1
|
Leuci A, Enjolras N, Marano M, Daniel M, Brevet M, Connes P, Dargaud Y. Extravascular factor IX pool fed by prophylaxis is a true hemostatic barrier against bleeding. J Thromb Haemost 2024; 22:700-708. [PMID: 38072379 DOI: 10.1016/j.jtha.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/06/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024]
Abstract
BACKGROUND Factor (F)IX can bind to type IV collagen in the endothelial basement membrane and diffuse into extravascular spaces. Previous studies in rodents have reported a large biodistribution of FIX. OBJECTIVES The aim of the study was to evaluate the potential hemostatic activity of extravascular FIX and its role in protecting against joint bleeds. METHODS The capacity of 4 different FIX molecules (plasma-derived and recombinant) to bind type I and type IV collagen was studied here. FIX molecules were also administered intravenously at doses of 50 to 3000 IU/kg in FIX knockout mice. RESULTS A specific FIX signal was detected in immunohistochemistry in the liver as well as in muscles and knee joints with recombinant FIX molecules injected at 1000 and 3000 IU/kg but not at the usual clinical doses of 50 to 100 IU/kg, while plasma-derived FIX generated a FIX signal at all doses, including 50 IU/kg. Such a signal was also detected after five 100 IU/kg daily infusions of recombinant FIX, suggesting that FIX can accumulate in the extravascular space during prophylaxis. The extravascular procoagulant activity of FIX, assessed in saphenous vein bleeding assays, was significantly higher in hemophilia B mice after these 5 days of prophylaxis compared to a single infusion of 100 IU/kg of FIX and assessment of FIX activity 7 days later. CONCLUSION Taken together, these results show that in individuals with severe hemophilia B receiving regular prophylaxis with FIX, extravascular accumulation of FIX over time may have a significant impact on the coagulation capacity and protection toward bleeding.
Collapse
Affiliation(s)
- Alexandre Leuci
- UR4609 Hémostase et Thrombose, Université Claude Bernard Lyon 1, Lyon, France
| | - Nathalie Enjolras
- UR4609 Hémostase et Thrombose, Université Claude Bernard Lyon 1, Lyon, France
| | - Muriel Marano
- UR4609 Hémostase et Thrombose, Université Claude Bernard Lyon 1, Lyon, France
| | - Melanie Daniel
- UR4609 Hémostase et Thrombose, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Philippe Connes
- Laboratoire interuniversitaire de Biologie de la Motricité EA7424, Team Vascular Biology and Red Blood Cell, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Yesim Dargaud
- UR4609 Hémostase et Thrombose, Université Claude Bernard Lyon 1, Lyon, France; Centre de Référence de l'Hémophilie, Unité d'Hémostase Clinique, Hospices Civils de Lyon, Lyon, France.
| |
Collapse
|
2
|
Herrmann S, Doerr B, May F, Kuehnemuth B, Cherpokova D, Herzog E, Dickneite G, Nolte MW. Tissue distribution of rIX-FP after intravenous application to rodents. J Thromb Haemost 2020; 18:3194-3202. [PMID: 32810892 DOI: 10.1111/jth.15069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 08/31/2023]
Abstract
BACKGROUND Hemophilia B is caused by coagulation factor IX (FIX) deficiency. Recombinant fusion protein linking coagulation FIX with recombinant albumin (rIX-FP; Idelvion® ) is used for replacement therapy with an extended half-life. A previous quantitative whole-body autoradiography (QWBA) study investigating the biodistribution of rIX-FP indicated equal biodistribution, but more prolonged tissue retention compared with a marketed recombinant FIX product. OBJECTIVES To complete and confirm the QWBA study data by directly measuring rIX-FP protein and activity levels in tissues following intravenous (i.v.) administration to normal rats and FIX-deficient (hemophilia B) mice. METHODS After i.v. administration of rIX-FP at a dose of 2000 IU/kg, animals were euthanized at specific time points up to 72 hours postdosing. Subsequently, plasma and various tissues, which were selected based on the previous QWBA results, were harvested and analyzed for FIX antigen levels using an ELISA (both species) or an immunohistochemistry method (mice only), as well as for FIX activity levels (mice only) using a chromogenic assay. RESULTS In rats, rIX-FP distributed extravascularly into all tissues analyzed (ie, liver, kidney, skin and knee) with peak antigen levels reached between 1 and 7 hours postdosing. In hemophilia B mice, rIX-FP tissue distribution was comparable to rats. FIX antigen levels correlated well with FIX activity readouts. CONCLUSIONS Our results confirm QWBA data showing that rIX-FP distributes into relevant target tissues. Importantly, it was demonstrated that rIX-FP available in tissues retains its functional activity and can thus facilitate its therapeutic activity at sites of potential injury.
Collapse
Affiliation(s)
| | - Baerbel Doerr
- Research Marburg, CSL Behring GmbH, Marburg, Germany
| | - Frauke May
- Research Marburg, CSL Behring GmbH, Marburg, Germany
| | | | | | - Eva Herzog
- Research Marburg, CSL Behring GmbH, Marburg, Germany
| | | | - Marc W Nolte
- Research Marburg, CSL Behring GmbH, Marburg, Germany
| |
Collapse
|
3
|
Magisetty J, Pendurthi UR, Madhunapantula SV, Grandoni J, Rao LVM. Increased Accumulation and Retention of rhFVIIa (eptacog beta) in Knee Joints of Hemophilia A Mice Compared to Wild-Type Mice. Thromb Haemost 2019; 119:1283-1294. [PMID: 31129915 DOI: 10.1055/s-0039-1688907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our earlier studies showed that recombinant human factor VIIa (rhFVIIa) administered intravascularly in mice disappeared rapidly from the circulation. However, a small fraction of rhFVIIa that entered extravascular remained functionally active for an extended period. The present study aims to investigate the dose-dependency of rhFVIIa accumulation and retention in mouse knee joints and test whether the hemophilic condition affects rhFVIIa sequestration in joints. Wild-type and FVIII-/- mice were injected with three doses of rhFVIIa (eptacog beta, 90, 250, and 500 μg/kg) via the tail vein. At varying times following rhFVIIa administration, blood and knee joints were collected to measure FVIIa activity and antigen levels in plasma and joint tissues. Joint tissue sections were analyzed by immunohistochemistry for the presence of rhFVIIa. Vascular permeability was assessed by either Evans Blue dye or fluorescein dextran extravasation. The study showed that rhFVIIa accumulated in knee joints of wild-type and FVIII-/- mice in a dose-dependent manner. rhFVIIa antigen and FVIIa activity could be detectable in joints for at least 7 days. Significantly higher levels of rhFVIIa accumulation were observed in knee joints of FVIII-/- mice compared with that of wild-type mice. Immunohistochemical analyses confirmed higher levels of rhFVIIa retention in FVIII-/- mice compared with wild-type mice. Additional studies showed that FVIII-/- mice were more permissible to vascular leakage. In conclusion, the present data demonstrate a dose-dependent accumulation of rhFVIIa in knee joints, and the hemophilic condition enhances the entry of rhFVIIa from circulation to the extravascular. The present data will be useful in improving rhFVIIa prophylaxis.
Collapse
Affiliation(s)
- Jhansi Magisetty
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| | - SubbaRao V Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | | | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States
| |
Collapse
|
4
|
A novel luciferase-based assay for the detection of Chimeric Antigen Receptors. Sci Rep 2019; 9:1957. [PMID: 30760795 PMCID: PMC6374361 DOI: 10.1038/s41598-018-38258-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/18/2018] [Indexed: 12/02/2022] Open
Abstract
Chimeric Antigen Receptor-T (CAR-T) cell immunotherapy has produced dramatic responses in hematologic malignancies. One of the challenges in the field is the lack of a simple assay for the detection of CARs on the surface of immune effector cells. In this study, we describe a novel luciferase-based assay, termed Topanga Assay, for the detection of CAR expression. The assay utilizes a recombinant fusion protein, called Topanga reagent, generated by joining the extra-cellular domain of a CAR-target in frame with one of the marine luciferases or their engineered derivatives. The assay involves incubation of CAR expressing cells with the Topanga reagent, a few washes and measurement of luminescence. The assay can detect CARs comprising either immunoglobulin- or non-immunoglobulin-based antigen binding domains. We further demonstrate that addition of epitope tags to the Topanga reagent not only allows its convenient one step purification but also extends its use for detection of CAR cells using flow cytometry. However, crude supernatant containing the secreted Topanga reagent can be directly used in both luminescence and flow-cytometry based assays without prior protein purification. Our results demonstrate that the Topanga assay is a highly sensitive, specific, convenient, economical and versatile assay for the detection of CARs.
Collapse
|
5
|
Factor VIIa. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Schut A, Hyseni A, Adelmeijer J, Meijers JCM, de Groot PG, Lisman T. Sustained pro-haemostatic activity of rFVIIa in plasma and platelets in non-bleeding pigs may explain the efficacy of a once-daily prophylaxis in humans. Thromb Haemost 2017; 112:304-10. [DOI: 10.1160/th13-09-0798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/08/2014] [Indexed: 11/05/2022]
Abstract
SummaryRecombinant factor VIIa (rFVIIa) is registered for treatment of inhibitor-complicated haemophilia, and a once-daily prophylactic administration of rFVIIa is successful in reducing the number of bleeding events. This suggests that a single rFVIIa dose has a pro-haemostatic effect up to 24 hours (h), which is difficult to explain given its half-life of 2 h. In this study, six pigs received a 90 µg/kg rFVIIa bolus. Plasma was collected and platelets were isolated at various time points up to 48 h, and analysed for FVIIa levels and associated haemostatic activity. Elevated plasma FVIIa levels were detected up to 24 h post-administration (36 (32–56) mU/ml [median (interquartile range [IQR]), 24 h] vs 2 (2–14) mU/ml [baseline]). Corresponding prothrombin time (PT) values remained shortened compared to baseline until 24 h post-administration (9.4 (9.3–9.9) seconds (s) [24 h] vs 10.5 (10.2–11.0) s [baseline], p ≤0.01). The lag time in thrombin generation testing as well as clotting times in plasma-based assays were shortened up to 12 or 24 h post-administration, respectively (lag times 1.8 (1.7–2.1) minutes (min) [12 h] vs 2.3 (2.3–2.6) min [baseline], p ≤0.01 and clotting times 3.8 (3.2–3.9) min [24 h] vs 5.2 (4.6–5.5) min [baseline], p ≤0.001). Platelet FVIIa levels were elevated up to 48 h (7.7 (3.4–9.0) ng VIIa/mg actin [48 h] vs 2.5 (0.7–4.8) ng VIIa/mg actin [baseline]). In conclusion, elevated and haemostatically active plasma and platelet FVIIa levels are detectable up to 24–48 h following rFVIIa administration in pigs. This prolonged pro-haemostatic effect of FVIIa may explain the prophylactic efficacy of a once-daily rFVIIa treatment.
Collapse
|
7
|
Pavani G, Zintner SM, Ivanciu L, Small JC, Stafford KA, Szeto JH, Margaritis P. One amino acid in mouse activated factor VII defines its endothelial protein C receptor (EPCR) binding and modulates its EPCR-dependent hemostatic activity in vivo. J Thromb Haemost 2017; 15:507-512. [PMID: 28035745 DOI: 10.1111/jth.13607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Indexed: 11/26/2022]
Abstract
Essentials The lack of factor (F) VIIa-endothelial protein C receptor (EPCR) binding in mice is unresolved. A single substitution of Leu4 to Phe in mouse FVIIa (mFVIIa) enables its interaction with EPCR. mFVIIa with a Phe4 shows EPCR binding-dependent enhanced hemostatic function in vivo vs. mFVIIa. Defining the FVIIa-EPCR interaction in mice allows for further investigating its biology in vivo. SUMMARY Background Human activated factor VII (hFVIIa), which is used in hemophilia treatment, binds to the endothelial protein C (PC) receptor (EPCR) with unclear hemostatic consequences. Interestingly, mice lack the activated FVII (FVIIa)-EPCR interaction. Therefore, to investigate the hemostatic consequences of this interaction in hemophilia, we previously engineered a mouse FVIIa (mFVIIa) molecule that bound mouse EPCR (mEPCR) by using three substitutions from mouse PC (mPC), i.e. Leu4→Phe, Leu8→Met, and Trp9→Arg. The resulting molecule, mFVIIa-FMR, modeled the EPCR-binding properties of hFVIIa and showed enhanced hemostatic capacity in hemophilic mice versus mFVIIa. These data implied a role of EPCR in the action of hFVIIa in hemophilia treatment. However, the substitutions in mFVIIa-FMR only broadly defined the sequence determinants for its mEPCR interaction and enhanced function in vivo. Objectives To determine the individual contributions of mPC Phe4, Met8 and Arg9 to the in vitro/in vivo properties of mFVIIa-FMR. Methods The mEPCR-binding properties of single amino acid variants of mFVIIa or mPC at position 4, 8 or 9 were investigated. Results and conclusions Phe4 in mFVIIa or mPC was solely critical for interaction with mEPCR. In hemophilic mice, administration of mFVIIa harboring a Phe4 resulted in a 1.9-2.5-fold increased hemostatic capacity versus mFVIIa that was EPCR binding-dependent. This recapitulated previous observations made with triple-mutant mFVIIa-FMR. As Leu8 is crucial for hFVIIa-EPCR binding, we describe the sequence divergence of this interaction in mice, now allowing its further characterization in vivo. We also illustrate that modulation of the EPCR-FVIIa interaction may lead to improved FVIIa therapeutics.
Collapse
Affiliation(s)
- G Pavani
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - S M Zintner
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - L Ivanciu
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - J C Small
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - K A Stafford
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - J H Szeto
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - P Margaritis
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- The University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
8
|
See WSQ, Chang KO, Cheuk DKL, Leung YYR, Chan GCF, Chan SC, Ha SY. Inhibitor development after liver transplantation in congenital factor VII deficiency. Haemophilia 2016; 22:e417-22. [PMID: 27501477 DOI: 10.1111/hae.13047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2016] [Indexed: 11/29/2022]
Abstract
Congenital factor VII (FVII) deficiency is the commonest type of the rare bleeding disorders. Very few cases of congenital FVII deficiency developed inhibitor and liver transplant is considered as definitive treatment. In the literature, twelve patients with congenital FVII deficiency developed inhibitors. Two had spontaneous resolution of inhibitors and one did not respond to high dose recombinant factor VIIa (rFVIIa) and died. Regarding liver transplant in congenital FVII patients, seven patients underwent liver transplant with good prognosis. We report a 5-year-old girl with confirmed severe congenital FVII deficiency since neonatal period. She suffered from recurrent intracranial bleeding despite rFVIIa replacement. After auxiliary liver transplant at the age of 4, she continued to show persistent deranged clotting profile and was found to have inhibitor towards FVII. Interestingly, she was still responsive to rFVIIa replacement.
Collapse
Affiliation(s)
- W-S Q See
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - K-O Chang
- Department of Paediatrics, Queen Elizabeth Hospital, Hong Kong, Special Administrative Region, China
| | - D K-L Cheuk
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Y-Y R Leung
- Department of Pathology, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - G C-F Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - S-C Chan
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - S-Y Ha
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China.
| |
Collapse
|
9
|
Coagulation Factors in the Interstitial Space. Protein Sci 2016. [DOI: 10.1201/9781315374307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Schut AM, Kirschbaum M, Adelmeijer J, de Groot PG, Lisman T. In vitro
uptake of recombinant factor VIIa by megakaryocytes with subsequent production of platelets containing functionally active drug. Br J Haematol 2016; 178:482-486. [DOI: 10.1111/bjh.14149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anne Marieke Schut
- Surgical Research Laboratory; Department of Surgery; University of Groningen; University Medical Centre Groningen; Groningen The Netherlands
| | - Marc Kirschbaum
- Surgical Research Laboratory; Department of Surgery; University of Groningen; University Medical Centre Groningen; Groningen The Netherlands
| | - Jelle Adelmeijer
- Surgical Research Laboratory; Department of Surgery; University of Groningen; University Medical Centre Groningen; Groningen The Netherlands
| | - Philip G. de Groot
- Department of Clinical Chemistry and Haematology; University of Utrecht; University Medical Centre Utrecht; Utrecht The Netherlands
| | - Ton Lisman
- Surgical Research Laboratory; Department of Surgery; University of Groningen; University Medical Centre Groningen; Groningen The Netherlands
| |
Collapse
|
11
|
Abstract
Glanzmann's thrombasthenia (GT) and congenital factor VII deficiency (FVII CD) are rare autosomal recessive bleeding disorders: GT is the most frequent congenital platelet function disorder, and FVII CD is the most common factor-deficiency disease after haemophilia. The frequency of these disorders in the general population ranges from 1:500,000 to 1:2,000,000. Because GT and FVII CD are both rare, registries are the only approach possible to allow the collection and analysis of sufficient observational data. Recombinant activated factor VII (rFVIIa, eptacog alfa activated) is indicated for the treatment of acute bleeding episodes and for surgery coverage in patients with GT who are refractory to platelets and have antiplatelet or anti-human leukocyte antigen (HLA) antibodies, and for the prevention and treatment of bleeding in patients with FVII CD. This article summarises published data on the mechanism of action and use of rFVIIa in these disorders from two international, prospective, observational registries: the Glanzmann's Thrombasthenia Registry (GTR) for GT; and the Seven Treatment Evaluation Registry (STER) for FVII CD. Haemostatic effectiveness rates with rFVIIa were high across all patients with GT and those with FVII CD, and treatment with rFVIIa in the GTR and STER registries was well tolerated. The GTR and the STER are the largest collections of data in GT and FVII CD, respectively, and have expanded our knowledge of the management of these two rare bleeding disorders.
Collapse
|
12
|
New Insights Into the Treatment of Glanzmann Thrombasthenia. Transfus Med Rev 2016; 30:92-9. [PMID: 26968829 DOI: 10.1016/j.tmrv.2016.01.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 11/21/2022]
Abstract
Glanzmann thrombasthenia (GT) is a rare inherited autosomal recessive bleeding disorder of platelet function caused by a quantitative or qualitative defect of platelet membrane glycoprotein IIb/IIIa (integrin αIIbβ3), a fibrinogen receptor required for platelet aggregation. Bleeds in GT are variable and may be severe and unpredictable. Bleeding not responsive to local and adjunctive measures, as well as surgical procedures, is treated with platelets, recombinant activated factor VII (rFVIIa), or antifibrinolytics, alone or in combination. Although platelets are the standard treatment for GT, their use is associated with the risk of blood-borne infection transmission and may also cause the development of platelet antibodies (to human leukocyte antigens and/or αIIbβ3), potentially resulting in platelet refractoriness. Currently, where rFVIIa is approved for use in GT, this is mostly for patients with platelet antibodies and/or a history of platelet refractoriness. However, data from the prospective Glanzmann's Thrombasthenia Registry (829 bleeds and 206 procedures in 218 GT patients) show that rFVIIa was frequently used in nonsurgical and surgical bleeds, with high efficacy rates, irrespective of platelet antibodies/refractoriness status. The mechanisms underpinning rFVIIa effectiveness in GT have been studied. At therapeutic concentrations, rFVIIa binds to activated platelets and directly activates FX to FXa, resulting in a burst of thrombin generation. Thrombin converts fibrinogen to fibrin and also enhances GT platelet adhesion and aggregation mediated by the newly converted (polymeric) fibrin, leading to primary hemostasis at the wound site. In addition, thrombin improves the final clot structure and activates thrombin-activatable fibrinolysis inhibitor to decrease clot lysis.
Collapse
|
13
|
Cramer TJ, Anderson K, Navaz K, Brown JM, Mosnier LO, von Drygalski A. Heterozygous congenital Factor VII deficiency with the 9729del4 mutation, associated with severe spontaneous intracranial bleeding in an adolescent male. Blood Cells Mol Dis 2015; 57:8-12. [PMID: 26852649 DOI: 10.1016/j.bcmd.2015.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/10/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND In congenital Factor (F) VII deficiency bleeding phenotype and intrinsic FVII activity levels don't always correlate. Patients with FVII activity levels <30% appear to have a higher bleeding propensity, but bleeding can also occur at higher FVII activity levels. Reasons for bleeding at higher FVII activity levels are unknown, and it remains challenging to manage such patients clinically. CASE A 19year old male with spontaneous intracranial hemorrhage and FVII activity levels of 44%, requiring emergent surgical intervention and a strategy for FVII replacement. Genotyping showed the rare heterozygous FVII 9729del4 mutation. Bleed evacuation was complicated by epidural abscess requiring craniectomy, bone graft procedures, and prolonged administration of recombinant human (rh) activated FVII (FVIIa). The patient recovered without neurological deficits, and remains on prophylactic low dose treatment with rhFVIIa in relation to risky athletic activities. CONCLUSION For clinicians, it is important to recognize that effects of rhFVIIa within these pathways are independent of its contribution to blood clot formation and cannot be assessed by clotting assays. Reduced FVII levels should therefore not be dismissed, as even a mild reduction may result in spontaneous bleeding. Treatment of mild FVII deficiency requires a careful case-by-case approach, based on the clinical scenario.
Collapse
Affiliation(s)
- Thomas J Cramer
- University of California San Diego, Department of Medicine, 9500 Gillman Drive, San Diego, CA 92093, USA.
| | - Kristin Anderson
- University of California San Diego, Department of Medicine, 9500 Gillman Drive, San Diego, CA 92093, USA.
| | - Karanjia Navaz
- University of California San Diego, Department of Neurosciences, 9500 Gillman Drive, San Diego, CA 92093, USA.
| | - Justin M Brown
- University of California San Diego, Department of Surgery, 9500 Gillman Drive, San Diego, CA 92093, USA.
| | - Laurent O Mosnier
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Annette von Drygalski
- University of California San Diego, Department of Medicine, 9500 Gillman Drive, San Diego, CA 92093, USA; The Scripps Research Institute, Department of Molecular and Experimental Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Morfini M. Rapid rFVIIa enhanced on-demand dosing in haemophilia inhibitor patients. Eur J Haematol 2015; 96:111-8. [PMID: 26172449 DOI: 10.1111/ejh.12631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2015] [Indexed: 01/19/2023]
Abstract
Recombinant factor VII activated (rFVIIa) is a bypassing agent widely used in haemophilia A and B patients with antibodies against coagulation factors VIII or IX. When used according to the correct doses, rFVIIa may control bleeding, subclinical bleeding and rebleeding, avoiding the effect of neutralising inhibitors. Because of the fast action of the rFVIIa, haemostasis occurs promptly and enables a fast bleeding control with on-demand treatment in home or in surgical setting. Rapidity is also a distinguishing feature in preparation and injection of rFVIIa to cope the restraining times of busy patients and parents. The effective haemostatic activity of rFVIIa enables a sustained bleeding control, which is implemented with every other day (eod) administration and suited for enhanced on-demand therapy and short-term repeated infusions use of rFVIIa to prevent microhaemorrhages or rebleeding. Comprehensive appreciation of these pharmacological and pharmacodynamic' characteristics will likely be a further stimulus to the wider enhanced on-demand use of rFVIIa.
Collapse
Affiliation(s)
- Massimo Morfini
- Past President of Italian Association of Haemophilia Centers (AICE), Florence, Italy
| |
Collapse
|
15
|
Lisman T, de Groot PG. The role of cell surfaces and cellular receptors in the mode of action of recombinant factor VIIa. Blood Rev 2015; 29:223-9. [DOI: 10.1016/j.blre.2014.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/08/2014] [Indexed: 11/27/2022]
|
16
|
|
17
|
Margaritis P. Fc-based half-life extension of human FVIIa – a new player for hemophilia treatment? Thromb Res 2015; 135:775-6. [DOI: 10.1016/j.thromres.2015.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/21/2015] [Accepted: 02/24/2015] [Indexed: 11/25/2022]
|
18
|
van der Flier A, Liu Z, Tan S, Chen K, Drager D, Liu T, Patarroyo-White S, Jiang H, Light DR. FcRn Rescues Recombinant Factor VIII Fc Fusion Protein from a VWF Independent FVIII Clearance Pathway in Mouse Hepatocytes. PLoS One 2015; 10:e0124930. [PMID: 25905473 PMCID: PMC4408089 DOI: 10.1371/journal.pone.0124930] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/06/2015] [Indexed: 12/31/2022] Open
Abstract
We recently developed a longer lasting recombinant factor VIII-Fc fusion protein, rFVIIIFc, to extend the half-life of replacement FVIII for the treatment of people with hemophilia A. In order to elucidate the biological mechanism for the elongated half-life of rFVIIIFc at a cellular level we delineated the roles of VWF and the tissue-specific expression of the neonatal Fc receptor (FcRn) in the biodistribution, clearance and cycling of rFVIIIFc. We find the tissue biodistribution is similar for rFVIIIFc and rFVIII and that liver is the major clearance organ for both molecules. VWF reduces the clearance and the initial liver uptake of rFVIIIFc. Pharmacokinetic studies in FcRn chimeric mice show that FcRn expressed in somatic cells (hepatocytes or liver sinusoidal endothelial cells) mediates the decreased clearance of rFVIIIFc, but FcRn in hematopoietic cells (Kupffer cells) does not affect clearance. Immunohistochemical studies show that when rFVIII or rFVIIIFc is in dynamic equilibrium binding with VWF, they mostly co localize with VWF in Kupffer cells and macrophages, confirming a major role for liver macrophages in the internalization and clearance of the VWF-FVIII complex. In the absence of VWF a clear difference in cellular localization of VWF-free rFVIII and rFVIIIFc is observed and neither molecule is detected in Kupffer cells. Instead, rFVIII is observed in hepatocytes, indicating that free rFVIII is cleared by hepatocytes, while rFVIIIFc is observed as a diffuse liver sinusoidal staining, suggesting recycling of free-rFVIIIFc out of hepatocytes. These studies reveal two parallel linked clearance pathways, with a dominant pathway in which both rFVIIIFc and rFVIII complexed with VWF are cleared mainly by Kupffer cells without FcRn cycling. In contrast, the free fraction of rFVIII or rFVIIIFc unbound by VWF enters hepatocytes, where FcRn reduces the degradation and clearance of rFVIIIFc relative to rFVIII by cycling rFVIIIFc back to the liver sinusoid and into circulation, enabling the elongated half-life of rFVIIIFc.
Collapse
Affiliation(s)
- Arjan van der Flier
- Hematology Research, Biogen, Cambridge, Massachussets, United States of America
| | - Zhan Liu
- Hematology Research, Biogen, Cambridge, Massachussets, United States of America
| | - Siyuan Tan
- Hematology Research, Biogen, Cambridge, Massachussets, United States of America
| | - Kai Chen
- Hematology Research, Biogen, Cambridge, Massachussets, United States of America
| | - Douglas Drager
- Hematology Research, Biogen, Cambridge, Massachussets, United States of America
| | - Tongyao Liu
- Hematology Research, Biogen, Cambridge, Massachussets, United States of America
| | | | - Haiyan Jiang
- Hematology Research, Biogen, Cambridge, Massachussets, United States of America
| | - David R. Light
- Hematology Research, Biogen, Cambridge, Massachussets, United States of America
- * E-mail:
| |
Collapse
|
19
|
Zhu S, Kisiel W, Lu YJ, Petersen LC, Ndungu JM, Moore TW, Parker ET, Sun A, Sarkaria JN, Snyder JP, Liotta DC, Brat DJ, El-Rayes BF, Shoji M. Visualizing cancer and response to therapy in vivo using Cy5.5-labeled factor VIIa and anti-tissue factor antibody. J Drug Target 2014; 23:257-65. [PMID: 25510254 DOI: 10.3109/1061186x.2014.988217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We have developed a specific technique for imaging cancer in vivo using Cy5.5-labeled factor VIIa (fVIIa), clotting-deficient FFRck-fVIIa, paclitaxel-FFRck-fVIIa, and anti-tissue factor (TF) antibody. FVIIa is the natural ligand for TF. We took advantage of the fact that vascular endothelial cells (VECs) in cancer, but not normal tissue, aberrantly express TF due to its induction by vascular endothelial growth factor (VEGF). Under physiological conditions, TF is expressed by stromal cells and outer blood vessel layers (smooth muscle and adventitia), but not by VECs. We hypothesized that labeled fVIIa or anti-TF antibodies could be used to image the tumor vasculature in vivo. To test this, Cy5.5-labeled fVIIa, FFRck-fVIIa, paclitaxel-FFRck-fVIIa, and anti-TF antibody were developed and administered to athymic nude mice carrying xenografts including glioma U87EGFRviii, pancreatic cancer ASPC-1 and Mia PaCa-2, and squamous cell carcinoma KB-V1. Cy5.5 labeled with these targeting proteins specifically localized to the tumor xenografts for at least 14 days but unconjugated Cy5.5 did not localize to any xenografts or organs. This method of imaging TF in the tumor VECs may be useful in detecting primary tumors and metastases as well as monitoring in vivo therapeutic responses.
Collapse
Affiliation(s)
- Shijun Zhu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University , Atlanta, GA , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kothari H, Keshava S, Vatsyayan R, Mackman N, Rao LVM, Pendurthi UR. Role of tissue factor in Mycobacterium tuberculosis-induced inflammation and disease pathogenesis. PLoS One 2014; 9:e114141. [PMID: 25462128 PMCID: PMC4252100 DOI: 10.1371/journal.pone.0114141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/03/2014] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB) is a chronic lung infectious disease characterized by severe inflammation and lung granulomatous lesion formation. Clinical manifestations of TB include hypercoagulable states and thrombotic complications. We previously showed that Mycobacterium tuberculosis (M.tb) infection induces tissue factor (TF) expression in macrophages in vitro. TF plays a key role in coagulation and inflammation. In the present study, we investigated the role of TF in M.tb-induced inflammatory responses, mycobacterial growth in the lung and dissemination to other organs. Wild-type C57BL/6 and transgenic mice expressing human TF, either very low levels (low TF) or near to the level of wild-type (HTF), in place of murine TF were infected with M.tb via aerosol exposure. Levels of TF expression, proinflammatory cytokines and thrombin-antithrombin complexes were measured post M.tb infection and mycobacterial burden in the tissue homogenates were evaluated. Our results showed that M.tb infection did not increase the overall TF expression in lungs. However, macrophages in the granulomatous lung lesions in all M.tb-infected mice, including low TF mice, showed increased levels of TF expression. Conspicuous fibrin deposition in the granuloma was detected in wild-type and HTF mice but not in low TF mice. M.tb infection significantly increased expression levels of cytokines IFN-γ, TNF-α, IL-6 and IL-1ß in lung tissues. However, no significant differences were found in proinflammatory cytokines among the three experimental groups. Mycobacterial burden in lungs and dissemination into spleen and liver were essentially similar in all three genotypes. Our data indicate, in contrast to that observed in acute bacterial infections, that TF-mediated coagulation and/or signaling does not appear to contribute to the host-defense in experimental tuberculosis.
Collapse
Affiliation(s)
- Hema Kothari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, United States of America
- * E-mail: (LVMR); (HK)
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, United States of America
| | - Rit Vatsyayan
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, United States of America
| | - Nigel Mackman
- Division of Hematology and Oncology, McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill NC 27599, United States of America
| | - L. Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, United States of America
- * E-mail: (LVMR); (HK)
| | - Usha R. Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, United States of America
| |
Collapse
|
21
|
Vatsyayan R, Kothari H, Mackman N, Pendurthi UR, Rao LVM. Inactivation of factor VIIa by antithrombin in vitro, ex vivo and in vivo: role of tissue factor and endothelial cell protein C receptor. PLoS One 2014; 9:e103505. [PMID: 25102166 PMCID: PMC4125150 DOI: 10.1371/journal.pone.0103505] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/30/2014] [Indexed: 11/19/2022] Open
Abstract
Recent studies have suggested that antithrombin (AT) could act as a significant physiologic regulator of FVIIa. However, in vitro studies showed that AT could inhibit FVIIa effectively only when it was bound to tissue factor (TF). Circulating blood is known to contain only traces of TF, at best. FVIIa also binds endothelial cell protein C receptor (EPCR), but the role of EPCR on FVIIa inactivation by AT is unknown. The present study was designed to investigate the role of TF and EPCR in inactivation of FVIIa by AT in vivo. Low human TF mice (low TF, ∼1% expression of the mouse TF level) and high human TF mice (HTF, ∼100% of the mouse TF level) were injected with human rFVIIa (120 µg kg−1 body weight) via the tail vein. At varying time intervals following rFVIIa administration, blood was collected to measure FVIIa-AT complex and rFVIIa antigen levels in the plasma. Despite the large difference in TF expression in the mice, HTF mice generated only 40–50% more of FVIIa-AT complex as compared to low TF mice. Increasing the concentration of TF in vivo in HTF mice by LPS injection increased the levels of FVIIa-AT complexes by about 25%. No significant differences were found in FVIIa-AT levels among wild-type, EPCR-deficient, and EPCR-overexpressing mice. The levels of FVIIa-AT complex formed in vitro and ex vivo were much lower than that was found in vivo. In summary, our results suggest that traces of TF that may be present in circulating blood or extravascular TF that is transiently exposed during normal vessel damage contributes to inactivation of FVIIa by AT in circulation. However, TF’s role in AT inactivation of FVIIa appears to be minor and other factor(s) present in plasma, on blood cells or vascular endothelium may play a predominant role in this process.
Collapse
Affiliation(s)
- Rit Vatsyayan
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Hema Kothari
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - Nigel Mackman
- Division of Hematology and Oncology, McAllister Heart Institute, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Usha R. Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
| | - L. Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, United States of America
- * E-mail:
| |
Collapse
|
22
|
Recombinant fusion protein linking factor VIIa with albumin (rVIIaFP): Tissue distribution in rats. Thromb Res 2014; 134:495-502. [DOI: 10.1016/j.thromres.2014.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/17/2014] [Accepted: 05/22/2014] [Indexed: 11/21/2022]
|
23
|
Herzog E, Harris S, Henson C, McEwen A, Schenk S, Nolte MW, Pragst I, Dickneite G, Schulte S, Zollner S. Biodistribution of the recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in rats. Thromb Res 2014; 133:900-7. [DOI: 10.1016/j.thromres.2014.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/22/2014] [Accepted: 02/13/2014] [Indexed: 01/19/2023]
|
24
|
Vestergaard B, Appa RS, Lykkesfeldt J, Agersø H. The kidneys play an important role in the clearance of rFVIIa in rats. Thromb Res 2014; 133:1124-9. [PMID: 24731563 DOI: 10.1016/j.thromres.2014.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/10/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Previous distribution and histological studies have indicated that the kidneys and renal proximal tubular cells play a role in clearance of rFVIIa. However, the relative importance of the kidneys in clearance of rFVIIa has not previously been addressed. The objective of the present study was to evaluate the importance of the kidneys in the clearance process of rFVIIa after iv administration to rats using a nephrectomy model. MATERIALS AND METHODS A nephrectomized rat model was established and validated using inulin, a compound primarily cleared by the kidneys, as a test substance and several physiological parameters were monitored to ensure viability and robustness of the model. The model was then used for pharmacokinetic evaluation of renal clearance of rFVIIa. The pharmacokinetic parameters for rFVIIa were evaluated both by use of standard non-compartmental methods and by use of mixed effects methods, where a pharmacokinetic model was used to simultaneously model all data from healthy, sham operated, and nephrectomized rats. RESULTS Nephrectomized animals showed stable rectal temperature, SpO2 and pulse and as expected, clearance of inulin was essentially abolished compared to control animals (p<0.001). For rFVIIa, nephrectomy resulted in a clearance and terminal half-life of 34mL/h/kg and 2.8h compared to 68mL/h/kg and1.9h in rats exposed to sham surgery (p<0.0001 for both parameters). CONCLUSION The present data show that about 50% of the total clearance of rFVIIa from circulation in rats under isoflurane anaesthesia is due to renal clearance.
Collapse
Affiliation(s)
- Bill Vestergaard
- Biopharmaceuticals Research Unit, Novo Nordisk A/S, Måløv, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Rupa S Appa
- Biopharmaceuticals Research Unit, Novo Nordisk A/S, Måløv, Denmark
| | - Jens Lykkesfeldt
- Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Henrik Agersø
- Biopharmaceuticals Research Unit, Novo Nordisk A/S, Måløv, Denmark
| |
Collapse
|
25
|
Zollner S, Schuermann D, Raquet E, Mueller-Cohrs J, Weimer T, Pragst I, Dickneite G, Schulte S. Pharmacological characteristics of a novel, recombinant fusion protein linking coagulation factor VIIa with albumin (rVIIa-FP). J Thromb Haemost 2014; 12:220-8. [PMID: 24641308 PMCID: PMC4166693 DOI: 10.1111/jth.12477] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Indexed: 01/20/2023]
Abstract
BACKGROUND Recombinant factor VIIa (rFVIIa) is approved for use in controlling bleeding episodes in people with hemophilia who have developed inhibitors to replacement therapy. Due to its short half-life (t½), frequent injections are required, limiting its use as a prophylactic treatment. A novel, recombinant fusion protein linking coagulation factor VIIa with albumin (rVIIa-FP) has been developed to extend the t(½) of rFVIIa. OBJECTIVES The aim of our studies was to investigate the pharmacokinetic/pharmacodynamic characteristics of rVIIa-FP in preclinical animal species. METHODS Pharmacokinetic (PK) parameters were derived after single intravenous dosing in hemophilia A mice, rats, rabbits and monkeys. PK analysis was based on human FVII plasma levels determined by measuring FVII antigen levels by ELISA in mice and rats, and FVIIa activity using STACLOT® VIIa-rTF in rabbits and monkeys. Induction of thrombin generation was investigated in mice, while hemostatic activity was assessed by thrombus formation in rabbits. RESULTS Compared with rFVIIa, rVIIa-FP displayed a prolonged t(½), enhanced in vivo recovery and reduced clearance in all species investigated. In mice, 16 h after treatment with rVIIa-FP, thrombin levels were quantifiable, indicating prolonged efficacy, whereas values had approached baseline at this time after treatment with rFVIIa. After 12 h, hemostatic efficacy was negligible in rFVIIa-treated rabbits, but sustained in animals receiving rVIIa-FP. CONCLUSIONS These studies indicate that the longer t(½) of rVIIa-FP compared with rFVIIa translates into extended activity. These findings suggest that rVIIa-FP has the potential to be administered less frequently than rFVIIa-containing concentrates in clinical use.
Collapse
|
26
|
Mathijssen NC, Masereeuw R, Holme PA, van Kraaij MG, Laros-van Gorkom BA, Peyvandi F, van Heerde WL. Increased volume of distribution for recombinant activated factor VII and longer plasma-derived factor VII half-life may explain their long lasting prophylactic effect. Thromb Res 2013; 132:256-62. [DOI: 10.1016/j.thromres.2013.05.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 04/25/2013] [Accepted: 05/27/2013] [Indexed: 10/26/2022]
|
27
|
Monroe DM, Hoffman M, Roberts HR, Hedner U. Progressive improvement in wound healing with increased therapy in haemophilia B mice. Haemophilia 2013; 19:926-32. [PMID: 23879625 DOI: 10.1111/hae.12220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2013] [Indexed: 11/29/2022]
Abstract
Previous work has shown that normalized haemostasis only at the time of an injury is not sufficient to promote optimal wound healing in haemophilia B (HB) mice. However, the duration of treatment required for optimal healing has not been established. The goal of these studies was to determine the effect of different durations of replacement or bypassing therapy [factor IX(FIX) or factor VIIa (FVIIa)] on wound healing parameters in a mouse model of HB. A dermal wound was placed on the back of HB mice. Animals were either untreated or pretreated and then subsequently treated for 3 days, 5 days, or 7 days with FIX or FVIIa. Wound area, time to wound healing, haematoma formation and iron deposition were measured. All treated animals showed shortened time to healing relative to untreated animals. Haematoma formation was prevented by treatment and bleeding into the wounds, measured by iron scores, was reduced by treatment. In addition, there was a progressive improvement in healing with 7 days of treatment more effective than 5 days which was more effective than 3 days. Replacement therapy with FIX had slightly shorter healing times than bypassing therapy with FVIIa. HB mice treated with FIX had slightly smaller wound area than untreated animals; by contrast, FVIIa-treated animals had much smaller wound areas that were close to the wound areas seen in wild-type animals. The data suggest that sustained therapy is required for normal wound healing.
Collapse
Affiliation(s)
- D M Monroe
- Division of Hematology/Oncology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
28
|
Bouwens EAM, Stavenuiter F, Mosnier LO. Mechanisms of anticoagulant and cytoprotective actions of the protein C pathway. J Thromb Haemost 2013; 11 Suppl 1:242-53. [PMID: 23809128 PMCID: PMC3713536 DOI: 10.1111/jth.12247] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The protein C pathway provides multiple important functions to maintain a regulated balance between hemostasis and host defense systems in response to vascular and inflammatory injury. The anticoagulant protein C pathway is designed to regulate coagulation, maintain the fluidity of blood within the vasculature, and prevent thrombosis, whereas the cytoprotective protein C pathway prevents vascular damage and stress. The cytoprotective activities of activated protein C (APC) include anti-apoptotic activity, anti-inflammatory activity, beneficial alterations of gene expression profiles, and endothelial barrier stabilization. These cytoprotective activities of APC, which require the endothelial protein C receptor (EPCR) and protease-activated receptor-1 (PAR1), have been a major research focus. Recent insights, such as non-canonical activation of PAR1 at Arg46 by APC and biased PAR1 signaling, provided better understanding of the molecular mechanisms by which APC elicits cytoprotective signaling through cleavage of PAR1. The discovery and development of anticoagulant-selective and cytoprotective-selective APC mutants provided unique opportunities for preclinical research that has been and may continue to be translated to clinical research. New mechanisms for the regulation of EPCR functionality, such as modulation of EPCR-bound lipids that affect APC's cytoprotective activities, may provide new research directions to improve the efficacy of APC to convey its cytoprotective activities to cells. Moreover, emerging novel functions for EPCR expand the roles of EPCR beyond mediating protein C activation and APC-induced PAR1 cleavage. These discoveries increasingly develop our understanding of the protein C pathway, which will conceivably expand its physiological implications to many areas in the future.
Collapse
Affiliation(s)
- E A M Bouwens
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
29
|
Rab GTPases regulate endothelial cell protein C receptor-mediated endocytosis and trafficking of factor VIIa. PLoS One 2013; 8:e59304. [PMID: 23555015 PMCID: PMC3598704 DOI: 10.1371/journal.pone.0059304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 02/14/2013] [Indexed: 01/11/2023] Open
Abstract
Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa.
Collapse
|
30
|
Factor VIIa. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Clark CA, Vatsyayan R, Hedner U, Esmon CT, Pendurthi UR, Rao LVM. Endothelial cell protein C receptor-mediated redistribution and tissue-level accumulation of factor VIIa. J Thromb Haemost 2012; 10:2383-91. [PMID: 22950420 PMCID: PMC3528836 DOI: 10.1111/j.1538-7836.2012.04917.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 08/30/2012] [Indexed: 11/27/2022]
Abstract
BACKGROUND Recent studies show that activated factor VII (FVIIa) binds to the endothelial cell protein C receptor (EPCR) on the vascular endothelium; however, the importance of this interaction in hemostasis or pathophysiology is unknown. OBJECTIVE The aim of the present study was to investigate the role of the FVIIa interaction with EPCR on the endothelium in mediating FVIIa transport from the circulation to extravascular tissues. METHODS Wild-type, EPCR-deficient or ECPR-over-expressing mice were injected with human recombinant (r)FVIIa (120 μg kg(-1) body weight) via the tail vein. At varying time intervals after rFVIIa administration, blood and various tissues were collected to measure FVIIa antigen and activity levels. Tissue sections were analyzed by immunohistochemistry for FVIIa and EPCR. RESULTS The data reveal that, after intravenous (i.v.) injection, rFVIIa rapidly disappears from the blood and associates with the endothelium in an EPCR-dependent manner. Immunohistochemical analyses revealed that the association of FVIIa with the endothelium was maximal at 30 min and thereafter progressively declined. The FVIIa association with the endothelium was undetectable at time points exceeding 24 h post-FVIIa administration. The levels of rFVIIa accumulated in tissue correlate with expression levels of EPCR in mice and FVIIa associated with tissues remained functionally active for periods of at least 7 days. CONCLUSIONS The observation that an EPCR-dependent association of FVIIa with the endothelium is most pronounced soon after rFVIIa administration and subsequently declines temporally, combined with the retention of functionally active FVIIa in tissue homogenates for extended periods, indicates that FVIIa binding to EPCR on the endothelium facilitates the transport of FVIIa from circulation to extravascular tissues where TF resides.
Collapse
Affiliation(s)
- C A Clark
- Department of Cellular and Molecular Biology, Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA Department of Medicine, Malmö University Hospital, University of Lund, Malmö, Sweden Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Howard Hughes Medical Institute, Oklahoma City, OK, USA
| | | | | | | | | | | |
Collapse
|
32
|
Agersø H, Tranholm M. Pharmacokinetics and pharmacodynamics of rFVIIa and new improved bypassing agents for the treatment of haemophilia. Haemophilia 2012; 18 Suppl 5:6-10. [PMID: 22757678 DOI: 10.1111/j.1365-2516.2012.02886.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Animal models have played a critical role in developing our understanding of haemophilia and its treatment. For example, studies in mice and dogs have provided insights into the pharmacokinetics and pharmacodynamics of recombinant activated factor VII (rFVIIa). Such studies have shown that antithrombin has a significant impact on clearance of rFVIIa, which explains discrepancies between the antigen and activity half-lives of rFVIIa. Animal studies have also shown that the major clearance organs for rFVIIa are the liver and the kidneys, whereas distribution studies suggest that FVII and rFVIIa leave the circulation and enter the tissues, before returning to the circulation through the lymph. One agent that has benefited greatly from the use of animal models in its development is vatreptacog alfa, a new analogue of rFVIIa. Promising in vitro results, including increased generation of FXa, shortened clotting times and increased clot stability, were subsequently confirmed in animal models. In a severe tail-bleed model in FVIII knock-out mice, reduction in maximal blood loss was substantially greater with vatreptacog alfa than with rFVIIa, FVIII or plasma-derived activated prothrombin complex concentrate. In a mouse model of joint bleeding, rFVIIa and vatreptacog alfa significantly reduced bleeding compared with vehicle-treated haemophilic controls. More recently, a model of endothelial injury based on mouse cremaster muscle has been developed. Overall, animal models are a valuable tool in elucidating the haemostatic process and the effects of therapeutic agents, although direct extrapolation to the clinical setting should be done with caution.
Collapse
Affiliation(s)
- Henrik Agersø
- Biopharmaceuticals Research Unit, Novo Nordisk A/S, Måløv, Denmark
| | | |
Collapse
|
33
|
MONAHAN PAULE, DORIA ANDREAS, LJUNG ROLF, JIMÉNEZ-YUSTE VICTOR. Optimizing joint function: new knowledge and novel tools and treatments. Haemophilia 2012; 18 Suppl 5:17-26. [DOI: 10.1111/j.1365-2516.2012.02888.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Sen P, Clark CA, Gopalakrishnan R, Hedner U, Esmon CT, Pendurthi UR, Rao LVM. Factor VIIa binding to endothelial cell protein C receptor: differences between mouse and human systems. Thromb Haemost 2012; 107:951-61. [PMID: 22370814 PMCID: PMC3883592 DOI: 10.1160/th11-09-0672] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 01/16/2012] [Indexed: 11/05/2022]
Abstract
Recent in vitro studies have shown that the zymogen and activated form of factor (F)VII bind to endothelial cell protein C receptor (EPCR). At present, there is no evidence that FVIIa binds to EPCR on vascular endothelium in vivo in the presence of circulating protein C, a primary ligand for EPCR. The present study was carried out to investigate the interaction of murine and human ligands with murine EPCR both in vivo and in vitro . Measurement of endogenous plasma levels of FVII in wild-type, EPCR-deficient and EPCR-over expressing mice showed slightly lower levels of FVII in EPCR-over expressing mice. However, infusion of high concentrations of competing ligands, either human APCi or FVIIai, to EPCR-over expressing mice failed to increase plasma levels of mouse FVII whereas they increased the plasma levels of protein C by two- to three-fold. Examining the association of exogenously administered mouse FVIIa or human FVIIa by immunohistochemistry revealed that human, but not murine FVIIa, binds to the murine endothelium in an EPCR-dependent manner. In vitro binding studies performed using surface plasmon resonance and endothelial cells revealed that murine FVIIa binds murine EPCR negligibly. Human FVIIa binding to EPCR, particularly to mouse EPCR, is markedly enhanced by availability of Mg2+ ions. In summary, our data show that murine FVIIa binds poorly to murine EPCR, whereas human FVIIa binds efficiently to both murine and human EPCR. Our data suggest that one should consider the use of human FVIIa in mouse models to investigate the significance of FVIIa and EPCR interaction.
Collapse
Affiliation(s)
- Prosenjit Sen
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Curtis A. Clark
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX
| | | | - Ulla Hedner
- Department of Medicine, Malmö University Hospital, University of Lund, Malmö, Sweden
| | - Charles T. Esmon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Howard Hughes Medical Institute, Oklahoma City, OK
| | - Usha R. Pendurthi
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - L. Vijaya Mohan Rao
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX
| |
Collapse
|
35
|
Weiler H. Multiple receptor-mediated functions of activated protein C. Hamostaseologie 2012; 31:185-95. [PMID: 21826371 DOI: 10.5482/ha-1166] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 06/17/2011] [Indexed: 01/08/2023] Open
Abstract
The central effector protease of the protein C pathway, activated protein C (APC), interacts with the endothelial cell protein C receptor, with protease activated receptors (PAR), the apolipoprotein E2 receptor, and integrins to exert multiple effects on haemostasis and immune cell function. Such receptor interactions modify the activation of PC and determine the biological response to endogenous and therapeutically administered APC. This review summarizes the current knowledge about interactions of APC with cell surface-associated receptors, novel substrates such as histones and tissue factor pathway inhibitor, and their implications for the biologic function of APC in the control of coagulation and inflammation.
Collapse
Affiliation(s)
- H Weiler
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee WI 53226, USA.
| |
Collapse
|
36
|
Disse J, Ruf W. Endothelial protein C receptor is required for tissue factor ternary complex signaling in the mouse. J Thromb Haemost 2011; 9:2516-8. [PMID: 21951329 PMCID: PMC3228900 DOI: 10.1111/j.1538-7836.2011.04521.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jennifer Disse
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| | - Wolfram Ruf
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA
| |
Collapse
|
37
|
Knudsen T, Kristensen AT, Nichols TC, Agersø H, Jensen AL, Kjalke M, Ezban M, Tranholm M. Pharmacokinetics, pharmacodynamics and safety of recombinant canine FVIIa in a study dosing one haemophilia A and one haemostatically normal dog. Haemophilia 2011; 17:962-970. [PMID: 21645178 DOI: 10.1111/hae.2011.17.issue-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recombinant human FVIIa (rhFVIIa) corrects the coagulopathy in hemophilia A and B as well as FVII deficiency. This is also the case in dogs until canine anti-human FVIIa antibodies develop (~2 weeks). Recombinant canine factor VIIa (rcFVIIa), successfully over-expressed by gene transfer in haemophilia dogs, has provided long-term haemostasis (>2 years). However, pharmacokinetics (PK), pharmacodynamics (PD) and safety of rcFVIIa after pharmacological administration have not been reported. We therefore wanted to explore the safety, PK and PD of rcFVIIa in dogs. A pilot study was set up to evaluate the safety as well as PK and PD of rcFVIIa after a single intravenous dose of 270 μg kg(-1) to one HA and one haemostatically normal dog and to directly compare rcFVIIa with rhFVIIa in these two dogs. Single doses of rcFVIIa and rhFVIIa were well tolerated. No adverse events were observed. Pharmacokinetic characteristics including half-life (FVIIa activity: 1.2-1.8 h; FVIIa antigen 2.8-3.7 h) and clearance were comparable for rcFVIIa and rhFVIIa. Kaolin-activated thromboelastography approached normal in the HA dog with the improvement being most pronounced after rcFVIIa. This study provided the first evidence that administering rcFVIIa intravenously is feasible, safe, well tolerated and efficacious in correcting the haemophilic coagulopathy in canine HA and that rcFVIIa exhibits pharmacokinetic characteristics comparable to rhFVIIa in haemophilic and haemostatically competent dogs. This strengthens the hypothesis that rcFVIIa can be administered to dogs to mimic the administration of rhFVIIa to humans.
Collapse
Affiliation(s)
- T Knudsen
- Department of Small Animal Clinical Sciences, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Knudsen T, Kristensen AT, Nichols TC, Agersø H, Jensen AL, Kjalke M, Ezban M, Tranholm M. Pharmacokinetics, pharmacodynamics and safety of recombinant canine FVIIa in a study dosing one haemophilia A and one haemostatically normal dog. Haemophilia 2011; 17:962-70. [PMID: 21645178 PMCID: PMC3925423 DOI: 10.1111/j.1365-2516.2011.02536.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recombinant human FVIIa (rhFVIIa) corrects the coagulopathy in hemophilia A and B as well as FVII deficiency. This is also the case in dogs until canine anti-human FVIIa antibodies develop (~2 weeks). Recombinant canine factor VIIa (rcFVIIa), successfully over-expressed by gene transfer in haemophilia dogs, has provided long-term haemostasis (>2 years). However, pharmacokinetics (PK), pharmacodynamics (PD) and safety of rcFVIIa after pharmacological administration have not been reported. We therefore wanted to explore the safety, PK and PD of rcFVIIa in dogs. A pilot study was set up to evaluate the safety as well as PK and PD of rcFVIIa after a single intravenous dose of 270 μg kg(-1) to one HA and one haemostatically normal dog and to directly compare rcFVIIa with rhFVIIa in these two dogs. Single doses of rcFVIIa and rhFVIIa were well tolerated. No adverse events were observed. Pharmacokinetic characteristics including half-life (FVIIa activity: 1.2-1.8 h; FVIIa antigen 2.8-3.7 h) and clearance were comparable for rcFVIIa and rhFVIIa. Kaolin-activated thromboelastography approached normal in the HA dog with the improvement being most pronounced after rcFVIIa. This study provided the first evidence that administering rcFVIIa intravenously is feasible, safe, well tolerated and efficacious in correcting the haemophilic coagulopathy in canine HA and that rcFVIIa exhibits pharmacokinetic characteristics comparable to rhFVIIa in haemophilic and haemostatically competent dogs. This strengthens the hypothesis that rcFVIIa can be administered to dogs to mimic the administration of rhFVIIa to humans.
Collapse
Affiliation(s)
- T Knudsen
- Department of Small Animal Clinical Sciences, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lopez-Vilchez I, Hedner U, Altisent C, Diaz-Ricart M, Escolar G, Galan AM. Redistribution and hemostatic action of recombinant activated factor VII associated with platelets. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2938-48. [PMID: 21641410 DOI: 10.1016/j.ajpath.2011.02.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/07/2011] [Accepted: 02/23/2011] [Indexed: 11/30/2022]
Abstract
Clinical evidence accumulated from hemophilic patients during prophylaxis with recombinant activated factor VII (rFVIIa) suggests that the duration of the hemostatic action of rFVIIa exceeds its predicted plasma half-life. Mechanisms involved in this outcome have not been elucidated. We have investigated in vitro the redistribution of rFVIIa in platelets from healthy donors, patients with FVII deficiency, and one patient with Bernard-Soulier syndrome. Platelet-rich plasma was exposed to rFVIIa (3 to 60 μg/mL). Flow cytometry, immunocytochemistry, and coagulation tests were applied to detect and quantify rFVIIa. The hemostatic effect of rFVIIa associated to platelets was evaluated using perfusion models. Our studies revealed a dose-dependent association of rFVIIa to the platelet cytoplasm with redistribution into the open canalicular system, and α granules. Mechanisms implicated in the internalization are multiple, involve GPIb and GPIV, and require phospholipids and cytoskeletal assembly. After platelet activation with thrombin, platelets exposed rFVIIa on their membrane. Perfusion studies revealed that the presence of 30% of platelets containing FVIIa improved platelet aggregate formation and enhanced fibrin generation (P < 0.01 versus control). Our results indicate that, at therapeutic concentrations, rFVIIa can be internalized into platelets, where it is protected from physiological clearance mechanisms and can still promote hemostatic activity. Redistribution of rFVIIa into platelets may explain the prolonged prophylactic effectiveness of rFVIIa in hemophilia.
Collapse
Affiliation(s)
- Irene Lopez-Vilchez
- Hemotherapy and Hemostasis Service, Hospital Clinic, Biomedical Diagnostics Center CDB, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
40
|
RODRIGUEZ-MERCHAN EC, JIMENEZ-YUSTE V, AZNAR JA, HEDNER U, KNOBE K, LEE CA, LJUNG R, QUEROL F, SANTAGOSTINO E, VALENTINO LA, CAFFARINI A. Joint protection in haemophilia. Haemophilia 2011; 17 Suppl 2:1-23. [DOI: 10.1111/j.1365-2516.2011.02615.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
In vivo clearance and metabolism of recombinant activated factor VII (rFVIIa) and its complexes with plasma protease inhibitors in the liver. Thromb Res 2011; 127:356-62. [DOI: 10.1016/j.thromres.2010.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/15/2010] [Accepted: 12/22/2010] [Indexed: 11/18/2022]
|
42
|
Clearance of rFVIIa and NN1731 after intravenous administration to Beagle dogs. Eur J Pharm Sci 2011; 42:578-83. [DOI: 10.1016/j.ejps.2011.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 01/20/2011] [Accepted: 02/24/2011] [Indexed: 11/20/2022]
|
43
|
Young G, Auerswald G, Jimenez-Yuste V, Konkle BA, Lambert T, Morfini M, Santagostino E, Blanchette V. When should prophylaxis therapy in inhibitor patients be considered? Haemophilia 2011; 17:e849-57. [PMID: 21418444 DOI: 10.1111/j.1365-2516.2011.02494.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Currently, patients with severe haemophilia can expect to lead a relatively normal life including prevention of disabling arthropathy as a result of the development of factor replacement therapy and advances in the understanding of the use of such therapy given prophylactically. Unfortunately, a subset of patients develops neutralizing antibodies termed inhibitors rendering such therapy ineffective. These patients frequently develop recurrent joint bleeding resulting in arthropathy. Until recently, prophylactic therapy was not considered for patients with inhibitors because of the perceived lack of an effective therapeutic agent. However, an accumulation of case reports and a recent prospective study have suggested that prophylaxis with the currently available bypassing agents could be effective and appears to be safe in selected cases. This report will review the current data on prophylaxis with bypassing agents and suggest specific situations in which prophylaxis in inhibitor patients could be considered.
Collapse
Affiliation(s)
- G Young
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sen P, Gopalakrishnan R, Kothari H, Keshava S, Clark CA, Esmon CT, Pendurthi UR, Rao LVM. Factor VIIa bound to endothelial cell protein C receptor activates protease activated receptor-1 and mediates cell signaling and barrier protection. Blood 2011; 117:3199-208. [PMID: 21252088 PMCID: PMC3062318 DOI: 10.1182/blood-2010-09-310706] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent studies have shown that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR), a cellular receptor for protein C and activated protein C, but the physiologic significance of this interaction is unclear. In the present study, we show that FVIIa, upon binding to EPCR on endothelial cells, activates endogenous protease activated receptor-1 (PAR1) and induces PAR1-mediated p44/42 mitogen-activated protein kinase (MAPK) activation. Pretreatment of endothelial cells with FVIIa protected against thrombin-induced barrier disruption. This FVIIa-induced, barrier-protective effect was EPCR dependent and did not involve PAR2. Pretreatment of confluent endothelial monolayers with FVIIa before thrombin reduced the development of thrombin-induced transcellular actin stress fibers, cellular contractions, and paracellular gap formation. FVIIa-induced p44/42 MAPK activation and the barrier-protective effect are mediated via Rac1 activation. Consistent with in vitro findings, in vivo studies using mice showed that administration of FVIIa before lipopolysaccharide (LPS) treatment attenuated LPS-induced vascular leakage in the lung and kidney. Overall, our present data provide evidence that FVIIa bound to EPCR on endothelial cells activates PAR1-mediated cell signaling and provides a barrier-protective effect. These findings are novel and of great clinical significance, because FVIIa is used clinically for the prevention of bleeding in hemophilia and other bleeding disorders.
Collapse
Affiliation(s)
- Prosenjit Sen
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Catalytic domain modification and viral gene delivery of activated factor VII confers hemostasis at reduced expression levels and vector doses in vivo. Blood 2011; 117:3974-82. [PMID: 21325603 DOI: 10.1182/blood-2010-09-309732] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Catalytic domain variants of activated factor VII (FVIIa) with enhanced hemostatic properties are highly attractive for the treatment of bleeding disorders via gene-based therapy. To explore this in a hemophilic mouse model, we characterized 2 variants of murine activated FVII (mFVIIa-VEAY and mFVIIa-DVQ) with modified catalytic domains, based on recombinant human FVIIa (rhFVIIa) variants. Using purified recombinant proteins, we showed that murine FVIIa (mFVIIa) and variants had comparable binding to human and murine tissue factor (TF) and exhibited similar extrinsic coagulant activity. In vitro in the absence of TF, the variants showed a 6- to 17-fold enhanced proteolytic and coagulant activity relative to mFVIIa, but increased inactivation by antithrombin. Gene delivery of mFVIIa-VEAY resulted in long-term, effective hemostasis at 5-fold lower expression levels relative to mFVIIa in hemophilia A mice or in hemophilia B mice with inhibitors to factor IX. However, expression of mFVIIa-VEAY at 14-fold higher than therapeutic levels resulted in a progressive mortality to 70% within 6 weeks after gene delivery. These results are the first demonstration of the hemostatic efficacy of continuous expression, in the presence or absence of inhibitors, of a high-activity gene-based FVIIa variant in an animal model of hemophilia.
Collapse
|
46
|
Martínez-Martínez I, Ordóñez A, Pedersen S, de la Morena-Barrio M, Navarro-Fernández J, Kristensen S, Miñano A, Padilla J, Vicente V, Corral J. Heparin affinity of factor VIIa: Implications on the physiological inhibition by antithrombin and clearance of recombinant factor VIIa. Thromb Res 2011; 127:154-60. [DOI: 10.1016/j.thromres.2010.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 11/02/2010] [Accepted: 11/08/2010] [Indexed: 11/25/2022]
|
47
|
Agersø H, Brophy DF, Pelzer H, Martin EJ, Carr M, Hedner U, Ezban M. Recombinant human factor VIIa (rFVIIa) cleared principally by antithrombin following intravenous administration in hemophilia patients. J Thromb Haemost 2011; 9:333-8. [PMID: 21114621 PMCID: PMC3030656 DOI: 10.1111/j.1538-7836.2010.04152.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The objective of the present study was to evaluate the pharmacokinetics and the clearance pathways of rFVIIa after intravenous administration to hemophilia patients. METHODS Ten severe hemophilia patients were included in the study; all patients were intravenously administered a clinically relevant dose of 90 μg kg(-1) (1.8 nmol kg(-1)) rFVIIa. Blood samples were collected consecutively to describe the pharmacokinetics of rFVIIa. All samples were analyzed using three different assays: a clot assay to measure the activity (FVIIa:C), an enzyme immunoassay (EIA) to measure the antigen levels (FVII:Ag), and an EIA (FVIIa-AT) to measure the FVIIa antithrombin III (AT) complex. Pharmacokinetic parameters were evaluated both by use of standard non-compartmental methods and by use of mixed effects methods. A population pharmacokinetic model was used to simultaneously model all three datasets. The total body clearance of rFVIIa:C was estimated to be 38 mL h(-1) kg(-1). The rFVII-AT complex formation was responsible for 65% of the total rFVIIa:C clearance. The initial and the terminal half-life of rFVIIa:C was estimated to be 0.6 and 2.6 h, respectively. The formation of rFVII-AT complex was able to explain the difference observed between the rFVIIa:C and the rFVII:Ag concentration. The non-compartmental analysis resulted in almost identical parameters.
Collapse
Affiliation(s)
- Henrik Agersø
- Pharmacology, Biopharmaceuticals Research Unit, Novo Nordisk A/S
| | - Donald F. Brophy
- Coagulation Advancement Laboratory, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | - Hermann Pelzer
- Pharmacology, Biopharmaceuticals Research Unit, Novo Nordisk A/S
| | - Erika J. Martin
- Coagulation Advancement Laboratory, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| | | | | | - Mirella Ezban
- Pharmacology, Biopharmaceuticals Research Unit, Novo Nordisk A/S
| |
Collapse
|
48
|
Disse J, Petersen HH, Larsen KS, Persson E, Esmon N, Esmon CT, Teyton L, Petersen LC, Ruf W. The endothelial protein C receptor supports tissue factor ternary coagulation initiation complex signaling through protease-activated receptors. J Biol Chem 2010; 286:5756-67. [PMID: 21149441 DOI: 10.1074/jbc.m110.201228] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Protease-activated receptor (PAR) signaling is closely linked to the cellular activation of the pro- and anticoagulant pathways. The endothelial protein C receptor (EPCR) is crucial for signaling by activated protein C through PAR1, but EPCR may have additional roles by interacting with the 4-carboxyglutamic acid domains of procoagulant coagulation factors VII (FVII) and X (FX). Here we show that soluble EPCR regulates the interaction of FX with human or mouse tissue factor (TF)-FVIIa complexes. Mutagenesis of the FVIIa 4-carboxyglutamic acid domain and dose titrations with FX showed that EPCR interacted primarily with FX to attenuate FX activation in lipid-free assay systems. In human cell models of TF signaling, antibody inhibition of EPCR selectively blocked PAR activation by the ternary TF-FVIIa-FXa complex but not by the non-coagulant TF-FVIIa binary complex. Heterologous expression of EPCR promoted PAR1 and PAR2 cleavage by FXa in the ternary complex but did not alter PAR2 cleavage by TF-FVIIa. In murine smooth muscle cells that constitutively express EPCR and TF, thrombin and FVIIa/FX but not FVIIa alone induced PAR1-dependent signaling. Although thrombin signaling was unchanged, cells with genetically reduced levels of EPCR no longer showed a signaling response to the ternary complex. These results demonstrate that EPCR interacts with the ternary TF coagulation initiation complex to enable PAR signaling and suggest that EPCR may play a role in regulating the biology of TF-expressing extravascular and vessel wall cells that are exposed to limited concentrations of FVIIa and FX provided by ectopic synthesis or vascular leakage.
Collapse
Affiliation(s)
- Jennifer Disse
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Monahan PE, Sun J. Hemophilic synovitis: factor VII and the potential role of extravascular factor VIIa. Thromb Res 2010; 125 Suppl 1:S63-6. [PMID: 20227556 DOI: 10.1016/j.thromres.2010.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The initiation of coagulation via tissue factor/factor VIIa is relatively weak in normal synovium and joint tissues, so that hemophilic patients with additional deficiency of the intrinsic pathway of coagulation are especially at risk for joint bleeding and the development of hemophilic synovitis. The inflamed joint that results from recurrent bleeding-induced injury, however, may be an environment in which pharmacologic doses of factor VIIa have potentially greater procoagulant action than in the uninjured joint. There is accumulating evidence suggesting that coagulation factors in the extravascular space, and not only circulating plasma factors, have the potential to contribute to hemostatic protection of joints. The potential role of extravascular factor VIIa is considered.
Collapse
Affiliation(s)
- Paul E Monahan
- Pediatric Hematology/Oncology, University of North Carolina at Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
50
|
Cohn DM, Goddijn M, Middeldorp S, Korevaar JC, Dawood F, Farquharson RG. Recurrent miscarriage and antiphospholipid antibodies: prognosis of subsequent pregnancy. J Thromb Haemost 2010; 8:2208-13. [PMID: 20704646 PMCID: PMC2965809 DOI: 10.1111/j.1538-7836.2010.04015.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Although women with antiphospholipid antibodies (APLAs) are at increased risk of recurrent miscarriage, the outcome of a subsequent pregnancy is not clearly elucidated. OBJECTIVES To assess the pregnancy outcome of a subsequent pregnancy in women with APLAs and compare this outcome with women with unexplained recurrent miscarriage. METHODS We performed a cohort study among all women who attended the Miscarriage Clinic at Liverpool Women's Hospital between 1987 and 2006 after being referred due to recurrent miscarriage (≥2 consecutive pregnancy losses). All women underwent a standardized investigation sequence. Women with other reasons for recurrent miscarriage were excluded. RESULTS A total of 693 women fulfilled the selection criteria, of whom 176 (25%) had APLAs. One hundred and twenty-two (69%) women with APLAs had a subsequent live birth compared with 324 (63%) women with unexplained recurrent miscarriage (OR 1.3, 95% CI 0.9-1.9). No differences were found for birth weight, gestational age, and intra-uterine growth restriction. When treatment was analyzed, 53/67 (79%) of women with APLAs who had received aspirin and heparin during their pregnancy had a live birth, compared with 64/104 (62%) of women with APLAs who received aspirin only (adjusted OR 2.7, 95% CI 1.3-5.8). In unexplained recurrent miscarriage, stratification for treatment showed no differences in outcome. CONCLUSION The prognosis of a subsequent pregnancy in women with APLAs is good. Although this was not a randomized clinical trial, combined treatment of aspirin and heparin seemed associated with a better outcome in women with APLAs, but not in women with unexplained recurrent miscarriage.
Collapse
Affiliation(s)
- D M Cohn
- Department of Internal Medicine, Academic Medical Center Center, University of Amsterdam, the Netherlands.
| | | | | | | | | | | |
Collapse
|