1
|
Totapally BR, Totapally A, Martinez PA. Thrombocytopenia in Critically Ill Children: A Review for Practicing Clinicians. CHILDREN (BASEL, SWITZERLAND) 2025; 12:83. [PMID: 39857914 PMCID: PMC11764412 DOI: 10.3390/children12010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Thrombocytopenia frequently occurs in patients before, during, and after admission to Pediatric Intensive Care Units (PICUs). In critically ill children, it is often due to multifactorial causes and can be a sign of significant organ dysfunction. This review summarizes the potential causes/mechanisms of thrombocytopenia in acutely ill children, their identification, and treatments, with special attention paid to septic patients. The mechanisms of thrombocytopenia include decreased production and sequestration, but the most common reason is increased destruction or consumption. This review specifically reviews and compares the presentation, pathogenesis, and treatment of disseminated intravascular coagulation (DIC) and the thrombotic microangiopathic spectrum (TMA), including thrombocytopenia-associated multiorgan failure (TAMOF), hemolytic uremic syndrome, and other diagnoses. The other etiologies discussed include HLH/MAS, immune thrombocytopenia, and dilutional thrombocytopenia. Finally, this review analyzes platelet transfusions, the various thresholds, and complications.
Collapse
Affiliation(s)
- Balagangadhar R. Totapally
- Division of Critical Care Medicine, Nicklaus Children’s Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, USA; (A.T.); (P.A.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Abhinav Totapally
- Division of Critical Care Medicine, Nicklaus Children’s Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, USA; (A.T.); (P.A.M.)
| | - Paul A. Martinez
- Division of Critical Care Medicine, Nicklaus Children’s Hospital, 3100 SW 62nd Avenue, Miami, FL 33155, USA; (A.T.); (P.A.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
2
|
De La Vega-Méndez FM, Estrada MI, Zuno-Reyes EE, Gutierrez-Rivera CA, Oliva-Martinez AE, Díaz-Villavicencio B, Calderon-Garcia CE, González-Barajas JD, Arizaga-Nápoles M, García-Peña F, Chávez-Alonso G, López-Rios A, Gomez-Fregoso JA, Rodriguez-Garcia FG, Navarro-Blackaller G, Medina-González R, Alcantar-Vallin L, García-García G, Abundis-Mora GJ, Gallardo-González AM, Chavez-Iñiguez JS. Blood transfusion reactions and risk of acute kidney injury and major adverse kidney events. J Nephrol 2024; 37:951-960. [PMID: 38285316 PMCID: PMC11239756 DOI: 10.1007/s40620-023-01859-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Blood transfusion reactions may have a negative impact on organ function. It is unknown whether this association holds true for acute kidney injury (AKI). Therefore, we conducted a cohort study to assess the association between transfusion reactions and the incidence of AKI and major adverse kidney events. METHODS In this retrospective cohort study, we included patients who received transfusion of blood products during hospitalization at the Hospital Civil of Guadalajara. We analyzed them according to the development of transfusion reactions, and the aim was to assess the association between transfusion reactions and AKI during long-term follow-up. RESULTS From 2017 to 2021, 81,635 patients received a blood product transfusion, and 516 were included in our study. The most common transfusion was red blood cell packaging (50.4%), fresh frozen plasma (28.7%) and platelets (20.9%); of the 516 patients, 129 (25%) had transfusion reactions. Patients who had transfusion reactions were older and had more comorbidities. The most common type of transfusion reaction was allergic reaction (70.5%), followed by febrile nonhemolytic reaction (11.6%) and anaphylactoid reaction (8.5%). Most cases were considered mild. Acute kidney injury was more prevalent among those who had transfusion reactions (14.7%) than among those who did not (7.8%), p = < 0.01; those with AKI had a higher frequency of diabetes, vasopressors, and insulin use. Transfusion reactions were independently associated with the development of AKI (RR 2.1, p = < 0.02). Major adverse kidney events were more common in those with transfusion reactions. The mortality rate was similar between subgroups. CONCLUSION In our retrospective cohort of patients who received blood product transfusions, 25% experienced transfusion reactions, and this event was associated with a twofold increase in the probability of developing AKI and some of the major adverse kidney events during long follow-up.
Collapse
Affiliation(s)
- Fidra Margarita De La Vega-Méndez
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Colonia Centro, C.P. 44150, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Miguel Ibarra Estrada
- Intensive Care Unit, Hospital Civil of Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | | | | | - Ana Elisa Oliva-Martinez
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Colonia Centro, C.P. 44150, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Bladimir Díaz-Villavicencio
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Colonia Centro, C.P. 44150, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Clementina Elizabeth Calderon-Garcia
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Colonia Centro, C.P. 44150, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Jose David González-Barajas
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Colonia Centro, C.P. 44150, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Manuel Arizaga-Nápoles
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Colonia Centro, C.P. 44150, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | | | - Gael Chávez-Alonso
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Adanari López-Rios
- Blood Bank of the Hospital Civil of Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - Juan Alberto Gomez-Fregoso
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Colonia Centro, C.P. 44150, Guadalajara, Jalisco, Mexico
| | - Francisco Gonzalo Rodriguez-Garcia
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Colonia Centro, C.P. 44150, Guadalajara, Jalisco, Mexico
| | - Guillermo Navarro-Blackaller
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Colonia Centro, C.P. 44150, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | - Ramón Medina-González
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Colonia Centro, C.P. 44150, Guadalajara, Jalisco, Mexico
| | - Luz Alcantar-Vallin
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Colonia Centro, C.P. 44150, Guadalajara, Jalisco, Mexico
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico
| | | | - Gabriela Jazmin Abundis-Mora
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Colonia Centro, C.P. 44150, Guadalajara, Jalisco, Mexico
| | | | - Jonathan Samuel Chavez-Iñiguez
- Nephrology Service, Hospital Civil de Guadalajara Fray Antonio Alcalde, Hospital 278, Colonia Centro, C.P. 44150, Guadalajara, Jalisco, Mexico.
- University of Guadalajara Health Sciences Center, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
3
|
Hakami NY, Al-Ahdal AM, Al-Sulami AJ, Alabbadi HM, Sindi MM, Gholam KA, Bayuomi MM, Qadah T. Chemical and Microbiological Changes of Expired Platelet Concentrate. Int J Gen Med 2024; 17:1433-1439. [PMID: 38617052 PMCID: PMC11016247 DOI: 10.2147/ijgm.s449003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/03/2024] [Indexed: 04/16/2024] Open
Abstract
Background Platelets are a commonly used blood component to prevent or treat bleeding in patients with thrombocytopenia or platelet dysfunction. They are stored at room temperature (22-24°C) for five days unless specific measures are taken to extend the shelf life to seven days or more. After five days, this study evaluated platelet units' biochemical changes and bacterial growth. Study Design and Methods Platelet concentrate was collected from 30 random donors: 8 females and 22 males. The collected samples were then placed on an agitator at room temperature and tested for their pH, protein content, and glucose levels using Roche Combur 100 Test® Strips. The Haemonetics eBDS™ System was used for bacterial detection. The measurements were taken on day five as the control and then repeated on days 7, 9, and 11 to observe any changes. On days 5 and 7, all parameters remained unchanged. However, glucose levels significantly changed (p=<0.0001) on days 9 and 11. Regarding pH, a significant change was observed on day 9 (p=0.033) and day 11 (p=0.0002). Results There were no significant changes in all parameters on days 5 and 7. However, glucose was substantially changed (p=<0.0001) on days 9 and 11. For pH, there was a significant change in pH on day 9 (p=0.033) and day 11 (p=0.0002). Discussions Our study found that platelet concentrate extension is possible for up to seven days. However, further studies are needed to evaluate platelet function during expiry time and to assess the stability of platelet morphology and function.
Collapse
Affiliation(s)
- Nora Y Hakami
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman M Al-Ahdal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Hematology Department, King Salman Bin Abdulaziz Medical City, Medinah, Saudi Arabia
| | - Afnan J Al-Sulami
- Blood Transfusion Services Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Httan M Alabbadi
- Blood Transfusion Services Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mamdouh M Sindi
- Clinical Chemistry Laboratory, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Kholoud A Gholam
- Blood Transfusion Services Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Maiman M Bayuomi
- Blood Transfusion Services Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Talal Qadah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Simin D, Dolinaj V, Brestovački Svitlica B, Grujić J, Živković D, Milutinović D. Blood Transfusion Procedure: Assessment of Serbian Intensive Care Nurses' Knowledge. Healthcare (Basel) 2024; 12:720. [PMID: 38610143 PMCID: PMC11012219 DOI: 10.3390/healthcare12070720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Many patients require administering one or more blood components during hospitalisation in the Intensive Care Unit (ICU). Therefore, nurses' knowledge of who is responsible for immediately administering blood transfusions, monitoring patients, and identifying and managing transfusion reactions is crucial. This cross-sectional descriptive-analytical study aimed to assess the knowledge of ICU nurses in tertiary healthcare institutions about blood transfusion procedures. The questionnaire about the transfusion procedure was designed and reviewed by experts. The questionnaire consisted of 29 items divided into three domains. The scores on the knowledge test ranged from 10 to 27. Generally, 57.7% of nurses had moderate, 23.4% low, and 18.9% high levels of knowledge about the transfusion procedure. Most nurses answered correctly about refreezing fresh frozen plasma, verifying the transfusion product, and identifying the patient. Of the nurses, 91.0% would recognise mild allergic reactions, and 98.2% knew about the supervision of sedated patients. Nurses showed poor knowledge of the length of usage of the same transfusion system for red blood cells, labelling, and transfusion administration in febrile patients. Nurses with higher education and longer working experience had significantly better outcomes (p = 0.000) on the knowledge test. Continuous education of ICU nurses on safe transfusion usage is recommended.
Collapse
Affiliation(s)
- Dragana Simin
- Department of Nursing, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.D.); (B.B.S.); (D.Ž.); (D.M.)
| | - Vladimir Dolinaj
- Department of Nursing, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.D.); (B.B.S.); (D.Ž.); (D.M.)
- Department of Anesthesia and Intensive Care, University Clinical Centre of Vojvodina, 21000 Novi Sad, Serbia
| | - Branislava Brestovački Svitlica
- Department of Nursing, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.D.); (B.B.S.); (D.Ž.); (D.M.)
- Institute for Child and Youth Health Care of Vojvodina, 21000 Novi Sad, Serbia
| | - Jasmina Grujić
- Department of Transfusiology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
- Vojvodina Blood Transfusion Institute, 21000 Novi Sad, Serbia
| | - Dragana Živković
- Department of Nursing, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.D.); (B.B.S.); (D.Ž.); (D.M.)
| | - Dragana Milutinović
- Department of Nursing, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (V.D.); (B.B.S.); (D.Ž.); (D.M.)
| |
Collapse
|
5
|
Casale M, Di Girolamo MG, Di Maio N, Tomeo R, Iengo M, Scianguetta S, Palma T, Porcelli F, Misso S, Perrotta S. Absence of blood donors' anti-SARS-CoV-2 antibodies in pre-storage leukoreduced red blood cell units indicates no role of passive immunity for blood recipients. Ann Hematol 2024; 103:623-629. [PMID: 37758964 PMCID: PMC10799091 DOI: 10.1007/s00277-023-05473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Transfer of vaccine antibodies (Ab) from donors to recipients after transfusion of packed red blood cells (RBC) is supposed, thus affecting the recipients' response to vaccinations. In this prospective study, SARS-CoV-2 IgG level in donors' serum and RBC supernatant samples was assessed. Among 346 subjects, 280 were referred for hyperimmune plasma donation and 30 for whole blood donations. All units underwent pre-storage filtration, and residual plasma volume was 18±18 mL. The mean total IgG and IgM levels were 171.43 ± 48.79 and 11.43 ± 10.69 mg/dL respectively, with significant reduction after plasma depletion and filtration (IgG 5.86 ± 5.2 and IgM 1.43 ± 3.78, p < 0.05). Anti-COVID-19 Ab were identified in serum of 28/30 (93.5%) blood donors but were absent in all blood units. The mean value of anti-SARS-CoV-2 IgG level in donors' serum samples and in RBC units was 8.80 S/C (range 0.01-23.4) and 0.11 (range 0.01-0.37) S/C, respectively (p<0.05). This study shows deplasmation and leukodepletion of RBC units ensured removal of IgG content and no red blood cell unit was reactive for anti-COVID-19 antibodies even from donors with high serum titre. These findings demonstrate that deplasmated and leukodepleted RBCs are not to be considered blood products containing substantial amounts of immune globulin, and differently from other blood derived-products containing Ab, transfusions with deplasmated and leukodepleted RBCs do not require delayed vaccinations and a revision of current recommendations is requested.
Collapse
Affiliation(s)
- Maddalena Casale
- Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy.
| | | | - Nicoletta Di Maio
- Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Rita Tomeo
- Medicina Trasfusionale, ASL Caserta, Caserta, Italy
| | | | | | - Teresa Palma
- Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Federica Porcelli
- Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | | | - Silverio Perrotta
- Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
6
|
White SK, Walker BS, Schmidt RL, Metcalf RA. The incidence of transfusion-related acute lung injury using active surveillance: A systematic review and meta-analysis. Transfusion 2024; 64:289-300. [PMID: 38116828 DOI: 10.1111/trf.17688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Transfusion-related acute lung injury (TRALI) is a leading cause of transfusion-related mortality. A concern with passive surveillance to detect transfusion reactions is underreporting. Our aim was to obtain evidence-based estimates of TRALI incidence using meta-analysis of active surveillance studies and to compare these estimates with passive surveillance. STUDY DESIGN AND METHODS We performed a systematic review and meta-analysis of studies reporting TRALI rates. A search of Medline and Embase by a research librarian identified studies published between January 1, 1991 and January 20, 2023. Prospective and retrospective observational studies reporting TRALI by blood component (red blood cells [RBCs], platelets, or plasma) were identified and all inpatient and outpatient settings were eligible. Adult and pediatric, as well as general and specific clinical populations, were included. Platelets and plasma must have used at least one modern TRALI donor risk mitigation strategy. A random effects model estimated TRALI incidence by blood component for active and passive surveillance studies and heterogeneity was examined using meta-regression. RESULTS Eighty studies were included with approximately 176-million blood components transfused. RBCs had the highest number of studies (n = 66) included, followed by platelets (n = 35) and plasma (n = 34). Pooled TRALI estimates for active surveillance studies were 0.17/10,000 (95% confidence intervals [CI]: 0.03-0.43; I2 = 79%) for RBCs, 0.31/10,000 (95% CI: 0.22-0.42; I2 = <1%) for platelets, and 3.19/10,000 (95% CI: 0.09-10.66; I2 = 86%) for plasma. Studies using passive surveillance ranged from 0.02 to 0.10/10,000 among the various blood components. DISCUSSION In summary, these estimates may improve a quantitative understanding of TRALI risk, which is important for clinical decision-making weighing the risks and benefits of transfusion.
Collapse
Affiliation(s)
- Sandra K White
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | | | - Robert L Schmidt
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- ARUP Laboratories, Salt Lake City, Utah, USA
| | - Ryan A Metcalf
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
- ARUP Laboratories, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Czempik PF, Herzyk J, Wilczek D. Let Us Know Transfusion Triggers for Prophylactic Use of Platelet Concentrate-Analysis of Compliance with Recent Transfusion Guidelines in a Large Academic Medical Center. J Clin Med 2023; 12:5885. [PMID: 37762827 PMCID: PMC10532288 DOI: 10.3390/jcm12185885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Platelet concentrate (PC) is a blood component that is used to prevent or manage bleeding associated with thrombocytopenia or impaired platelet function. The aim of our study was to assess the compliance of ordering physicians with the most recent PC transfusion guidelines in our academic medical center. All PC transfusions performed between January 2019 and December 2022 were analyzed. The appropriateness of PC transfusions was assessed based on the most recent PC transfusion guidelines. During 2019-2022, there were 362 (0.2%) PC recipients out of 161,762 hospitalized patients. There were 971 PCs transfused during the analyzed period. Inappropriate transfusions accounted for 53.3% of cases, and most of them were given prophylactically (80.2%). Compliance with platelet transfusion guidelines varied among departments. The overall percentage of inappropriately transfused PC ranged from 50.7% to 60.8% in successive years. Educational activities should target clinicians performing procedures associated with high rates of inappropriate PC transfusions. Implementing clinical decision support systems can help reduce unnecessary PC transfusions and associated costs. The majority of inappropriate PC transfusions in our medical center were given as prophylaxis against bleeding. Prescribers should be educated about evidence-based transfusion triggers for the prophylactic use of PC in various clinical scenarios.
Collapse
Affiliation(s)
- Piotr F. Czempik
- Department of Anesthesiology and Intensive Care, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
- Transfusion Committee, University Clinical Center of Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| | - Jan Herzyk
- Students’ Scientific Society, Department of Anesthesiology and Intensive Care, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| | - Dawid Wilczek
- Students’ Scientific Society, Department of Anesthesiology and Intensive Care, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
8
|
Niemann M, Otto E, Eder C, Youssef Y, Kaufner L, Märdian S. Coagulopathy management of multiple injured patients - a comprehensive literature review of the European guideline 2019. EFORT Open Rev 2022; 7:710-726. [PMID: 36287131 PMCID: PMC9619392 DOI: 10.1530/eor-22-0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The European guideline on the management of trauma-induced major bleeding and coagulopathy summarises the most relevant recommendations for trauma coagulopathy management. The management of trauma-induced major bleeding should interdisciplinary follow algorithms which distinguish between life-threatening and non-life-threatening bleeding. Point-of-care viscoelastic methods (VEM) assist target-controlled haemostatic treatment. Neither conventional coagulation assays nor VEM should delay treatment in life-threatening trauma-induced bleeding. Adjustments may be rational due to local circumstances, including the availability of blood products, pharmaceuticals, and employees.
Collapse
Affiliation(s)
- Marcel Niemann
- Charité – Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany,Correspondence should be addressed to M Niemann;
| | - Ellen Otto
- Charité – Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany,Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Eder
- Charité – Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Yasmin Youssef
- Department of Orthopaedics, Trauma Surgery and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Lutz Kaufner
- Charité – Universitätsmedizin Berlin, Department of Anesthesiology and Intensive Care Medicine, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sven Märdian
- Charité – Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
9
|
Himmelwright RS, Dominguez JE. Postpartum Respiratory Depression. Anesthesiol Clin 2021; 39:687-709. [PMID: 34776104 DOI: 10.1016/j.anclin.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Postpartum respiratory depression is a complex, multifactorial issue that encompasses a patient's baseline preexisting conditions, certain pregnancy-specific conditions or complications, as well as the iatrogenic element of various medications given in the peripartum period. In this review, we discuss many of these factors including obesity, sleep-disordered breathing, chronic lung disease, neuromuscular disorders, opioids, preeclampsia, peripartum cardiomyopathy, postpartum hemorrhage, amniotic fluid embolism, sepsis, acute respiratory distress syndrome (ARDS), and medications such as analgesics, sedatives, anesthetics, and magnesium. Current recommendations for screening, treatment, and prevention are also discussed.
Collapse
Affiliation(s)
| | - Jennifer E Dominguez
- Duke University Medical Center, DUMC 3094, MS#9, 2301 Erwin Road, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Abstract
Blood transfusions are generally safe but can carry considerable risks. This review summarizes the different types of transfusion reactions and ways to diagnose and manage them. Symptoms are often overlapping and nonspecific. When a reaction is suspected, it is critical to stop the transfusion immediately and report the reaction to the blood bank, as this can affect the patient's outcome. New evidence-based algorithms of transfusion, newer blood screening methods and donor policies and deferrals, new laboratory testing, electronic verification systems, and improved hemovigilance lead to the avoidance of unnecessary transfusions and decrease the incidence of serious transfusion reactions.
Collapse
Affiliation(s)
- Rim Abdallah
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Herleen Rai
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Sandhya R Panch
- Department of Transfusion Medicine, Warren G. Magnuson Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Roubinian NH, Chowdhury D, Hendrickson JE, Triulzi DJ, Gottschall JL, Looney MR, Matthay MA, Kor DJ, Brambilla D, Kleinman SH, Murphy EL. NT-proBNP levels in the identification and classification of pulmonary transfusion reactions. Transfusion 2020; 60:2548-2556. [PMID: 32905629 DOI: 10.1111/trf.16059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Consensus definitions for transfusion-related acute lung injury (TRALI) and transfusion-associated circulatory overload (TACO) have recently been revised; however, pulmonary transfusion reactions remain difficult to diagnose. We hypothesized that N-terminal pro-brain natriuretic peptide (NT-proBNP) levels could have utility in the identification and classification of pulmonary transfusion reactions. STUDY DESIGN AND METHODS We performed a secondary analysis of a case-control study of pulmonary transfusion reactions at four academic hospitals. We evaluated clinical data and measured NT-proBNP levels prior to and following transfusion in patients with TACO (n = 160), transfused acute respiratory distress syndrome (ARDS) [n = 51], TRALI [n = 12], TACO/TRALI [n = 7], and controls [n = 335]. We used Wilcoxon Rank-Sum tests to compare NT-proBNP levels, and classification and regression tree (CART) algorithms to produce a ranking of covariates in order of relative importance for differentiating TACO from transfused controls. RESULTS Pre-transfusion NT-proBNP levels were elevated in cases of transfused ARDS and TACO (both P < .001) but not TRALI (P = .31) or TACO/TRALI (P = .23) compared to transfused controls. Pre-transfusion NT-proBNP levels were higher in cases of transfused ARDS or TRALI with a diagnosis of sepsis compared to those without (P < .05 for both). CART analyses resulted in similar differentiation of patients with TACO from transfused controls for models utilizing either NT-proBNP levels (AUC 0.83) or echocardiogram results (AUC 0.80). CONCLUSIONS NT-proBNP levels may have utility in the classification of pulmonary transfusion reactions. Prospective studies are needed to test the predictive utility of pre-transfusion NT-proBNP in conjunction with other clinical factors in identifying patients at risk of pulmonary transfusion reactions.
Collapse
Affiliation(s)
- Nareg H Roubinian
- Kaiser Permanente Division of Research, Oakland, California, USA.,Vitalant Research Institute, San Francisco, California, USA.,University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | | - Mark R Looney
- University of California, San Francisco, San Francisco, California, USA
| | - Michael A Matthay
- University of California, San Francisco, San Francisco, California, USA
| | | | | | | | - Edward L Murphy
- Vitalant Research Institute, San Francisco, California, USA.,University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
12
|
Gehrie EA, Savani BN, Booth GS. Risk factors for hemolytic transfusion reactions resulting from ABO and minor red cell antigen incompatibility: From mislabeled samples to stem cell transplant and sickle cell disease. Blood Rev 2020; 45:100719. [PMID: 32561028 DOI: 10.1016/j.blre.2020.100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
Advances in laboratory testing, pathogen reduction and donor qualification have dramatically reduced the risk of acquiring an infection from a blood transfusion. Despite this progress, the most feared complication of transfusion - a hemolytic reaction due to incompatibility between donor and recipient - remains, with essentially no recent progress in the prevention or recognition of this rare but frequently lethal complication. Herein, the role that compatibility testing and transfusion practice play in the occurrence of acute hemolysis are described, with a special emphasis on clinical scenarios confer an increased risk of a severe hemolytic reaction in response to red blood cell or platelet transfusion. In addition, the signs and symptoms of a severe hemolytic reaction are summarized, along with the initial approach to clinical management.
Collapse
Affiliation(s)
- Eric A Gehrie
- Department of Pathology, Division of Transfusion Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Bipin N Savani
- The Department of Oncology, Vanderbilt University Medical Center, Nashville, TN, USA; Tennessee Valley Veterans Affairs Hospital, Nashville, TN, USA.
| | - Garrett S Booth
- The Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
13
|
Butler-Foster T, Chin-Yee I, Huang M, Jackson KT. Toward Understanding Culturally Sensitive Care for Transgender Blood Donors: A Scoping Review of Health Care Provider Knowledge. Transgend Health 2020. [DOI: 10.1089/trgh.2019.0062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Terrie Butler-Foster
- Arthur Labatt Family School of Nursing, Western University, London, Ontario, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Ottawa, Ontario, Canada
| | - Ian Chin-Yee
- Canadian Blood Services, Medical Affairs and Innovation, Ottawa, Ontario, Canada
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Mary Huang
- Canadian Blood Services, Medical Affairs and Innovation, Ottawa, Ontario, Canada
| | - Kimberley T. Jackson
- Arthur Labatt Family School of Nursing, Western University, London, Ontario, Canada
| |
Collapse
|
14
|
Newland A, Bentley R, Jakubowska A, Liebman H, Lorens J, Peck-Radosavljevic M, Taieb V, Takami A, Tateishi R, Younossi ZM. A systematic literature review on the use of platelet transfusions in patients with thrombocytopenia. ACTA ACUST UNITED AC 2020; 24:679-719. [PMID: 31581933 DOI: 10.1080/16078454.2019.1662200] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: Investigate globally, current treatment patterns, benefit-risk assessments, humanistic, societal and economic burden of platelet transfusion (PT). Methods: Publications from 1998 to June 27, 2018 were identified, based on databases searches including MEDLINE®; Embase and Cochrane Database of Systematic Reviews. Data from studies meeting pre-specified criteria were extracted and validated by independent reviewers. Data were obtained for efficacy and safety from randomized controlled trials (RCTs); data for epidemiology, treatment patterns, effectiveness, safety, humanistic and societal burden from real-world evidence (RWE) studies; and economic data from both. Results: A total of 3425 abstracts, 194 publications (190 studies) were included. PT use varied widely, from 0%-100% of TCP patients; 1.7%-24.5% in large studies (>1000 patients). Most were used prophylactically rather than therapeutically. 5 of 43 RCTs compared prophylactic PT with no intervention, with mixed results. In RWE studies PT generally increased platelet count (PC). This increase varied by patient characteristics and hence did not always translate into a clinically significant reduction in bleeding risk. Safety concerns included infection risk, alloimmunization and refractoriness with associated cost burden. Discussion: In RCTs and RWE studies there was significant heterogeneity in study design and outcome measures. In RWE studies, patients receiving PT may have been at higher risk than those not receiving PT creating potential bias. There were limited data on humanistic and societal burden. Conclusion: Although PTs are used widely for increasing PC in TCP, it is important to understand the limitations of PTs, and to explore the use of alternative treatment options where available.
Collapse
Affiliation(s)
- Adrian Newland
- Barts Health National Health Service (NHS) Trust , London , UK
| | | | | | - Howard Liebman
- Jane Anne Nohl Division of Hematology, USC Norris Cancer Hospital , Los Angeles , CA , USA
| | | | - Markus Peck-Radosavljevic
- Department of Gastroenterology & Hepatology, Endocrinology and Nephrology, Klinikum Klagenfurt , Klagenfurt , Austria.,Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna , Vienna , Austria
| | | | - Akiyoshi Takami
- Department of Internal Medicine, Division of Hematology, Aichi Medical University School of Medicine , Nagakute , Japan
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo , Tokyo , Japan
| | - Zobair M Younossi
- Department of Medicine, Inova Fairfax Hospital , Falls Church , VA , USA
| |
Collapse
|
15
|
Transfusion-Associated Circulatory Overload and Transfusion-Related Acute Lung Injury. Hematol Oncol Clin North Am 2019; 33:767-779. [DOI: 10.1016/j.hoc.2019.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Weinstock C, Schnaidt M. Human Leucocyte Antigen Sensitisation and Its Impact on Transfusion Practice. Transfus Med Hemother 2019; 46:356-369. [PMID: 31832061 PMCID: PMC6876597 DOI: 10.1159/000502158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/13/2019] [Indexed: 01/25/2023] Open
Abstract
Human leucocyte antigen (HLA) sensitisation, including the formation of antibodies against HLA, can cause serious effects in patients receiving blood. Under certain circumstances, donor HLA antibodies in the blood product can trigger the patient's granulocytes to release mediators that cause transfusion-associated lung injury (TRALI), a serious complication of transfusion. The HLA systems of both donor and patient are involved in transfusion-associated graft-versus-host disease, which is a rare disease with a high mortality. Patient HLA antibodies can destroy incompatible platelets and may cause refractoriness to platelet transfusion. Identification of a patient's HLA antibody specificities is necessary for issuing compatible platelets to overcome refractoriness. Many techniques for the detection and identification of HLA antibodies have been developed, including complement-dependent cytotoxicity assay, bead-based assays, the platelet adhesion immunofluorescence test, and the monoclonal antibody-specific immobilisation of platelet antigens assay. Different strategies for the selection of HLA-compatible platelets are applied. These strategies depend on the breadth of antibody reactivity and range from avoiding single HLA antigens in the platelet concentrates issued to apheresis of platelets from HLA-identical donors. The mechanisms of HLA sensitisation and the efforts made to provide compatible blood products to sensitised patients are reviewed in this article from the perspective of clinical transfusion medicine.
Collapse
Affiliation(s)
- Christof Weinstock
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Ulm, Institute of Transfusion Medicine, Ulm University, Ulm, Germany
| | - Martina Schnaidt
- Centre for Clinical Transfusion Medicine, Medical Faculty of Tübingen, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Abstract
Abstract
Transfusion-related acute lung injury is a leading cause of death associated with the use of blood products. Transfusion-related acute lung injury is a diagnosis of exclusion which can be difficult to identify during surgery amid the various physiologic and pathophysiologic changes associated with the perioperative period. As anesthesiologists supervise delivery of a large portion of inpatient prescribed blood products, and since the incidence of transfusion-related acute lung injury in the perioperative patient is higher than in nonsurgical patients, anesthesiologists need to consider transfusion-related acute lung injury in the perioperative setting, identify at-risk patients, recognize early signs of transfusion-related acute lung injury, and have established strategies for its prevention and treatment.
Collapse
|
18
|
Kuldanek SA, Kelher M, Silliman CC. Risk factors, management and prevention of transfusion-related acute lung injury: a comprehensive update. Expert Rev Hematol 2019; 12:773-785. [PMID: 31282773 PMCID: PMC6715498 DOI: 10.1080/17474086.2019.1640599] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Introduction: Despite mitigation strategies that include the exclusion of females from plasma donation or the exclusion of females with a history of pregnancy or known anti-leukocyte antibody, transfusion-related acute lung injury (TRALI) remains a leading cause of transfusion-related morbidity and mortality. Areas covered: The definition of TRALI is discussed and re-aligned with the new Berlin Diagnostic Criteria for the acute respiratory distress syndrome (ARDS). The risk factors associated with TRALI are summarized as are the mitigation strategies to further reduce TRALI. The emerging basic research studies that may translate to clinical therapeutics for the prevention or treatment of TRALI are discussed. Expert opinion: At risk patients, including the genetic factors that may predispose patients to TRALI are summarized and discussed. The re-definition of TRALI employing the Berlin Criteria for ARDS will allow for increased recognition and improved research into pathophysiology and mitigation to reduce this fatal complication of hemotherapy.
Collapse
Affiliation(s)
- Susan A. Kuldanek
- The Division of Transfusion Medicine, School of Medicine University of Colorado Denver, Aurora, CO, USA
- Department of Pathology, School of Medicine University of Colorado Denver, Aurora, CO, USA
- Department of Pediatrics, School of Medicine University of Colorado Denver, Aurora, CO, USA
| | - Marguerite Kelher
- Department of Surgery, School of Medicine University of Colorado Denver, Aurora, CO, USA
| | - Christopher C. Silliman
- Department of Pediatrics, School of Medicine University of Colorado Denver, Aurora, CO, USA
- Department of Surgery, School of Medicine University of Colorado Denver, Aurora, CO, USA
- Vitalant Research Institute, Vitalant Mountain Division, Denver, CO, USA
| |
Collapse
|
19
|
Abstract
Transfusions of blood and blood products are live-saving, but complications may be fatal. Transfusion related lung injury (TRALI) is rare and pathophysiology not yet entirely understood. Diagnosis is difficult due to the usually life-threatening circumstances associated with transfusions and underlying diseases. In this mini-review article, we introduce two cases of TRALI to discuss the problems and controversies associated with different definitions, epidemiology, pathophysiology, blood products, diagnosis, and treatment. Future directions in the field are highlighted.
Collapse
Affiliation(s)
- Maria Theresa Voelker
- Department of Anesthesiology and Critical Care Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Peter Spieth
- Department of Anesthesiology and Critical Care Medicine, University Hospital Dresden, Dresden, Germany
| |
Collapse
|
20
|
Wiencek JR, Gehrie EA, Keiser AM, Szklarski PC, Johnson-Davis KL, Booth GS. Detection of Nicotine and Nicotine Metabolites in Units of Banked Blood. Am J Clin Pathol 2019; 151:516-521. [PMID: 30715103 DOI: 10.1093/ajcp/aqy176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES To determine the concentrations of nicotine and nicotine metabolites in RBC units as a means to estimate the point prevalence of exposure within the healthy donor pool. METHODS Segments from 105 RBC units were tested for the presence of nicotine, cotinine, or trans-3'-hydroxycotinine by liquid chromatography-tandem mass spectrometry. RESULTS Of the 20 (19%) units that contained detectable concentrations of nicotine, cotinine, or trans-3'-hydroxycotinine, 19 (18.1%) contained concentrations consistent with the use of a nicotine-containing product within 48 hours of specimen collection. One RBC unit contained nicotine concentrations consistent with passive exposure. CONCLUSIONS Chemicals from nicotine-containing products are detectable within the US RBC supply. Further investigation is needed to determine the risks of transfusion-associated exposure to nicotine and other tobacco-associated chemicals among vulnerable patient populations such as neonates.
Collapse
Affiliation(s)
- Joesph R Wiencek
- Department of Pathology, University of Virginia School of Medicine, Charlottesville
| | - Eric A Gehrie
- Department of Pathology, Division of Transfusion Medicine, Johns Hopkins University, Baltimore, MD
| | - Amaris M Keiser
- Department of Pediatrics, Division of Neonatology, Johns Hopkins University, Baltimore, MD
| | - Penny C Szklarski
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Kamisha L Johnson-Davis
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City
| | - Garrett S Booth
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
21
|
Spahn DR, Bouillon B, Cerny V, Duranteau J, Filipescu D, Hunt BJ, Komadina R, Maegele M, Nardi G, Riddez L, Samama CM, Vincent JL, Rossaint R. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit Care 2019; 23:98. [PMID: 30917843 PMCID: PMC6436241 DOI: 10.1186/s13054-019-2347-3] [Citation(s) in RCA: 727] [Impact Index Per Article: 121.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/06/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Severe traumatic injury continues to present challenges to healthcare systems around the world, and post-traumatic bleeding remains a leading cause of potentially preventable death among injured patients. Now in its fifth edition, this document aims to provide guidance on the management of major bleeding and coagulopathy following traumatic injury and encourages adaptation of the guiding principles described here to individual institutional circumstances and resources. METHODS The pan-European, multidisciplinary Task Force for Advanced Bleeding Care in Trauma was founded in 2004, and the current author group included representatives of six relevant European professional societies. The group applied a structured, evidence-based consensus approach to address scientific queries that served as the basis for each recommendation and supporting rationale. Expert opinion and current clinical practice were also considered, particularly in areas in which randomised clinical trials have not or cannot be performed. Existing recommendations were re-examined and revised based on scientific evidence that has emerged since the previous edition and observed shifts in clinical practice. New recommendations were formulated to reflect current clinical concerns and areas in which new research data have been generated. RESULTS Advances in our understanding of the pathophysiology of post-traumatic coagulopathy have supported improved management strategies, including evidence that early, individualised goal-directed treatment improves the outcome of severely injured patients. The overall organisation of the current guideline has been designed to reflect the clinical decision-making process along the patient pathway in an approximate temporal sequence. Recommendations are grouped behind the rationale for key decision points, which are patient- or problem-oriented rather than related to specific treatment modalities. While these recommendations provide guidance for the diagnosis and treatment of major bleeding and coagulopathy, emerging evidence supports the author group's belief that the greatest outcome improvement can be achieved through education and the establishment of and adherence to local clinical management algorithms. CONCLUSIONS A multidisciplinary approach and adherence to evidence-based guidance are key to improving patient outcomes. If incorporated into local practice, these clinical practice guidelines have the potential to ensure a uniform standard of care across Europe and beyond and better outcomes for the severely bleeding trauma patient.
Collapse
Affiliation(s)
- Donat R. Spahn
- Institute of Anaesthesiology, University of Zurich and University Hospital Zurich, Raemistrasse 100, CH-8091 Zurich, Switzerland
| | - Bertil Bouillon
- Department of Trauma and Orthopaedic Surgery, Cologne-Merheim Medical Centre (CMMC), University of Witten/Herdecke, Ostmerheimer Strasse 200, D-51109 Cologne, Germany
| | - Vladimir Cerny
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care, J.E. Purkinje University, Masaryk Hospital, Usti nad Labem, Socialni pece 3316/12A, CZ-40113 Usti nad Labem, Czech Republic
- Centre for Research and Development, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic, Sokolska 581, CZ-50005 Hradec Kralove, Czech Republic
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, CZ-50003 Hradec Kralove, Czech Republic
- Department of Anaesthesia, Pain Management and Perioperative Medicine, QE II Health Sciences Centre, Dalhousie University, Halifax, 10 West Victoria, 1276 South Park St, Halifax, NS B3H 2Y9 Canada
| | - Jacques Duranteau
- Department of Anaesthesia and Intensive Care, Hôpitaux Universitaires Paris Sud, University of Paris XI, Faculté de Médecine Paris-Sud, 78 rue du Général Leclerc, F-94275 Le Kremlin-Bicêtre Cedex, France
| | - Daniela Filipescu
- Department of Cardiac Anaesthesia and Intensive Care, C. C. Iliescu Emergency Institute of Cardiovascular Diseases, Sos Fundeni 256-258, RO-022328 Bucharest, Romania
| | - Beverley J. Hunt
- King’s College and Departments of Haematology and Pathology, Guy’s and St Thomas’ NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH UK
| | - Radko Komadina
- Department of Traumatology, General and Teaching Hospital Celje, Medical Faculty Ljubljana University, SI-3000 Celje, Slovenia
| | - Marc Maegele
- Department of Trauma and Orthopaedic Surgery, Cologne-Merheim Medical Centre (CMMC), Institute for Research in Operative Medicine (IFOM), University of Witten/Herdecke, Ostmerheimer Strasse 200, D-51109 Cologne, Germany
| | - Giuseppe Nardi
- Department of Anaesthesia and ICU, AUSL della Romagna, Infermi Hospital Rimini, Viale Settembrini, 2, I-47924 Rimini, Italy
| | - Louis Riddez
- Department of Surgery and Trauma, Karolinska University Hospital, S-171 76 Solna, Sweden
| | - Charles-Marc Samama
- Hotel-Dieu University Hospital, 1, place du Parvis de Notre-Dame, F-75181 Paris Cedex 04, France
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, B-1070 Brussels, Belgium
| | - Rolf Rossaint
- Department of Anaesthesiology, University Hospital Aachen, RWTH Aachen University, Pauwelsstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
22
|
|
23
|
Transfusion-associated circulatory overload and transfusion-related acute lung injury. Blood 2019; 133:1840-1853. [PMID: 30808638 DOI: 10.1182/blood-2018-10-860809] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/10/2018] [Indexed: 01/18/2023] Open
Abstract
Transfusion-associated circulatory overload (TACO) and transfusion-related acute lung injury (TRALI) are syndromes of acute respiratory distress that occur within 6 hours of blood transfusion. TACO and TRALI are the leading causes of transfusion-related fatalities, and specific therapies are unavailable. Diagnostically, it remains very challenging to distinguish TACO and TRALI from underlying causes of lung injury and/or fluid overload as well as from each other. TACO is characterized by pulmonary hydrostatic (cardiogenic) edema, whereas TRALI presents as pulmonary permeability edema (noncardiogenic). The pathophysiology of both syndromes is complex and incompletely understood. A 2-hit model is generally assumed to underlie TACO and TRALI disease pathology, where the first hit represents the clinical condition of the patient and the second hit is conveyed by the transfusion product. In TACO, cardiac or renal impairment and positive fluid balance appear first hits, whereas suboptimal fluid management or other components in the transfused product may enable the second hit. Remarkably, other factors beyond volume play a role in TACO. In TRALI, the first hit can, for example, be represented by inflammation, whereas the second hit is assumed to be caused by antileukocyte antibodies or biological response modifiers (eg, lipids). In this review, we provide an up-to-date overview of TACO and TRALI regarding clinical definitions, diagnostic strategies, pathophysiological mechanisms, and potential therapies. More research is required to better understand TACO and TRALI pathophysiology, and more biomarker studies are warranted. Collectively, this may result in improved diagnostics and development of therapeutic approaches for these life-threatening transfusion reactions.
Collapse
|
24
|
Roubinian N. TACO and TRALI: biology, risk factors, and prevention strategies. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:585-594. [PMID: 30570487 PMCID: PMC6324877 DOI: 10.1182/asheducation-2018.1.585] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Transfusion-related acute lung injury (TRALI) and transfusion-associated circulatory overload (TACO) are the leading causes of transfusion-related morbidity and mortality. These adverse events are characterized by acute pulmonary edema within 6 hours of a blood transfusion and have historically been difficult to study due to underrecognition and nonspecific diagnostic criteria. However, in the past decade, in vivo models and clinical studies utilizing active surveillance have advanced our understanding of their epidemiology and pathogenesis. With the adoption of mitigation strategies and patient blood management, the incidence of TRALI and TACO has decreased. Continued research to prevent and treat these severe cardiopulmonary events is focused on both the blood component and the transfusion recipient.
Collapse
Affiliation(s)
- Nareg Roubinian
- Blood Systems Research Institute, San Francisco, CA; Kaiser Permanente Northern California Medical Center and Division of Research, Oakland, CA; and Department of Laboratory Medicine, University of California, San Francisco, CA
| |
Collapse
|
25
|
Aubron C, Flint AWJ, Ozier Y, McQuilten Z. Platelet storage duration and its clinical and transfusion outcomes: a systematic review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:185. [PMID: 30077181 PMCID: PMC6091146 DOI: 10.1186/s13054-018-2114-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/03/2018] [Indexed: 02/08/2023]
Abstract
Background Platelets (PLTs) are usually stored for up to 5 days prior to transfusion, although in some blood services the storage period is extended to 7 days. During storage, changes occur in both PLT and storage medium, which may lead to PLT activation and dysfunction. The clinical significance of these changes remains uncertain. Methods We performed a systematic review to assess the association between PLT storage time and clinical or transfusion outcomes in patients receiving allogeneic PLT transfusion. We searched studies published in English between January 2000 and July 2017 identified from MEDLINE, Embase, PubMed and the Cochrane Libraries. Results Of the 18 studies identified, five included 4719 critically ill patients (trauma, post-cardiac surgery and a heterogeneous population of critically ill patients) and 13 included 8569 haematology patients. The five studies in critically ill patients were retrospective and did not find any association between PLT storage time when PLTs were stored for up to 5 days and mortality. There was also no association between older PLTs and sepsis in the two largest studies (n = 4008 patients). Of the 13 studies in haematology patients, seven analysed prolonged storage time up to 6.5 or 7 days. Administration of fresh PLTs (less than 2 or 3 days) was associated with a significant increase in corrected count increment (CCI) compared to older PLTs in seven of the eight studies analysing this outcome. One single centre retrospective study found an increase in bleeding events in patients receiving older PLTs. Conclusions PLT storage time does not appear to be associated with clinical outcomes, including bleeding, sepsis or mortality, in critically ill patients or haematology patients. The freshest PLTs (less than 3 days) were associated with a better CCI, although there was no impact on bleeding events, questioning the clinical significance of this association. However, there is an absence of evidence to draw definitive conclusions, especially in critically ill patients. Electronic supplementary material The online version of this article (10.1186/s13054-018-2114-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cécile Aubron
- The Medical Intensive Care Unit, Centre Hospitalier et Universitaire de Brest - Université de Bretagne Occidentale, Bvd Tanguy Prigent, 29609, Brest Cedex, France. .,The Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.
| | - Andrew W J Flint
- The Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.,Royal Australian Navy, Australian Defence Force, Canberra, Australia
| | - Yves Ozier
- The Department of Anesthesiology, Centre Hospitalier et Universitaire de Brest - Université de Bretagne Occidentale, Brest, France
| | - Zoe McQuilten
- The Australian and New Zealand Intensive Care Research Centre, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.,The Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
26
|
The Incidence of Transfusion-Related Acute Lung Injury at a Large, Urban Tertiary Medical Center. Anesth Analg 2018; 127:444-449. [DOI: 10.1213/ane.0000000000003392] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Andreu G, Boudjedir K, Muller JY, Pouchol E, Ozier Y, Fevre G, Gautreau C, Quaranta JF, Drouet C, Rieux C, Mertes PM, Clavier B, Carlier M, Sandid I. Analysis of Transfusion-Related Acute Lung Injury and Possible Transfusion-Related Acute Lung Injury Reported to the French Hemovigilance Network From 2007 to 2013. Transfus Med Rev 2018; 32:16-27. [DOI: 10.1016/j.tmrv.2017.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/13/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
|
28
|
Otrock ZK, Liu C, Grossman BJ. Transfusion-related acute lung injury risk mitigation: an update. Vox Sang 2017; 112:694-703. [PMID: 28948604 DOI: 10.1111/vox.12573] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/11/2017] [Accepted: 08/11/2017] [Indexed: 02/04/2023]
Abstract
Transfusion-related acute lung injury (TRALI) is a life-threatening complication of transfusion. Greater understanding of the pathophysiology of this syndrome has much improved during the last two decades. Plasma-containing components from female donors with leucocyte antibodies were responsible for the majority of TRALI fatalities before mitigation strategies were implemented. Over the past 15 years, measures to mitigate risk for TRALI have been implemented worldwide and they continued to evolve with time. The AABB requires that all plasma containing components and whole blood for transfusion must be collected from men, women who have not been pregnant, or women who have tested negative for human leucocyte antigen antibodies. Although the incidence of TRALI has decreased following the institution of TRALI mitigation strategies, TRALI is still the most common cause of transfusion-associated death in the United States. In this review, we focus on TRALI risk mitigation strategies. We describe the measures taken by blood collection facilities to reduce the risk of TRALI in the United States, Canada and European countries. We also review the literature for the effectiveness of these measures.
Collapse
Affiliation(s)
- Z K Otrock
- Department of Pathology and Laboratory Medicine, Henry Ford Health System, Detroit, MI, USA
| | - C Liu
- Department of Pathology and Immunology, Barnes-Jewish Hospital, Washington University, St Louis, MO, USA
| | - B J Grossman
- Department of Pathology and Laboratory Medicine, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
29
|
Saadah NH, van Hout FM, Schipperus MR, le Cessie S, Middelburg RA, Wiersum-Osselton JC, van der Bom JG. Comparing transfusion reaction rates for various plasma types: a systematic review and meta-analysis/regression. Transfusion 2017; 57:2104-2114. [DOI: 10.1111/trf.14245] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Nicholas H. Saadah
- Center for Clinical Transfusion Research, Sanquin Blood Supply
- Department of Clinical Epidemiology; Leiden University Medical Center
| | - Fabienne M.A. van Hout
- Center for Clinical Transfusion Research, Sanquin Blood Supply
- Department of Clinical Epidemiology; Leiden University Medical Center
- Department of Cardiothoracic Surgery; Leiden University Medical Center; Leiden the Netherlands
| | - Martin R. Schipperus
- Haga Teaching Hospital, Department of Hematology; The Hague the Netherlands
- TRIP National Hemovigilance Foundation, Hemovigilance and Biovigilance Office
| | - Saskia le Cessie
- Department of Clinical Epidemiology; Leiden University Medical Center
| | - Rutger A. Middelburg
- Center for Clinical Transfusion Research, Sanquin Blood Supply
- Department of Clinical Epidemiology; Leiden University Medical Center
| | - Johanna C. Wiersum-Osselton
- TRIP National Hemovigilance Foundation, Hemovigilance and Biovigilance Office
- Donor Services Unit, Sanquin Blood Supply; Leiden the Netherlands
| | - Johanna G. van der Bom
- Center for Clinical Transfusion Research, Sanquin Blood Supply
- Department of Clinical Epidemiology; Leiden University Medical Center
| |
Collapse
|
30
|
Beck TN, Young NG, Erickson ML, Prats I. Rare antibody-associated hemolytic transfusion reaction and transfusion-related acute lung injury: a case report. BMC Surg 2017; 17:48. [PMID: 28441942 PMCID: PMC5405478 DOI: 10.1186/s12893-017-0241-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 04/11/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hemolytic transfusion reactions and transfusion-related acute lung injury (TRALI) are life-threatening complications associated with the transfusion of blood products. Hemorrhage is one of the most common surgical complications and the risk of bleeding is particularly acute in patients with hematologic deficiencies. Management of surgical bleeding can be divided into two phases. The first phase centers on immediate control of acute bleeding and the second phase focuses on keeping the patient stable and on reducing the sequelae associated with blood transfusions and blood loss. CASE PRESENTATION We present the case of a 53-year-old woman with long-standing immune thrombocytopenia who underwent repair of a symptomatic ventral hernia. On post-operative day one the patient developed hemoperitoneum, requiring exploratory laparotomy and massive transfusion of blood products. The patient's recovery was complicated by consistently low hemoglobin, hematocrit and platelets, prompting frequent transfusion of additional blood products. Shortly after activation of the massive transfusion protocol, the patient developed TRALI. Compounding the situation, on post-operative day sixteen the patient's serum started to show hemolysis: lactate dehydrogenase (LDH) levels rose to 1,845 IU/L, with haptoglobin at less than 5.8 mg/dL and with a high reticulocyte count (4.38%). Previous testing had shown that the patient was positive for most major antigens implicated in antibody formation and was only producing anti-E and anti-K antibodies (considered for all transfusions). Initial pre- and post-transfusion direct antiglobulin tests (DAT) were indeed negative. However, repeat DATs in the days following the noted serum changes were consistent with new allo-antibody formation. These findings prompted immediate withholding of all blood products and a thorough blood bank work up. Despite strong evidence for new allo-antibody formation, no specific known antibody could be identified. The patient recover well when blood products were withheld. DISCUSSION We present the case of a 53-year-old woman with long-standing immune thrombocytopenia who underwent repair of a symptomatic ventral hernia. On post-operative day one the patient developed hemoperitoneum, requiring exploratory laparotomy and massive transfusion of blood products. The patient's recovery was complicated by consistently low hemoglobin, hematocrit and platelets, prompting frequent transfusion of additional blood products. Shortly after activation of the massive transfusion protocol, the patient developed TRALI. Compounding the situation, on post-operative day sixteen the patient's serum started to show hemolysis: lactate dehydrogenase (LDH) levels rose to 1,845 IU/L, with haptoglobin at less than 5.8 mg/dL and with a high reticulocyte count (4.38%). Previous testing had shown that the patient was positive for most major antigens implicated in antibody formation and was only producing anti-E and anti-K antibodies (considered for all transfusions). Initial pre- and post-transfusion direct antiglobulin tests (DAT) were indeed negative. However, repeat DATs in the days following the noted serum changes were consistent with new allo-antibody formation. These findings prompted immediate withholding of all blood products and a thorough blood bank work up. Despite strong evidence for new allo-antibody formation, no specific known antibody could be identified. The patient recover well when blood products were withheld. Suspicion for hemolytic transfusion reactions should be high in patients with prior allo-antibody formation; these may present as acute hemolysis or as a delayed hemolytic transfusion reaction. Withholding blood products from these patients until compatible products have been identified is recommended. Moreover, TRALI is the leading cause of transfusion-related fatalities and should always be considered in transfusion settings. CONCLUSIONS Suspicion for hemolytic transfusion reactions should be high in patients with prior allo-antibody formation; these may present as acute hemolysis or as a delayed hemolytic transfusion reaction. Withholding blood products from these patients until compatible products have been identified is recommended. Moreover, TRALI is the leading cause of transfusion-related fatalities and should always be considered in transfusion settings.
Collapse
Affiliation(s)
- Tim N Beck
- Molecular and Cell Biology and Genetics, Drexel University College of Medicine, Philadelphia, PA, 19129, USA. .,Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA.
| | - Natalee G Young
- Department of Surgery, WellSpan York Hospital, York, PA, 17403, USA
| | - Michelle L Erickson
- Department of Pathology/Blood Bank, WellSpan York Hospital, York, PA, 17403, USA
| | - Ignacio Prats
- Department of Surgery, WellSpan York Hospital, York, PA, 17403, USA. .,Leader Surgical Associates, Leader Surgical Center, York, PA, 17403, USA.
| |
Collapse
|
31
|
Abstract
The resuscitation of traumatic hemorrhagic shock has undergone a paradigm shift in the last 20 years with the advent of damage control resuscitation (DCR). Major principles of DCR include minimization of crystalloid, permissive hypotension, transfusion of a balanced ratio of blood products, and goal-directed correction of coagulopathy. In particular, plasma has replaced crystalloid as the primary means for volume expansion for traumatic hemorrhagic shock. Predicting which patient will require DCR by prompt and accurate activation of a massive transfusion protocol, however, remains a challenge.
Collapse
Affiliation(s)
- Ronald Chang
- Center for Translational Injury Research, University of Texas Health Science Center, 6410 Fannin Street, Suite 1100, Houston, TX 77030, USA.
| | - John B Holcomb
- Department of Surgery, University of Texas Health Science Center, 6410 Fannin Street, Suite 1100, Houston, TX 77030, USA
| |
Collapse
|
32
|
The accumulation of lipids and proteins during red blood cell storage: the roles of leucoreduction and experimental filtration. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:131-136. [PMID: 28263170 DOI: 10.2450/2017.0314-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023]
Abstract
Pre-storage leucoreduction has been universally adopted in most developed countries in Asia, Europe and the Americas. It decreases febrile transfusion reactions, alloimmunisation to HLA antigens, cytomegalovirus exposure, the accumulation of a number of pro-inflammatory mediators in the supernatant, including the accumulation of platelet-and leucocyte-derived proteins and metabolites during routine storage. This review will highlight the lipids and proteins, biological response modifiers (BRMs) that accumulate, their clinical effects in transfused hosts, and methods of mitigation.
Collapse
|
33
|
Moore LJ, Todd SR. Hemorrhage and Transfusions in the Surgical Patient. COMMON PROBLEMS IN ACUTE CARE SURGERY 2017. [PMCID: PMC7120919 DOI: 10.1007/978-3-319-42792-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hemorrhage remains the leading cause of intra-operative deaths and those in the first 24 h. Many cardiovascular and hepatobiliary procedures result in massive hemorrhage and postpartum hemorrhage events in labor and delivery place the patient at a high risk for mortality. Both upper and lower gastrointestinal bleeding (e.g., diverticulosis, esophageal and gastric varices, and peptic ulcer disease) can also result in significant blood loss requiring massive transfusion and resuscitation from hemorrhagic shock. Therefore, safe, timely, and effective transfusion of blood products is critical. The aim of this chapter is to provide clinicians with a discussion of the current literature on the various blood component products, their indications, and unique hemostatic conditions in the surgical patient. While the majority of data concerning optimal management of acquired coagulopathy and hemorrhagic shock resuscitation is based on trauma patients, many of the principles can and should be applied to the surgical patient (or likely any patient) with profound hemorrhage.
Collapse
Affiliation(s)
- Laura J. Moore
- Department of Surgery, The University of Texas McGovern Medical School - Houston, Houston, Texas USA
| | - S. Rob Todd
- General Surgery and Trauma Ben Taub Hospital, Houston, Texas USA
| |
Collapse
|
34
|
Kelher MR, Banerjee A, Gamboni F, Anderson C, Silliman CC. Antibodies to major histocompatibility complex class II antigens directly prime neutrophils and cause acute lung injury in a two-event in vivo rat model. Transfusion 2016; 56:3004-3011. [PMID: 27667662 DOI: 10.1111/trf.13817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/18/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Transfusion-related acute lung injury (TRALI) is a significant cause of mortality, especially after transfusions containing antibodies to major histocompatibility complex (MHC) class II antigens. We hypothesize that a first event induces both 1) polymorphonuclear neutrophils (PMNs) to express MHC class II antigens, and 2) activation of the pulmonary endothelium, leading to PMN sequestration, so that the infusion of specific MHC class II antibodies to these antigens causes PMN-mediated acute lung injury (ALI). STUDY DESIGN AND METHODS Rats were treated with saline (NS), endotoxin (lipopolysaccharide [LPS]), or cytokines (interferon-γ [IFNγ], macrophage colony-stimulating factor [MCSF], tumor necrosis factor-α [TNFα]); the PMNs were isolated; and the surface expression of the MHC class II antigen OX6 and priming by OX6 antibodies were measured by flow cytometry or priming assays. RESULTS A two-event model of ALI was completed with NS, LPS, or IFNγ/MCSF/TNFα (first events) and the infusion of OX6 (second event). Compared with NS incubation, rats treated with either LPS or IFNγ/MCSF/TNFα exhibited OX6 PMN surface expression, OX6 antibodies primed the formyl-methionyl-leucyl phenylalanine (fMLF)-activated respiratory burst, and PMN sequestration was increased. OX6 antibody infusion into LPS-incubated or IFNγ/MCSF/TNFα-incubated rats elicited ALI, the OX6 antibody was present on the PMNs, and PMN depletion abrogated ALI. CONCLUSION Proinflammatory first events induce PMN MHC class II surface expression, activation of the pulmonary endothelium, and PMN sequestration such that the infusion of cognate antibodies precipitates TRALI.
Collapse
Affiliation(s)
- Marguerite R Kelher
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Anirban Banerjee
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Fabia Gamboni
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Cameron Anderson
- Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Christopher C Silliman
- Research Laboratory, Bonfils Blood Center, Denver, Colorado.,Department of Surgery, University of Colorado Denver, Aurora, Colorado.,Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
35
|
Eder AF, Dy BA, O'Neill EM. Predicted effect of selectively testing female donors for HLA antibodies to mitigate transfusion-related acute lung injury risk from apheresis platelets. Transfusion 2016; 56:1608-15. [DOI: 10.1111/trf.13482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Anne F. Eder
- National Headquarters, Biomedical Services, Medical Office, American Red Cross, National Headquarters; Washington DC
| | - Beth A. Dy
- National Headquarters, Biomedical Services, Medical Office, American Red Cross, National Headquarters; Washington DC
| | - E. Mary O'Neill
- National Headquarters, Biomedical Services, Medical Office, American Red Cross, National Headquarters; Washington DC
| |
Collapse
|
36
|
O'Donnell JM, Nácul FE. Blood Products. SURGICAL INTENSIVE CARE MEDICINE 2016. [PMCID: PMC7123257 DOI: 10.1007/978-3-319-19668-8_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Perioperative hemorrhage, anemia, thrombocytopenia, and coagulopathy are common in the surgical intensive care unit. As a result, blood product transfusion occurs frequently. While red blood cell, plasma, and platelet transfusions have a lifesaving role in the resuscitation of patients with trauma and hemorrhagic shock, their application in other settings is under scrutiny. Current data would suggest a conservative approach be taken, thus avoiding unnecessary transfusion and associated potential adverse events. New and developmental products such as prothrombin complex concentrates offer appealing alternatives to traditional transfusion practice—potentially with fewer risks—however, further investigation into their safety and efficacy is required before practice change can take place.
Collapse
Affiliation(s)
- John M. O'Donnell
- Department of Surgical Critical Care; Lahey Hospital and Medical Center, Division of Surgery, Burlington, Massachusetts USA
| | - Flávio E. Nácul
- Surgical Critical Care Medicine, Pr�-Card�o Hospital, Critical Care Medicine, University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro Brazil
| |
Collapse
|
37
|
Abstract
Abstract
Blood utilization review programs educate clinicians on guidelines for appropriate transfusion, review local transfusion practice, and provide feedback on transfusion trends. To gather data on transfusion practice, modern blood utilization programs leverage electronic medical records and computerized physician order entry with automated decision support. Data may be collected and feedback may be given in real-time for individual transfusions or retrospectively with aggregated data. Important elements for a successful program include a multidisciplinary group that can champion the effort, adequate documentation and data capture for transfusions, and regular discussions about trends with ordering clinicians. Blood utilization programs are popular because they can lower transfusion risk, improve quality outcomes, and lower costs.
Collapse
|
38
|
Current options for transfusion-related acute lung injury risk mitigation in platelet transfusions. Curr Opin Hematol 2015; 22:554-8. [DOI: 10.1097/moh.0000000000000187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
39
|
Nixon CP, Sweeney JD. Discriminating different causes of transfusion-associated pulmonary edema. Transfusion 2015; 55:1825-8. [DOI: 10.1111/trf.13142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 03/31/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Christian P. Nixon
- Center for International Health Research; Rhode Island Hospital and Alpert Medical School of Brown University
- Department of Pathology & Laboratory Medicine; Rhode Island Hospital and the Miriam Hospitals; Providence RI
| | - Joseph D. Sweeney
- Department of Pathology & Laboratory Medicine; Rhode Island Hospital and the Miriam Hospitals; Providence RI
| |
Collapse
|
40
|
Stubbs JR, Zielinski MD, Berns KS, Badjie KS, Tauscher CD, Hammel SA, Zietlow SP, Jenkins D. How we provide thawed plasma for trauma patients. Transfusion 2015; 55:1830-7. [PMID: 26013588 DOI: 10.1111/trf.13156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 04/08/2015] [Accepted: 04/08/2015] [Indexed: 12/21/2022]
Abstract
Almost 50% of trauma-related fatalities within the first 24 hours of injury are related to hemorrhage. Improved survival in severely injured patients has been demonstrated when massive transfusion protocols are rapidly invoked as part of a therapeutic approach known as damage control resuscitation (DCR). DCR incorporates the early use of plasma to prevent or correct trauma-induced coagulopathy. DCR often requires the transfusion of plasma before determination of the recipient's ABO group. Historically, group AB plasma has been considered the "universal donor" plasma product. At our facility, the number of AB plasma products produced on an annual basis was found to be inadequate to support the trauma service's DCR program. A joint decision was made by the transfusion medicine and trauma services to provide group A thawed plasma (TP) for in-hospital and prehospital DCR protocols. A description of the implementation of group A TP into the DCR program is provided as well as outcome data pertaining to the use of TP in trauma patients.
Collapse
Affiliation(s)
- James R Stubbs
- Department of Laboratory Medicine and Pathology, Division of Transfusion Medicine
| | | | - Kathleen S Berns
- Department of Medical Transport, Mayo Clinic, Rochester, Minnesota
| | - Karafa S Badjie
- Department of Laboratory Medicine and Pathology, Division of Transfusion Medicine
| | - Craig D Tauscher
- Department of Laboratory Medicine and Pathology, Division of Transfusion Medicine
| | - Scott A Hammel
- Department of Laboratory Medicine and Pathology, Division of Transfusion Medicine
| | | | | |
Collapse
|
41
|
McVey J, Baker D, Parti R, Berg R, Gudino M, Teschner W. Anti-A and anti-B titers in donor plasma, plasma pools, and immunoglobulin final products. Transfusion 2015; 55 Suppl 2:S98-104. [PMID: 25981342 DOI: 10.1111/trf.13114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/28/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND High-dose intravenous immunoglobulin (IVIG) treatments are implicated in hemolytic events in some patients receiving treatment. The passive transfer of IgG anti-A and anti-B agglutinin is thought to play a role in the development of these events. The purpose of this study was to determine the prevalence of high-titer IgG anti-A and anti-B in plasma donors and investigate if there is any advantage of excluding these donors from the donor pool to limit anti-A and anti-B content in IVIG product. STUDY DESIGN AND METHODS IgG anti-A and anti-B levels were assessed from group O donor plasma, manufacturing IgG plasma pools, and finished IVIG product (Gammagard Liquid). Antibody level in group O donors was also assessed by sex and age for their relative contribution of antibody to the plasma pool. RESULTS The majority of group O donors (80%) had antibody titers of less than 1000. Of those with titers of at least 1000, theoretical estimates provide further evidence that the effects of high-titer donors are minimal. Antibody levels in plasma pools both during the manufacturing process and from the final IVIG product also support that anti-A and anti-B levels are low. In general, there were more females than males with higher antibody titer levels, with significantly more females than males with anti-A. CONCLUSION Excluding donors with high anti-A and anti-B titers has minimal impact on the finished IVIG product titers due to ABO antibody neutralization and the dilution factor in the manufacturing pool.
Collapse
Affiliation(s)
- John McVey
- Regulatory Affairs and Quality, Support Services Global QA/RA, Deerfield, Illinois
| | - Don Baker
- Regulatory Affairs and Quality, Support Services Global QA/RA, Deerfield, Illinois
| | - Rajesh Parti
- Quality Compliance, Baxter Healthcare Corporation, Westlake, California
| | - Roger Berg
- Baxter Innovations GmbH, Vienna, Austria
| | | | | |
Collapse
|
42
|
Popovsky MA. Transfusion-related acute lung injury: three decades of progress but miles to go before we sleep. Transfusion 2015; 55:930-4. [DOI: 10.1111/trf.13064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Mark A. Popovsky
- Vice President and Chief Medical Officer; Haemonetics Corporation; Braintree MA
| |
Collapse
|
43
|
Male-predominant plasma transfusion strategy for preventing transfusion-related acute lung injury: a systematic review. Crit Care Med 2015; 43:205-25. [PMID: 25514705 DOI: 10.1097/ccm.0000000000000675] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To assess 1) the effectiveness of male-predominant plasma transfusion strategy for preventing transfusion-related acute lung injury and related mortality; and 2) whether this effect varies across different patient subgroups. DESIGN Systematic Review and meta-analysis: Data were identified by querying MEDLINE and EMBASE (including proceedings of major conferences on blood transfusions), searching the Internet for hemovigilance reports, reviewing reference lists of eligible articles and contacting experts in the field. Eligible were all studies reporting transfusion-related acute lung injury incidence, all-cause mortality (primary outcomes), hospital length of stay, time to extubation, PaO2/FIO2-ratio or blood pressure changes (secondary outcomes) in recipients of plasma transfusions containing relatively more plasma from individuals at low risk of carrying leukocyte-antibodies ("male plasma") than those receiving comparator plasma ("control plasma"). No limits were placed on study design, population or language. The only exclusion criteria were non-human subjects and lack of control group. Prespecified study quality indicators (including risk of bias assessment) and potential effect modifiers were tested using Cochran's Q Test. Final analyses using random-effects models and I2 to assess heterogeneity were performed in the subset of studies judged to provide the best evidence and separately for significantly different subgroups using STATA 12.1 (StataCorp, College Station, TX). SETTING As per primary studies. PATIENTS/SUBJECTS As per primary studies. INTERVENTIONS As per primary studies (generally: exposure to plasma containing relatively more male plasma than comparator plasma). MEASUREMENTS AND MAIN RESULTS From a total of 850 retrieved records, we identified 45 eligible studies. For transfusion-related acute lung injury incidence, final analysis was restricted to 13 cohort studies and one randomized controlled trial in which transfusion-related acute lung injury cases only involved plasma transfusions. Risk of transfusion-related acute lung injury and mortality in plasma recipients exposed to men when compared with control plasma were 0.27 (95% CI, 0.20-0.38; p < 0.001; I = 0%; n = 14; 286 events) and 0.89 (95% CI, 0.80-1.00; p = 0.04; I = 79%; n = 7; 5, 710 events), respectively. No other significant interactions were found. Secondary outcomes showed similar results but were less reported and the studies were more heterogeneous. Sensitivity analyses did not alter the results. There was no evidence of publication bias. DISCUSSION More than 800 million people in 17 countries are subject to male-predominant plasma transfusion policy and at least three more countries are planning or considering adoption of this strategy. On the basis of most observational data, judged to be of high quality, male-predominant plasma transfusion strategy reduces plasma-related transfusion-related acute lung injury incidence and possibly mortality. There was no evidence that the effect differs across patient subgroups, but power to detect such differences was low.
Collapse
|
44
|
Abstract
Transfusion-related acute lung injury (TRALI) is defined as the onset or the worsening of respiratory distress within 6 h of the transfusion of a plasma-containing blood component. It is currently considered to be one of the leading causes of severe posttransfusion morbidity and acute mortality in countries with a high development index. Understanding of the pathogenesis of TRALI has resulted in the development of preventive measures that have contributed to reducing its incidence. Early recognition of the clinical symptoms allow the clinician to identify the syndrome and to undertake therapeutic measures that may reduce the morbidity and mortality associated with this complication.
Collapse
|
45
|
Kaufman RM, Djulbegovic B, Gernsheimer T, Kleinman S, Tinmouth AT, Capocelli KE, Cipolle MD, Cohn CS, Fung MK, Grossman BJ, Mintz PD, O'Malley BA, Sesok-Pizzini DA, Shander A, Stack GE, Webert KE, Weinstein R, Welch BG, Whitman GJ, Wong EC, Tobian AA. Platelet transfusion: a clinical practice guideline from the AABB. Ann Intern Med 2015; 162:205-13. [PMID: 25383671 DOI: 10.7326/m14-1589] [Citation(s) in RCA: 616] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The AABB (formerly, the American Association of Blood Banks) developed this guideline on appropriate use of platelet transfusion in adult patients. METHODS These guidelines are based on a systematic review of randomized, clinical trials and observational studies (1900 to September 2014) that reported clinical outcomes on patients receiving prophylactic or therapeutic platelet transfusions. An expert panel reviewed the data and developed recommendations using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework. RECOMMENDATION 1 The AABB recommends that platelets should be transfused prophylactically to reduce the risk for spontaneous bleeding in hospitalized adult patients with therapy-induced hypoproliferative thrombocytopenia. The AABB recommends transfusing hospitalized adult patients with a platelet count of 10 × 109 cells/L or less to reduce the risk for spontaneous bleeding. The AABB recommends transfusing up to a single apheresis unit or equivalent. Greater doses are not more effective, and lower doses equal to one half of a standard apheresis unit are equally effective. (Grade: strong recommendation; moderate-quality evidence). RECOMMENDATION 2 The AABB suggests prophylactic platelet transfusion for patients having elective central venous catheter placement with a platelet count less than 20 × 109 cells/L. (Grade: weak recommendation; low-quality evidence). RECOMMENDATION 3 The AABB suggests prophylactic platelet transfusion for patients having elective diagnostic lumbar puncture with a platelet count less than 50 × 109 cells/L. (Grade: weak recommendation; very-low-quality evidence). RECOMMENDATION 4 The AABB suggests prophylactic platelet transfusion for patients having major elective nonneuraxial surgery with a platelet count less than 50 × 109 cells/L. (Grade: weak recommendation; very-low-quality evidence). RECOMMENDATION 5 The AABB recommends against routine prophylactic platelet transfusion for patients who are nonthrombocytopenic and have cardiac surgery with cardiopulmonary bypass. The AABB suggests platelet transfusion for patients having bypass who exhibit perioperative bleeding with thrombocytopenia and/or evidence of platelet dysfunction. (Grade: weak recommendation; very-low-quality evidence). RECOMMENDATION 6 The AABB cannot recommend for or against platelet transfusion for patients receiving antiplatelet therapy who have intracranial hemorrhage (traumatic or spontaneous). (Grade: uncertain recommendation; very-low-quality evidence).
Collapse
Affiliation(s)
- Richard M. Kaufman
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Benjamin Djulbegovic
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Terry Gernsheimer
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Steven Kleinman
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Alan T. Tinmouth
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Kelley E. Capocelli
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Mark D. Cipolle
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Claudia S. Cohn
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Mark K. Fung
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Brenda J. Grossman
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Paul D. Mintz
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Barbara A. O'Malley
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Deborah A. Sesok-Pizzini
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Aryeh Shander
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Gary E. Stack
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Kathryn E. Webert
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Robert Weinstein
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Babu G. Welch
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Glenn J. Whitman
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Edward C. Wong
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | - Aaron A.R. Tobian
- From Brigham and Women's Hospital, Boston, Massachusetts; University of South Florida, Tampa, Florida; University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada; Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Children's Hospital Colorado, Aurora, Colorado; Christiana Care Health System, Wilmington, Delaware; University of Minnesota, Minneapolis, Minnesota; University of Vermont, Burlington, Vermont
- Washington University School of Medicine, St. Louis, Missouri; U.S. Food and Drug Administration, Silver Spring, Maryland; Wayne State University, Detroit, Michigan; The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Englewood Hospital and Medical Center, Englewood, New Jersey; Yale School of Medicine, New Haven, Connecticut; McMaster University, Hamilton, Ontario, Canada; University of Massachusetts School of Medicine, Worcester, Massachusetts
- University of Texas Southwestern Medical Center, Dallas, Texas; Johns Hopkins University, Baltimore, Maryland; and Children's National Medical Center, Washington, DC
| | | |
Collapse
|
46
|
Affiliation(s)
- Radhika Dasararaju
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marisa B. Marques
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
47
|
AuBuchon JP. TRALI: reducing its risk while trying to understand its causes. Transfusion 2014; 54:3021-5. [DOI: 10.1111/trf.12822] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- James P. AuBuchon
- Puget Sound Blood Center; Seattle WA
- Medicine and Laboratory Medicine; University of Washington; Seattle WA
| |
Collapse
|
48
|
Abstract
Toward the end of World War I and during World War II, whole-blood transfusions were the primary agent in the treatment of military traumatic hemorrhage. However, after World War II, the fractionation of whole blood into its components became widely accepted and replaced whole-blood transfusion to better accommodate specific blood deficiencies, logistics, and financial reasons. This transition occurred with very few clinical trials to determine which patient populations or scenarios would or would not benefit from the change. A smaller population of patients with trauma hemorrhage will require massive transfusion (>10 U packed red blood cells in 24 h) occurring in 3% to 5% of civilian and 10% of military traumas. Advocates for hemostatic resuscitation have turned toward a ratio-balanced component therapy using packed red blood cells-fresh frozen plasma-platelet concentration in a 1:1:1 ratio due to whole-blood limited availability. However, this "reconstituted" whole blood is associated with a significantly anemic, thrombocytopenic, and coagulopathic product compared with whole blood. In addition, several recent military studies suggest a survival advantage of early use of whole blood, but the safety concerns have limited is widespread civilian use. Based on extensive military experience as well as recent published literature, low-titer leukocyte reduced cold-store type O whole blood carries low adverse risks and maintains its hemostatic properties for up to 21 days. A prospective randomized trial comparing whole blood versus ratio balanced component therapy is proposed with rationale provided.
Collapse
|
49
|
Abstract
Remote damage control resuscitation is a recently defined term used to describe techniques and strategies to provide hemostatic resuscitation to injured patients in the prehospital setting. In the civilian setting, unlike the typical military setting, patients who require treatment for hemorrhage come in all ages with all types of comorbidities and have bleeding that may be non-trauma related. Thus, in the austere setting, addressing the needs of the patient is no less challenging than in the military environment, albeit the caregivers are typically not putting their lives at risk to provide such care. Two organizations have pioneered remote damage control resuscitation in the civilian environment: Mayo Clinic and Royal Caribbean Cruises Ltd. The limitations in rural Minnesota and shipboard are daunting. Patients who have hemorrhage requiring transfusion are often hundreds of miles from hospitals able to provide damage control resuscitation. This article details the development and implementation of novel programs specifically designed to address the varied needs of patients in such circumstances. The Mayo Clinic program essentially takes a standard-of-care treatment algorithm, by which the patient would be treated in the emergency department or trauma bay, and projects that forward into the rural environment with specially trained prehospital personnel and special resources. Royal Caribbean Cruises Ltd has adapted a traditional military field practice of transfusing warm fresh whole blood, adding significant safety measures not yet reported on the battlefield (see within this Supplement the article entitled "Emergency Whole Blood Use in the Field: A Simplified Protocol for Collection and Transfusion"). The details of development, implementation, and preliminary results of these two civilian programs are described herein.
Collapse
|
50
|
Weiskopf RB. Hemoglobin-based oxygen carriers: disclosed history and the way ahead: the relativity of safety. Anesth Analg 2014; 119:758-760. [PMID: 25232689 DOI: 10.1213/ane.0000000000000401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Richard B Weiskopf
- From the Department of Anesthesia, University of California, San Francisco, California
| |
Collapse
|