1
|
Milanović Ž, Antonijević M, Avdović E, Simić V, Milošević M, Dolićanin Z, Kojić M, Marković Z. In silico evaluation of pharmacokinetic parameters, delivery, distribution and anticoagulative effects of new 4,7-dihydroxycoumarin derivative. J Biomol Struct Dyn 2024; 42:8343-8358. [PMID: 37545173 DOI: 10.1080/07391102.2023.2245071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
In this study, pharmacological profiling and investigation of the anticoagulant activity of the newly synthesized coumarin derivative: (E)-3-(1-((4-hydroxy-3-methoxyphenyl)amino)ethylidene)-2,4-dioxochroman-7-yl acetate (L) were performed. The obtained results were compared with the parameters obtained for Warfarin (WF), which is a standard good oral anticoagulant. The estimated high binding affinity of L toward plasma proteins (PPS% value is > 90%) justifies the investigation of binding affinity and comparative analysis of L and WF to Human Serum Albumin (HSA) using the spectrofluorimetric method (296, 303 and 310 K) as well as molecular docking and molecular dynamics simulations. Compound L shows a very good binding affinity especially to the active site of WF (the active site I -subdomain IIA), quenching HSA fluorescence by a static process. Also, the finite element smeared model (Kojic Transport Model, KTM), which includes blood vessels and tissue, was implemented to compute the convective-diffusion transport of L and WF within the liver. Finally, compound L shows a high degree of inhibitory activity toward the VKOR receptor comparable to the inhibitory activity of WF. Stabilization and limited flexibility of amino acid residues in the active site of the VKOR after binding of L and WF indicates a very good inhibitory potential of compound L. The high affinity of the L for the VKOR enzyme (Vitamin K antagonist), as well as the structural similarity to commercial anticoagulants (WF), provide a basis for further studies and potential application in the treatment of venous thrombosis, pulmonary embolism and ischemic heart disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Žiko Milanović
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Marko Antonijević
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Edina Avdović
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir Simić
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
| | - Miljan Milošević
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia
- Faculty of Information Technology, Belgrade Metropolitan University, Belgrade, Serbia
| | - Zana Dolićanin
- Department of Natural Science and Mathematics, State University of Novi Pazar, Novi Pazar, Serbia
| | - Miloš Kojić
- Bioengineering Research and Development Center (BioIRC), Kragujevac, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
- Houston Methodist Research Institute, Houston, TX, USA
| | - Zoran Marković
- Institute for Information Technologies, University of Kragujevac, Kragujevac, Serbia
- Department of Natural Science and Mathematics, State University of Novi Pazar, Novi Pazar, Serbia
| |
Collapse
|
2
|
De Filippis V, Acquasaliente L, Pierangelini A, Marin O. Chemical Synthesis and Structure-Activity Relationship Studies of the Coagulation Factor Xa Inhibitor Tick Anticoagulant Peptide from the Hematophagous Parasite Ornithodoros moubata. Biomimetics (Basel) 2024; 9:485. [PMID: 39194464 DOI: 10.3390/biomimetics9080485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Tick Anticoagulant Peptide (TAP), a 60-amino acid protein from the soft tick Ornithodoros moubata, inhibits activated coagulation factor X (fXa) with almost absolute specificity. Despite TAP and Bovine Pancreatic Trypsin Inhibitor (BPTI) (i.e., the prototype of the Kunitz-type protease inhibitors) sharing a similar 3D fold and disulphide bond topology, they have remarkably different amino acid sequence (only ~24% sequence identity), thermal stability, folding pathways, protease specificity, and even mechanism of protease inhibition. Here, fully active and correctly folded TAP was produced in reasonably high yields (~20%) by solid-phase peptide chemical synthesis and thoroughly characterised with respect to its chemical identity, disulphide pairing, folding kinetics, conformational dynamics, and fXa inhibition. The versatility of the chemical synthesis was exploited to perform structure-activity relationship studies on TAP by incorporating non-coded amino acids at positions 1 and 3 of the inhibitor. Using Hydrogen-Deuterium Exchange Mass Spectrometry, we found that TAP has a remarkably higher conformational flexibility compared to BPTI, and propose that these different dynamics could impact the different folding pathway and inhibition mechanisms of TAP and BPTI. Hence, the TAP/BPTI pair represents a nice example of divergent evolution, while the relative facility of TAP synthesis could represent a good starting point to design novel synthetic analogues with improved pharmacological profiles.
Collapse
Affiliation(s)
- Vincenzo De Filippis
- Laboratory of Protein Chemistry & Molecular Haematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | - Laura Acquasaliente
- Laboratory of Protein Chemistry & Molecular Haematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | - Andrea Pierangelini
- Laboratory of Protein Chemistry & Molecular Haematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, School of Medicine, University of Padova, Via Trieste 75, 35121 Padua, Italy
| |
Collapse
|
3
|
Masand VH, Al-Hussain S, Alzahrani AY, Al-Mutairi AA, Sultan Alqahtani A, Samad A, Alafeefy AM, Jawarkar RD, Zaki MEA. Unveiling dynamics of nitrogen content and selected nitrogen heterocycles in thrombin inhibitors: a ceteris paribus approach. Expert Opin Drug Discov 2024; 19:991-1009. [PMID: 38898679 DOI: 10.1080/17460441.2024.2368743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Despite the progress in comprehending molecular design principles and biochemical processes associated with thrombin inhibition, there is a crucial need to optimize efforts and curtail the recurrence of synthesis-testing cycles. Nitrogen and N-heterocycles are key features of many anti-thrombin drugs. Hence, a pragmatic analysis of nitrogen and N-heterocycles in thrombin inhibitors is important throughout the drug discovery pipeline. In the present work, the authors present an analysis with a specific focus on understanding the occurrence and distribution of nitrogen and selected N-heterocycles in the realm of thrombin inhibitors. RESEARCH DESIGN AND METHODS A dataset comprising 4359 thrombin inhibitors is used to scrutinize various categories of nitrogen atoms such as ring, non-ring, aromatic, and non-aromatic. In addition, selected aromatic and aliphatic N-heterocycles have been analyzed. RESULTS The analysis indicates that ~62% of thrombin inhibitors possess five or fewer nitrogen atoms. Substituted N-heterocycles have a high occurrence, like pyrrolidine (23.24%), pyridine (20.56%), piperidine (16.10%), thiazole (9.61%), imidazole (7.36%), etc. in thrombin inhibitors. CONCLUSIONS The majority of active thrombin inhibitors contain nitrogen atoms close to 5 and a combination of N-heterocycles like pyrrolidine, pyridine, piperidine, etc. This analysis provides crucial insights to optimize the transformation of lead compounds into potential anti-thrombin inhibitors.
Collapse
Affiliation(s)
- Vijay H Masand
- Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, India
| | - Sami Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdullah Y Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Asser, Saudi Arabia
| | - Aamal A Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Arwa Sultan Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdul Samad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Ahmed M Alafeefy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Universiti Teknologi MARA [UiTM], Bandar Puncak Alam, Selangor, Malaysia
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry and Drug Discovery, Dr Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
O'Brien OM, Tremble SM, Kropf A, Cipolla MJ. Thrombin in Pregnancy and Preeclampsia: Expression, Localization, and Vasoactivity in Brain and Microvessels From Rats. J Cardiovasc Pharmacol 2024; 84:250-260. [PMID: 38922586 PMCID: PMC11402023 DOI: 10.1097/fjc.0000000000001579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/12/2024] [Indexed: 06/27/2024]
Abstract
ABSTRACT Thrombin is a coagulation factor increased in pregnancy and further increased in preeclampsia (PE), a hypertensive disorder. Thrombin is also expressed in the brain and may have a nonhemostatic role. We characterized thrombin expression and vasoactivity in brain cerebral parenchymal arterioles (PAs) in rat models of pregnancy and PE. PAs were isolated and pressurized from nonpregnant (NP) and late-pregnant (LP) rats and rats with experimental preeclampsia (ePE). Reactivity to thrombin (1-50 U/mL) was measured in the absence and presence of inhibition of cyclooxygenase and nitric oxide synthase. Plasma levels of prothrombin, thrombin-antithrombin (TAT), tissue plasminogen activator, and plasminogen activator inhibitor-1 (PAI-1) and cerebrospinal fluid levels of TAT were compared using enzyme-linked immunosorbent assay. Expression of protease-activated receptor types 1 and 2 in PAs were measured by Western blot and immunohistochemistry. Neuronal thrombin expression was quantified in brains from all groups by immunohistochemistry. Prothrombin and TAT were elevated in ePE plasma compared with NP and LP. TAT was detected in cerebrospinal fluid from all groups and significantly elevated in LP (NP: 0.137 ± 0.014 ng/mL, LP: 0.241 ± 0.015 ng/mL, ePE: 0.192 ± 0.028 ng/mL; P < 0.05). Thrombin caused modest vasoconstriction in PAs from all groups regardless of cyclooxygenase or nitric oxide synthase inhibition. PAR1 and PAR2 were found in PAs from all groups colocalized to smooth muscle. Thrombin expression in central neurons was decreased in both LP and ePE groups compared with NP. These findings suggest a role for thrombin and other hemostatic changes during pregnancy and PE beyond coagulation.
Collapse
Affiliation(s)
- Olivia M O'Brien
- Department of Electrical and Biomedical Engineering, University of Vermont College of Engineering and Mathematical Sciences, Burlington, VT
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT
| | - Sarah M Tremble
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT
| | - Ari Kropf
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT
| | - Marilyn J Cipolla
- Department of Electrical and Biomedical Engineering, University of Vermont College of Engineering and Mathematical Sciences, Burlington, VT
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont Larner College of Medicine, Burlington, VT; and
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT
| |
Collapse
|
5
|
Jamal GA, Jahangirian E, Hamblin MR, Mirzaei H, Tarrahimofrad H, Alikowsarzadeh N. Proteases, a powerful biochemical tool in the service of medicine, clinical and pharmaceutical. Prep Biochem Biotechnol 2024:1-25. [PMID: 38909284 DOI: 10.1080/10826068.2024.2364234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Proteases, enzymes that hydrolyze peptide bonds, have various applications in medicine, clinical applications, and pharmaceutical development. They are used in cancer treatment, wound debridement, contact lens cleaning, prion degradation, biofilm removal, and fibrinolytic agents. Proteases are also crucial in cardiovascular disease treatment, emphasizing the need for safe, affordable, and effective fibrinolytic drugs. Proteolytic enzymes and protease biosensors are increasingly used in diagnostic and therapeutic applications. Advanced technologies, such as nanomaterials-based sensors, are being developed to enhance the sensitivity, specificity, and versatility of protease biosensors. These biosensors are becoming effective tools for disease detection due to their precision and rapidity. They can detect extracellular and intracellular proteases, as well as fluorescence-based methods for real-time and label-free detection of virus-related proteases. The active utilization of proteolytic enzymatic biosensors is expected to expand significantly in biomedical research, in-vitro model systems, and drug development. We focused on journal articles and books published in English between 1982 and 2024 for this study.
Collapse
Affiliation(s)
- Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ehsan Jahangirian
- Department of Molecular, Zist Tashkhis Farda Company (tBioDx), Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Health Science, Laser Research Center, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Neda Alikowsarzadeh
- Molecular and Life Science Department, Han University of Applied Science, Arnhem, Nederland
| |
Collapse
|
6
|
Wu D, Prem A, Xiao J, Salsbury FR. Thrombin - A Molecular Dynamics Perspective. Mini Rev Med Chem 2024; 24:1112-1124. [PMID: 37605420 DOI: 10.2174/1389557523666230821102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 08/23/2023]
Abstract
Thrombin is a crucial enzyme involved in blood coagulation, essential for maintaining circulatory system integrity and preventing excessive bleeding. However, thrombin is also implicated in pathological conditions such as thrombosis and cancer. Despite the application of various experimental techniques, including X-ray crystallography, NMR spectroscopy, and HDXMS, none of these methods can precisely detect thrombin's dynamics and conformational ensembles at high spatial and temporal resolution. Fortunately, molecular dynamics (MD) simulation, a computational technique that allows the investigation of molecular functions and dynamics in atomic detail, can be used to explore thrombin behavior. This review summarizes recent MD simulation studies on thrombin and its interactions with other biomolecules. Specifically, the 17 studies discussed here provide insights into thrombin's switch between 'slow' and 'fast' forms, active and inactive forms, the role of Na+ binding, the effects of light chain mutation, and thrombin's interactions with other biomolecules. The findings of these studies have significant implications for developing new therapies for thrombosis and cancer. By understanding thrombin's complex behavior, researchers can design more effective drugs and treatments that target thrombin.
Collapse
Affiliation(s)
- Dizhou Wu
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Athul Prem
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| | - Jiajie Xiao
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
- Freenome, South San Francisco, CA, 94080, USA
| | - Freddie R Salsbury
- Department of Physics, Wake Forest University, Winston-Salem, NC, 27106, USA
| |
Collapse
|
7
|
Acquasaliente L, Pierangelini A, Pagotto A, Pozzi N, De Filippis V. From haemadin to haemanorm: Synthesis and characterization of full-length haemadin from the leech Haemadipsa sylvestris and of a novel bivalent, highly potent thrombin inhibitor (haemanorm). Protein Sci 2023; 32:e4825. [PMID: 37924304 PMCID: PMC10683372 DOI: 10.1002/pro.4825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Hirudin from Hirudo medicinalis is a bivalent α-Thrombin (αT) inhibitor, targeting the enzyme active site and exosite-I, and is currently used in anticoagulant therapy along with its simplified analogue hirulog. Haemadin, a small protein (57 amino acids) isolated from the land-living leech Haemadipsa sylvestris, selectively inhibits αT with a potency identical to that of recombinant hirudin (KI = 0.2 pM), with which it shares a common disulfide topology and overall fold. At variance with hirudin, haemadin targets exosite-II and therefore (besides the free protease) it also blocks thrombomodulin-bound αT without inhibiting the active intermediate meizothrombin, thus offering potential advantages over hirudin. Here, we produced in reasonably high yields and pharmaceutical purity (>98%) wild-type haemadin and the oxidation resistant Met5 → nor-Leucine analogue, both inhibiting αT with a KI of 0.2 pM. Thereafter, we used site-directed mutagenesis, spectroscopic, ligand-displacement, and Hydrogen/Deuterium Exchange-Mass Spectrometry techniques to map the αT regions relevant for the interaction with full-length haemadin and with the synthetic N- and C-terminal peptides Haem(1-10) and Haem(45-57). Haem(1-10) competitively binds to/inhibits αT active site (KI = 1.9 μM) and its potency was enhanced by 10-fold after Phe3 → β-Naphthylalanine exchange. Conversely to full-length haemadin, haem(45-57) displays intrinsic affinity for exosite-I (KD = 1.6 μM). Hence, we synthesized a peptide in which the sequences 1-9 and 45-57 were joined together through a 3-Glycine spacer to yield haemanorm, a highly potent (KI = 0.8 nM) inhibitor targeting αT active site and exosite-I. Haemanorm can be regarded as a novel class of hirulog-like αT inhibitors with potential pharmacological applications.
Collapse
Affiliation(s)
- Laura Acquasaliente
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
| | - Andrea Pierangelini
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
| | - Anna Pagotto
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
| | - Nicola Pozzi
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research CenterSaint Louis UniversitySt. LouisMissouriUSA
| | - Vincenzo De Filippis
- Laboratory of Protein Chemistry & Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of MedicineUniversity of PadovaPaduaItaly
| |
Collapse
|
8
|
Heurich M, McCluskey G. Complement and coagulation crosstalk - Factor H in the spotlight. Immunobiology 2023; 228:152707. [PMID: 37633063 DOI: 10.1016/j.imbio.2023.152707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 08/28/2023]
Abstract
The immune complement and the coagulation systems are blood-based proteolytic cascades that are activated by pathway-specific triggers, based on protein-protein interactions and enzymatic cleavage reactions. Activation of these systems is finely balanced and controlled through specific regulatory mechanisms. The complement and coagulation systems are generally viewed as distinct, but have common evolutionary origins, and several interactions between these homologous systems have been reported. This complement and coagulation crosstalk can affect activation, amplification and regulatory functions in both systems. In this review, we summarize the literature on coagulation factors contributing to complement alternative pathway activation and regulation and highlight molecular interactions of the complement alternative pathway regulator factor H with several coagulation factors. We propose a mechanism where factor H interactions with coagulation factors may contribute to both complement and coagulation activation and regulation within the haemostatic system and fibrin clot microenvironment and introduce the emerging role of factor H as a modulator of coagulation. Finally, we discuss the potential impact of these protein interactions in diseases associated with factor H dysregulation or deficiency as well as evidence of coagulation dysfunction.
Collapse
Affiliation(s)
- Meike Heurich
- School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, United Kingdom.
| | - Geneviève McCluskey
- Université Paris-Saclay, INSERM, Hémostase, Inflammation, Thrombose HITH U1176, 94276 Le Kremlin-Bicêtre, France
| |
Collapse
|
9
|
Ayass MA, Griko N, Pashkov V, Tripathi T, Zhang J, Ramankutty Nair R, Okyay T, Zhu K, Abi-Mosleh L. New High-Affinity Thrombin Aptamers for Advancing Coagulation Therapy: Balancing Thrombin Inhibition for Clot Prevention and Effective Bleeding Management with Antidote. Cells 2023; 12:2230. [PMID: 37759453 PMCID: PMC10526462 DOI: 10.3390/cells12182230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Thrombin is a key enzyme involved in blood clotting, and its dysregulation can lead to thrombotic diseases such as stroke, myocardial infarction, and deep vein thrombosis. Thrombin aptamers have the potential to be used as therapeutic agents to prevent or treat thrombotic diseases. Thrombin DNA aptamers developed in our laboratory exhibit high affinity and specificity to thrombin. In vitro assays have demonstrated their efficacy by significantly decreasing Factor II activity and increasing PT and APTT times in both plasma and whole blood. Aptamers AYA1809002 and AYA1809004, the two most potent aptamers, exhibit high affinity for their target, with affinity constants (Kd) of 10 nM and 13 nM, respectively. Furthermore, the in vitro activity of these aptamers displays dose-dependent behavior, highlighting their efficacy in a concentration-dependent manner. In vitro stability assessments reveal that the aptamers remain stable in plasma and whole blood for up to 24 h. This finding is crucial for their potential application in clinical settings. Importantly, the thrombin inhibitory activity of the aptamers can be reversed by employing reverse complement sequences, providing a mechanism to counteract their anticoagulant effects when necessary to avoid excessive bleeding. These thrombin aptamers have been determined to be safe, with no observed mutagenic or immunogenic effects. Overall, these findings highlight the promising characteristics of these newly developed thrombin DNA aptamers, emphasizing their potential for therapeutic applications in the field of anticoagulation therapy. Moreover, the inclusion of an antidote in the coagulation therapy regimen can improve patient safety, ensure greater therapeutic efficacy, and minimize risk during emergency situations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lina Abi-Mosleh
- Ayass Bioscience LLC, 8501 Wade Blvd, Building 9, Frisco, TX 75034, USA
| |
Collapse
|
10
|
Zhu M, Xu F, Miao S, Xie C, Li H, Li S, Xia F. Incorporation of a Multi-Valent Aptamer into Electrochemical Biosensors to Achieve an Improved Performance for Thrombin Analysis in Blood Serum. Chempluschem 2022; 87:e202200325. [PMID: 36410784 DOI: 10.1002/cplu.202200325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Indexed: 11/23/2022]
Abstract
The electrochemical aptamer-based (E-AB) biosensor usually has a long reaction time when detecting thrombin. This work reports the design of an E-AB biosensor with dual recognition sites to quickly detect thrombin. Specifically, two specific recognition sites of thrombin were used to design three aptamer sequences (TBA-15, TBA-29 and TBA-U), followed by fabrication of corresponding sensors. First, we tested these three types of biosensors in tris buffer solution, and found that the response time of the TBA-U sensor to the same concentration of thrombin was about 2 hours, which is shorter than TBA-15 and TBA-29 sensors. Then, we also did the same test in 50 % diluted serum with 500 nM thrombin. The response time of the TBA-U sensor was about 2 hours, which is still faster than the 3 hours of TBA-15 sensor and the 5.5 hours for TBA-29 sensor. In addition, in terms of dynamic range and specificity, TBA-U has good performance.
Collapse
Affiliation(s)
- Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Chongyu Xie
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
11
|
Abstract
Thrombin is a multifunctional serine protease generated in injured cells. The generation of thrombin in coagulation plays a central role in the functioning of haemostasis. The last enzyme in the coagulation cascade is thrombin, with the function of cleaving fibrinogen to fibrin, which forms the fibrin clot of a haemostatic plug. Although thrombin primarily converts fibrinogen to fibrin, it also has many other positive regulatory effects on coagulation. Thrombin has procoagulant, inflammatory, cellular proliferation and anticoagulant effects. In coagulation system, thrombin has two very distinct roles. Firstly, it acts as a procoagulant when it converts fibrinogen into an insoluble fibrin clot, activates factor (F) XIII, activates thrombin activatable fibrinolysis inhibitor (TAFI) and activates FV, FVIII and FXI. Thrombin also enhances platelet adhesion by inactivating a disintegrin and metalloprotease with thrombospondin type1 motif (ADAMTS13). However, when thrombin activates protein C, it acts as an anticoagulant. A natural anticoagulant pathway that supplies regulation of the blood coagulation system contains protein C, which is the key component. This is accomplished by the specific proteolytic inactivation of FV and FVIII. In this review, the multiple roles of thrombin in the haemostatic response to injury are studied in addition to the cofactors that determine thrombin activity and how thrombin activity is thought to be coordinated.
Collapse
|
12
|
Sun Y, Wang B, Pei J, Luo Y, Yuan N, Xiao Z, Wu H, Luo C, Wang J, Wei S, Pei Y, Fu S, Wang D. Molecular dynamic and pharmacological studies on protein-engineered hirudin variants of Hirudinaria manillensis and Hirudo medicinalis. Br J Pharmacol 2022; 179:3740-3753. [PMID: 35135035 DOI: 10.1111/bph.15816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Hirudin variants are the most powerful thrombin inhibitors discovered to date, with a lower risk of bleeding than heparin. For anticoagulation, the C-termini of hirudins bind to the exocite I of thrombin. Anticoagulant effects of gene-recombinant hirudin are weaker than natural hirudin for the reason of lacking tyrosine-O-sulfation at C terminus. EXPERIMENTAL APPROACH The integrative pharmacological study applied molecular dynamic, molecular biological, and in vivo and in vitro experiments to elucidate the anticoagulant effects of protein-engineered hirudins. KEY RESULTS Molecular dynamic (MD) analysis showed that modifications of the C-termini of hirudin variant 1 of Hirudo medicinalis (HV1) and hirudin variant 2 of Hirudinaria manillensis (HM2) changed the binding energy of the C-termini to human thrombin. The study indicated Asp61 of HM2 that corresponds to sulfated Tyr63 of HV1 is critical for inhibiting thrombin activities, and the anticoagulant effects of HV1 and HM2 were improved when the amino acid residues adjacent to Asp61 were mutated to Asp, such as the prolongation of the activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) of human blood, and decreased Ki and IC50 values. In the in vivo experiments, mutations at C-termini of HV1 and HM2 significantly changed APTT, PT and TT. CONCLUSION AND IMPLICATIONS The study indicated that the anticoagulant effects of gene-engineered HM2 are stronger than gene-engineered HV1, and HM2-E60D-I62D has the strongest effects and could be an antithrombotic medicine with better therapeutic effects.
Collapse
Affiliation(s)
- Yan Sun
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Baochun Wang
- The First Department of Gastrointestinal Surgery, Hainan General Hospital, Haikou, Hainan, China
| | - Jinli Pei
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China.,Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ying Luo
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Nan Yuan
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Zhengpan Xiao
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Hao Wu
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China.,Central Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Chenghui Luo
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Jiaxuan Wang
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Shuangshuang Wei
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Yechun Pei
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Shengmiao Fu
- Department of Medical Laboratory Science, Hainan General Hospital, Haikou, Hainan, China
| | - Dayong Wang
- Laboratory of Biopharmaceutics and Molecular Pharmacology, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China.,Key laboratory of Tropical Biological Resources of the Ministry of Education of China, Hainan University, Haikou, Hainan, China
| |
Collapse
|
13
|
Shearin S, Venkateswarlu D. Structural insights into the activation of blood coagulation factor XI zymogen by thrombin: A computational molecular dynamics study. Biophys Chem 2022; 281:106737. [PMID: 34923393 PMCID: PMC8741744 DOI: 10.1016/j.bpc.2021.106737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 02/03/2023]
Abstract
Activation of human blood coagulation factor XI zymogen to factor XIa plays a significant role in the upstream coagulation pathway, in which factor XIa activates factor IX zymogen. The mechanistic details of the proteolytic activation of factor XI by the activating enzyme thrombin are not well-understood at atomic level. In this study, we employed a combination of molecular docking and microsecond time-scale molecular dynamics simulations to identify the key regions of interaction between fXI and thrombin. The activating complex between the substrate and enzyme was modeled to represent the initial acylation step of the serine-protease hydrolysis mechanism. The proposed solution structural complex, fIX:fIIa, obtained from 3 microseconds of MD refinement, suggests that the activation of factor XI is mediated by thrombin's anion binding exosite-II interactions with A3 and A4 domains. We predict that the two positively charged arginine residues (Arg409 and Arg413) in the exosite-2 region, the β- and γ-insertion loops of thrombin play an important structural role in the initial activating complex between fXI and thrombin.
Collapse
|
14
|
Chen F, Qin M, Liu W, Wang F, Ren W, Xu H, Li F. Snake Venom Identification via Fluorescent Discrimination. Anal Chem 2021; 93:14025-14030. [PMID: 34528790 DOI: 10.1021/acs.analchem.1c02804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The identification and discrimination of snake venom are highly desired for timely clinical treatment. However, the complex components in snake venom make it a great challenge to achieve rapid and accurate identification. Inspired by the organism's taste sensing system, a fluorescent sensor array that could differentiate snake venoms was fabricated. The interaction of snake venoms with different fluorescent dyes in the sensor array gave rich information, based on which efficient detection of complex snake venom was achieved. The main six proteins of snake venom in the same concentration, different concentrations, and their mixtures were identified with 100% accuracy. Furthermore, seven snake venoms belonging to different snake families were discriminated in PBS buffer and human plasma. Interferents of bovine serum albumin (BSA), thrombin, and transferrin (TRF) demonstrated the practicability of the fluorescent sensor array. This strategy of a multiresponse sensor array provides an effective method for accurate and rapid venom toxicology analysis, benefiting early and timely clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Fei Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Jinan University, Guangzhou 510632, China
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Wei Liu
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453000, China
| | - Fan Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang 453000, China
| | - Wanjie Ren
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Jinan University, Guangzhou 510632, China
| | - Huihua Xu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Jinan University, Guangzhou 510632, China
| | - Fengyu Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Jinan University, Guangzhou 510632, China
| |
Collapse
|
15
|
Exosite Binding in Thrombin: A Global Structural/Dynamic Overview of Complexes with Aptamers and Other Ligands. Int J Mol Sci 2021; 22:ijms221910803. [PMID: 34639143 PMCID: PMC8509272 DOI: 10.3390/ijms221910803] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022] Open
Abstract
Thrombin is the key enzyme of the entire hemostatic process since it is able to exert both procoagulant and anticoagulant functions; therefore, it represents an attractive target for the developments of biomolecules with therapeutic potential. Thrombin can perform its many functional activities because of its ability to recognize a wide variety of substrates, inhibitors, and cofactors. These molecules frequently are bound to positively charged regions on the surface of protein called exosites. In this review, we carried out extensive analyses of the structural determinants of thrombin partnerships by surveying literature data as well as the structural content of the Protein Data Bank (PDB). In particular, we used the information collected on functional, natural, and synthetic molecular ligands to define the anatomy of the exosites and to quantify the interface area between thrombin and exosite ligands. In this framework, we reviewed in detail the specificity of thrombin binding to aptamers, a class of compounds with intriguing pharmaceutical properties. Although these compounds anchor to protein using conservative patterns on its surface, the present analysis highlights some interesting peculiarities. Moreover, the impact of thrombin binding aptamers in the elucidation of the cross-talk between the two distant exosites is illustrated. Collectively, the data and the work here reviewed may provide insights into the design of novel thrombin inhibitors.
Collapse
|
16
|
Yang Z, Wan Y, E J, Luo Z, Guan S, Wang S, Zhang H. Structural basis of different surface-modified fullerene derivatives as novel thrombin inhibitors: insight into the inhibitory mechanism through molecular modelling studies. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1943028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Zhijie Yang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Yongfeng Wan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun, People’s Republic of China
| | - Jingwen E
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Zhijian Luo
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Shanshan Guan
- College of Biology and Food Engineering, Jilin Engineering Normal University, Changchun, People’s Republic of China
| | - Song Wang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People’s Republic of China
| | - Hao Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
17
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Montesarchio D. G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. Pharmacol Ther 2020; 217:107649. [PMID: 32777331 DOI: 10.1016/j.pharmthera.2020.107649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
First studies on thrombin-inhibiting DNA aptamers were reported in 1992, and since then a large number of anticoagulant aptamers has been discovered. TBA - also named HD1, a 15-mer G-quadruplex (G4)-forming oligonucleotide - is the best characterized thrombin binding aptamer, able to specifically recognize the protein exosite I, thus inhibiting the conversion of soluble fibrinogen into insoluble fibrin strands. Unmodified nucleic acid-based aptamers, in general, and TBA in particular, exhibit limited pharmacokinetic properties and are rapidly degraded in vivo by nucleases. In order to improve the biological performance of aptamers, a widely investigated strategy is the introduction of chemical modifications in their backbone at the level of the nucleobases, sugar moieties or phosphodiester linkages. Besides TBA, also other thrombin binding aptamers, able to adopt a well-defined G4 structure, e.g. mixed duplex/quadruplex sequences, as well as homo- and hetero-bivalent constructs, have been identified and optimized. Considering the growing need of new efficient anticoagulant agents associated with the strong therapeutic potential of these thrombin inhibitors, the research on thrombin binding aptamers is still a very hot and intriguing field. Herein, we comprehensively described the state-of-the-art knowledge on the DNA-based aptamers targeting thrombin, especially focusing on the optimized analogues obtained by chemically modifying the oligonucleotide backbone, and their biological performances in therapeutic applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Department of Advanced Medical and Surgical Sciences, 2(nd) Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy.
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
18
|
De Fenza M, Eremeeva E, Troisi R, Yang H, Esposito A, Sica F, Herdewijn P, D'Alonzo D, Guaragna A. Structure-Activity Relationship Study of a Potent α-Thrombin Binding Aptamer Incorporating Hexitol Nucleotides. Chemistry 2020; 26:9589-9597. [PMID: 32363791 DOI: 10.1002/chem.202001504] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/29/2020] [Indexed: 12/13/2022]
Abstract
The replacement of one or more nucleotide residues in the potent α-thrombin-binding aptamer NU172 with hexitol-based nucleotides has been devised to study the effect of these substitutions on the physicochemical and functional properties of the anticoagulant agent. The incorporation of single hexitol nucleotides at the T9 and G18 positions of NU172 substantially retained the physicochemical features of the parent oligonucleotide, as a result of the biomimetic properties of the hexitol backbone. Importantly, the NU172-TH 9 mutant exhibited a higher binding affinity toward human α-thrombin than the native aptamer and an improved stability even after 24 h in 90 % human serum, with a significant increase in the estimated half-life. The anticoagulant activity of the modified oligonucleotide was also found to be slightly preferable to NU172. Overall, these results confirm the potential of hexitol nucleotides as biomimetic agents, while laying the foundations for the development of NU172-inspired α-thrombin-binding aptamers.
Collapse
Affiliation(s)
- Maria De Fenza
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Elena Eremeeva
- Rega Institute for Medical Research, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Romualdo Troisi
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Hui Yang
- Rega Institute for Medical Research, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Anna Esposito
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Filomena Sica
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Piet Herdewijn
- Rega Institute for Medical Research, Herestraat 49-box 1041, 3000, Leuven, Belgium
| | - Daniele D'Alonzo
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| | - Annalisa Guaragna
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, via Cintia, 80126, Napoli, Italy
| |
Collapse
|
19
|
Design, Synthesis and Characterization of Cyclic NU172 Analogues: A Biophysical and Biological Insight. Int J Mol Sci 2020; 21:ijms21113860. [PMID: 32485818 PMCID: PMC7312020 DOI: 10.3390/ijms21113860] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 11/16/2022] Open
Abstract
NU172—a 26-mer oligonucleotide able to bind exosite I of human thrombin and inhibit its activity—was the first aptamer to reach Phase II clinical studies as an anticoagulant in heart disease treatments. With the aim of favoring its functional duplex-quadruplex conformation and thus improving its enzymatic stability, as well as its thrombin inhibitory activity, herein a focused set of cyclic NU172 analogues—obtained by connecting its 5′- and 3′-extremities with flexible linkers—was synthesized. Two different chemical approaches were exploited in the cyclization procedure, one based on the oxime ligation method and the other on Cu(I)-assisted azide-alkyne cycloaddition (CuAAC), affording NU172 analogues including circularizing linkers with different length and chemical nature. The resulting cyclic NU172 derivatives were characterized using several biophysical techniques (ultraviolet (UV) and circular dichroism (CD) spectroscopies, gel electrophoresis) and then investigated for their serum resistance and anticoagulant activity in vitro. All the cyclic NU172 analogues showed higher thermal stability and nuclease resistance compared to unmodified NU172. These favorable properties were, however, associated with reduced—even though still significant—anticoagulant activity, suggesting that the conformational constraints introduced upon cyclization were somehow detrimental for protein recognition. These results provide useful information for the design of improved analogues of NU172 and related duplex-quadruplex structures.
Collapse
|
20
|
Troisi R, Napolitano V, Spiridonova V, Russo Krauss I, Sica F. Several structural motifs cooperate in determining the highly effective anti-thrombin activity of NU172 aptamer. Nucleic Acids Res 2019; 46:12177-12185. [PMID: 30357392 PMCID: PMC6294562 DOI: 10.1093/nar/gky990] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
Despite aptamers are very promising alternative to antibodies, very few of them are under clinical trials or are used as drugs. Among them, NU172 is currently in Phase II as anticoagulant in heart disease treatments. It inhibits thrombin activity much more effectively than TBA, the best-known thrombin binding aptamer. The crystal structure of thrombin-NU172 complex reveals a bimodular duplex/quadruplex architecture for the aptamer, which binds thrombin exosite I through a highly complementary surface involving all three loops of the G-quadruplex module. Although the duplex domain does not interact directly with thrombin, the features of the duplex/quadruplex junction and the solution data on two newly designed NU172 mutants indicate that the duplex moiety is important for the optimization of the protein-ligand interaction and for the inhibition of the enzyme activity. Our work discloses the structural features determining the inhibition of thrombin by NU172 and put the basis for the design of mutants with improved properties.
Collapse
Affiliation(s)
- Romualdo Troisi
- Department of Chemical Sciences, University of Naples 'Federico II', Naples 80126, Italy
| | - Valeria Napolitano
- Department of Chemical Sciences, University of Naples 'Federico II', Naples 80126, Italy
| | - Vera Spiridonova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples 'Federico II', Naples 80126, Italy.,CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Sesto Fiorentino, FI 50019, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples 'Federico II', Naples 80126, Italy
| |
Collapse
|
21
|
Derszniak K, Przyborowski K, Matyjaszczyk K, Moorlag M, de Laat B, Nowakowska M, Chlopicki S. Comparison of Effects of Anti-thrombin Aptamers HD1 and HD22 on Aggregation of Human Platelets, Thrombin Generation, Fibrin Formation, and Thrombus Formation Under Flow Conditions. Front Pharmacol 2019; 10:68. [PMID: 30842734 PMCID: PMC6391317 DOI: 10.3389/fphar.2019.00068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/18/2019] [Indexed: 11/13/2022] Open
Abstract
HD1 and HD22 are two of the most-studied aptamers binding to thrombin exosite I and exosite, respectively. To complete of their pharmacological profiles, the effects of HD1 and HD22 on thrombin-, ristocetin-, and collagen-induced human platelet aggregation, on thrombin generation and fibrin formation in human plasma, as well as on thrombus formation in human whole blood under flow conditions were assessed. The dissociation constants for HD1 and HD22 complexes with thrombin in simulated plasma ionic buffer were also evaluated. HD1 was more potent than HD22 in terms of inhibiting thrombin-induced platelet aggregation in platelet-rich plasma (PRP; 0.05-3 μM) and in washed platelets (WPs; 0.005-3 μM): approximately 8.31% (±6.99% SD) and 89.53% (±11.38% SD) for HD1 (0.5 μM) and HD22 (0.5 μM), respectively. Neither HD1 nor HD22 (3 μM) did influence platelets aggregation induced by collagen. Both of them inhibited ristocetin-induced aggregation in PRP. Surprisingly, HD1 and HD22 aptamers (3 μM) potentiated ristocetin-induced platelet aggregation in WP. HD1 reduced thrombin generation in a concentration-dependent manner [ETP at 3 μM: 1677.53 ± 55.77 (nM⋅min) vs. control 2271.71 ± 423.66 (nM⋅min)], inhibited fibrin formation (lag time at 3 μM: 33.70 min ± 8.01 min vs. control 7.91 min ± 0.91 min) and reduced thrombus formation under flow conditions [AUC30 at 3 μM: 758.30 ± 344.23 (kPa⋅min) vs. control 1553.84 ± 118.03 (kPa⋅min)]. HD22 (3 μM) also delayed thrombin generation but increased the thrombin peak. HD22 (3 μM) shortened the lag time of fibrin generation (5.40 min ± 0.26 min vs. control 7.58 min ± 1.14 min) but did not modify thrombus formation (3, 15 μM). K d values for the HD1 complex with thrombin was higher (257.8 ± 15.0 nM) than the K d for HD22 (97.6 ± 2.2 nM). In conclusion, HD1 but not HD22 represents a potent anti-thrombotic agent, confirming the major role of exosite I in the action of thrombin. HD22 aptamer blocking exosite II displays weaker anti-platelet and anti-coagulant activity, with surprising activating effects on thrombin and fibrin generation most likely induced by HD22-induced allosteric changes in thrombin dynamic structure.
Collapse
Affiliation(s)
- Katarzyna Derszniak
- Faculty of Chemistry, Jagiellonian University, Kraków, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
| | - Karolina Matyjaszczyk
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
- Department of Toxicology, Jagiellonian University Medical College, Kraków, Poland
| | - Martijn Moorlag
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Synapse Research Institute, Maastricht, Netherlands
| | - Bas de Laat
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Synapse Research Institute, Maastricht, Netherlands
| | | | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Kraków, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
22
|
Abstract
Circulating levels of Brain Derived Neurotrophic Factor (BDNF) are lower in coronary heart disease (CHD) than in healthy subjects and are associated with coronary events and mortality. However, the mechanism(s) underling this association is not fully understood. We hypothesize that BDNF may influence fibrin fiber structure and clot stability, favoring clot lysis and thrombus resolution. We showed that recombinant BDNF (rh-BDNF) influenced with clot formation in a concentration-dependent manner in both purified fibrinogen and plasma from healthy subjects. In particular, rh-BDNF reduced the density of fibrin fibers, the maximum clot firmness (MCF) and the maximum clot turbidity, and affected the lysis of clot. In addition, both thrombin and reptilase clotting time were prolonged by rh-BDNF, despite the amount of thrombin formed was greater. Intriguingly, CHD patients had lower levels of BDNF, greater fibrin fibers density, higher MCF than control subjects, and a negative correlation between BDNF and MCF was found. Of note, rh-BDNF markedly modified fibrin clot profile restoring physiological clot morphology in CHD plasma. In conclusion, we provide evidence that low levels of BDNF correlate with the formation of bigger thrombi (in vitro) and that this effect is mediated, at least partially, by the alteration of fibrin fibers formation.
Collapse
|
23
|
Abstract
Proteases drive the life cycle of all proteins, ensuring the transportation and activation of newly minted, would-be proteins into their functional form while recycling spent or unneeded proteins. Far from their image as engines of protein digestion, proteases play fundamental roles in basic physiology and regulation at multiple levels of systems biology. Proteases are intimately associated with disease and modulation of proteolytic activity is the presumed target for successful therapeutics. "Proteases: Pivot Points in Functional Proteomics" examines the crucial roles of proteolysis across a wide range of physiological processes and diseases. The existing and potential impacts of proteolysis-related activity on drug and biomarker development are presented in detail. All told the decisive roles of proteases in four major categories comprising 23 separate subcategories are addressed. Within this construct, 15 sets of subject-specific, tabulated data are presented that include identification of proteases, protease inhibitors, substrates, and their actions. Said data are derived from and confirmed by over 300 references. Cross comparison of datasets indicates that proteases, their inhibitors/promoters and substrates intersect over a range of physiological processes and diseases, both chronic and pathogenic. Indeed, "Proteases: Pivot Points …" closes by dramatizing this very point through association of (pro)Thrombin and Fibrin(ogen) with: hemostasis, innate immunity, cardiovascular and metabolic disease, cancer, neurodegeneration, and bacterial self-defense.
Collapse
Affiliation(s)
- Ingrid M Verhamme
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sarah E Leonard
- Chemical and Biomolecular Engineering, University of Illinois Champaign-Urbana School of Chemical Sciences, Champaign, IL, USA
| | - Ray C Perkins
- New Liberty Proteomics Corporation, New Liberty, KY, USA.
| |
Collapse
|
24
|
Storozhuk BG, Pyrogova LV, Chernyshenko TM. Overall hemostasis potential of the blood plasma and its relation to some molecular markers of the hemostasis system in patients with chronic renal disease of stage VD. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.05.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
De Filippis V, Pozzi N, Acquasaliente L, Artusi I, Pontarollo G, Peterle D. Protein engineering by chemical methods: Incorporation of nonnatural amino acids as a tool for studying protein folding, stability, and function. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Vincenzo De Filippis
- Laboratory of Protein Chemistry, Department of Pharmaceutical & Pharmacological SciencesUniversity of Padua Padua Italy
| | - Nicola Pozzi
- Laboratory of Protein Chemistry, Department of Pharmaceutical & Pharmacological SciencesUniversity of Padua Padua Italy
| | - Laura Acquasaliente
- Laboratory of Protein Chemistry, Department of Pharmaceutical & Pharmacological SciencesUniversity of Padua Padua Italy
| | - Ilaria Artusi
- Laboratory of Protein Chemistry, Department of Pharmaceutical & Pharmacological SciencesUniversity of Padua Padua Italy
| | - Giulia Pontarollo
- Laboratory of Protein Chemistry, Department of Pharmaceutical & Pharmacological SciencesUniversity of Padua Padua Italy
| | - Daniele Peterle
- Laboratory of Protein Chemistry, Department of Pharmaceutical & Pharmacological SciencesUniversity of Padua Padua Italy
| |
Collapse
|
26
|
Abdel Aziz MH, Desai UR. Novel heparin mimetics reveal cooperativity between exosite 2 and sodium-binding site of thrombin. Thromb Res 2018; 165:61-67. [PMID: 29573721 DOI: 10.1016/j.thromres.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/28/2018] [Accepted: 03/16/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Thrombin is a primary target of most anticoagulants. Yet, thrombin's dual and opposing role in pro- as well as anti- coagulant processes imposes considerable challenges in discovering finely tuned regulators that maintain homeostasis, rather than disproportionately changing the equilibrium to one side. In this connection, we have been studying exosite 2-mediated allosteric modulation of thrombin activity using synthetic agents called low molecular weight lignins (LMWLs). Although the aromatic scaffold of LMWLs is completely different from the polysaccharidic scaffold of heparin, the presence of multiple negatively charged groups on both ligands induces binding to exosite 2 of thrombin. This work characterizes the nature of interactions between LMWLs and thrombin to understand the energetic cooperativity between exosite 2 and active site of thrombin. MATERIALS AND METHODS The thermodynamics of thrombin-LMWL complexes was studied using spectrofluorimetric titrations as a function of ionic strength and temperature of the buffer. The contributions of enthalpy and entropy to binding were evaluated using classic thermodynamic equations. Label-free surface plasmon resonance was used to assess the role of sodium ion in LMWL binding to thrombin at a fixed ionic strength. RESULTS AND CONCLUSIONS Exosite 2-induced conformational change in thrombin's active site is strongly dependent on the structure of the ligand, which has consequences with respect to regulation of thrombin. The ionic and non-ionic contributions to binding affinity and the thermodynamic signature were highly ligand specific. Interestingly, LMWLs display preference for the sodium-bound form of thrombin, which supports the existence of an energetic coupling between exosite 2 and sodium-binding site of thrombin.
Collapse
Affiliation(s)
- May H Abdel Aziz
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States.
| |
Collapse
|
27
|
De Filippis V, Acquasaliente L, Pontarollo G, Peterle D. Noncoded amino acids in protein engineering: Structure-activity relationship studies of hirudin-thrombin interaction. Biotechnol Appl Biochem 2018; 65:69-80. [DOI: 10.1002/bab.1632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/06/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Vincenzo De Filippis
- Laboratory of Protein Chemistry; Department of Pharmaceutical & Pharmacological Sciences; University of Padua; Padua Italy
| | - Laura Acquasaliente
- Laboratory of Protein Chemistry; Department of Pharmaceutical & Pharmacological Sciences; University of Padua; Padua Italy
| | - Giulia Pontarollo
- Laboratory of Protein Chemistry; Department of Pharmaceutical & Pharmacological Sciences; University of Padua; Padua Italy
| | - Daniele Peterle
- Laboratory of Protein Chemistry; Department of Pharmaceutical & Pharmacological Sciences; University of Padua; Padua Italy
| |
Collapse
|
28
|
Russo Krauss I, Napolitano V, Petraccone L, Troisi R, Spiridonova V, Mattia CA, Sica F. Duplex/quadruplex oligonucleotides: Role of the duplex domain in the stabilization of a new generation of highly effective anti-thrombin aptamers. Int J Biol Macromol 2017; 107:1697-1705. [PMID: 29024684 DOI: 10.1016/j.ijbiomac.2017.10.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/05/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022]
Abstract
Recently, mixed duplex/quadruplex oligonucleotides have attracted great interest for use as biomedical aptamers. In the case of anti-thrombin aptamers, the addition of duplex-forming sequences to a G-quadruplex module identical or very similar to the best-known G-quadruplex of the Thrombin Binding Aptamer (HD1) results in new or improved biological properties, such as higher activity or different recognition properties with respect to HD1. Remarkably, this bimodular fold was hypothesized, based on its sequence, for the only anti-thrombin aptamer in advanced clinical trial, NU172. Whereas cation modulation of G-quadruplex conformation and stability is well characterized, only few data from similar analysis on duplex/quadruplex oligonucleotides exist. Here we have performed a characterization of structure and stability of four different duplex/quadruplex anti-thrombin aptamers, including NU172, in the presence of different cations and in physiological-mimicking conditions in comparison to HD1, by means of spectroscopic techniques (UV and circular dichroism) and differential scanning calorimetry. Our data show a strong reciprocal influence of each domain on the stability of the other and in particular suggest a stabilizing effect of the duplex region in the presence of solutions mimicking the physiological conditions, strengthening the idea that bimodular aptamers present better therapeutic potentialities than those containing a single G-quadruplex domain.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Naples, Italy; CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, I-50019, Sesto Fiorentino, FI, Italy
| | - Valeria Napolitano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Naples, Italy
| | - Romualdo Troisi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Naples, Italy
| | - Vera Spiridonova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Carlo Andrea Mattia
- Department of Pharmacy, University of Salerno, Via Ponte Don Melillo, I-84084, Fisciano, SA, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Naples, Italy.
| |
Collapse
|
29
|
Liu J, Lan G, Lu B, He L, Yu K, Chen J, Wang T, Dai F, Wu D. Properties of a new hemostatic gauze prepared with
in situ
thrombin induction. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa519b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Pica A, Russo Krauss I, Parente V, Tateishi-Karimata H, Nagatoishi S, Tsumoto K, Sugimoto N, Sica F. Through-bond effects in the ternary complexes of thrombin sandwiched by two DNA aptamers. Nucleic Acids Res 2016; 45:461-469. [PMID: 27899589 PMCID: PMC5224481 DOI: 10.1093/nar/gkw1113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/20/2016] [Accepted: 10/29/2016] [Indexed: 11/23/2022] Open
Abstract
Aptamers directed against human thrombin can selectively bind to two different exosites on the protein surface. The simultaneous use of two DNA aptamers, HD1 and HD22, directed to exosite I and exosite II respectively, is a very powerful approach to exploit their combined affinity. Indeed, strategies to link HD1 and HD22 together have been proposed in order to create a single bivalent molecule with an enhanced ability to control thrombin activity. In this work, the crystal structures of two ternary complexes, in which thrombin is sandwiched between two DNA aptamers, are presented and discussed. The structures shed light on the cross talk between the two exosites. The through-bond effects are particularly evident at exosite II, with net consequences on the HD22 structure. Moreover, thermodynamic data on the binding of the two aptamers are also reported and analyzed.
Collapse
Affiliation(s)
- Andrea Pica
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy.,Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone, 16, I-80134 Naples, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy.,Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone, 16, I-80134 Naples, Italy
| | - Valeria Parente
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy
| | - Hisae Tateishi-Karimata
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe 650-0047, Japan
| | - Satoru Nagatoishi
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe 650-0047, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113- 8656, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113- 8656, Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER), Konan University, 7-1-20 Minatojima-minamimachi, Kobe 650-0047, Japan .,Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, I-80126 Naples, Italy .,Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone, 16, I-80134 Naples, Italy
| |
Collapse
|
31
|
Molecular mapping of α-thrombin (αT)/β2-glycoprotein I (β2GpI) interaction reveals how β2GpI affects αT functions. Biochem J 2016; 473:4629-4650. [PMID: 27760842 DOI: 10.1042/bcj20160603] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/07/2016] [Accepted: 10/14/2016] [Indexed: 01/15/2023]
Abstract
β2-Glycoprotein I (β2GpI) is the major autoantigen in the antiphospholipid syndrome, a thrombotic autoimmune disease. Nonetheless, the physiological role of β2GpI is still unclear. In a recent work, we have shown that β2GpI selectively inhibits the procoagulant functions of human α-thrombin (αT; i.e. prolongs fibrin clotting time, tc, and inhibits αT-induced platelet aggregation) without affecting the unique anticoagulant activity of the protease, i.e. the proteolytic generation of the anticoagulant protein C (PC) from the PC zymogen, which interacts with αT exclusively at the protease catalytic site. Here, we used several different biochemical/biophysical techniques and molecular probes for mapping the binding sites in the αT-β2GpI complex. Our results indicate that αT exploits the highly electropositive exosite-II, which is also responsible for anchoring αT on the platelet GpIbα (platelet receptor glycoprotein Ibα) receptor, for binding to a continuous negative region on β2GpI structure, spanning domain IV and (part of) domain V, whereas the protease active site and exosite-I (i.e. the fibrinogen-binding site) remain accessible for substrate/ligand binding. Furthermore, we provided evidence that the apparent increase in tc, previously observed with β2GpI, is more likely caused by alteration in the ensuing fibrin structure rather than by the inhibition of fibrinogen hydrolysis. Finally, we produced a theoretical docking model of αT-β2GpI interaction, which was in agreement with the experimental results. Altogether, these findings help to understand how β2GpI affects αT interactions and suggest that β2GpI may function as a scavenger of αT for binding to the GpIbα receptor, thus impairing platelet aggregation while enabling normal cleavage of fibrinogen and PC.
Collapse
|
32
|
Wei H, Cai H, Wu J, Wei Z, Zhang F, Huang X, Ma L, Feng L, Zhang R, Wang Y, Ragg H, Zheng Y, Zhou A. Heparin Binds Lamprey Angiotensinogen and Promotes Thrombin Inhibition through a Template Mechanism. J Biol Chem 2016; 291:24900-24911. [PMID: 27681598 DOI: 10.1074/jbc.m116.725895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/20/2016] [Indexed: 01/01/2023] Open
Abstract
Lamprey angiotensinogen (l-ANT) is a hormone carrier in the regulation of blood pressure, but it is also a heparin-dependent thrombin inhibitor in lamprey blood coagulation system. The detailed mechanisms on how angiotensin is carried by l-ANT and how heparin binds l-ANT and mediates thrombin inhibition are unclear. Here we have solved the crystal structure of cleaved l-ANT at 2.7 Å resolution and characterized its properties in heparin binding and protease inhibition. The structure reveals that l-ANT has a conserved serpin fold with a labile N-terminal angiotensin peptide and undergoes a typical stressed-to-relaxed conformational change when the reactive center loop is cleaved. Heparin binds l-ANT tightly with a dissociation constant of ∼10 nm involving ∼8 monosaccharides and ∼6 ionic interactions. The heparin binding site is located in an extensive positively charged surface area around helix D involving residues Lys-148, Lys-151, Arg-155, and Arg-380. Although l-ANT by itself is a poor thrombin inhibitor with a second order rate constant of 500 m-1 s-1, its interaction with thrombin is accelerated 90-fold by high molecular weight heparin following a bell-shaped dose-dependent curve. Short heparin chains of 6-20 monosaccharide units are insufficient to promote thrombin inhibition. Furthermore, an l-ANT mutant with the P1 Ile mutated to Arg inhibits thrombin nearly 1500-fold faster than the wild type, which is further accelerated by high molecular weight heparin. Taken together, these results suggest that heparin binds l-ANT at a conserved heparin binding site around helix D and promotes the interaction between l-ANT and thrombin through a template mechanism conserved in vertebrates.
Collapse
Affiliation(s)
- Hudie Wei
- From the Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Haiyan Cai
- From the Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Jiawei Wu
- From the Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Zhenquan Wei
- From the Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Fei Zhang
- From the Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Xin Huang
- From the Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Lina Ma
- From the Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Lingling Feng
- From the Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Ruoxi Zhang
- From the Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Yunjie Wang
- the Faculty of Technology, Bielefeld University, 33613 Bielefeld, Germany
| | - Hermann Ragg
- the Faculty of Technology, Bielefeld University, 33613 Bielefeld, Germany
| | - Ying Zheng
- From the Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| | - Aiwu Zhou
- From the Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China and
| |
Collapse
|
33
|
Trikha R, Kowey PR. Practical Considerations for the Nonvitamin K Antagonist Oral Anticoagulants. Cardiology 2016; 136:115-124. [PMID: 27595409 DOI: 10.1159/000447530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/10/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Dabigatran, rivaroxaban, apixaban, and edoxaban are nonvitamin K antagonist oral anticoagulants (NOACs) approved for stroke prevention in patients with nonvalvular atrial fibrillation (NVAF). Phase-3 clinical trials demonstrated NOACs were as effective as warfarin in the prevention of stroke or systemic embolism and associated with decreased incidences of intracranial bleeding. Additionally, NOACs provide quicker onset of action, simpler dosing, more predictable pharmacokinetic profiles, and decreased food and drug interactions compared with warfarin. Despite the advantages of NOACs, the lack of knowledge may limit their use in clinical practice. METHODS A search was performed on the terms 'atrial fibrillation' and 'dabigatran', 'apixaban', 'edoxaban', or 'rivaroxaban' to identify relevant papers; large randomized clinical trials, meta-analyses, and treatment guideline recommendations were given preference. Searches to identify registries, treatment guidelines, and meta-analyses relevant to patient subgroups were also employed. RESULTS Dosing recommendations, initiation of treatment, and applications in patients who undergo NVAF procedures, have mechanical heart valves, or experience other cardiovascular conditions such as myocardial infarction, previous stroke, and valvular heart disease are summarized. The NOAC-specific reversal approaches are also discussed. CONCLUSIONS Several important factors should be considered regarding the adequate use of NOACs, especially in patients with renal impairment or cardiovascular conditions other than NVAF.
Collapse
Affiliation(s)
- Rahul Trikha
- Lankenau Institute for Medical Research, Wynnewood, Pa., USA
| | | |
Collapse
|
34
|
Cahill K, Suttmiller R, Oehrle M, Sabelhaus A, Gemene KL. Pulsed Chronopotentiometric Detection of Thrombin Activity Using Reversible Polyion Selective Electrodes. ELECTROANAL 2016. [DOI: 10.1002/elan.201600401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kaitlin Cahill
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| | - Rebecca Suttmiller
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| | - Melissa Oehrle
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| | - Andrew Sabelhaus
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| | - Kebede L. Gemene
- Department of Chemistry; Northern Kentucky University; Nunn Drive Highland Height, KY 41099
| |
Collapse
|
35
|
Guerrero JL, Daugherty PS, O'Malley MA. Emerging technologies for protease engineering: New tools to clear out disease. Biotechnol Bioeng 2016; 114:33-38. [PMID: 27497426 DOI: 10.1002/bit.26066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022]
Abstract
Proteases regulate many biological processes through their ability to activate or inactive their target substrates. Because proteases catalytically turnover proteins and peptides, they present unique opportunities for use in biotechnological and therapeutic applications. However, many proteases are capable of cleaving multiple physiological substrates. Therefore their activity, expression, and localization are tightly controlled to prevent unwanted proteolysis. Currently, the use of protease therapeutics has been limited to a handful of proteases with narrow substrate specificities, which naturally limits their toxicity. Wider application of proteases is contingent upon the development of methods for engineering protease selectivity, activity, and stability. Recent advances in the development of high-throughput, bacterial and yeast-based methods for protease redesign have yielded protease variants with novel specificities, reduced toxicity, and increased resistance to inhibitors. Here, we highlight new tools for protease engineering, including methods suitable for the redesign of human secreted proteases, and future opportunities to exploit the catalytic activity of proteases for therapeutic benefit. Biotechnol. Bioeng. 2017;114: 33-38. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jennifer L Guerrero
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106
| | - Patrick S Daugherty
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106
| |
Collapse
|
36
|
Wu S. Loop-driven conformational transition between the alternative and collapsed form of prethrombin-2: targeted molecular dynamics study. J Biomol Struct Dyn 2016; 35:119-127. [PMID: 27471844 DOI: 10.1080/07391102.2015.1134347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Two distinct crystal structures of prethrombin-2, the alternative and collapsed forms, are elucidated by X-ray crystallogrphy. We analyzed the conformational transition from the alternative to the collapsed form employing targeted molecular dynamics (TMD) simulation. Despite small RMSD difference in the two X-ray crystal structures, some hydrophobic residues (W60d, W148, W215, and F227) show a significant difference between the two conformations. TMD simulation shows that the four hydrophobic residues undergo concerted movement from dimer to trimer transition via tetramer state in the conformational change from the alternative to the collapsed form. We reveal that the concerted movement of the four hydrophobic residues is controlled by movement of specific loop regions behind. In this paper, we propose a sequential scenario for the conformational transition from the alternative form to the collapsed form, which is partially supported by the mutant W148A simulation.
Collapse
Affiliation(s)
- Sangwook Wu
- a Department of Physics , Pukyong National University , Busan 608-737 , Republic of Korea
| |
Collapse
|
37
|
Lv L, Tang F, Lan G. Preparation and characterization of a chitin/platelet-poor plasma composite as a hemostatic material. RSC Adv 2016. [DOI: 10.1039/c6ra20782k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of life-saving hemostatic materials for emergencies can reduce death caused by uncontrolled hemorrhaging.
Collapse
Affiliation(s)
- Lingmei Lv
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Fengling Tang
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Guangqian Lan
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| |
Collapse
|
38
|
Erdem A, Congur G, Mayer G. Aptasensor platform based on carbon nanofibers enriched screen printed electrodes for impedimetric detection of thrombin. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
39
|
Trapaidze A, Hérault JP, Herbert JM, Bancaud A, Gué AM. Investigation of the selectivity of thrombin-binding aptamers for thrombin titration in murine plasma. Biosens Bioelectron 2015; 78:58-66. [PMID: 26594887 DOI: 10.1016/j.bios.2015.11.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/26/2015] [Accepted: 11/08/2015] [Indexed: 11/26/2022]
Abstract
Detection of thrombin in plasma raises timely challenges to enable therapeutic management of thrombosis in patients under vital threat. Thrombin binding aptamers represent promising candidates as sensing elements for the development of real-time thrombin biosensors; however implementation of such biosensor requires the clear understanding of thrombin-aptamer interaction properties in real-like environment. In this study, we used Surface Plasmon Resonance technique to answer the questions of specificity and sensitivity of thrombin detection by the thrombin-binding aptamers HD1, NU172 and HD22. We systematically characterized their properties in the presence of thrombin, as well as interfering molecular species such as the thrombin precursor prothrombin, thrombin in complex with some of its natural inhibitors, nonspecific serum proteins, and diluted plasma. Kinetic experiments show the multiple binding modes of HD1 and NU172, which both interact with multiple sites of thrombin with low nanomolar affinities and show little specificity of interaction for prothrombin vs. thrombin. HD22, on the other hand, binds specifically to thrombin exosite II and has no affinity to prothrombin at all. While thrombin in complex with some of its inhibitors could not be recognized by any aptamer, the binding of HD1 and NU172 properties is compromised by thrombin inhibitors alone, as well as with serum albumin. Finally, the complex nature of plasma was overwhelming for HD1, but we define conditions for the thrombin detection at 10nM range in 100-fold diluted plasma by HD22. Consequently HD22 showed key advantage over HD1 and NU172, and appears as the only alternative to design an aptasensor.
Collapse
Affiliation(s)
- Ana Trapaidze
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France; Université de Toulouse, LAAS, F-31400 Toulouse, France.
| | | | | | - Aurélien Bancaud
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France; Université de Toulouse, LAAS, F-31400 Toulouse, France.
| | - Anne-Marie Gué
- CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France; Université de Toulouse, LAAS, F-31400 Toulouse, France
| |
Collapse
|
40
|
Park S, Ko H, Kim K. Alkanethiolate-modified Gold Electrode Surfaces Used in Electrochemical Thrombin Detection with Ferrocene-labeled Fibrinogen. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sumi Park
- Department of Chemistry; Incheon National University; Incheon 406-772 Republic of Korea
| | - Hyunjun Ko
- Department of Chemistry; Incheon National University; Incheon 406-772 Republic of Korea
| | - Kyuwon Kim
- Department of Chemistry; Incheon National University; Incheon 406-772 Republic of Korea
| |
Collapse
|
41
|
Nucleic Acid Aptamers: An Emerging Tool for Biotechnology and Biomedical Sensing. SENSORS 2015; 15:16281-313. [PMID: 26153774 PMCID: PMC4541879 DOI: 10.3390/s150716281] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 02/06/2023]
Abstract
Detection of small molecules or proteins of living cells provides an exceptional opportunity to study genetic variations and functions, cellular behaviors, and various diseases including cancer and microbial infections. Our aim in this review is to give an overview of selected research activities related to nucleic acid-based aptamer techniques that have been reported in the past two decades. Limitations of aptamers and possible approaches to overcome these limitations are also discussed.
Collapse
|
42
|
Li W, Dong Y, Wang X, Li H, Xu D. PolyA-tailed and fluorophore-labeled aptamer-gold nanoparticle conjugate for fluorescence turn-on bioassay using iodide-induced ligand displacement. Biosens Bioelectron 2014; 66:43-9. [PMID: 25460880 DOI: 10.1016/j.bios.2014.10.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/03/2014] [Accepted: 10/20/2014] [Indexed: 01/14/2023]
Abstract
Depending on the strong affinity of polyA sequence to gold (or silver) surface, applicability of polyA-tailed DNA-gold (or silver) nanoparticle conjugates in homogeneous and heterogeneous protein assays was first demonstrated. Interestingly, when using polyA-tailed, fluophore-labeled DNA-AuNP conjugate, it was found that iodide and thiosulfate anions could act as the ligand displacing reagent to detach polyA-tailed DNA strands from AuNP surface and simultaneously activate the AuNP-quenched fluorophores by destroying the polyA-AuNP interaction via a divide-and-conquer strategy. Based on this new discovery, we have developed a novel, cost-effective and sandwich-type fluorescence turn-on aptasensor for highly sensitive and specific thrombin detection, what took advantage of aptamer-conjugated magnetic beads (apt-MBs) for protein capture and separation, and iodide-induced fluorescence recovery of activatable polyA-based AuNP probes through ligand displacement for fluorescence turn-on detection. This proposed aptasensor could detect thrombin specifically with a detection limit as low as 89pM, which was better than or comparable to many existing fluorescent thrombin assays. Importantly, employment of such polyA-based AuNP conjugate not only avoids the use of thiolated oligonucleotides and thiol-containing displacing reagents, but also offers new possibilities for fabricating convenient and cost-effective bioanalytical applications.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Yifan Dong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Xi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Hui Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, China.
| |
Collapse
|
43
|
Kim SD, Lee YJ, Baik JS, Han JY, Lee CG, Heo K, Park YS, Kim JS, Ji HD, Park SI, Rhee MH, Yang K. Baicalein inhibits agonist- and tumor cell-induced platelet aggregation while suppressing pulmonary tumor metastasis via cAMP-mediated VASP phosphorylation along with impaired MAPKs and PI3K-Akt activation. Biochem Pharmacol 2014; 92:251-65. [PMID: 25268843 DOI: 10.1016/j.bcp.2014.09.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 01/09/2023]
Abstract
Recently, the importance of platelet activation in cancer metastasis has become generally accepted. As a result, the development of new platelet inhibitors with minimal adverse effects is now a promising area of targeted cancer therapy. Baicalein is a functional ingredient derived from the root of Scutellaria baicalensis Georgi, a plant used intraditional medicine. The pharmacological effects of this compound including anti-oxidative and anti-inflammatory activities have already been demonstrated. However, its effects on platelet activation are unknown. We therefore investigated the effects of baicalein on ligand-induced platelet aggregation and pulmonary cancer metastasis. In the present study, baicalein inhibited agonist-induced platelet aggregation, granule secretion markers (P-selectin expression and ATP release), [Ca(2+)]i mobilization, and integrin αIIbβ3 expression. Additionally, baicalein attenuated ERK2, p38, and Akt activation, and enhanced VASP phosphorylation. Indeed, baicalein was shown to directly inhibit PI3K kinase activity. Moreover, baicalein attenuated the platelet aggregation induced by C6 rat glioma tumor cells in vitro and suppressed CT26 colon cancer metastasis in mice. These features indicate that baicalein is a potential therapeutic drug for the prevention of cancer metastasis.
Collapse
Affiliation(s)
- Sung Dae Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea
| | - Young Ji Lee
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea
| | - Ji Sue Baik
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea
| | - Joeng Yoon Han
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea
| | - Chang Geun Lee
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea
| | - You Soo Park
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea
| | - Joong Sun Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea
| | - Hyun Dong Ji
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Se Il Park
- Cardiovascular Product Evaluation Center, College of Medicine, Yonsei University, Seoul 120-752, Republic of Korea
| | - Man Hee Rhee
- Laboratory of Veterinary Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea.
| | - Kwangmo Yang
- Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea; Department of Radiation Oncology, Dongnam Institute of Radiological and Medical Sciences, Busan 619-953, Republic of Korea; Department of Radiaton Oncology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Republic of Korea.
| |
Collapse
|
44
|
Functional investigation of a venous thromboembolism GWAS signal in a promoter region of coagulation factor XI gene. Mol Biol Rep 2014; 41:2015-9. [PMID: 24420855 DOI: 10.1007/s11033-014-3049-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/04/2014] [Indexed: 12/31/2022]
Abstract
Coagulation factor XI (FXI) is essential for normal function of the intrinsic pathway of blood coagulation. A nucleotide variant (rs3756008) in the promoter region of the FXI gene was recently reported for association with venous thromboembolism. This study aimed to examine promoter activity of the rs3756008 or other variants linked with it. Luciferase assay was analyzed with minigenes including haplotypes (AA with frequency of 0.62 and TG with frequency of 0.38) of 2 completely linked nucleotide variants (rs3756008 and rs3756009) in 5'-upstream region of the FXI gene. While their expression did not differ in hepatic cell (P > 0.05), the major haplotype (AA) made a significantly more expression (P < 0.05) than the minor haplotype (TG) in human embryonic kidney 293 cells. Further luciferase analysis with additional haplotypes (artificial; TA, AG) revealed that the large expression was caused by the major allele of rs3756008 (P < 0.05), but not by that of rs3756009 (P > 0.05). We suggested that the minor allele of rs3756008 in the promoter of FXI gene could reduce its expression in kidney.
Collapse
|
45
|
Abstract
Polyphosphate, synthesized by all cells, is a linear polymer of inorganic phosphate. When released into the circulation, it exerts prothrombotic and proinflammatory activities by modulating steps in the coagulation cascade. We examined the role of polyphosphate in regulating the evolutionarily related proteolytic cascade complement. In erythrocyte lysis assays, polyphosphate comprising more than 1000 phosphate units suppressed total hemolytic activity with a concentration to reduce maximal lysis to 50% that was 10-fold lower than with monophosphate. In the ion- and enzyme-independent terminal pathway complement assay, polyphosphate suppressed complement in a concentration- and size-dependent manner. Phosphatase-treated polyphosphate lost its ability to suppress complement, confirming that polymer integrity is required. Sequential addition of polyphosphate to the terminal pathway assay showed that polyphosphate interferes with complement only when added before formation of the C5b-7 complex. Physicochemical analyses using native gels, gel filtration, and differential scanning fluorimetry revealed that polyphosphate binds to and destabilizes C5b,6, thereby reducing the capacity of the membrane attack complex to bind to and lyse the target cell. In summary, we have added another function to polyphosphate in blood, demonstrating that it dampens the innate immune response by suppressing complement. These findings further establish the complex relationship between coagulation and innate immunity.
Collapse
|
46
|
Bitar A, Kreutz RP. Role of Thrombelastography (TEG) in Risk Assessment and Guidance of Antithrombotic Therapy in Patients with Coronary Artery Disease. Drug Dev Res 2013. [DOI: 10.1002/ddr.21112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Abbas Bitar
- Krannert Institute of Cardiology; Indiana University School of Medicine; Indianapolis IN USA
| | - Rolf P. Kreutz
- Krannert Institute of Cardiology; Indiana University School of Medicine; Indianapolis IN USA
| |
Collapse
|
47
|
Pozzi N, Acquasaliente L, Frasson R, Cristiani A, Moro S, Banzato A, Pengo V, Scaglione GL, Arcovito A, De Cristofaro R, De Filippis V. β2 -Glycoprotein I binds to thrombin and selectively inhibits the enzyme procoagulant functions. J Thromb Haemost 2013; 11:1093-102. [PMID: 23578283 DOI: 10.1111/jth.12238] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Indexed: 08/31/2023]
Abstract
BACKGROUND This work was aimed at characterizing the interaction of β(2)-glycoprotein I (β(2)GPI), an abundant plasma protein of unknown function, with human thrombin, the final effector protease in the coagulation cascade. METHODS The β(2)GPI-thrombin interaction was studied by surface plasmon resonance (SPR), fluorescence, and molecular modeling. The effect of β(2)GPI on the procoagulant (fibrin generation and platelet aggregation) and anticoagulant (protein C activation) functions of thrombin were investigated with turbidimetric, immunocytofluorimetric and enzymatic assays. RESULTS SPR and fluorescence data indicated that β(2)GPI tightly bound thrombin (K(d) = 34 nM) by interacting with both protease exosites, while leaving the active site accessible. This picture is fully consistent with the theoretical model of the β(2)GPI-thrombin complex. In particular, blockage of thrombin exosites with binders specific for exosite-1 (hirugen and HD1 aptamer) or exosite-2 (fibrinogen γ'-peptide and HD22 aptamer) impaired the β2 GPI-thrombin interaction. Identical results were obtained with thrombin mutants having one of the two exosites selectively compromised by mutation (Arg73Ala and Arg101Ala). Fluorescence measurements indicated that β(2)GPI did not affect the affinity of the enzyme for active site inhibitors, such as p-aminobenzamidine and the hirudin(1-47) domain, in agreement with the structural model. β(2)GPI dose-dependently prolonged the thrombin clotting time and ecarin clotting time in β(2)GPI-deficient plasma. β(2)GPI inhibited thrombin-induced platelet aggregation (IC50 = 0.36 μM) by impairing thrombin cleavage of protease-activated receptor 1 (PAR1) (IC50 = 0.32 μM), both on gel-filtered platelets and in whole blood. Strikingly, β(2) GPI did not affect thrombin-mediated generation of the anticoagulant protein C. CONCLUSIONS β(2) GPI functions as a physiologic anticoagulant by inhibiting the key procoagulant activities of thrombin without affecting its unique anticoagulant function.
Collapse
Affiliation(s)
- N Pozzi
- Laboratory of Protein Chemistry, School of Medicine, University of Padua, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Schutgens REG, Tuinenburg A, Fischer K, Mauser-Bunschoten EP. Anticoagulation therapy in haemophilia. Managing the unknown. Hamostaseologie 2013; 33:299-304. [PMID: 23446851 DOI: 10.5482/hamo-12-08-0015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/06/2013] [Indexed: 01/28/2023] Open
Abstract
Patients with haemophilia (PWH) are relatively protected from cardiovascular death. Recent insights have shown that this is not due to less formation of atherosclerosis than in non-haemophilic men, therefore protection from the final occlusive thrombus will be the major determinant. Prevalence and incidence rates of cardiovascular disease (especially non-fatal events) are scarce, although ongoing studies are addressing this issue. Meanwhile, because the haemophilia population is aging, we are increasingly confronted with cardiovascular events. The main cardiovascular risk factors that should be part of regular screening programs are hypertension, overweight, lipometabolic disorders and smoking. Anticoagulation therapy in haemophilia is feasible, provided that individual tailored coagulation therapy and close monitoring is provided. Here, we present our view on anticoagulation management in PWH. There is an absolute need for risk assessment tools and prospective validation of suggested anticoagulation management strategies in PWH. Until then, we are managing the unknown.
Collapse
Affiliation(s)
- R E G Schutgens
- Roger EG Schutgens, MD, PhD, University Medical Center Utrecht, Van Creveldkliniek/Department of Haematology, Room C01.425, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands, Tel. +31/88/755 55 55, Fax +31/88/755 54 38, E-mail:
| | | | | | | |
Collapse
|
49
|
Borbone N, Bucci M, Oliviero G, Morelli E, Amato J, D'Atri V, D'Errico S, Vellecco V, Cirino G, Piccialli G, Fattorusso C, Varra M, Mayol L, Persico M, Scuotto M. Investigating the role of T7 and T12 residues on the biological properties of thrombin-binding aptamer: enhancement of anticoagulant activity by a single nucleobase modification. J Med Chem 2012; 55:10716-28. [PMID: 23126678 DOI: 10.1021/jm301414f] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An acyclic pyrimidine analogue, containing a five-member cycle fused on the pyrimidine ring, was synthesized and introduced at position 7 or 12 of the 15-mer oligodeoxynucleotide GGTTGGTGTGGTTGG, known as thrombin-binding aptamer (TBA). Characterization by 1H NMR and CD spectroscopies of the resulting aptamers, TBA-T7b and TBA-T12b, showed their ability to fold into the typical antiparallel chairlike G-quadruplex structure formed by TBA. The apparent CD melting temperatures indicated that the introduction of the acyclic residue, mainly at position 7, improves the thermal stability of resulting G-quadruplexes with respect to TBA. The anticoagulant activity of the new molecules was then valued in PT assay, and it resulted that TBA-T7b is more potent than TBA in prolonging clotting time. On the other hand, in purified fibrinogen assay the thrombin inhibitory activity of both modified sequences was lower than that of TBA using human enzyme, whereas the potency trend was again reversed using bovine enzyme. Obtained structure-activity relationships were investigated by structural and computational studies. Taken together, these results reveal the active role of TBA residues T7 and T12 and the relevance of some amino acids located in the anion binding exosite I of the protein in aptamer-thrombin interaction.
Collapse
Affiliation(s)
- Nicola Borbone
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Siller-Matula JM, Miller I, Gemeiner M, Plasenzotti R, Bayer G, Mesteri I, Fabry A, Petroczi K, Nöbauer K, Razzazi-Fazeli E, Planchon S, Renaut J, Quehenberger P, Selzer E, Jilma B. Continuous thrombin infusion leads to a bleeding phenotype in sheep. Thromb Res 2012; 130:226-36. [DOI: 10.1016/j.thromres.2011.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 11/30/2022]
|