context.
Collapse
Affiliation(s)
- Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| | - Jerard Seghatchian
- International Consultancy in Blood Component Quality/Safety Improvement, Audit/Inspection and DDR Strategy, London, UK.
| |
Collapse
|
49
|
Bayer SB, Low FM, Hampton MB, Winterbourn CC. Interactions between peroxiredoxin 2, hemichrome and the erythrocyte membrane. Free Radic Res 2016; 50:1329-1339. [DOI: 10.1080/10715762.2016.1241995] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Simone B. Bayer
- Department of Pathology, Centre for Free Radical Research, University of Otago, Christchurch, New Zealand
| | - Felicia M. Low
- Department of Pathology, Centre for Free Radical Research, University of Otago, Christchurch, New Zealand
| | - Mark B. Hampton
- Department of Pathology, Centre for Free Radical Research, University of Otago, Christchurch, New Zealand
| | - Christine C. Winterbourn
- Department of Pathology, Centre for Free Radical Research, University of Otago, Christchurch, New Zealand
| |
Collapse
|
50
|
Zhang Q, Li Z, Zhao S, Wen W, Chang L, Yu H, Jiang T. Analysis of red blood cells’ dynamic status in a simulated blood circulation system using an ultrahigh-speed simultaneous framing optical electronic camera. Cytometry A 2016; 91:126-132. [PMID: 27517614 DOI: 10.1002/cyto.a.22920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/15/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Qiang Zhang
- Department of Blood Transfusion; Southwest Hospital; Chongqing China
- Interdisciplinary Laboratory of Physics and Biomedicine; Chongqing China
| | - Zeren Li
- Fluid Physics Research Institute, China Academy of Engineering Physics; Sichuan China
- Interdisciplinary Laboratory of Physics and Biomedicine; Chongqing China
| | - Shuming Zhao
- Department of Blood Transfusion; Southwest Hospital; Chongqing China
- Interdisciplinary Laboratory of Physics and Biomedicine; Chongqing China
| | - Weifeng Wen
- Fluid Physics Research Institute, China Academy of Engineering Physics; Sichuan China
- Interdisciplinary Laboratory of Physics and Biomedicine; Chongqing China
| | - Lihua Chang
- Fluid Physics Research Institute, China Academy of Engineering Physics; Sichuan China
- Interdisciplinary Laboratory of Physics and Biomedicine; Chongqing China
| | - Helian Yu
- Department of Blood Transfusion; Southwest Hospital; Chongqing China
- Interdisciplinary Laboratory of Physics and Biomedicine; Chongqing China
| | - Tianlun Jiang
- Department of Blood Transfusion; Southwest Hospital; Chongqing China
- Interdisciplinary Laboratory of Physics and Biomedicine; Chongqing China
| |
Collapse
|