1
|
Shen K, Chen T, Xiao M. MYH9-related inherited thrombocytopenia: the genetic spectrum, underlying mechanisms, clinical phenotypes, diagnosis, and management approaches. Res Pract Thromb Haemost 2024; 8:102552. [PMID: 39309229 PMCID: PMC11415342 DOI: 10.1016/j.rpth.2024.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 09/25/2024] Open
Abstract
Inherited thrombocytopenias have been considered exceedingly rare for a long time, but recent advances have facilitated diagnosis and greatly enabled the discovery of new causative genes. MYH9-related disease (MYH9-RD) represents one of the most frequent forms of inherited thrombocytopenia, usually presenting with nonspecific clinical manifestations, which renders it difficult to establish an accurate diagnosis. MYH9-RD is an autosomal dominant-inherited thrombocytopenia caused by deleterious variants in the MYH9 gene encoding the heavy chain of nonmuscle myosin IIA. Patients with MYH9-RD usually present with thrombocytopenia and platelet macrocytosis at birth or in infancy, and most of them may develop one or more extrahematologic manifestations of progressive nephritis, sensorial hearing loss, presenile cataracts, and elevated liver enzymatic levels during childhood and adult life. Here, we have reviewed recent advances in the study of MYH9-RD, which aims to provide an updated and comprehensive summary of the current knowledge and improve our understanding of the genetic spectrum, underlying mechanisms, clinical phenotypes, diagnosis, and management approaches of this rare disease. Importantly, our goal is to enable physicians to better understand this rare disease and highlight the critical role of genetic etiologic analysis in ensuring accurate diagnosis, clinical management, and genetic counseling while avoiding ineffective and potentially harmful therapies for MYH9-RD patients.
Collapse
Affiliation(s)
- Kefeng Shen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Chen
- Department of Ophthalmology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Grodzielski M, Cidlowski JA. Glucocorticoids regulate thrombopoiesis by remodeling the megakaryocyte transcriptome. J Thromb Haemost 2023; 21:3207-3223. [PMID: 37336437 PMCID: PMC10592358 DOI: 10.1016/j.jtha.2023.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/18/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Glucocorticoids are widely known for their immunomodulatory action. Their synthetic analogs are used to treat several autoimmune diseases, including immune thrombocytopenia. However, their efficacy and mechanisms of action in immune thrombocytopenia are not fully understood. OBJECTIVES To investigate the mechanism of glucocorticoid actions on platelet production. METHODS The actions of glucocorticoids on platelet production were studied combining in vivo, ex vivo and in vitro approaches. RESULTS Dexamethasone reduced bleeding in mice and rapidly increased circulating young platelet counts. In vitro glucocorticoid treatment stimulated proplatelet formation by megakaryocytes and platelet-like particle release. This effect was blocked by glucocorticoid receptor antagonist RU486, indicating a glucocorticoid receptor-dependent mechanism. Genome-wide analysis revealed that dexamethasone regulates the expression of >1000 genes related to numerous cellular functions, including predominant cytoplasm and cytoskeleton reorganization. Dexamethasone and other glucocorticoids induced the expression of Gda (the gene encoding guanine deaminase), which has been reported to have a role in dendrite development. Inhibition of guanine deaminase enzymatic activity blocked dexamethasone stimulation of proplatelet formation, implicating a critical role for this enzyme in glucocorticoid-mediated platelet production. CONCLUSION Our findings identify glucocorticoids as new regulators of thrombopoiesis.
Collapse
Affiliation(s)
- Matías Grodzielski
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - John A Cidlowski
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| |
Collapse
|
3
|
Di Buduo CA, Miguel CP, Balduini A. Inside-to-outside and back to the future of megakaryopoiesis. Res Pract Thromb Haemost 2023; 7:100197. [PMID: 37416054 PMCID: PMC10320384 DOI: 10.1016/j.rpth.2023.100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 07/08/2023] Open
Abstract
A State of the Art lecture titled "Megakaryocytes and different thrombopoietic environments" was presented at the ISTH Congress in 2022. Circulating platelets are specialized cells produced by megakaryocytes. Leading studies point to the bone marrow niche as the core of hematopoietic stem cell differentiation, revealing interesting and complex environmental factors for consideration. Megakaryocytes take cues from the physiochemical bone marrow microenvironment, which includes cell-cell interactions, contact with extracellular matrix components, and flow generated by blood circulation in the sinusoidal lumen. Germinal and acquired mutations in hematopoietic stem cells may manifest in altered megakaryocyte maturation, proliferation, and platelet production. Diseased megakaryopoiesis may also cause modifications of the entire hematopoietic niche, highlighting the central role of megakaryocytes in the control of physiologic bone marrow homeostasis. Tissue-engineering approaches have been developed to translate knowledge from in vivo (inside) to functional mimics of native tissue ex vivo (outside). Reproducing the thrombopoietic environment is instrumental to gain new insight into its activity and answering the growing demand for human platelets for fundamental studies and clinical applications. In this review, we discuss the major achievements on this topic, and finally, we summarize relevant new data presented during the 2022 ISTH Congress that pave the road to the future of megakaryopoiesis.
Collapse
Affiliation(s)
| | | | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
4
|
Marín-Quílez A, Di Buduo CA, Díaz-Ajenjo L, Abbonante V, Vuelta E, Soprano PM, Miguel-García C, Santos-Mínguez S, Serramito-Gómez I, Ruiz-Sala P, Peñarrubia MJ, Pardal E, Hernández-Rivas JM, González-Porras JR, García-Tuñón I, Benito R, Rivera J, Balduini A, Bastida JM. Novel variants in GALE cause syndromic macrothrombocytopenia by disrupting glycosylation and thrombopoiesis. Blood 2023; 141:406-421. [PMID: 36395340 PMCID: PMC10644051 DOI: 10.1182/blood.2022016995] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Glycosylation is recognized as a key process for proper megakaryopoiesis and platelet formation. The enzyme uridine diphosphate (UDP)-galactose-4-epimerase, encoded by GALE, is involved in galactose metabolism and protein glycosylation. Here, we studied 3 patients from 2 unrelated families who showed lifelong severe thrombocytopenia, bleeding diathesis, mental retardation, mitral valve prolapse, and jaundice. Whole-exome sequencing revealed 4 variants that affect GALE, 3 of those previously unreported (Pedigree A, p.Lys78ValfsX32 and p.Thr150Met; Pedigree B, p.Val128Met; and p.Leu223Pro). Platelet phenotype analysis showed giant and/or grey platelets, impaired platelet aggregation, and severely reduced alpha and dense granule secretion. Enzymatic activity of the UDP-galactose-4-epimerase enzyme was severely decreased in all patients. Immunoblotting of platelet lysates revealed reduced GALE protein levels, a significant decrease in N-acetyl-lactosamine (LacNAc), showing a hypoglycosylation pattern, reduced surface expression of gylcoprotein Ibα-IX-V (GPIbα-IX-V) complex and mature β1 integrin, and increased apoptosis. In vitro studies performed with patients-derived megakaryocytes showed normal ploidy and maturation but decreased proplatelet formation because of the impaired glycosylation of the GPIbα and β1 integrin, and reduced externalization to megakaryocyte and platelet membranes. Altered distribution of filamin A and actin and delocalization of the von Willebrand factor were also shown. Overall, this study expands our knowledge of GALE-related thrombocytopenia and emphasizes the critical role of GALE in the physiological glycosylation of key proteins involved in platelet production and function.
Collapse
Affiliation(s)
- Ana Marín-Quílez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | | | - Lorena Díaz-Ajenjo
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Elena Vuelta
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | | | - Cristina Miguel-García
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Sandra Santos-Mínguez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Inmaculada Serramito-Gómez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - Pedro Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, CIBERER, IdIPAZ, Madrid, Spain
| | - María Jesús Peñarrubia
- Servicio de Hematología, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Emilia Pardal
- Servicio de Hematología, Hospital Virgen del Puerto, Plasencia, Spain
| | - Jesús María Hernández-Rivas
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), Salamanca, Spain
| | - José Ramón González-Porras
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), Salamanca, Spain
| | - Ignacio García-Tuñón
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Rocío Benito
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cáncer (CIC), Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-Centro Superior de Investigaciones Científicas (CSIC), Salamanca, Spain
| | - José Rivera
- Servicio de Hematología y Oncología Médica, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria (IMIB)-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Murcia, Spain
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Biomedical Engineering, Tufts University, Medford, MA
| | - José María Bastida
- Servicio de Hematología, Complejo Asistencial Universitario de Salamanca (CAUSA), Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca (USAL), Salamanca, Spain
| |
Collapse
|
5
|
Bendas G, Schlesinger M. The GPIb-IX complex on platelets: insight into its novel physiological functions affecting immune surveillance, hepatic thrombopoietin generation, platelet clearance and its relevance for cancer development and metastasis. Exp Hematol Oncol 2022; 11:19. [PMID: 35366951 PMCID: PMC8976409 DOI: 10.1186/s40164-022-00273-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
The glycoprotein (GP) Ib-IX complex is a platelet receptor that mediates the initial interaction with subendothelial von Willebrand factor (VWF) causing platelet arrest at sites of vascular injury even under conditions of high shear. GPIb-IX dysfunction or deficiency is the reason for the rare but severe Bernard-Soulier syndrome (BSS), a congenital bleeding disorder. Although knowledge on GPIb-IX structure, its basic functions, ligands, and intracellular signaling cascades have been well established, several advances in GPIb-IX biology have been made in the recent years. Thus, two mechanosensitive domains and a trigger sequence in GPIb were characterized and its role as a thrombin receptor was deciphered. Furthermore, it became clear that GPIb-IX is involved in the regulation of platelet production, clearance and thrombopoietin secretion. GPIb is deemed to contribute to liver cancer development and metastasis. This review recapitulates these novel findings highlighting GPIb-IX in its multiple functions as a key for immune regulation, host defense, and liver cancer development.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Martin Schlesinger
- Department of Pharmacy, Rheinische Friedrich-Wilhelms-University Bonn, An der Immenburg 4, 53121, Bonn, Germany. .,Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany.
| |
Collapse
|
6
|
Deletion of Grin1 in mouse megakaryocytes reveals NMDA receptor role in platelet function and proplatelet formation. Blood 2022; 139:2673-2690. [PMID: 35245376 DOI: 10.1182/blood.2021014000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/18/2022] [Indexed: 11/20/2022] Open
Abstract
The process of proplatelet formation (PPF) requires coordinated interaction between megakaryocytes (MKs) and the extracellular matrix (ECM), followed by a dynamic reorganization of the actin and microtubule cytoskeleton. Localized fluxes of intracellular calcium ions (Ca2+) facilitate MK-ECM interaction and PPF. Glutamate-gated N-methyl-D--aspartate receptor (NMDAR) is highly permeable to Ca2+. NMDAR antagonists inhibit MK maturation ex vivo, however there is no in vivo data. Using the Cre-loxP system, we generated a platelet lineage-specific knockout mouse model of reduced NMDAR function in MKs and platelets (Pf4-Grin1-/- mice). Effects of NMDAR deletion were examined using well-established assays of platelet function and production in vivo and ex vivo. We found that Pf4-Grin1-/- mice had defects in megakaryopoiesis, thrombopoiesis and platelet function, which manifested as reduced platelet counts, lower rates of platelet production in the immune model of thrombocytopenia, and a prolonged tail bleeding time. Platelet activation was impaired to a range of agonists associated with reduced Ca2+ responses, including metabotropic-like, and defective platelet spreading. MKs showed reduced colony and proplatelet formation. Impaired reorganization of intracellular F-actin and α-tubulin was identified as the main cause of reduced platelet function and production. Pf4-Grin1-/- MKs also had lower levels of transcripts encoding crucial ECM elements and enzymes, suggesting NMDAR signaling is involved in ECM remodeling. In summary, we provide the first genetic evidence that NMDAR plays an active role in platelet function and production. NMDARs regulate PPF through the mechanism that involves MK-ECM interaction and cytoskeletal reorganization. Our results suggest that NMDAR helps guide PPF in vivo.
Collapse
|
7
|
Kimmerlin Q, Strassel C, Eckly A, Lanza F. The tubulin code in platelet biogenesis. Semin Cell Dev Biol 2022; 137:63-73. [PMID: 35148939 DOI: 10.1016/j.semcdb.2022.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
Abstract
Blood platelets are small non-nucleated cellular fragments that prevent and stop hemorrhages. They are produced in the bone marrow by megakaryocytes through megakaryopoiesis. This intricate process involves profound microtubule rearrangements culminating in the formation of a unique circular sub-membranous microtubule array, the marginal band, which supports the typical disc-shaped morphology of platelets. Mechanistically, these processes are thought to be controlled by a specific tubulin code. In this review, we summarize the current knowledge on the key isotypes, notably β1-, α4A- and α8-tubulin, and putative post-translational modifications, involved in platelet and marginal band formation. Additionally, we provide a provisional list of microtubule-associated proteins (MAPs) involved in these processes and a survey of tubulin variants identified in patients presenting defective platelet production. A comprehensive characterization of the platelet tubulin code and the identification of essential MAPs may be expected in the near future to shed new light on a very specialized microtubule assembly process with applications in platelet diseases and transfusion.
Collapse
Affiliation(s)
- Quentin Kimmerlin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| | - Catherine Strassel
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| | - François Lanza
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.
| |
Collapse
|
8
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
9
|
Goette NP, Borzone FR, Lupi ADD, Chasseing NA, Rubio MF, Costas MA, Heller PG, Marta RF, Lev PR. Megakaryocyte-stromal cell interactions: effect on megakaryocyte proliferation, proplatelet production, and survival. Exp Hematol 2022; 107:24-37. [PMID: 35032592 DOI: 10.1016/j.exphem.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Bone marrow stromal cells provide a proper environment for the development of hematologic lineages. The incorporation of different stromal cells to in vitro culture systems would be an attractive model to study megakaryopoiesis and thrombopoiesis. Our objective was to evaluate the participation of different types of stromal cells on in vitro megakaryopoiesis, thrombopoiesis and megakaryocyte (MK) survival. CD34-positive progenitors from umbilical cord blood were differentiated into MK precursors and then co-cultured with umbilical vein endothelial cells (HUVEC), bone marrow mesenchymal stem cells (MSCs), skin fibroblasts (SF) (all human) or mouse fibroblast cell line (L929). The number of MKs (CD61-positive cells) was increased in the presence of HUVEC and SF while L929 cells decreased total and mature MK count. Concerning thrombopoiesis, HUVEC increased proplatelet (PP)-producing MKs, while MSCs, L929 and SF had the opposite effect (immunofluorescence staining and microscopic analysis). MK survival was enhanced in MSC and SF co-cultures, as assessed by evaluation of pyknotic nuclei. However, HUVEC and L929 did not prevent apoptosis of MKs. Reciprocally, the cloning efficiency of MSCs was decreased in the presence of MKs, while the ability of stromal cells (either MSCs or SF) to produce the extracellular matrix proteins type III collagen, fibronectin, dermatan sulfate, heparan sulfate and P4HB was preserved. These data indicate that each stromal cell type performs distinctive functions, which differentially modulate MK growth and platelet production, and, at the same time, that MKs also modify stromal cells behavior. Overall, our results highlight the relevance of considering the influence of stromal cells in MK research as well as the close interplay of different cell types within the bone marrow milieu.
Collapse
Affiliation(s)
- Nora P Goette
- Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina
| | - Francisco R Borzone
- Laboratory of Immunohematology, Institute of Biology and Experimental Medicine, National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Ailen D Discianni Lupi
- Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina
| | - Norma A Chasseing
- Laboratory of Immunohematology, Institute of Biology and Experimental Medicine, National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - María F Rubio
- Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina; Department of Molecular Biology and Apoptosis , Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Mónica A Costas
- Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina; Department of Molecular Biology and Apoptosis , Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Paula G Heller
- Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina; Department of Experimental Hematology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Rosana F Marta
- Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina; Department of Experimental Hematology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Paola R Lev
- Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina; Department of Experimental Hematology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Baroni Pietto MC, Lev PR, Glembotsky AC, Marín Oyarzún CP, Gomez G, Collado V, Pisoni C, Gomez RA, Grodzielski M, Gonzalez J, Mariño KV, Heller PG, Goette NP, Marta RF. Pathogenic mechanisms contributing to thrombocytopenia in patients with systemic lupus erythematosus. Platelets 2021; 33:743-754. [PMID: 34806522 DOI: 10.1080/09537104.2021.1988547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
SummarySystemic lupus erythematosus (SLE) is an autoimmune condition developing thrombocytopenia in about 10-15% of cases, however, mechanisms leading to low platelet count were not deeply investigated in this illness. Here we studied possible causes of thrombocytopenia, including different mechanisms of platelet clearance and impairment in platelet production. Twenty-five SLE patients with and without thrombocytopenia were included. Platelet apoptosis, assessed by measurement of loss of mitochondrial membrane potential, active caspase 3 and phosphatidylserine exposure, was found to increase in thrombocytopenic patients. Plasma from 67% SLE patients (thrombocytopenic and non-thrombocytopenic) induced loss of sialic acid (Ricinus communis agglutinin I and/or Peanut agglutinin binding) from normal platelet glycoproteins. Concerning platelet production, SLE plasma increased megakaryopoiesis (evaluated using normal human cord blood CD34+ hematopoietic progenitors), but inhibited thrombopoiesis (proplatelet count). Anti-platelet autoantibody depletion from SLE plasma reverted this inhibition. Overall, abnormalities were more frequently observed in thrombocytopenic than non-thrombocytopenic SLE patients and in those with active disease (SLEDAI≥5). In conclusion, platelet clearance due to apoptosis and desialylation, and impaired platelet production mainly due to inhibition of thrombopoiesis, could be relevant mechanisms leading to thrombocytopenia in SLE. These findings could provide a rational basis for the choice of proper therapies to correct platelet counts in these patients.[Figure: see text].
Collapse
Affiliation(s)
- M Constanza Baroni Pietto
- Departamento De Hematología Investigación, Universidad De Buenos Aires. Instituto De Investigaciones Médicas Alfredo Lanari, Buenos Aires, Argentina.,Conicet - Universidad De Buenos Aires. Unidad Ejecutora Idim-conicet (Ue Idim-conicet), Buenos Aires, Argentina
| | - Paola R Lev
- Departamento De Hematología Investigación, Universidad De Buenos Aires. Instituto De Investigaciones Médicas Alfredo Lanari, Buenos Aires, Argentina.,Conicet - Universidad De Buenos Aires. Unidad Ejecutora Idim-conicet (Ue Idim-conicet), Buenos Aires, Argentina
| | - Ana C Glembotsky
- Departamento De Hematología Investigación, Universidad De Buenos Aires. Instituto De Investigaciones Médicas Alfredo Lanari, Buenos Aires, Argentina.,Conicet - Universidad De Buenos Aires. Unidad Ejecutora Idim-conicet (Ue Idim-conicet), Buenos Aires, Argentina
| | - Cecilia P Marín Oyarzún
- Departamento De Hematología Investigación, Universidad De Buenos Aires. Instituto De Investigaciones Médicas Alfredo Lanari, Buenos Aires, Argentina.,Conicet - Universidad De Buenos Aires. Unidad Ejecutora Idim-conicet (Ue Idim-conicet), Buenos Aires, Argentina
| | - Graciela Gomez
- Departamento De Reumatología, Universidad De Buenos Aires. Instituto De Investigaciones Médicas Alfredo Lanari, Buenos Aires, Argentina
| | - Victoria Collado
- Departamento De Reumatología, Universidad De Buenos Aires. Instituto De Investigaciones Médicas Alfredo Lanari, Buenos Aires, Argentina
| | - Cecilia Pisoni
- Departamento De Reumatología, Centro De Educación Médica E Investigación Clínica "Norberto Quirno" (Cemic), Buenos Aires, Argentina
| | - Ramiro A Gomez
- Departmento De Reumatología, Universidad De Buenos Aires. Hospital De Clínicas "José De San Martín", Buenos Aires, Argentina
| | - Matías Grodzielski
- Departamento De Hematología Investigación, Universidad De Buenos Aires. Instituto De Investigaciones Médicas Alfredo Lanari, Buenos Aires, Argentina.,Conicet - Universidad De Buenos Aires. Unidad Ejecutora Idim-conicet (Ue Idim-conicet), Buenos Aires, Argentina
| | - Jacqueline Gonzalez
- Departmento De Hematología, Hospital General De Agudos Carlos G. Durand, Buenos Aires, Argentina
| | - Karina V Mariño
- Laboratorio De Glicómica Funcional Y Molecular, Instituto De Biología Y Medicina Experimental (Ibyme) Conicet, Buenos Aires, Argentina
| | - Paula G Heller
- Departamento De Hematología Investigación, Universidad De Buenos Aires. Instituto De Investigaciones Médicas Alfredo Lanari, Buenos Aires, Argentina.,Conicet - Universidad De Buenos Aires. Unidad Ejecutora Idim-conicet (Ue Idim-conicet), Buenos Aires, Argentina
| | - Nora P Goette
- Departamento De Hematología Investigación, Universidad De Buenos Aires. Instituto De Investigaciones Médicas Alfredo Lanari, Buenos Aires, Argentina
| | - Rosana F Marta
- Departamento De Hematología Investigación, Universidad De Buenos Aires. Instituto De Investigaciones Médicas Alfredo Lanari, Buenos Aires, Argentina.,Conicet - Universidad De Buenos Aires. Unidad Ejecutora Idim-conicet (Ue Idim-conicet), Buenos Aires, Argentina
| |
Collapse
|
11
|
Ablation of Collagen VI leads to the release of platelets with altered function. Blood Adv 2021; 5:5150-5163. [PMID: 34547769 PMCID: PMC9153009 DOI: 10.1182/bloodadvances.2020002671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022] Open
Abstract
Megakaryocytes express collagen VI that regulates the release of functional platelets. Collagen VI–null megakaryocytes and platelets display increased mTOR signaling and store-operated calcium entry.
Hemostatic abnormalities and impaired platelet function have been described in patients affected by connective tissue disorders. We observed a moderate bleeding tendency in patients affected by collagen VI–related disorders and investigated the defects in platelet functionality, whose mechanisms are unknown. We demonstrated that megakaryocytes express collagen VI that is involved in the regulation of functional platelet production. By exploiting a collagen VI–null mouse model (Col6a1−/−), we found that collagen VI–null platelets display significantly increased susceptibility to activation and intracellular calcium signaling. Col6a1−/− megakaryocytes and platelets showed increased expression of stromal interaction molecule 1 (STIM1) and ORAI1, the components of store-operated calcium entry (SOCE), and activation of the mammalian target of rapamycin (mTOR) signaling pathway. In vivo mTOR inhibition by rapamycin reduced STIM1 and ORAI1 expression and calcium flows, resulting in a normalization of platelet susceptibility to activation. These defects were cell autonomous, because transplantation of lineage-negative bone marrow cells from Col6a1−/− mice into lethally irradiated wild-type animals showed the same alteration in SOCE and platelet activation seen in Col6a1−/− mice. Peripheral blood platelets of patients affected by collagen VI–related diseases, Bethlem myopathy and Ullrich congenital muscular dystrophy, displayed increased expression of STIM1 and ORAI1 and were more prone to activation. Altogether, these data demonstrate the importance of collagen VI in the production of functional platelets by megakaryocytes in mouse models and in collagen VI–related diseases.
Collapse
|
12
|
Mojzisch A, Brehm MA. The Manifold Cellular Functions of von Willebrand Factor. Cells 2021; 10:2351. [PMID: 34572000 PMCID: PMC8466076 DOI: 10.3390/cells10092351] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
The plasma glycoprotein von Willebrand factor (VWF) is exclusively synthesized in endothelial cells (ECs) and megakaryocytes, the precursor cells of platelets. Its primary function lies in hemostasis. However, VWF is much more than just a "fishing hook" for platelets and a transporter for coagulation factor VIII. VWF is a true multitasker when it comes to its many roles in cellular processes. In ECs, VWF coordinates the formation of Weibel-Palade bodies and guides several cargo proteins to these storage organelles, which control the release of hemostatic, inflammatory and angiogenic factors. Leukocytes employ VWF to assist their rolling on, adhesion to and passage through the endothelium. Vascular smooth muscle cell proliferation is supported by VWF, and it regulates angiogenesis. The life cycle of platelets is accompanied by VWF from their budding from megakaryocytes to adhesion, activation and aggregation until the end in apoptosis. Some tumor cells acquire the ability to produce VWF to promote metastasis and hide in a shell of VWF and platelets, and even the maturation of osteoclasts is regulated by VWF. This review summarizes the current knowledge on VWF's versatile cellular functions and the resulting pathophysiological consequences of their dysregulation.
Collapse
Affiliation(s)
- Angelika Mojzisch
- Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Maria A. Brehm
- School of Life Sciences, University of Siegen, 57076 Siegen, Germany
| |
Collapse
|
13
|
Mbiandjeu S, Balduini A, Malara A. Megakaryocyte Cytoskeletal Proteins in Platelet Biogenesis and Diseases. Thromb Haemost 2021; 122:666-678. [PMID: 34218430 DOI: 10.1055/s-0041-1731717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Thrombopoiesis governs the formation of blood platelets in bone marrow by converting megakaryocytes into long, branched proplatelets on which individual platelets are assembled. The megakaryocyte cytoskeleton responds to multiple microenvironmental cues, including chemical and mechanical stimuli, sustaining the platelet shedding. During the megakaryocyte's life cycle, cytoskeletal networks organize cell shape and content, connect them physically and biochemically to the bone marrow vascular niche, and enable the release of platelets into the bloodstream. While the basic building blocks of the cytoskeleton have been studied extensively, new sets of cytoskeleton regulators have emerged as critical components of the dynamic protein network that supports platelet production. Understanding how the interaction of individual molecules of the cytoskeleton governs megakaryocyte behavior is essential to improve knowledge of platelet biogenesis and develop new therapeutic strategies for inherited thrombocytopenias caused by alterations in the cytoskeletal genes.
Collapse
Affiliation(s)
- Serge Mbiandjeu
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | |
Collapse
|
14
|
Di Buduo CA, Aguilar A, Soprano PM, Bocconi A, Miguel CP, Mantica G, Balduini A. Latest culture techniques: cracking the secrets of bone marrow to mass-produce erythrocytes and platelets ex vivo. Haematologica 2021; 106:947-957. [PMID: 33472355 PMCID: PMC8017859 DOI: 10.3324/haematol.2020.262485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Since the dawn of medicine, scientists have carefully observed, modeled and interpreted the human body to improve healthcare. At the beginning there were drawings and paintings, now there is three-dimensional modeling. Moving from two-dimensional cultures and towards complex and relevant biomaterials, tissue-engineering approaches have been developed in order to create three-dimensional functional mimics of native organs. The bone marrow represents a challenging organ to reproduce because of its structure and composition that confer it unique biochemical and mechanical features to control hematopoiesis. Reproducing the human bone marrow niche is instrumental to answer the growing demand for human erythrocytes and platelets for fundamental studies and clinical applications in transfusion medicine. In this review, we discuss the latest culture techniques and technological approaches to obtain functional platelets and erythrocytes ex vivo. This is a rapidly evolving field that will define the future of targeted therapies for thrombocytopenia and anemia, but also a long-term promise for new approaches to the understanding and cure of hematologic diseases.
Collapse
Affiliation(s)
| | - Alicia Aguilar
- Department of Molecular Medicine, University of Pavia, Pavia
| | - Paolo M Soprano
- Department of Molecular Medicine, University of Pavia, Pavia
| | - Alberto Bocconi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Chemistry, Materials and Chemical Engineering G. Natta, Politecnico di Milano, Milano
| | | | | | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, MA
| |
Collapse
|
15
|
Huang J, Huang S, Ma Z, Lin X, Li X, Huang X, Wang J, Ye W, Li Y, He D, Yang M, Pan J, Ling Q, Li F, Mao S, Wang H, Wang Y, Jin J. Ibrutinib Suppresses Early Megakaryopoiesis but Enhances Proplatelet Formation. Thromb Haemost 2021; 121:192-205. [PMID: 32961571 DOI: 10.1055/s-0040-1716530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase, has a favorable safety profile in patients with B cell-related malignancies. A primary adverse effect of ibrutinib is thrombocytopenia in the early stages of treatment, but platelet counts increase or recover as treatment continues. Currently, the effects of ibrutinib on megakaryopoiesis remain unclear. In this study, we investigated the mechanism by which ibrutinib induces thrombocytopenia using cord blood CD34+ hematopoietic stem cells (HSCs), a human megakaryoblastic cell line (SET-2), and C57BL/6 mice. We show that treatment with ibrutinib can suppress CD34+ HSC differentiation into megakaryocytes (MKs) and decrease the number of colony-forming unit-MKs (CFU-MKs). The ibrutinib-dependent inhibition of early megakaryopoiesis seems to mainly involve impaired proliferation of progenitor cells without induction of apoptosis. The effects of ibrutinib on late-stage megakaryopoiesis, in contrast to early-stage megakaryopoiesis, include enhanced MK differentiation, ploidy, and proplatelet formation in CD34+ HSC-derived MKs and SET-2 cells. We also demonstrated that MK adhesion and spreading, but not migration, were inhibited by ibrutinib. Furthermore, we revealed that integrin αIIbβ3 outside-in signaling in MKs was inhibited by ibrutinib. Consistent with previous clinical observations, in C57BL/6 mice treated with ibrutinib, platelet counts decreased by days 2 to 7 and recovered to normal levels by day 15. Together, these results reveal the pathogenesis of ibrutinib-induced transient thrombocytopenia. In conclusion, ibrutinib suppresses early megakaryopoiesis, as evidenced by inhibition of MK progenitor cell proliferation and CFU-MK formation. Ibrutinib enhances MK differentiation, ploidy, and proplatelet formation, while it impairs integrin αIIbβ3 outside-in signaling.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiangjie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yang Li
- Department of Obstetrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Daqiang He
- Department of Laboratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shihui Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yungui Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang Province, China
- Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
16
|
Marini I, Zlamal J, Faul C, Holzer U, Hammer S, Pelzl L, Bethge W, Althaus K, Bakchoul T. Autoantibody-mediated desialylation impairs human thrombopoiesis and platelet lifespan. Haematologica 2021; 106:196-207. [PMID: 31857361 PMCID: PMC7776251 DOI: 10.3324/haematol.2019.236117] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/11/2019] [Indexed: 11/09/2022] Open
Abstract
Immune thrombocytopenia is a common bleeding disease caused by autoantibody-mediated accelerated platelet clearance and impaired thrombopoiesis. Accumulating evidence suggests that desialylation affects platelet life span in immune thrombocytopenia. Herein, we report on novel effector functions of autoantibodies from immune thrombocytopenic patients which might interfere with the clinical picture of the disease. Data from our study show that a subgroup of autoantibodies is able to induce cleave of sialic acid residues from the surface of human platelets and megakaryocytes. Moreover, autoantibody-mediated desialylation interferes with the interaction between cells and extracellular matrix proteins leading to impaired platelet adhesion and megakaryocyte differentiation. Using a combination of ex vivo model of thrombopoiesis, a humanized animal model, and a clinical cohort study, we demonstrate that cleavage of sialic acid induces significant impairment in production, survival as well as function of human platelets. These data may indicate that prevention of desialylation should be investigated in the future in clinical studies as a potential therapeutic approach to treat bleeding in immune thrombocytopenia.
Collapse
Affiliation(s)
- Irene Marini
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen
| | - Jan Zlamal
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen
| | - Christoph Faul
- Department of Internal Medicine II, University Hospital of Tübingen
| | - Ursula Holzer
- Dept. of Pediatric Hematology-Oncology, University Children's Hospital of Tübingen, Germany
| | - Stefanie Hammer
- Center for Clinical Transfusion Medicine, University Hospital of Tübingen, Germany
| | - Lisann Pelzl
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen
| | - Wolfgang Bethge
- Department of Internal Medicine II, University Hospital of Tübingen
| | - Karina Althaus
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen, Germany
| | - Tamam Bakchoul
- Transfusion Medicine, Medical Faculty of Tübingen, University Hospital Tübingen
| |
Collapse
|
17
|
Di Buduo CA, Soprano PM, Miguel CP, Perotti C, Del Fante C, Balduini A. A Gold Standard Protocol for Human Megakaryocyte Culture Based on the Analysis of 1,500 Umbilical Cord Blood Samples. Thromb Haemost 2020; 121:538-542. [PMID: 33160288 DOI: 10.1055/s-0040-1719028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Christian A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
| | - Paolo M Soprano
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
| | - Carolina P Miguel
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
| | - Cesare Perotti
- Immunohematology and Transfusion Service and Cell Therapy Unit, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
| | - Claudia Del Fante
- Immunohematology and Transfusion Service and Cell Therapy Unit, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Policlinico San Matteo Foundation, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States
| |
Collapse
|
18
|
Boscher J, Guinard I, Eckly A, Lanza F, Léon C. Blood platelet formation at a glance. J Cell Sci 2020; 133:133/20/jcs244731. [DOI: 10.1242/jcs.244731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT
The main function of blood platelets is to ensure hemostasis and prevent hemorrhages. The 1011 platelets needed daily are produced in a well-orchestrated process. However, this process is not yet fully understood and in vitro platelet production is still inefficient. Platelets are produced in the bone marrow by megakaryocytes, highly specialized precursor cells that extend cytoplasmic projections called proplatelets (PPTs) through the endothelial barrier of sinusoid vessels. In this Cell Science at a Glance article and the accompanying poster we discuss the mechanisms and pathways involved in megakaryopoiesis and platelet formation processes. We especially address the – still underestimated – role of the microenvironment of the bone marrow, and present recent findings on how PPT extension in vivo differs from that in vitro and entails different mechanisms. Finally, we recapitulate old but recently revisited evidence that – although bone marrow does produce megakaryocytes and PPTs – remodeling and the release of bona fide platelets, mainly occur in the downstream microcirculation.
Collapse
Affiliation(s)
- Julie Boscher
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - Ines Guinard
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - François Lanza
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| | - Catherine Léon
- Université de Strasbourg, INSERM, EFS Grand Est, BPPS UMR-S 1255, F-67000 Strasbourg, France
| |
Collapse
|
19
|
Bhatlekar S, Manne BK, Basak I, Edelstein LC, Tugolukova E, Stoller ML, Cody MJ, Morley SC, Nagalla S, Weyrich AS, Rowley JW, O'Connell RM, Rondina MT, Campbell RA, Bray PF. miR-125a-5p regulates megakaryocyte proplatelet formation via the actin-bundling protein L-plastin. Blood 2020; 136:1760-1772. [PMID: 32844999 PMCID: PMC7544541 DOI: 10.1182/blood.2020005230] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/24/2020] [Indexed: 12/17/2022] Open
Abstract
There is heritability to interindividual variation in platelet count, and better understanding of the regulating genetic factors may provide insights for thrombopoiesis. MicroRNAs (miRs) regulate gene expression in health and disease, and megakaryocytes (MKs) deficient in miRs have lower platelet counts, but information about the role of miRs in normal human MK and platelet production is limited. Using genome-wide miR profiling, we observed strong correlations among human bone marrow MKs, platelets, and differentiating cord blood-derived MK cultures, and identified MK miR-125a-5p as associated with human platelet number but not leukocyte or hemoglobin levels. Overexpression and knockdown studies showed that miR-125a-5p positively regulated human MK proplatelet (PP) formation in vitro. Inhibition of miR-125a-5p in vivo lowered murine platelet counts. Analyses of MK and platelet transcriptomes identified LCP1 as a miR-125a-5p target. LCP1 encodes the actin-bundling protein, L-plastin, not previously studied in MKs. We show that miR-125a-5p directly targets and reduces expression of MK L-plastin. Overexpression and knockdown studies show that L-plastin promotes MK progenitor migration, but negatively correlates with human platelet count and inhibits MK PP formation (PPF). This work provides the first evidence for the actin-bundling protein, L-plastin, as a regulator of human MK PPF via inhibition of the late-stage MK invagination system, podosome and PPF, and PP branching. We also provide resources of primary and differentiating MK transcriptomes and miRs associated with platelet counts. miR-125a-5p and L-plastin may be relevant targets for increasing in vitro platelet manufacturing and for managing quantitative platelet disorders.
Collapse
Affiliation(s)
- Seema Bhatlekar
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
| | - Bhanu K Manne
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
| | - Indranil Basak
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
| | - Leonard C Edelstein
- Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA
| | - Emilia Tugolukova
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
| | | | - Mark J Cody
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
| | - Sharon C Morley
- Division of Infectious Diseases, Department of Pediatrics and
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Srikanth Nagalla
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Andrew S Weyrich
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
- Division of Pulmonary, Department of Internal Medicine
| | - Jesse W Rowley
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
- Division of Pulmonary, Department of Internal Medicine
| | - Ryan M O'Connell
- Division of Microbiology and Immunology, Department of Pathology, and
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Matthew T Rondina
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
- Geriatric Research, Education and Clinical Center, George E. Wahlen VAMC GRECC, Salt Lake City, UT; and
- Division of General Internal Medicine and
| | - Robert A Campbell
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
- Division of General Internal Medicine and
| | - Paul F Bray
- Program in Molecular Medicine, University of Utah, Salt Lake City, UT
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT
| |
Collapse
|
20
|
Abbonante V, Di Buduo CA, Malara A, Laurent PA, Balduini A. Mechanisms of platelet release: in vivo studies and in vitro modeling. Platelets 2020; 31:717-723. [PMID: 32522064 DOI: 10.1080/09537104.2020.1774532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mechanisms related to platelet release in the context of the bone marrow niche are not completely known. In this review we discuss what has been discovered about four critical aspects of this process: 1) the bone marrow niche organization, 2) the role of the extracellular matrix components, 3) the mechanisms by which megakaryocytes release platelets and 4) the novel approaches to mimic the bone marrow environment and produce platelets ex vivo.
Collapse
Affiliation(s)
| | | | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia , Pavia, Italy
| | | | | |
Collapse
|
21
|
Abstract
Recent advances in super-resolution (sub-diffraction limited) microscopy have yielded remarkable insights into the nanoscale architecture and behavior of cells. In addition to the capacity to provide sub 100 nm resolution, these technologies offer unique quantitative opportunities with particular relevance to platelet and megakaryocyte biology. In this review, we provide a short introduction to modern super-resolution microscopy, its applications in the field of platelet and megakaryocyte biology, and emerging quantitative approaches which will allow for unprecedented insights into the biology of these unique cell types.
Collapse
Affiliation(s)
- Abdullah O Khan
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham , Birmingham, UK
| | - Jeremy A Pike
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham , Birmingham, UK.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham , UK
| |
Collapse
|
22
|
Matrix Mechanosensation in the Erythroid and Megakaryocytic Lineages. Cells 2020; 9:cells9040894. [PMID: 32268541 PMCID: PMC7226728 DOI: 10.3390/cells9040894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022] Open
Abstract
The biomechanical properties of the bone marrow microenvironment emerge from a combination of interactions between various extracellular matrix (ECM) structural proteins and soluble factors. Matrix stiffness directs stem cell fate, and both bone marrow stromal and hematopoietic cells respond to biophysical cues. Within the bone marrow, the megakaryoblasts and erythroblasts are thought to originate from a common progenitor, giving rise to fully mature magakaryocytes (the platelet precursors) and erythrocytes. Erythroid and megakaryocytic progenitors sense and respond to the ECM through cell surface adhesion receptors such as integrins and mechanosensitive ion channels. While hematopoietic stem progenitor cells remain quiescent on stiffer ECM substrates, the maturation of the erythroid and megakaryocytic lineages occurs on softer ECM substrates. This review surveys the major matrix structural proteins that contribute to the overall biomechanical tone of the bone marrow, as well as key integrins and mechanosensitive ion channels identified as ECM sensors in context of megakaryocytosis or erythropoiesis.
Collapse
|
23
|
Bhatlekar S, Basak I, Edelstein LC, Campbell RA, Lindsey CR, Italiano JE, Weyrich AS, Rowley JW, Rondina MT, Sola-Visner M, Bray PF. Anti-apoptotic BCL2L2 increases megakaryocyte proplatelet formation in cultures of human cord blood. Haematologica 2019; 104:2075-2083. [PMID: 30733267 PMCID: PMC6886406 DOI: 10.3324/haematol.2018.204685] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/30/2019] [Indexed: 12/23/2022] Open
Abstract
Apoptosis is a recognized limitation to generating large numbers of megakaryocytes in culture. The genes responsible have been rigorously studied in vivo in mice, but are poorly characterized in human culture systems. As CD34-positive (+) cells isolated from human umbilical vein cord blood were differentiated into megakaryocytes in culture, two distinct cell populations were identified by flow cytometric forward and side scatter: larger size, lower granularity (LLG), and smaller size, higher granularity (SHG). The LLG cells were CD41aHigh CD42aHigh phosphatidylserineLow, had an electron microscopic morphology similar to mature bone marrow megakaryocytes, developed proplatelets, and displayed a signaling response to platelet agonists. The SHG cells were CD41aLowCD42aLowphosphatidylserineHigh, had a distinctly apoptotic morphology, were unable to develop proplatelets, and showed no signaling response. Screens of differentiating megakaryocytes for expression of 24 apoptosis genes identified BCL2L2 as a novel candidate megakaryocyte apoptosis regulator. Lentiviral BCL2L2 overexpression decreased megakaryocyte apoptosis, increased CD41a+ LLG cells, and increased proplatelet formation by 58%. An association study in 154 healthy donors identified a significant positive correlation between platelet number and platelet BCL2L2 mRNA levels. This finding was consistent with the observed increase in platelet-like particles derived from cultured megakaryocytes over-expressing BCL2L2 BCL2L2 also induced small, but significant increases in thrombin-induced platelet-like particle αIIbβ3 activation and P-selectin expression. Thus, BCL2L2 restrains apoptosis in cultured megakaryocytes, promotes proplatelet formation, and is associated with platelet number. BCL2L2 is a novel target for improving megakaryocyte and platelet yields in in vitro culture systems.
Collapse
Affiliation(s)
- Seema Bhatlekar
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Indranil Basak
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Leonard C Edelstein
- Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA
| | - Robert A Campbell
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Cory R Lindsey
- Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA
| | | | - Andrew S Weyrich
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Jesse W Rowley
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Matthew T Rondina
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
- George E. Wahlen VAMC GRECC, Salt Lake City, UT
| | | | - Paul F Bray
- Program in Molecular Medicine and Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Division of Hematology and Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
24
|
Lei XH, Yang YQ, Ma CY, Duan EK. Induction of differentiation of human stem cells ex vivo: Toward large-scale platelet production. World J Stem Cells 2019; 11:666-676. [PMID: 31616542 PMCID: PMC6789181 DOI: 10.4252/wjsc.v11.i9.666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/12/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Platelet transfusion is one of the most reliable strategies to cure patients suffering from thrombocytopenia or platelet dysfunction. With the increasing demand for transfusion, however, there is an undersupply of donors to provide the platelet source. Thus, scientists have sought to design methods for deriving clinical-scale platelets ex vivo. Although there has been considerable success ex vivo in the generation of transformative platelets produced by human stem cells (SCs), the platelet yields achieved using these strategies have not been adequate for clinical application. In this review, we provide an overview of the developmental process of megakaryocytes and the production of platelets in vivo and ex vivo, recapitulate the key advances in the production of SC-derived platelets using several SC sources, and discuss some strategies that apply three-dimensional bioreactor devices and biochemical factors synergistically to improve the generation of large-scale platelets for use in future biomedical and clinical settings.
Collapse
Affiliation(s)
- Xiao-Hua Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Qing Yang
- Faculty of Laboratory Medical Science, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Chi-Yuan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - En-Kui Duan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
25
|
Lei XH, Yang YQ, Ma CY, Duan EK. Induction of differentiation of human stem cellsex vivo: Toward large-scale platelet production. World J Stem Cells 2019. [DOI: dx.doi.org/10.4252/wjsc.v11.i9.666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
26
|
Ingavle G, Shabrani N, Vaidya A, Kale V. Mimicking megakaryopoiesis in vitro using biomaterials: Recent advances and future opportunities. Acta Biomater 2019; 96:99-110. [PMID: 31319203 DOI: 10.1016/j.actbio.2019.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/02/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
Abstract
Presently donor-derived platelets used in the clinic are associated with concerns about adequate availability, expense, risk of bacterial contamination and complications due to immunological reaction. To prevail over our dependence on transfusion of donor-derived platelets, efforts are being made to generate them in vitro. Development of biomaterials that support or mimic bone marrow niche micro-environmental cues could improve the in vitro production of platelets from megakaryocytes (MKs) derived from various stem cell sources. In spite of significant advances in the production of MKs from various stem cell sources using 2D as well as 3D culture approaches in vitro and the development of biomaterials-based platelet systems, yield and quality of these platelets remains unsuitable for clinical use. Thus, in vitro production of clinically useful platelets on a large scale remains an unmet target to date. This review summarizes the most frequently used 2D and 3D approaches to generate MKs and platelets in vitro, emphasizing the importance of mimicking in vivo micro-environment. Further, this review proposes the use of interpenetrating network (IPN) biomaterial-based approach as a promising strategy for improving the generation of MK and platelets in sufficient numbers in vitro. STATEMENT OF SIGNIFICANCE: Thrombocytopenia is one of the major global health and socio-economic problems. Transfusion with donor-derived platelets (PLTs) is the only effective treatment for this condition. However, this approach is limited by factors like short shelf-life of PLTs, PLT activation, alloimmunization, risk of bacterial contamination, infection etc. In vitro generated MKs and PLTs derived from non-donor-dependent sources may help to overcome the platelet transfusion concerns. Here we have reviewed various 2D and 3D strategies used for in vitro generation of MKs and PLTs, with special emphasis on various biomaterial platforms and different physico/chemical cues being used for the purpose. We have also proposed a biomaterial-based approach of using interpenetrating network (IPN) for generating clinically relevant numbers of MKs and PLTs.
Collapse
|
27
|
Multiple concomitant mechanisms contribute to low platelet count in patients with immune thrombocytopenia. Sci Rep 2019; 9:2208. [PMID: 30778108 PMCID: PMC6379541 DOI: 10.1038/s41598-018-38086-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022] Open
Abstract
Mechanisms leading to low platelet count in immune thrombocytopenia (ITP) involves both decreased production and increased destruction of platelet. However, the contribution of these pathologic mechanisms to clinical outcome of individual patients is uncertain. Here we evaluated different pathogenic mechanisms including in vitro megakaryopoiesis, platelet/megakaryocyte (MK) desialylation and MK apoptosis, and compared these effects with thrombopoyesis and platelet apoptosis in the same cohort of ITP patients. Normal umbilical cord blood-CD34+ cells, mature MK derived cells or platelets were incubated with plasma from ITP patients. Despite inhibition of thrombopoiesis previously observed, megakaryopoiesis was normal or even increased. Plasma from ITP patients affected the sialylation pattern of control platelets and this effect occurred concomitantly with apoptosis in 35% ITP samples. However, none of these abnormalities were observed in control MKs incubated with ITP plasma. Addition of mononuclear cells as immune effectors did not lead to phosphatidylserine exposure in MK, ruling out an antibody-mediated cytotoxic effect. These results suggest that both desialylation and apoptosis may be relevant mechanisms leading to platelet destruction although, they do not interfere with MK function. Analysis of these thrombocytopenic factors in individual patients showed no specific distribution pattern. However, the presence of circulating antiplatelet autoantibodies was associated with higher incidence of abnormalities. In conclusion, the causes of thrombocytopenia are multifactorial and may occur together, providing a rational basis for the use of combination therapies targeting concomitant ITP mechanisms in patients with refractory disease.
Collapse
|
28
|
Bury L, Malara A, Momi S, Petito E, Balduini A, Gresele P. Mechanisms of thrombocytopenia in platelet-type von Willebrand disease. Haematologica 2019; 104:1473-1481. [PMID: 30655369 PMCID: PMC6601082 DOI: 10.3324/haematol.2018.200378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/11/2019] [Indexed: 11/09/2022] Open
Abstract
Platelet-type von Willebrand disease is an inherited platelet disorder characterized by thrombocytopenia with large platelets caused by gain-of-function variants in GP1BA leading to enhanced GPIbα-von Willebrand factor (vWF) interaction. GPIbα and vWF play a role in megakaryocytopoiesis, thus we aimed to investigate megakaryocyte differentiation and proplatelet-formation in platelet-type von Willebrand disease using megakaryocytes from a patient carrying the Met239Val variant and from mice carrying the Gly233Val variant. Platelet-type von Willebrand disease megakaryocytes bound vWF at an early differentiation stage and generated proplatelets with a decreased number of enlarged tips compared to control megakaryocytes. Moreover, they formed proplatelets upon contact with collagen, differently from normal megakaryocytes. Similarly, collagen triggered megakaryocytes showed defective activation of the RhoA-MLC2 axis, which prevents proplatelet formation, and increased phosphorylation of Lyn, which acts as a negative regulator of GPVI signaling, thus preventing ectopic proplatelet-formation on collagen. Consistently, human and murine bone marrow contained an increased number of extravascular platelets compared to controls. In addition, platelet survival of mutant mice was shortened compared to control mice, and the administration of desmopressin, raising circulating vWF, caused a marked drop in platelet count. Taken together, these results show for the first time that thrombocytopenia in platelet-type von Willebrand disease is due to the combination of different pathogenic mechanisms, i.e. the formation of a reduced number of platelets by megakaryocytes, the ectopic release of platelets in the bone marrow, and the increased clearance of platelet/vWF complexes.
Collapse
Affiliation(s)
- Loredana Bury
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia
| | - Alessandro Malara
- Department of Molecular Medicine, University of Pavia.,Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Stefania Momi
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia
| | - Eleonora Petito
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia.,Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia
| |
Collapse
|
29
|
Disrupted filamin A/α IIbβ 3 interaction induces macrothrombocytopenia by increasing RhoA activity. Blood 2019; 133:1778-1788. [PMID: 30602618 DOI: 10.1182/blood-2018-07-861427] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/21/2018] [Indexed: 12/15/2022] Open
Abstract
Filamin A (FLNa) links the cell membrane with the cytoskeleton and is central in several cellular processes. Heterozygous mutations in the X-linked FLNA gene are associated with a large spectrum of conditions, including macrothrombocytopenia, called filaminopathies. Using an isogenic pluripotent stem cell model derived from patients, we show that the absence of the FLNa protein in megakaryocytes (MKs) leads to their incomplete maturation, particularly the inability to produce proplatelets. Reduction in proplatelet formation potential is associated with a defect in actomyosin contractility, which results from inappropriate RhoA activation. This dysregulated RhoA activation was observed when MKs were plated on fibrinogen but not on other matrices (fibronectin, vitronectin, collagen 1, and von Willebrand factor), strongly suggesting a role for FLNa/αIIbβ3 interaction in the downregulation of RhoA activity. This was confirmed by experiments based on the overexpression of FLNa mutants deleted in the αIIbβ3-binding domain and the RhoA-interacting domain, respectively. Finally, pharmacological inhibition of the RhoA-associated kinase ROCK1/2 restored a normal phenotype and proplatelet formation. Overall, this work suggests a new etiology for macrothrombocytopenia, in which increased RhoA activity is associated with disrupted FLNa/αIIbβ3 interaction.
Collapse
|
30
|
Pecci A, Ma X, Savoia A, Adelstein RS. MYH9: Structure, functions and role of non-muscle myosin IIA in human disease. Gene 2018; 664:152-167. [PMID: 29679756 PMCID: PMC5970098 DOI: 10.1016/j.gene.2018.04.048] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
Abstract
The MYH9 gene encodes the heavy chain of non-muscle myosin IIA, a widely expressed cytoplasmic myosin that participates in a variety of processes requiring the generation of intracellular chemomechanical force and translocation of the actin cytoskeleton. Non-muscle myosin IIA functions are regulated by phosphorylation of its 20 kDa light chain, of the heavy chain, and by interactions with other proteins. Variants of MYH9 cause an autosomal-dominant disorder, termed MYH9-related disease, and may be involved in other conditions, such as chronic kidney disease, non-syndromic deafness, and cancer. This review discusses the structure of the MYH9 gene and its protein, as well as the regulation and physiologic functions of non-muscle myosin IIA with particular reference to embryonic development. Moreover, the review focuses on current knowledge about the role of MYH9 variants in human disease.
Collapse
Affiliation(s)
- Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation, University of Pavia, Piazzale Golgi, 27100 Pavia, Italy.
| | - Xuefei Ma
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10 Room 6C-103B, 10 Center Drive, Bethesda, MD 20892-1583, USA.
| | - Anna Savoia
- Department of Medical Sciences, University of Trieste, via Dell'Istria, 65/1, I-34137 Trieste, Italy; IRCCS Burlo Garofolo, via Dell'Istria, 65/1, I-34137 Trieste, Italy.
| | - Robert S Adelstein
- Laboratory of Molecular Cardiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bldg. 10 Room 6C-103B, 10 Center Drive, Bethesda, MD 20892-1583, USA.
| |
Collapse
|
31
|
Guo L, Kapur R, Aslam R, Hunt K, Hou Y, Zufferey A, Speck ER, Rondina MT, Lazarus AH, Ni H, Semple JW. Antiplatelet antibody-induced thrombocytopenia does not correlate with megakaryocyte abnormalities in murine immune thrombocytopenia. Scand J Immunol 2018; 88:e12678. [DOI: 10.1111/sji.12678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/29/2018] [Indexed: 11/29/2022]
Affiliation(s)
- L. Guo
- The Toronto Platelet Immunobiology Group; Toronto ON Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital; Toronto ON Canada
- Institute of Medical Science; University of Toronto; Toronto ON Canada
- University of Utah; Salt Lake City UT USA
| | - R. Kapur
- The Toronto Platelet Immunobiology Group; Toronto ON Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital; Toronto ON Canada
- Institute of Medical Science; University of Toronto; Toronto ON Canada
- Canadian Blood Services; Lund University; Canadian Blood Services; Toronto ON Canada
- Division of Hematology and Transfusion Medicine; Lund University; Lund Sweden
| | - R. Aslam
- The Toronto Platelet Immunobiology Group; Toronto ON Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital; Toronto ON Canada
| | - K. Hunt
- The Toronto Platelet Immunobiology Group; Toronto ON Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital; Toronto ON Canada
| | - Y. Hou
- The Toronto Platelet Immunobiology Group; Toronto ON Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital; Toronto ON Canada
| | - A. Zufferey
- The Toronto Platelet Immunobiology Group; Toronto ON Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital; Toronto ON Canada
| | - E. R. Speck
- The Toronto Platelet Immunobiology Group; Toronto ON Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital; Toronto ON Canada
| | | | - A. H. Lazarus
- The Toronto Platelet Immunobiology Group; Toronto ON Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital; Toronto ON Canada
- Institute of Medical Science; University of Toronto; Toronto ON Canada
- Department of Medicine; University of Toronto; Toronto ON Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto ON Canada
| | - H. Ni
- The Toronto Platelet Immunobiology Group; Toronto ON Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital; Toronto ON Canada
- Institute of Medical Science; University of Toronto; Toronto ON Canada
- Department of Medicine; University of Toronto; Toronto ON Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto ON Canada
| | - J. W. Semple
- The Toronto Platelet Immunobiology Group; Toronto ON Canada
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital; Toronto ON Canada
- Institute of Medical Science; University of Toronto; Toronto ON Canada
- Canadian Blood Services; Lund University; Canadian Blood Services; Toronto ON Canada
- Division of Hematology and Transfusion Medicine; Lund University; Lund Sweden. Department of Medicine; University of Toronto; Toronto ON Canada. Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto ON Canada. Department of Pharmacology; University of Toronto; Toronto ON Canada
| |
Collapse
|
32
|
Multi-channel silk sponge mimicking bone marrow vascular niche for platelet production. Biomaterials 2018; 178:122-133. [PMID: 29920404 DOI: 10.1016/j.biomaterials.2018.06.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 01/09/2023]
Abstract
In the bone marrow, the interaction of progenitor cells with the vasculature is fundamental for the release of blood cells into circulation. Silk fibroin, derived from Bombyx mori silkworm cocoons, is a promising protein biomaterial for bone marrow tissue engineering, because of its tunable architecture and mechanical properties, the capacity to incorporate labile compounds without loss of bioactivity and the demonstrated ability to support blood cell formation without premature activation. In this study, we fabricated a custom perfusion chamber to contain a multi-channel lyophilized silk sponge mimicking the vascular network in the bone marrow niche. The perfusion system consisted in an inlet and an outlet and 2 splitters that allowed funneling flow in each single channel of the silk sponge. Computational Fluid Dynamic analysis demonstrated that this design permitted confined flow inside the vascular channels. The silk channeled sponge supported efficient platelet release from megakaryocytes (Mks). After seeding, the Mks localized along SDF-1α functionalized vascular channels in the sponge. Perfusion of the channels allowed the recovery of functional platelets as demonstrated by increased PAC-1 binding upon thrombin stimulation. Further, increasing the number of channels in the silk sponge resulted in a proportional increase in the numbers of platelets recovered, suggesting applicability to scale-up for platelet production. In conclusion, we have developed a scalable system consisting of a multi-channeled silk sponge incorporated in a perfusion chamber that can provide useful technology for functional platelet production ex vivo.
Collapse
|
33
|
Avanzini MA, Abbonante V, Catarsi P, Dambruoso I, Mantelli M, Poletto V, Lenta E, Guglielmelli P, Croce S, Cobianchi L, Jemos B, Campanelli R, Bonetti E, Di Buduo CA, Salmoiraghi S, Villani L, Massa M, Boni M, Zappatore R, Iurlo A, Rambaldi A, Vannucchi AM, Bernasconi P, Balduini A, Barosi G, Rosti V. The spleen of patients with myelofibrosis harbors defective mesenchymal stromal cells. Am J Hematol 2018; 93:615-622. [PMID: 29359451 DOI: 10.1002/ajh.25047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 11/07/2022]
Abstract
Splenic hematopoiesis is a major feature in the course of myelofibrosis (MF). In fact, the spleen of patients with MF contains malignant hematopoietic stem cells retaining a complete differentiation program, suggesting both a pivotal role of the spleen in maintaining the disease and a tight regulation of hematopoiesis by the splenic microenvironment, in particular by mesenchymal stromal cells (MSCs). Little is known about splenic MSCs (Sp-MSCs), both in normal and in pathological context. In this work, we have in vitro expanded and characterized Sp-MSCs from 25 patients with MF and 13 healthy subjects (HS). They shared similar phenotype, growth kinetics, and differentiation capacity. However, MF Sp-MSCs expressed significant lower levels of nestin, and favored megakaryocyte (Mk) differentiation in vitro at a larger extent than their normal counterpart. Moreover, they showed a significant upregulation of matrix metalloprotease 2 (MMP2) and fibronectin 1 (FN1) genes both at mRNA expression and at protein level, and, finally, developed genetic abnormalities which were never detected in HS-derived Sp-MSCs. Our data point toward the existence of a defective splenic niche in patients with MF that could be responsible of some pathological features of the disease, including the increased trafficking of CD34+ cells and the expansion of the megakaryocytic lineage.
Collapse
Affiliation(s)
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Irene Dambruoso
- Department of Hematology-Oncology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Melissa Mantelli
- Pediatric Onco-Hematology/Cell Factory, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Valentina Poletto
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Elisa Lenta
- Pediatric Onco-Hematology/Cell Factory, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Paola Guglielmelli
- Department of Clinical and Experimental Medicine, Research and Innovation Center for Myeloproliferative Diseases, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Stefania Croce
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Lorenzo Cobianchi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Basilio Jemos
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Rita Campanelli
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Elisa Bonetti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Christian Andrea Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Silvia Salmoiraghi
- Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Villani
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Margherita Massa
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Marina Boni
- Department of Hematology-Oncology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Rita Zappatore
- Department of Hematology-Oncology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Alessandra Iurlo
- Hematology Division, IRCCS Ca' Granda-Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandro Maria Vannucchi
- Department of Clinical and Experimental Medicine, Research and Innovation Center for Myeloproliferative Diseases, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Paolo Bernasconi
- Department of Hematology-Oncology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| |
Collapse
|
34
|
Salzmann M, Hoesel B, Haase M, Mussbacher M, Schrottmaier WC, Kral-Pointner JB, Finsterbusch M, Mazharian A, Assinger A, Schmid JA. A novel method for automated assessment of megakaryocyte differentiation and proplatelet formation. Platelets 2018; 29:357-364. [PMID: 29461915 DOI: 10.1080/09537104.2018.1430359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transfusion of platelet concentrates represents an important treatment for various bleeding complications. However, the short half-life and frequent contaminations with bacteria restrict the availability of platelet concentrates and raise a clear demand for platelets generated ex vivo. Therefore, in vitro platelet generation from megakaryocytes represents an important research topic. A vital step for this process represents accurate analysis of thrombopoiesis and proplatelet formation, which is usually conducted manually. We aimed to develop a novel method for automated classification and analysis of proplatelet-forming megakaryocytes in vitro. After fluorescent labelling of surface and nucleus, MKs were automatically categorized and analysed with a novel pipeline of the open source software CellProfiler. Our new workflow is able to detect and quantify four subtypes of megakaryocytes undergoing thrombopoiesis: proplatelet-forming, spreading, pseudopodia-forming and terminally differentiated, anucleated megakaryocytes. Furthermore, we were able to characterize the inhibitory effect of dasatinib on thrombopoiesis in more detail. Our new workflow enabled rapid, unbiased, quantitative and qualitative in-depth analysis of proplatelet formation based on morphological characteristics. Clinicians and basic researchers alike will benefit from this novel technique that allows reliable and unbiased quantification of proplatelet formation. It thereby provides a valuable tool for the development of methods to generate platelets ex vivo and to detect effects of drugs on megakaryocyte differentiation.
Collapse
Affiliation(s)
- M Salzmann
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| | - B Hoesel
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| | - M Haase
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| | - M Mussbacher
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| | - W C Schrottmaier
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| | - J B Kral-Pointner
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| | - M Finsterbusch
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| | - A Mazharian
- b Institute of Cardiovascular Sciences, College of Medical and Dental Sciences , University of Birmingham , Birmingham , UK
| | - A Assinger
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| | - J A Schmid
- a Institute of Vascular Biology and Thrombosis Research , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
35
|
Nurhayati RW, Ojima Y, Dohda T, Kino-Oka M. Large-scale culture of a megakaryocytic progenitor cell line with a single-use bioreactor system. Biotechnol Prog 2017; 34:362-369. [PMID: 29226613 DOI: 10.1002/btpr.2595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/04/2017] [Indexed: 12/18/2022]
Abstract
The increasing application of regenerative medicine has generated a growing demand for stem cells and their derivatives. Single-use bioreactors offer an attractive platform for stem cell expansion owing to their scalability for large-scale production and feasibility of meeting clinical-grade standards. The current work evaluated the capacity of a single-use bioreactor system (1 L working volume) for expanding Meg01 cells, a megakaryocytic (MK) progenitor cell line. Oxygen supply was provided by surface aeration to minimize foaming and orbital shaking was used to promote oxygen transfer. Oxygen transfer rates (kL a) of shaking speeds 50, 100, and 125 rpm were estimated to be 0.39, 1.12, and 10.45 h-1 , respectively. Shaking speed was a critical factor for optimizing cell growth. At 50 rpm, Meg01 cells exhibited restricted growth due to insufficient mixing. A negative effect occurred when the shaking speed was increased to 125 rpm, likely caused by high hydrodynamic shear stress. The bioreactor culture achieved the highest growth profile when shaken at 100 rpm, achieving a total expansion rate up to 5.7-fold with a total cell number of 1.2 ± 0.2 × 109 cells L-1 . In addition, cells expanded using the bioreactor system could maintain their potency to differentiate following the MK lineage, as analyzed from specific surface protein and morphological similarity with the cells grown in the conventional culturing system. Our study reports the impact of operational variables such as shaking speed for growth profile and MK differentiation potential of a progenitor cell line in a single-use bioreactor. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:362-369, 2018.
Collapse
Affiliation(s)
- Retno Wahyu Nurhayati
- Dept. of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Stem Cell and Tissue Engineering Cluster, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Central Jakarta, 10430, Indonesia
| | - Yoshihiro Ojima
- Dept. of Applied Chemistry and Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Takeaki Dohda
- Dept. of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kino-Oka
- Dept. of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
36
|
Gothwal M, Sandrock-Lang K, Zieger B. Genetics of inherited platelet disorders. Hamostaseologie 2017; 34:133-41. [DOI: 10.5482/hamo-13-09-0049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/11/2013] [Indexed: 11/05/2022] Open
Abstract
SummaryThe current review describes inherited platelet disorders, illustrates their clinical phenotype and molecular genetic defects. Platelets are the key molecules mediating haemostasis via adhesion, activation and clot formation at the site of injury. The inherited platelet disorders can be classified according to their platelet defects: receptor/cytoskeleton defects, secretion disorder, and signal transduction defect.Patients with inherited thrombocytopathia present with mucous membrane bleedings (epistaxis, gingival bleeding) and may present with serious life threatening bleedings following surgery or trauma. Therefore, biochemical and molecular genetic characterization of inherited platelet disorders is important to understand these disorders and to support an efficient therapy.
Collapse
|
37
|
Canzano P, Rossetti L, Ferri N, Balduini A, Abbonante V, Boselli D, De Marco L, Di Minno M, Toschi V, Corsini A, Tremoli E, Brambilla M, Facchinetti L, Camera M. Human megakaryocytes confer tissue factor to a subset of shed platelets to stimulate thrombin generation. Thromb Haemost 2017; 114:579-92. [DOI: 10.1160/th14-10-0830] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 04/11/2015] [Indexed: 11/05/2022]
Abstract
SummaryTissue factor (TF), the main activator of the blood coagulation cascade, has been shown to be expressed by platelets. Despite the evidence that both megakaryocytes and platelets express TF mRNA, and that platelets can make de novo protein synthesis, the main mechanism thought to be responsible for the presence of TF within platelets is through the uptake of TF positive microparticles. In this study we assessed 1) whether human megakaryocytes synthesise TF and transfer it to platelets and 2) the contribution of platelet-TF to the platelet hemostatic capacity. In order to avoid the cross-talk with circulating microparticles, we took advantage from an in vitro cultured megakaryoblastic cell line (Meg-01) able to differentiate into megakaryocytes releasing platelet-like particles. We show that functionally active TF is expressed in human megakaryoblasts, increased in megakaryocytes, and is transferred to a subset of shed platelets where it contributes to clot formation. These data were all confirmed in human CD34pos- derived megakaryocytes and in their released platelets. The effect of TF silencing in Meg-megakaryoblasts resulted in a significant reduction of TF expression in these cells and also in Meg-megakaryocytes and Meg-platelets. Moreover, the contribution of platelet-TF to the platelet hemostatic capacity was highlighted by the significant delay in the kinetic of thrombin formation observed in platelets released by TF-silenced megakaryocytes. These findings provide evidences that TF is an endogenously synthesised protein that characterises megakaryocyte maturation and that it is transferred to a subset of newly-released platelets where it is functionally active and able to trigger thrombin generation.
Collapse
|
38
|
Bozzi V, Panza E, Barozzi S, Gruppi C, Seri M, Balduini C, Pecci A. Mutations responsible for MYH9-related thrombocytopenia impair SDF-1-driven migration of megakaryoblastic cells. Thromb Haemost 2017; 106:693-704. [DOI: 10.1160/th11-02-0126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 07/11/2011] [Indexed: 01/01/2023]
Abstract
SummaryMYH9-related disease (MYH9-RD) is an autosomal-dominant thrombocytopenia caused by mutations in the gene for the heavy chain of nonmuscle myosin-IIA (NMMHC-IIA). Recent in vitro studies led to the hypothesis that thrombocytopenia of MYH9-RD derives from an ectopic platelet release by megakaryocytes in the osteoblastic areas of bone marrow (BM), which are enriched in type I collagen, rather than in vascular spaces. SDF-1-driven migration of megakaryocytes within BM to reach the vascular spaces is a key mechanism for platelet biogenesis. Since myosin-IIA is implicated in polarised migration of different cell types, we hypothesised that MYH9 mutations could interfere with this mechanism. We therefore investigated the SDF-1-driven migration of a megakaryoblastic cell line, Dami cells, on type I collagen or fibrinogen by a modified transwell assay. Inhibition of myosin-IIA ATPase activity suppressed the SDF-1-driven migration of Dami cells, while over-expression of NMMHC-IIA increased the efficiency of chemotaxis, indicat- ing a role for NMMHC-IIA in this mechanism. Transfection of cells with three MYH9 mutations frequently responsible for MYH9-RD (p.R702C, p.D1424H, or p.R1933X) resulted in a defective SDF-1-driven migration with respect to the wild-type counterpart and in increased cell spreading onto collagen. Analysis of differential localisation of wild-type and mutant proteins suggested that mutant NMMHC-IIAs had an impaired cytoplasmic re-organisation in functional cytoskeletal structures after cell adhesion to collagen. These findings support the hypothesis that a defect of SDF-1-driven migration of megakaryocytes induced by MYH9 mutations contributes to ectopic platelet release in the BM osteoblastic areas, resulting in ineffective platelet production.
Collapse
|
39
|
Di Buduo CA, Soprano PM, Tozzi L, Marconi S, Auricchio F, Kaplan DL, Balduini A. Modular flow chamber for engineering bone marrow architecture and function. Biomaterials 2017; 146:60-71. [PMID: 28898758 PMCID: PMC6056889 DOI: 10.1016/j.biomaterials.2017.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022]
Abstract
The bone marrow is a soft, spongy, gelatinous tissue found in the hollow cavities of flat and long bones that support hematopoiesis in order to maintain the physiologic turnover of all blood cells. Silk fibroin, derived from Bombyx mori silkworm cocoons, is a promising biomaterial for bone marrow engineering, because of its tunable architecture and mechanical properties, the capacity of incorporating labile compounds without loss of bioactivity and demonstrated ability to support blood cell formation. In this study, we developed a bone marrow scaffold consisting of a modular flow chamber made of polydimethylsiloxane, holding a silk sponge, prepared with salt leaching methods and functionalized with extracellular matrix components. The silk sponge was able to support efficient platelet formation when megakaryocytes were seeded in the system. Perfusion of the chamber allowed the recovery of functional platelets based on multiple activation tests. Further, inhibition of AKT signaling molecule, which has been shown to be crucial in regulating physiologic platelet formation, significantly reduced the number of collected platelets, suggesting the applicability of this tissue model for evaluation of the effects of bone marrow exposure to compounds that may affect platelet formation. In conclusion, we have bioengineered a novel modular system that, along with multi-porous silk sponges, can provide a useful technology for reproducing a simplified bone marrow scaffold for blood cell production ex vivo.
Collapse
Affiliation(s)
- Christian A Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Paolo M Soprano
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Lorenzo Tozzi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Stefania Marconi
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy; Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
40
|
Grodzielski M, Di Buduo CA, Goette NP, Lev PR, Soprano PM, Heller PG, Balduini A, Marta RF. Autoantibodies in immune thrombocytopenia affect the physiological interaction between megakaryocytes and bone marrow extracellular matrix proteins. Br J Haematol 2017; 183:319-323. [DOI: 10.1111/bjh.14977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matías Grodzielski
- Institute of Medical Research A Lanari; University of Buenos Aires; Buenos Aires Argentina
- Department of Experimental Haematology; Institute of Medical Research (IDIM); National Scientific and Technical Research Council (CONICET); University of Buenos Aires; Buenos Aires Argentina
| | - Christian A. Di Buduo
- Department of Molecular Medicine; University of Pavia; Pavia Italy
- Biotechnology Research Laboratories; IRCCS San Matteo Foundation; Pavia Italy
| | - Nora P. Goette
- Institute of Medical Research A Lanari; University of Buenos Aires; Buenos Aires Argentina
| | - Paola R. Lev
- Institute of Medical Research A Lanari; University of Buenos Aires; Buenos Aires Argentina
- Department of Experimental Haematology; Institute of Medical Research (IDIM); National Scientific and Technical Research Council (CONICET); University of Buenos Aires; Buenos Aires Argentina
| | - Paolo M. Soprano
- Department of Molecular Medicine; University of Pavia; Pavia Italy
- Biotechnology Research Laboratories; IRCCS San Matteo Foundation; Pavia Italy
| | - Paula G. Heller
- Institute of Medical Research A Lanari; University of Buenos Aires; Buenos Aires Argentina
- Department of Experimental Haematology; Institute of Medical Research (IDIM); National Scientific and Technical Research Council (CONICET); University of Buenos Aires; Buenos Aires Argentina
| | - Alessandra Balduini
- Department of Molecular Medicine; University of Pavia; Pavia Italy
- Biotechnology Research Laboratories; IRCCS San Matteo Foundation; Pavia Italy
- Department of Biomedical Engineering; Tufts University; Medford MA USA
| | - Rosana F. Marta
- Institute of Medical Research A Lanari; University of Buenos Aires; Buenos Aires Argentina
- Department of Experimental Haematology; Institute of Medical Research (IDIM); National Scientific and Technical Research Council (CONICET); University of Buenos Aires; Buenos Aires Argentina
| |
Collapse
|
41
|
Pouli D, Tozzi L, Alonzo CA, Liu Z, Kaplan DL, Balduini A, Georgakoudi I. Label free monitoring of megakaryocytic development and proplatelet formation in vitro. BIOMEDICAL OPTICS EXPRESS 2017; 8:4742-4755. [PMID: 29082099 PMCID: PMC5654814 DOI: 10.1364/boe.8.004742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Megakaryopoiesis and platelet production are complex biological processes that require tight regulation of successive lineage commitment steps and are ultimately responsible for maintaining and renewing the pool of circulating platelets in the blood. Despite major advancements in the understanding of megakaryocytic biology, the detailed mechanisms driving megakaryocytic differentiation have yet to be elucidated. Here we show that automated image analysis algorithms applied to two-photon excited fluorescence (TPEF) images can non-invasively monitor structural and metabolic megakaryocyte behavior changes occurring during differentiation and platelet formation in vitro. Our results demonstrate that high-contrast, label-free two photon imaging holds great potential in studying the underlying physiological processes controlling the intricate process of platelet production.
Collapse
Affiliation(s)
- Dimitra Pouli
- Department of Biomedical Engineering, Tufts University, 4 Colby St., 02155 Medford MA, USA
- These authors contributed equally to this work
| | - Lorenzo Tozzi
- Department of Biomedical Engineering, Tufts University, 4 Colby St., 02155 Medford MA, USA
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
- These authors contributed equally to this work
| | - Carlo A. Alonzo
- Department of Biomedical Engineering, Tufts University, 4 Colby St., 02155 Medford MA, USA
| | - Zhiyi Liu
- Department of Biomedical Engineering, Tufts University, 4 Colby St., 02155 Medford MA, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., 02155 Medford MA, USA
| | - Alessandra Balduini
- Department of Biomedical Engineering, Tufts University, 4 Colby St., 02155 Medford MA, USA
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, 4 Colby St., 02155 Medford MA, USA
| |
Collapse
|
42
|
Wang JY, Ye S, Zhong H. The role of bone marrow microenvironment in platelet production and their implications for the treatment of thrombocytopenic diseases. ACTA ACUST UNITED AC 2017; 22:630-639. [PMID: 28569613 DOI: 10.1080/10245332.2017.1333274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Impaired platelet production has been found to be an important pathological mechanism of thrombocytopenia in many diseases. Platelet generation is a complex process that mainly occurs in the bone marrow, and thus is closely regulated by the bone marrow microenvironment. This review attempts to summarize the most current knowledge referring the role of bone marrow microenvironment in the regulation of platelet production. METHODS The effects of multiple microenvironment ingredients in regulating megakaryopoiesis and thrombocytopoiesis have been discussed. Abnormalities of these components in thrombocytopenic diseases are also described. DISCUSSIONS Thrombocytopenia is a common clinical manifestation of a variety of diseases. The functional importance of platelets has driven the developments of a broad range of studies. Platelet generation mainly occurs within the bone marrow, where the cells, soluble factors, and extracellular matrix proteins collaboratively form a complex regulatory network, directing megakaryocytic proliferation and differentiation. Alteration in any part of the regulating network may result in defective platelet formation, and eventually lead to thrombocytopenia. A variety of thrombocytopenic diseases have been found to be related with the disregulated bone marrow microenvironment. Identification of the variations of these niche ingredients in certain diseases has facilitated the developments of multiple therapeutic regimes. Further studies that can combine these niche factors with their downstream regulatory factors will be beneficial for developing more effective therapies. CONCLUSIONS Further definition of the role of bone marrow microenvironment in platelet generation may deepen our understanding of the underlying mechanisms as well as provide new therapeutic targets for thrombocytopenic diseases.
Collapse
Affiliation(s)
- Jun-Ying Wang
- a Department of Hematology, South Campus Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , PR China
| | - Shuang Ye
- b Department of Rheumatology, South Campus Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , PR China
| | - Hua Zhong
- a Department of Hematology, South Campus Ren Ji Hospital, School of Medicine , Shanghai Jiao Tong University , Shanghai , PR China
| |
Collapse
|
43
|
Abbonante V, Di Buduo CA, Gruppi C, De Maria C, Spedden E, De Acutis A, Staii C, Raspanti M, Vozzi G, Kaplan DL, Moccia F, Ravid K, Balduini A. A new path to platelet production through matrix sensing. Haematologica 2017; 102:1150-1160. [PMID: 28411253 PMCID: PMC5566016 DOI: 10.3324/haematol.2016.161562] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/11/2017] [Indexed: 01/28/2023] Open
Abstract
Megakaryocytes (MK) in the bone marrow (BM) are immersed in a network of extracellular matrix components that regulates platelet release into the circulation. Combining biological and bioengineering approaches, we found that the activation of transient receptor potential cation channel subfamily V member 4 (TRPV4), a mechano-sensitive ion channel, is induced upon MK adhesion on softer matrices. This response promoted platelet production by triggering a cascade of events that lead to calcium influx, β1 integrin activation and internalization, and Akt phosphorylation, responses not found on stiffer matrices. Lysyl oxidase (LOX) is a physiological modulator of BM matrix stiffness via collagen crosslinking. In vivo inhibition of LOX and consequent matrix softening lead to TRPV4 activation cascade and increased platelet levels. At the same time, in vitro proplatelet formation was reduced on a recombinant enzyme-mediated stiffer collagen. These results suggest a novel mechanism by which MKs, through TRPV4, sense extracellular matrix environmental rigidity and release platelets accordingly.
Collapse
Affiliation(s)
- Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Christian Andrea Di Buduo
- Department of Molecular Medicine, University of Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Cristian Gruppi
- Department of Molecular Medicine, University of Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - Carmelo De Maria
- Interdepartmental Research Center "E. Piaggio", University of Pisa, Italy
| | - Elise Spedden
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| | - Aurora De Acutis
- Interdepartmental Research Center "E. Piaggio", University of Pisa, Italy
| | - Cristian Staii
- Department of Physics and Astronomy, Tufts University, Medford, MA, USA
| | - Mario Raspanti
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Giovanni Vozzi
- Interdepartmental Research Center "E. Piaggio", University of Pisa, Italy
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Italy
| | - Katya Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, MA, USA
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Italy .,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
44
|
Dhenge A, Limbkar K, Melinkeri S, Kale VP, Limaye L. Arachidonic acid and Docosahexanoic acid enhance platelet formation from human apheresis-derived CD34 + cells. Cell Cycle 2017; 16:979-990. [PMID: 28388313 DOI: 10.1080/15384101.2017.1312233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
An Aberration in megakaryopoiesis and thrombopoiesis, 2 important processes that maintain hemostasis, leads to thrombocytopenia. Though platelet transfusions are used to treat this condition, blood banks frequently face a shortage of platelets. Therefore, methods to generate platelets on a large scale are strongly desirable. However, to generate megakaryocytes (MKs) and platelets (PLTs) in numbers sufficient for clinical application, it is essential to understand the mechanism of platelet production and explore efficient strategies accordingly. We have earlier reported that the N-6 and N-3 poly-unsaturated fatty acids (PUFAs), Arachidonic acid (AA)/Docosahexanoic acid (DHA) have beneficial effect on the generation of MKs and PLTs from umbilical cord blood derived CD34+ cells. Here we tested if a similar effect is observed with peripheral blood derived CD34+ cells, which are more commonly used in transplantation settings. We found a significant enhancement in cell numbers, surface marker expression, cellular ploidy and expression of cytoskeletal components during PLT biogenesis in cultures exposed to media containing AA/DHA than control cultures that were not exposed to these PUFAs. The test cells engrafted more efficiently in NOD/SCID mice than control cells. AA/DHA appears to have enhanced MK/PLT generation through upregulation of the NOTCH and AKT pathways. Our data show that PUFAs could be valuable additives in the culture system for large scale production of platelets for clinical applications.
Collapse
Affiliation(s)
- Ankita Dhenge
- a National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus , Pune , India
| | - Kedar Limbkar
- a National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus , Pune , India
| | - Sameer Melinkeri
- b Blood and Marrow Transplant Unit, Deenanath Mangeshkar Hospital , Pune , India
| | - Vaijayanti Prakash Kale
- a National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus , Pune , India
| | - Lalita Limaye
- a National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus , Pune , India
| |
Collapse
|
45
|
Thon JN, Dykstra BJ, Beaulieu LM. Platelet bioreactor: accelerated evolution of design and manufacture. Platelets 2017; 28:472-477. [PMID: 28112988 DOI: 10.1080/09537104.2016.1265922] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Platelets, responsible for clot formation and blood vessel repair, are produced by megakaryocytes in the bone marrow. Platelets are critical for hemostasis and wound healing, and are often provided following surgery, chemotherapy, and major trauma. Despite their importance, platelets today are derived exclusively from human volunteer donors. They have a shelf life of just five days, making platelet shortages common during long weekends, civic holidays, bad weather, and during major emergencies when platelets are needed most. Megakaryocytes in the bone marrow generate platelets by extruding long cytoplasmic extensions called proplatelets through gaps/fenestrations in blood vessels. Proplatelets serve as assembly lines for platelet production by sequentially releasing platelets and large discoid-shaped platelet intermediates called preplatelets into the circulation. Recent advances in platelet bioreactor development have aimed to mimic the key physiological characteristics of bone marrow, including extracellular matrix composition/stiffness, blood vessel architecture comprising tissue-specific microvascular endothelium, and shear stress. Nevertheless, how complex interactions within three-dimensional (3D) microenvironments regulate thrombopoiesis remains poorly understood, and the technical challenges associated with designing and manufacturing biomimetic microfluidic devices are often under-appreciated and under-reported. We have previously reviewed the major cell culture, platelet quality assessment, and regulatory roadblocks that must be overcome to make human platelet production possible for clinical use [1]. This review builds on our previous manuscript by: (1) detailing the historical evolution of platelet bioreactor design to recapitulate native platelet production ex vivo, and (2) identifying the associated challenges that still need to be addressed to further scale and validate these devices for commercial application. While platelets are among the first cells whose ex vivo production is spearheading major engineering advancements in microfluidic design, the resulting discoveries will undoubtedly extend to the production of other human tissues. This work is critical to identify the physiological characteristics of relevant 3D tissue-specific microenvironments that drive cell differentiation and elaborate upon how these are disrupted in disease. This is a burgeoning field whose future will define not only the ex vivo production of platelets and development of targeted therapies for thrombocytopenia, but the promise of regenerative medicine for the next century.
Collapse
Affiliation(s)
- Jonathan N Thon
- a Hematology Division, Department of Medicine , Brigham and Women's Hospital , MA , USA.,b Harvard Medical School , Boston , MA , USA.,c Platelet BioGenesis , Boston , MA , USA
| | - Brad J Dykstra
- a Hematology Division, Department of Medicine , Brigham and Women's Hospital , MA , USA.,b Harvard Medical School , Boston , MA , USA.,c Platelet BioGenesis , Boston , MA , USA
| | | |
Collapse
|
46
|
Pathophysiological Significance of Store-Operated Calcium Entry in Megakaryocyte Function: Opening New Paths for Understanding the Role of Calcium in Thrombopoiesis. Int J Mol Sci 2016; 17:ijms17122055. [PMID: 27941645 PMCID: PMC5187855 DOI: 10.3390/ijms17122055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 12/16/2022] Open
Abstract
Store-Operated Calcium Entry (SOCE) is a universal calcium (Ca2+) influx mechanism expressed by several different cell types. It is now known that Stromal Interaction Molecule (STIM), the Ca2+ sensor of the intracellular compartments, together with Orai and Transient Receptor Potential Canonical (TRPC), the subunits of Ca2+ permeable channels on the plasma membrane, cooperate in regulating multiple cellular functions as diverse as proliferation, differentiation, migration, gene expression, and many others, depending on the cell type. In particular, a growing body of evidences suggests that a tight control of SOCE expression and function is achieved by megakaryocytes along their route from hematopoietic stem cells to platelet production. This review attempts to provide an overview about the SOCE dynamics in megakaryocyte development, with a focus on most recent findings related to its involvement in physiological and pathological thrombopoiesis.
Collapse
|
47
|
Kauskot A, Poirault-Chassac S, Adam F, Muczynski V, Aymé G, Casari C, Bordet JC, Soukaseum C, Rothschild C, Proulle V, Pietrzyk-Nivau A, Berrou E, Christophe OD, Rosa JP, Lenting PJ, Bryckaert M, Denis CV, Baruch D. LIM kinase/cofilin dysregulation promotes macrothrombocytopenia in severe von Willebrand disease-type 2B. JCI Insight 2016; 1:e88643. [PMID: 27734030 DOI: 10.1172/jci.insight.88643] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
von Willebrand disease type 2B (VWD-type 2B) is characterized by gain-of-function mutations of von Willebrand factor (vWF) that enhance its binding to platelet glycoprotein Ibα and alter the protein's multimeric structure. Patients with VWD-type 2B display variable extents of bleeding associated with macrothrombocytopenia and sometimes with thrombopathy. Here, we addressed the molecular mechanism underlying the severe macrothrombocytopenia both in a knockin murine model for VWD-type 2B by introducing the p.V1316M mutation in the murine Vwf gene and in a patient bearing this mutation. We provide evidence of a profound defect in megakaryocyte (MK) function since: (a) the extent of proplatelet formation was drastically decreased in 2B MKs, with thick proplatelet extensions and large swellings; and (b) 2B MKs presented actin disorganization that was controlled by upregulation of the RhoA/LIM kinase (LIMK)/cofilin pathway. In vitro and in vivo inhibition of the LIMK/cofilin signaling pathway rescued actin turnover and restored normal proplatelet formation, platelet count, and platelet size. These data indicate, to our knowledge for the first time, that the severe macrothrombocytopenia in VWD-type 2B p.V1316M is due to an MK dysfunction that originates from a constitutive activation of the RhoA/LIMK/cofilin pathway and actin disorganization. This suggests a potentially new function of vWF during platelet formation that involves regulation of actin dynamics.
Collapse
Affiliation(s)
- Alexandre Kauskot
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France.,INSERM UMR-S 1140, Univ Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Frédéric Adam
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Vincent Muczynski
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Gabriel Aymé
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Caterina Casari
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Jean-Claude Bordet
- Laboratoire d'Hémostase, Hôpital Edouard Herriot, Lyon, France.,Laboratoire de Recherche sur l'Hémophilie, UCBL1, Faculté de Médecine Lyon-Est, Lyon, France
| | - Christelle Soukaseum
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | | | - Valérie Proulle
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France.,Department of Biological Hematology, CHU Bicêtre, Hôpitaux Universitaires Paris Sud, AP-HP, Paris, France
| | | | - Eliane Berrou
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Olivier D Christophe
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Jean-Philippe Rosa
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Peter J Lenting
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Marijke Bryckaert
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Cécile V Denis
- INSERM UMR-S 1176, Univ Paris-Sud, Université Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Dominique Baruch
- INSERM UMR-S 1140, Univ Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
48
|
Di Buduo CA, Currao M, Pecci A, Kaplan DL, Balduini CL, Balduini A. Revealing eltrombopag's promotion of human megakaryopoiesis through AKT/ERK-dependent pathway activation. Haematologica 2016; 101:1479-1488. [PMID: 27515246 DOI: 10.3324/haematol.2016.146746] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 08/04/2016] [Indexed: 12/21/2022] Open
Abstract
Eltrombopag is a small, non-peptide thrombopoietin mimetic that has been approved for increasing platelet count not only in immune thrombocytopenia and Hepatitis C virus-related thrombocytopenia, but also in aplastic anemia. Moreover, this drug is under investigation for increasing platelet counts in myelodysplastic syndromes. Despite current clinical practice, the mechanisms governing eltrombopag's impact on human hematopoiesis are largely unknown, in part due to the impossibility of using traditional in vivo models. To investigate eltrombopag's impact on megakaryocyte functions, we employed our established in vitro model for studying hematopoietic stem cell differentiation combined with our latest 3-dimensional silk-based bone marrow tissue model. Results demonstrated that eltrombopag favors human megakaryocyte differentiation and platelet production in a dose-dependent manner. These effects are accompanied by increased phosphorylation of AKT and ERK1/2 signaling molecules, which have been proven to be crucial in regulating physiologic thrombopoiesis. These data further clarify the different mechanisms of action of eltrombopag when compared to romiplostim, which, as we have shown, induces the proliferation of immature megakaryocytes rather than platelet production, due to the unbalanced activation of AKT and ERK1/2 signaling molecules. In conclusion, our research clarifies the underlying mechanisms that govern the action of eltrombopag on megakaryocyte functions and its relevance in clinical practice.
Collapse
Affiliation(s)
- Christian A Di Buduo
- Department of Molecular Medicine, University of Pavia, Italy.,Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Manuela Currao
- Department of Molecular Medicine, University of Pavia, Italy.,Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy
| | - Alessandro Pecci
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Italy
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Carlo L Balduini
- Department of Internal Medicine, IRCCS Policlinico San Matteo Foundation and University of Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Italy .,Biotechnology Research Laboratories, IRCCS San Matteo Foundation, Pavia, Italy.,Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
49
|
Semeniak D, Kulawig R, Stegner D, Meyer I, Schwiebert S, Bösing H, Eckes B, Nieswandt B, Schulze H. Proplatelet formation is selectively inhibited by collagen type I through Syk-independent GPVI signaling. J Cell Sci 2016; 129:3473-84. [PMID: 27505889 DOI: 10.1242/jcs.187971] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022] Open
Abstract
Collagen receptors GPVI (also known as GP6) and integrin α2β1 are highly expressed on blood platelets and megakaryocytes, their immediate precursors. After vessel injury, subendothelial collagen becomes exposed and induces platelet activation to prevent blood loss. Collagen types I and IV are thought to have opposite effects on platelet biogenesis, directing proplatelet formation (PPF) towards the blood vessels to prevent premature release within the marrow cavity. We used megakaryocytes lacking collagen receptors or treated megakaryocytes with blocking antibodies, and could demonstrate that collagen-I-mediated inhibition of PPF is specifically controlled by GPVI. Other collagen types competed for binding and diminished the inhibitory signal, which was entirely dependent on receptor-proximal Src family kinases, whereas Syk and LAT were dispensable. Adhesion assays indicate that megakaryocyte binding to collagens is mediated by α2β1, and that collagen IV at the vascular niche might displace collagen I from megakaryocytes and thus contribute to prevention of premature platelet release into the marrow cavity and thereby directionally promote PPF at the vasculature.
Collapse
Affiliation(s)
- Daniela Semeniak
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Rebecca Kulawig
- Laboratory for Pediatric Molecular Biology, Charité-University Medicine, 13353 Berlin, Germany
| | - David Stegner
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany Rudolf Virchow-Zentrum, University of Würzburg, 97080 Würzburg, Germany
| | - Imke Meyer
- Laboratory for Pediatric Molecular Biology, Charité-University Medicine, 13353 Berlin, Germany
| | - Silke Schwiebert
- Laboratory for Pediatric Molecular Biology, Charité-University Medicine, 13353 Berlin, Germany
| | - Hendrik Bösing
- Laboratory for Pediatric Molecular Biology, Charité-University Medicine, 13353 Berlin, Germany
| | - Beate Eckes
- Department of Dermatology, University of Cologne, 50937 Cologne, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany Rudolf Virchow-Zentrum, University of Würzburg, 97080 Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany Laboratory for Pediatric Molecular Biology, Charité-University Medicine, 13353 Berlin, Germany
| |
Collapse
|
50
|
Schlinker AC, Duncan MT, DeLuca TA, Whitehead DC, Miller WM. Megakaryocyte Polyploidization and Proplatelet Formation in Low-Attachment Conditions. Biochem Eng J 2016; 111:24-33. [PMID: 27087780 DOI: 10.1016/j.bej.2016.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In vitro-derived platelets (PLTs), which could provide an alternative source of PLTs for patient transfusions, are formed from polyploid megakaryocytes (MKs) that extend long cytoplasmic projections, termed proplatelets (proPLTs). In this study, we compared polyploidization and proPLT formation (PPF) of MKs cultured on surfaces that either promote or inhibit protein adsorption and subsequent cell adhesion. A megakaryoblastic cell line exhibited increased polyploidization and arrested PPF on a low-attachment surface. Primary human MKs also showed low levels of PPF on the same surface, but no difference in ploidy. Importantly, both cell types exhibited accelerated PPF after transfer to a surface that supports attachment, suggesting that pre-culture on a non-adhesive surface may facilitate synchronization of PPF and PLT generation in culture.
Collapse
Affiliation(s)
- Alaina C Schlinker
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| | - Mark T Duncan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| | - Teresa A DeLuca
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| | - David C Whitehead
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| | - William M Miller
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL
| |
Collapse
|