1
|
Furxhi I, Faccani L, Zanoni I, Brigliadori A, Vespignani M, Costa AL. Design rules applied to silver nanoparticles synthesis: A practical example of machine learning application. Comput Struct Biotechnol J 2024; 25:20-33. [PMID: 38444982 PMCID: PMC10914561 DOI: 10.1016/j.csbj.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
The synthesis of silver nanoparticles with controlled physicochemical properties is essential for governing their intended functionalities and safety profiles. However, synthesis process involves multiple parameters that could influence the resulting properties. This challenge could be addressed with the development of predictive models that forecast endpoints based on key synthesis parameters. In this study, we manually extracted synthesis-related data from the literature and leveraged various machine learning algorithms. Data extraction included parameters such as reactant concentrations, experimental conditions, as well as physicochemical properties. The antibacterial efficiencies and toxicological profiles of the synthesized nanoparticles were also extracted. In a second step, based on data completeness, we employed regression algorithms to establish relationships between synthesis parameters and desired endpoints and to build predictive models. The models for core size and antibacterial efficiency were trained and validated using a cross-validation approach. Finally, the features' impact was evaluated via Shapley values to provide insights into the contribution of features to the predictions. Factors such as synthesis duration, scale of synthesis and the choice of capping agents emerged as the most significant predictors. This study demonstrated the potential of machine learning to aid in the rational design of synthesis process and paves the way for the safe-by-design principles development by providing insights into the optimization of the synthesis process to achieve the desired properties. Finally, this study provides a valuable dataset compiled from literature sources with significant time and effort from multiple researchers. Access to such datasets notably aids computational advances in the field of nanotechnology.
Collapse
Affiliation(s)
- Irini Furxhi
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Faenza, Italy
- Transgero Limited, Limerick, Ireland
| | - Lara Faccani
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Faenza, Italy
| | - Ilaria Zanoni
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Faenza, Italy
| | - Andrea Brigliadori
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Faenza, Italy
| | - Maurizio Vespignani
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Faenza, Italy
| | - Anna Luisa Costa
- CNR-ISSMC (Former ISTEC), National Research Council of Italy-Institute of Science, Technology and Sustainability for Ceramics, Faenza, Italy
| |
Collapse
|
2
|
Li C, Liu Q, Han L, Zhang H, Immler R, Rathkolb B, Secklehner J, de Angelis MH, Yildirim AÖ, Zeuschner D, Nicke A, Carlin LM, Sperandio M, Stoeger T, Rehberg M. The eATP/P2×7R Axis Drives Quantum Dot-Nanoparticle Induced Neutrophil Recruitment in the Pulmonary Microcirculation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404661. [PMID: 39364760 DOI: 10.1002/advs.202404661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/30/2024] [Indexed: 10/05/2024]
Abstract
Exposure to nanoparticles (NPs) is frequently associated with adverse cardiovascular effects. In contrast, NPs in nanomedicine hold great promise for precise lung-specific drug delivery, especially considering the extensive pulmonary capillary network that facilitates interactions with bloodstream-suspended particles. Therefore, exact knowledge about effects of engineered NPs within the pulmonary microcirculation are instrumental for future application of this technology in patients. To unravel the real-time dynamics of intravenously delivered NPs and their effects in the pulmonary microvasculature, we employed intravital microscopy of the mouse lung. Only PEG-amine-QDs, but not carboxyl-QDs triggered rapid neutrophil recruitment in microvessels and their subsequent recruitment to the alveolar space and was linked to cellular degranulation, TNF-α, and DAMP release into the circulation, particularly eATP. Stimulation of the ATP-gated receptor P2X7R induced expression of E-selectin on microvascular endothelium thereby mediating the neutrophilic immune response. Leukocyte integrins LFA-1 and MAC-1 facilitated adhesion and decelerated neutrophil crawling on the vascular surface. In summary, this study unravels the complex cascade of neutrophil recruitment during NP-induced sterile inflammation. Thereby we demonstrate novel adverse effects for NPs in the pulmonary microcirculation and provide critical insights for optimizing NP-based drug delivery and therapeutic intervention strategies, to ensure their efficacy and safety in clinical applications.
Collapse
Affiliation(s)
- Chenxi Li
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
- Department of Pulmonary and Critical Care, Shandong Provincial Hospital Affiliated to, Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qiongliang Liu
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Lianyong Han
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Haiyun Zhang
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Roland Immler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Birgit Rathkolb
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute of Experimental Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Judith Secklehner
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics and German Mouse Clinic, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, 85354, Freising, Germany
| | - Ali Önder Yildirim
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
- Institute of Experimental Pneumology, LMU, 80539, Munich, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, 48149, Muenster, Germany
| | - Annette Nicke
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Leo M Carlin
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Tobias Stoeger
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| | - Markus Rehberg
- Institute of Lung Health and Immunity (LHI), Comprehensive Pneumology Center (CPC), Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), 85764, Munich, Germany
| |
Collapse
|
3
|
Huang C, Liu X, Wu Q, Cao J, Zhu X, Wang X, Song Y. Cardiovascular toxic effects of nanoparticles and corresponding molecular mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124360. [PMID: 38871171 DOI: 10.1016/j.envpol.2024.124360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Rapid advancements in nanotechnology have been integrated into various disciplines, leading to an increased prevalence of nanoparticle exposure. The widespread utilization of nanomaterials and heightened levels of particulate pollution have prompted government departments to intensify their focus on assessing the safety of nanoparticles (NPs). The cardiovascular system, crucial for maintaining human health, has emerged as vulnerable to damage from nanoparticle exposure. A mounting body of evidence indicates that interactions can occur when NPs come into contact with components of the cardiovascular system, contributing to adverse cardiovascular disease (CVD). However, the underlying molecular mechanisms driving these events remain elusive. This work provides a comprehensive review of recent advance on nanoparticle-induced adverse cardiovascular events and offers insight into the associated molecular mechanisms. Finally, the influencing factors of NPs-induced cardiovascular toxicity are discussed.
Collapse
Affiliation(s)
- Chunfeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingchun Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianzhong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyu Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Indirect mediators of systemic health outcomes following nanoparticle inhalation exposure. Pharmacol Ther 2022; 235:108120. [PMID: 35085604 PMCID: PMC9189040 DOI: 10.1016/j.pharmthera.2022.108120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
Abstract
The growing field of nanoscience has shed light on the wide diversity of natural and anthropogenic sources of nano-scale particulates, raising concern as to their impacts on human health. Inhalation is the most robust route of entry, with nanoparticles (NPs) evading mucociliary clearance and depositing deep into the alveolar region. Yet, impacts from inhaled NPs are evident far outside the lung, particularly on the cardiovascular system and highly vascularized organs like the brain. Peripheral effects are partly explained by the translocation of some NPs from the lung into the circulation; however, other NPs largely confined to the lung are still accompanied by systemic outcomes. Omic research has only just begun to inform on the complex myriad of molecules released from the lung to the blood as byproducts of pulmonary pathology. These indirect mediators are diverse in their molecular make-up and activity in the periphery. The present review examines systemic outcomes attributed to pulmonary NP exposure and what is known about indirect pathological mediators released from the lung into the circulation. Further focus was directed to outcomes in the brain, a highly vascularized region susceptible to acute and longer-term outcomes. Findings here support the need for big-data toxicological studies to understand what drives these health outcomes and better predict, circumvent, and treat the potential health impacts arising from NP exposure scenarios.
Collapse
|
5
|
Mostovenko E, Saunders S, Muldoon PP, Bishop L, Campen MJ, Erdely A, Ottens AK. Carbon Nanotube Exposure Triggers a Cerebral Peptidomic Response: Barrier Compromise, Neuroinflammation, and a Hyperexcited State. Toxicol Sci 2021; 182:107-119. [PMID: 33892499 DOI: 10.1093/toxsci/kfab042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The unique physicochemical properties of carbon nanomaterials and their ever-growing utilization generate a serious concern for occupational risk. Pulmonary exposure to these nanoparticles induces local and systemic inflammation, cardiovascular dysfunction, and even cognitive deficits. Although multiple routes of extrapulmonary toxicity have been proposed, the mechanism for and manner of neurologic effects remain minimally understood. Here, we examine the cerebral spinal fluid (CSF)-derived peptidomic fraction as a reflection of neuropathological alterations induced by pulmonary carbon nanomaterial exposure. Male C57BL/6 mice were exposed to 10 or 40 µg of multiwalled carbon nanotubes (MWCNT) by oropharyngeal aspiration. Serum and CSFs were collected 4 h post exposure. An enriched peptide fraction of both biofluids was analyzed using ion mobility-enabled data-independent mass spectrometry for label-free quantification. MWCNT exposure induced a prominent peptidomic response in the blood and CSF; however, correlation between fluids was limited. Instead, we determined that a MWCNT-induced peptidomic shift occurred specific to the CSF with 292 significant responses found that were not in serum. Identified MWCNT-responsive peptides depicted a mechanism involving aberrant fibrinolysis (fibrinopeptide A), blood-brain barrier permeation (homeobox protein A4), neuroinflammation (transmembrane protein 131L) with reactivity by astrocytes and microglia, and a pro-degradative (signal transducing adapter molecule, phosphoglycerate kinase), antiplastic (AF4/FMR2 family member 1, vacuolar protein sorting-associated protein 18) state with the excitation-inhibition balance shifted to a hyperexcited (microtubule-associated protein 1B) phenotype. Overall, the significant pathologic changes observed were consistent with early neurodegenerative disease and were diagnostically reflected in the CSF peptidome.
Collapse
Affiliation(s)
- Ekaterina Mostovenko
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Samantha Saunders
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Pretal P Muldoon
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | - Lindsey Bishop
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Aaron Erdely
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| |
Collapse
|
6
|
Soddu L, Trinh DN, Dunne E, Kenny D, Bernardini G, Kokalari I, Marucco A, Monopoli MP, Fenoglio I. Identification of physicochemical properties that modulate nanoparticle aggregation in blood. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:550-567. [PMID: 32280579 PMCID: PMC7136551 DOI: 10.3762/bjnano.11.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/28/2020] [Indexed: 05/05/2023]
Abstract
Inorganic materials are receiving significant interest in medicine given their usefulness for therapeutic applications such as targeted drug delivery, active pharmaceutical carriers and medical imaging. However, poor knowledge of the side effects related to their use is an obstacle to clinical translation. For the development of molecular drugs, the concept of safe-by-design has become an efficient pharmaceutical strategy with the aim of reducing costs, which can also accelerate the translation into the market. In the case of materials, the application these approaches is hampered by poor knowledge of how the physical and chemical properties of the material trigger the biological response. Hemocompatibility is a crucial aspect to take into consideration for those materials that are intended for medical applications. The formation of nanoparticle agglomerates can cause severe side effects that may induce occlusion of blood vessels and thrombotic events. Additionally, nanoparticles can interfere with the coagulation cascade causing both pro- and anti-coagulant properties. There is contrasting evidence on how the physicochemical properties of the material modulate these effects. In this work, we developed two sets of tailored carbon and silica nanoparticles with three different diameters in the 100-500 nm range with the purpose of investigating the role of surface curvature and chemistry on platelet aggregation, activation and adhesion. Substantial differences were found in the composition of the protein corona depending on the chemical nature of the nanoparticles, while the surface curvature was found to play a minor role. On the other hand, large carbon nanoparticles (but not small carbon nanoparticles or silica nanoparticles) have a clear tendency to form aggregates both in plasma and blood. This effect was observed both in the presence or absence of platelets and was independent of platelet activation. Overall, the results presented herein suggest the existence of independent modes of action that are differently affected by the physicochemical properties of the materials, potentially leading to vessel occlusion and/or formation of thrombi in vivo.
Collapse
Affiliation(s)
- Ludovica Soddu
- Department of Chemistry, University of Torino, 10125 Torino, Italy
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Duong N Trinh
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Eimear Dunne
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Dermot Kenny
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Giorgia Bernardini
- Department of Chemistry, University of Torino, 10125 Torino, Italy
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Ida Kokalari
- Department of Chemistry, University of Torino, 10125 Torino, Italy
| | - Arianna Marucco
- Department of Chemistry, University of Torino, 10125 Torino, Italy
| | - Marco P Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino, 10125 Torino, Italy
| |
Collapse
|
7
|
Pejhan A, Agah J, Adli A, Mehrabadi S, Raoufinia R, Mokamel A, Abroudi M, Ghalenovi M, Sadeghi Z, Bolghanabadi Z, Bazghandi MS, Hamidnia M, Salimi F, Pajohanfar NS, Dadvand P, Rad A, Miri M. Exposure to air pollution during pregnancy and newborn liver function. CHEMOSPHERE 2019; 226:447-453. [PMID: 30951939 DOI: 10.1016/j.chemosphere.2019.03.185] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 05/25/2023]
Abstract
Exposure to air pollution has been associated with a wide range of adverse health outcomes. However, the available evidence on the impact of air pollution exposures on liver enzymes is still scarce. The aim of the present study was to assess the relationship between exposure to ambient PM1, PM2.5 and PM10 during pregnancy and serum level of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT) in cord blood samples of newborns. Moreover, the association between total street length in different buffers and distance to major roads at the maternal residential address and liver enzymes were investigated. This cross-sectional study was based on data from a sample of 150 newborns, from Sabzevar, Iran. Land use regression models were used to estimate concentrations of air pollutants at home during pregnancy. Multiple linear regression was developed to estimate association of AST, ALT, ALP and GGT with air pollution controlled for relevant covariates. In fully adjusted models, increase in PM1 and PM2.5 as well as PM10 were associated with higher levels of AST, ALT and GGT. Moreover, there was a significant association between total street length in a 100 m buffer at residential address with AST, ALT and GGT. Each meter increase in distance to major roads was associated with -0.017 (95% confidence interval (CI): -0.028, -0.006) decrease in AST. Overall, our findings were supportive for association between PMs exposure during pregnancy and increase in liver enzymes in newborns. Further studies are needed to confirm these findings in other settings and populations.
Collapse
Affiliation(s)
- Akbar Pejhan
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Jila Agah
- Department of Obstetrics & Gynecology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Adli
- Department of Genetic, Sabzevar Branch, Izlami Azad University, Sabzevar, Iran
| | - Saide Mehrabadi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ramin Raoufinia
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Adel Mokamel
- Department of Environmental Health, School of Health, Khalkhal University of Medical Sciences, KhalKhal, Iran
| | - Mina Abroudi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mina Ghalenovi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Zahra Sadeghi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Zahra Bolghanabadi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Malihe Sadat Bazghandi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Masoud Hamidnia
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fatemeh Salimi
- Department of Occupational Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nasim Sadat Pajohanfar
- Department of Midwifery, School of Nursing, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Abolfazl Rad
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Miri
- Cellular and Molecular Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
8
|
Mostovenko E, Young T, Muldoon PP, Bishop L, Canal CG, Vucetic A, Zeidler-Erdely PC, Erdely A, Campen MJ, Ottens AK. Nanoparticle exposure driven circulating bioactive peptidome causes systemic inflammation and vascular dysfunction. Part Fibre Toxicol 2019; 16:20. [PMID: 31142334 PMCID: PMC6542040 DOI: 10.1186/s12989-019-0304-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/10/2019] [Indexed: 12/22/2022] Open
Abstract
Background The mechanisms driving systemic effects consequent pulmonary nanoparticle exposure remain unclear. Recent work has established the existence of an indirect process by which factors released from the lung into the circulation promote systemic inflammation and cellular dysfunction, particularly on the vasculature. However, the composition of circulating contributing factors and how they are produced remains unknown. Evidence suggests matrix protease involvement; thus, here we used a well-characterized multi-walled carbon nanotube (MWCNT) oropharyngeal aspiration model with known vascular effects to assess the distinct contribution of nanoparticle-induced peptide fragments in driving systemic pathobiology. Results Data-independent mass spectrometry enabled the unbiased quantitative characterization of 841 significant MWCNT-responses within an enriched peptide fraction, with 567 of these factors demonstrating significant correlation across animal-paired bronchoalveolar lavage and serum biofluids. A database search curated for known matrix protease substrates and predicted signaling motifs enabled identification of 73 MWCNT-responsive peptides, which were significantly associated with an abnormal cardiovascular phenotype, extracellular matrix organization, immune-inflammatory processes, cell receptor signaling, and a MWCNT-altered serum exosome population. Production of a diverse peptidomic response was supported by a wide number of upregulated matrix and lysosomal proteases in the lung after MWCNT exposure. The peptide fraction was then found bioactive, producing endothelial cell inflammation and vascular dysfunction ex vivo akin to that induced with whole serum. Results implicate receptor ligand functionality in driving systemic effects, exemplified by an identified 59-mer thrombospondin fragment, replete with CD36 modulatory motifs, that when synthesized produced an anti-angiogenic response in vitro matching that of the peptide fraction. Other identified peptides point to integrin ligand functionality and more broadly to a diversity of receptor-mediated bioactivity induced by the peptidomic response to nanoparticle exposure. Conclusion The present study demonstrates that pulmonary-sequestered nanoparticles, such as multi-walled carbon nanotubes, acutely upregulate a diverse profile of matrix proteases, and induce a complex peptidomic response across lung and blood compartments. The serum peptide fraction, having cell-surface receptor ligand properties, conveys peripheral bioactivity in promoting endothelial cell inflammation, vasodilatory dysfunction and inhibiting angiogenesis. Results here establish peptide fragments as indirect, non-cytokine mediators and putative biomarkers of systemic health outcomes from nanoparticle exposure.
Collapse
Affiliation(s)
- Ekaterina Mostovenko
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Box 980709, Richmond, VA, 23298-0709, USA
| | - Tamara Young
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Pretal P Muldoon
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Box 980709, Richmond, VA, 23298-0709, USA
| | - Lindsey Bishop
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Christopher G Canal
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Box 980709, Richmond, VA, 23298-0709, USA
| | - Aleksandar Vucetic
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Box 980709, Richmond, VA, 23298-0709, USA
| | - Patti C Zeidler-Erdely
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Aaron Erdely
- Pathology and Physiology Research Branch, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Andrew K Ottens
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Box 980709, Richmond, VA, 23298-0709, USA.
| |
Collapse
|
9
|
Bai L, Weichenthal S, Kwong JC, Burnett RT, Hatzopoulou M, Jerrett M, van Donkelaar A, Martin RV, Van Ryswyk K, Lu H, Kopp A, Chen H. Associations of Long-Term Exposure to Ultrafine Particles and Nitrogen Dioxide With Increased Incidence of Congestive Heart Failure and Acute Myocardial Infarction. Am J Epidemiol 2019; 188:151-159. [PMID: 30165598 DOI: 10.1093/aje/kwy194] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 08/21/2018] [Indexed: 12/27/2022] Open
Abstract
Although long-term exposure to traffic-related air pollutants such as nitrogen dioxide has been linked to cardiovascular disease (CVD) mortality, little is known about the association between ultrafine particles (UFPs), defined as particles less than or equal to 0.1 μm in diameter, and incidence of major CVD events. We conducted a population-based cohort study to assess the associations of chronic exposure to UFPs and nitrogen dioxide with incident congestive heart failure (CHF) and acute myocardial infarction. Our study population comprised all long-term Canadian residents aged 30-100 years who lived in Toronto, Ontario, Canada, during the years 1996-2012. We estimated annual concentrations of UFPs and nitrogen dioxide by means of land-use regression models and assigned these estimates to participants' postal-code addresses in each year during the follow-up period. We estimated hazard ratios for the associations of UFPs and nitrogen dioxide with incident CVD using random-effects Cox proportional hazards models. We controlled for smoking and obesity using an indirect adjustment method. Our cohorts comprised approximately 1.1 million individuals at baseline. In single-pollutant models, each interquartile-range increase in UFP exposure was associated with increased incidence of CHF (hazard ratio for an interquartile-range increase (HRIQR) = 1.03, 95% confidence interval (CI): 1.02, 1.05) and acute myocardial infarction (HRIQR = 1.05, 95% CI: 1.02, 1.07). Adjustment for fine particles and nitrogen dioxide did not materially change these estimated associations. Exposure to nitrogen dioxide was also independently associated with higher CHF incidence (HRIQR = 1.04, 95% CI: 1.03, 1.06).
Collapse
Affiliation(s)
- Li Bai
- Primary Care and Population Health Research Program, Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
| | - Scott Weichenthal
- Air Health Science Division, Health Canada, Ottawa, Ontario, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jeffrey C Kwong
- Primary Care and Population Health Research Program, Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
- Department of Applied Immunization Research, Public Health Ontario, Toronto, Ontario, Canada
- Divisions of Clinical Public Health and Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Family and Community Medicine, Faculty of Medicine, University of Toronto and University Health Network, Toronto, Ontario, Canada
| | | | - Marianne Hatzopoulou
- Department of Civil Engineering and Applied Mechanics, Faculty of Engineering, McGill University, Montreal, Quebec, Canada
| | - Michael Jerrett
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Faculty of Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Randall V Martin
- Department of Physics and Atmospheric Science, Faculty of Science, Dalhousie University, Halifax, Nova Scotia, Canada
- Smithsonian Astrophysical Observatory, Harvard-Smithsonian Centre for Astrophysics, Cambridge, Massachusetts
| | - Keith Van Ryswyk
- Air Health Science Division, Health Canada, Ottawa, Ontario, Canada
| | - Hong Lu
- Primary Care and Population Health Research Program, Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
| | - Alexander Kopp
- Primary Care and Population Health Research Program, Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
| | - Hong Chen
- Primary Care and Population Health Research Program, Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Environmental and Occupational Health, Public Health Ontario, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Ganguly K, Ettehadieh D, Upadhyay S, Takenaka S, Adler T, Karg E, Krombach F, Kreyling WG, Schulz H, Schmid O, Stoeger T. Early pulmonary response is critical for extra-pulmonary carbon nanoparticle mediated effects: comparison of inhalation versus intra-arterial infusion exposures in mice. Part Fibre Toxicol 2017. [PMID: 28637465 PMCID: PMC5480131 DOI: 10.1186/s12989-017-0200-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background The death toll associated with inhaled ambient particulate matter (PM) is attributed mainly to cardio-vascular rather than pulmonary effects. However, it is unclear whether the key event for cardiovascular impairment is particle translocation from lung to circulation (direct effect) or indirect effects due to pulmonary particle-cell interactions. In this work, we addressed this issue by exposing healthy mice via inhalation and intra-arterial infusion (IAI) to carbon nanoparticles (CNP) as surrogate for soot, a major constituent of (ultrafine) urban PM. Methods Equivalent surface area CNP doses in the blood (30mm2 per animal) were applied by IAI or inhalation (lung-deposited dose 10,000mm2; accounting for 0.3% of lung-to-blood CNP translocation). Mice were analyzed for changes in hematology and molecular markers of endothelial/epithelial dysfunction, pro-inflammatory reactions, oxidative stress, and coagulation in lungs and extra-pulmonary organs after CNP inhalation (4 h and 24 h) and CNP infusion (4 h). For methodological reasons, we used two different CNP types (spark-discharge and Printex90), with very similar physicochemical properties [≥98 and ≥95% elemental carbon; 10 and 14 nm primary particle diameter; and 800 and 300 m2/g specific surface area] for inhalation and IAI respectively. Results Mild pulmonary inflammatory responses and significant systemic effects were observed following 4 h and 24 h CNP inhalation. Increased retention of activated leukocytes, secondary thrombocytosis, and pro-inflammatory responses in secondary organs were detected following 4 h and 24 h of CNP inhalation only. Interestingly, among the investigated extra-pulmonary tissues (i.e. aorta, heart, and liver); aorta revealed as the most susceptible extra-pulmonary target following inhalation exposure. Bypassing the lungs by IAI however did not induce any extra-pulmonary effects at 4 h as compared to inhalation. Conclusions Our findings indicate that extra-pulmonary effects due to CNP inhalation are dominated by indirect effects (particle-cell interactions in the lung) rather than direct effects (translocated CNPs) within the first hours after exposure. Hence, CNP translocation may not be the key event inducing early cardiovascular impairment following air pollution episodes. The considerable response detected in the aorta after CNP inhalation warrants more emphasis on this tissue in future studies. Electronic supplementary material The online version of this article (doi:10.1186/s12989-017-0200-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Koustav Ganguly
- Unit of Lung and Airway Research, Institute of Environmental Medicine (IMM), Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Unit of Work Environment Toxicology, Institute of Environmental Medicine (IMM), Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Dariusch Ettehadieh
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Swapna Upadhyay
- Unit of Lung and Airway Research, Institute of Environmental Medicine (IMM), Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Shinji Takenaka
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Erwin Karg
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany.,Cooperationgroup Comprehensive Molecular Analytics (CMA), Joint Mass Spectrometry Centre (JMSC), Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität, D81377, Munich, Germany
| | - Wolfgang G Kreyling
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Holger Schulz
- Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, D85764, Munich, Germany
| | - Otmar Schmid
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany
| | - Tobias Stoeger
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, D85764, Neuherberg, Germany.
| |
Collapse
|
11
|
Sattler C, Moritz F, Chen S, Steer B, Kutschke D, Irmler M, Beckers J, Eickelberg O, Schmitt-Kopplin P, Adler H, Stoeger T. Nanoparticle exposure reactivates latent herpesvirus and restores a signature of acute infection. Part Fibre Toxicol 2017; 14:2. [PMID: 28069010 PMCID: PMC5223553 DOI: 10.1186/s12989-016-0181-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/15/2016] [Indexed: 02/04/2023] Open
Abstract
Background Inhalation of environmental (nano) particles (NP) as well as persistent herpesvirus-infection are potentially associated with chronic lung disease and as both are omnipresent in human society a coincidence of these two factors is highly likely. We hypothesized that NP-exposure of persistently herpesvirus-infected cells as a second hit might disrupt immune control of viral latency, provoke reactivation of latent virus and eventually lead to an inflammatory response and tissue damage. Results To test this hypothesis, we applied different NP to cells or mice latently infected with murine gammaherpesvirus 68 (MHV-68) which provides a small animal model for the study of gammaherpesvirus-pathogenesis in vitro and in vivo. In vitro, NP-exposure induced expression of the typically lytic viral gene ORF50 and production of lytic virus. In vivo, lytic viral proteins in the lung increased after intratracheal instillation with NP and elevated expression of the viral gene ORF50 could be detected in cells from bronchoalveolar lavage. Gene expression and metabolome analysis of whole lung tissue revealed patterns with striking similarities to acute infection. Likewise, NP-exposure of human cells latently infected with Epstein-Barr-Virus also induced virus production. Conclusions Our results indicate that NP-exposure of persistently herpesvirus-infected cells – murine or human – restores molecular signatures found in acute virus infection, boosts production of lytic viral proteins, and induces an inflammatory response in the lung – a combination which might finally result in tissue damage and pathological alterations. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0181-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine Sattler
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Franco Moritz
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Research Unit BioGeoChemistry, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Shanze Chen
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Beatrix Steer
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Marchioninistrasse 25, D-81377, Munich, Germany.,University Hospital Grosshadern, Ludwig-Maximilians-University, D-81377, Munich, Germany.,Comprehensive Pneumology Center, Member of the German Center of Lung Research (DZL), D-81377, Munich, Germany
| | - David Kutschke
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Martin Irmler
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Johannes Beckers
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Experimental Genetics, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.,Technische Universität München, Chair of Experimental Genetics, D-85354, Freising, Germany
| | - Oliver Eickelberg
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Research Unit BioGeoChemistry, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | - Heiko Adler
- Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Marchioninistrasse 25, D-81377, Munich, Germany. .,University Hospital Grosshadern, Ludwig-Maximilians-University, D-81377, Munich, Germany. .,Comprehensive Pneumology Center, Member of the German Center of Lung Research (DZL), D-81377, Munich, Germany.
| | - Tobias Stoeger
- Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany.
| |
Collapse
|
12
|
Johnson DR. Nanometer-sized emissions from municipal waste incinerators: A qualitative risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2016; 320:67-79. [PMID: 27513371 DOI: 10.1016/j.jhazmat.2016.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
Municipal waste incinerators (MWI) are beneficial alternatives to landfills for waste management. A recent constituent of concern in emissions from these facilities is incidental nanometer-sized particles (INPMWI), i.e., particles smaller than 1 micrometer in size that may deposit in the deepest parts of the lungs, cross into the bloodstream, and affect different regions of the body. With limited data, the public may fear INPMWI due to uncertainty, which may affect public acceptance, regulatory permitting, and the increased lowering of air quality standards. Despite limited data, a qualitative risk assessment paradigm can be applied to determine the relative risk due to INPMWI emissions. This review compiles existing data on nanometer-sized particle generation by MWIs, emissions control technologies used at MWIs, emission releases into the atmosphere, human population exposure, and adverse health effects of nanometer-sized particles to generate a qualitative risk assessment and identify data gaps. The qualitative risk assessment conservatively concludes that INPMWI pose a low to moderate risk to individuals, primarily due to the lack of relevant toxicological data on INPMWI mixtures in ambient particulate matter.
Collapse
Affiliation(s)
- David R Johnson
- GHD, 1755 Wittington Place, Suite 500, Dallas, TX 75234, USA.
| |
Collapse
|
13
|
Yu X, Hong F, Zhang YQ. Bio-effect of nanoparticles in the cardiovascular system. J Biomed Mater Res A 2016; 104:2881-97. [PMID: 27301683 DOI: 10.1002/jbm.a.35804] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 12/21/2022]
Abstract
Nanoparticles (NPs; < 100 nm) are increasingly being applied in various fields due to their unique physicochemical properties. The increase in human exposure to NPs has raised concerns regarding their health and safety profiles. The potential correlation between NP exposure and several cardiovascular (CV) events has been demonstrated. The aim of this review is to provide a comprehensive evaluation of the current knowledge regarding the bio-toxic impacts of titanium oxide, silver, silica, carbon black, carbon nanotube, and zinc oxide NPs exposure on the CV system in terms of in vivo and in vitro experiments, which is not fully understood presently. Moreover, the potential toxic mechanisms of NPs in the CV system that are still being questioned are elaborately discussed, and the underlying capacity of NPs used in medicine for CV events are summarized. It will be an important instrument to extrapolate relevant data for human CV risk evaluation and management. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2881-2897, 2016.
Collapse
Affiliation(s)
- Xiaohong Yu
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou, 215123, People's Republic of China
| | - Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China. .,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, 223300, China.
| | - Yu-Qing Zhang
- Department of Applied Biology, School of Basic Medical and Biological Sciences, Soochow University, RM702-2303, Renai Road No. 199, Dushuhu Higher Edu. Town, Suzhou, 215123, People's Republic of China
| |
Collapse
|
14
|
Chen S, Yin R, Mutze K, Yu Y, Takenaka S, Königshoff M, Stoeger T. No involvement of alveolar macrophages in the initiation of carbon nanoparticle induced acute lung inflammation in mice. Part Fibre Toxicol 2016; 13:33. [PMID: 27328634 PMCID: PMC4915176 DOI: 10.1186/s12989-016-0144-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/10/2016] [Indexed: 12/25/2022] Open
Abstract
Background Carbonaceous nanoparticles (CNP) represent a major constituent of urban particulate air pollution, and inhalation of high CNP levels has been described to trigger a pro-inflammatory response of the lung. While several studies identified specific particle characteristics driving respiratory toxicity of low-solubility and low-toxicity particles such as CNP, the major lung cell type, which initiates and drives that response, remains still uncertain. Since alveolar macrophages (AM) are known to effectively phagocytose inhaled particles and play a crucial role for the initiation of pulmonary inflammation caused by invading microbes, we aimed to determine their role for sterile stimuli such as CNP by profiling the primary alveolar cell compartments of the lung. We exposed C57BL/6 mice to 20 μg CNP by intratracheal instillation and comprehensively investigated the expression of the underlying mediators during a time span of 3 to 72 h in three different lung cell populations: CD45- (negative) structural cells, CD45+ (positive) leukocytes, and by BAL recovered cells. Results Bronchoalveolar lavage (BAL) analysis revealed an acute inflammatory response characterized by the most prominent culmination of neutrophil granulocytes from 12 to 24 h after instillation, which declined to basal levels by day 7. As early as 3 h after CNP exposure 50 % of the AM revealed particle laden. BAL concentrations and lung gene expression profiles of TNFα, and the neutrophil chemoattractants CXCL1,-2 and-5 preceded the neutrophil recruitment and showed highest levels after 12 h of CNP exposure, pointing to a significant activation of the inflammation-evoking lung cells at this point of time. AM, isolated from lungs 3 to 12 h after CNP instillation, however, did not show a pro-inflammatory signature. On the contrary, gene expression analysis of different lung cell populations isolated 12 h after CNP instillation revealed CD45-, mainly representing alveolar epithelial type II (ATII) cells as major producer of inflammatory CXCL cytokines. Particularly by CD45- cells expressed Cxcl5 proved to be the most abundant chemokine, being 12 h after CNP exposure 24 (±11) fold induced. Conclusion Our data suggests that AM are noninvolved in the initiation of the inflammatory response. ATII cells, which induced highest CXCL levels early on, might in contrast be the driver of acute neutrophilic inflammation upon pulmonary CNP exposure. Electronic supplementary material The online version of this article (doi:10.1186/s12989-016-0144-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shanze Chen
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Pathophysiology, West China School of Preclinical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Renfu Yin
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Kathrin Mutze
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Youjia Yu
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Shinji Takenaka
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Melanie Königshoff
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Tobias Stoeger
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
15
|
Toxicological Considerations, Toxicity Assessment, and Risk Management of Inhaled Nanoparticles. Int J Mol Sci 2016; 17:ijms17060929. [PMID: 27314324 PMCID: PMC4926462 DOI: 10.3390/ijms17060929] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 01/18/2023] Open
Abstract
Novel engineered nanoparticles (NPs), nanomaterial (NM) products and composites, are continually emerging worldwide. Many potential benefits are expected from their commercial applications; however, these benefits should always be balanced against risks. Potential toxic effects of NM exposure have been highlighted, but, as there is a lack of understanding about potential interactions of nanomaterials (NMs) with biological systems, these side effects are often ignored. NPs are able to translocate to the bloodstream, cross body membrane barriers effectively, and affect organs and tissues at cellular and molecular levels. NPs may pass the blood–brain barrier (BBB) and gain access to the brain. The interactions of NPs with biological milieu and resulted toxic effects are significantly associated with their small size distribution, large surface area to mass ratio (SA/MR), and surface characteristics. NMs are able to cross tissue and cell membranes, enter into cellular compartments, and cause cellular injury as well as toxicity. The extremely large SA/MR of NPs is also available to undergo reactions. An increased surface area of the identical chemical will increase surface reactivity, adsorption properties, and potential toxicity. This review explores biological pathways of NPs, their toxic potential, and underlying mechanisms responsible for such toxic effects. The necessity of toxicological risk assessment to human health should be emphasised as an integral part of NM design and manufacture.
Collapse
|
16
|
Tabor CM, Shaw CA, Robertson S, Miller MR, Duffin R, Donaldson K, Newby DE, Hadoke PWF. Platelet activation independent of pulmonary inflammation contributes to diesel exhaust particulate-induced promotion of arterial thrombosis. Part Fibre Toxicol 2016; 13:6. [PMID: 26857113 PMCID: PMC4746929 DOI: 10.1186/s12989-016-0116-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/18/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Accelerated thrombus formation induced by exposure to combustion-derived air pollution has been linked to alterations in endogenous fibrinolysis and platelet activation in response to pulmonary and systemic inflammation. We hypothesised that mechanisms independent of inflammation contribute to accelerated thrombus formation following exposure to diesel exhaust particles (DEP). METHODS Thrombosis in rats was assessed 2, 6 and 24 h after administration of DEP, carbon black (CB; control carbon nanoparticle), DQ12 quartz microparticles (to induce pulmonary inflammation) or saline (vehicle) by either intra-tracheal instillation (0.5 mg, except Quartz; 0.125 mg) or intravenous injection (0.5 mg/kg). Thrombogenicity was assessed by carotid artery occlusion, fibrinolytic variables and platelet-monocyte aggregates. Measures of inflammation were determined in plasma and bronchoalveolar lavage fluid. Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI)-1 were measured following direct in vitro exposure of human umbilical vein endothelial cells (HUVECs) to DEP (10-150 μg/mL). RESULTS Instillation of DEP reduced the time to thrombotic occlusion in vivo, coinciding with the peak of DEP-induced pulmonary inflammation (6 h). CB and DQ12 produced greater inflammation than DEP but did not alter time to thrombotic occlusion. Intravenous DEP produced an earlier (2 h) acceleration of thrombosis (as did CB) without pulmonary or systemic inflammation. DEP inhibited t-PA and PAI-1 release from HUVECs, and reduced the t-PA/PAI-1 ratio in vivo; similar effects in vivo were seen with CB and DQ12. DEP, but not CB or DQ12, increased platelet-monocyte aggregates. CONCLUSION DEP accelerates arterial thrombus formation through increased platelet activation. This effect is dissociated from pulmonary and systemic inflammation and from impaired fibrinolytic function.
Collapse
Affiliation(s)
- Caroline M Tabor
- Univeristy/ BHF Centre for Cardiovascular Sciences, Edinburgh, EH16 4TJ, UK.
| | - Catherine A Shaw
- Univeristy/ BHF Centre for Cardiovascular Sciences, Edinburgh, EH16 4TJ, UK.
| | - Sarah Robertson
- Univeristy/ BHF Centre for Cardiovascular Sciences, Edinburgh, EH16 4TJ, UK.
| | - Mark R Miller
- Univeristy/ BHF Centre for Cardiovascular Sciences, Edinburgh, EH16 4TJ, UK.
| | - Rodger Duffin
- Centre for Inflammation Research, The Queen's Medical Research Institute, Universiyt of Edinburgh, Edinburgh, EH16 4TJ, UK.
| | - Ken Donaldson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Universiyt of Edinburgh, Edinburgh, EH16 4TJ, UK.
| | - David E Newby
- Univeristy/ BHF Centre for Cardiovascular Sciences, Edinburgh, EH16 4TJ, UK.
| | - Patrick W F Hadoke
- Univeristy/ BHF Centre for Cardiovascular Sciences, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
17
|
Eastlake A, Zumwalde R, Geraci C. Can Control Banding be Useful for the Safe Handling of Nanomaterials? A Systematic Review. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2016; 18:169. [PMID: 27471426 PMCID: PMC4961048 DOI: 10.1007/s11051-016-3476-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
OBJECTIVES Control banding (CB) is a risk management strategy that has been used to identify and recommend exposure control measures to potentially hazardous substances for which toxicological information is limited. The application of CB and level of expertise required for implementation and management can differ depending on knowledge of the hazard potential, the likelihood of exposure, and the ability to verify the effectiveness of exposure control measures. A number of different strategies have been proposed for using CB in workplaces where exposure to engineered nanomaterials (ENMs) can occur. However, it is unclear if the use of CB can effectively reduce worker exposure to nanomaterials. A systematic review of studies was conducted to answer the question "can control banding be useful to ensure adequate controls for the safe handling of nanomaterials." METHODS A variety of databases were searched to identify relevant studies pertaining to CB. Database search terms included 'control', 'hazard', 'exposure' and 'risk' banding as well as the use of these terms in the context of nanotechnology or nanomaterials. Other potentially relevant studies were identified during the review of articles obtained in the systematic review process. Identification of studies and the extraction of data were independently conducted by the reviewers. Quality of the studies was assessed using the Methodological Index for Non-Randomized Studies (MINORS). The quality of the evidence was evaluated using Grading of Recommendations Assessment, Development and Evaluation (GRADE). RESULTS A total of 235 records were identified in the database search in which 70 records were determined to be eligible for full-text review. Only two studies were identified that met the inclusion criteria. These studies evaluated the application of the CB Nanotool in workplaces where ENMs were being handled. A total of 32 different nanomaterial handling activities were evaluated in these studies by comparing the recommended exposure controls using CB to existing exposure controls previously recommended by an industrial hygienist. It was determined that the selection of exposure controls using CB were consistent with those recommended by an industrial hygienist for 19 out of 32 (59.4%) job activities. A higher level of exposure control was recommended for nine out of 32 (28.1%) job activities using CB while four out of 32 (12.5%) job activities had in place exposure controls that were more stringent than those recommended using CB. After evaluation using GRADE, evidence indicated that the use of CB Nanotool can recommend exposure controls for many ENM job activities that would be consistent with those recommended by an experienced industrial hygienist. CONCLUSION The use of CB for reducing exposures to ENMs has the potential to be an effective risk management strategy when information is limited on the health risk to the nanomaterial and/or there is an absence of an occupational exposure limit (OEL). However, there remains a lack of evidence to conclude that the use of CB can provide adequate exposure control in all work environments. Additional validation work is needed to provide more data to support the use of CB for the safe handling of ENMs.
Collapse
Affiliation(s)
- Adrienne Eastlake
- Nanotechnology Research Center, National Institute for Occupational Safety and Health
| | | | - Charles Geraci
- Nanotechnology Research Center, National Institute for Occupational Safety and Health
| |
Collapse
|
18
|
Clark J, Gregory CC, Matthews IP, Hoogendoorn B. The biological effects upon the cardiovascular system consequent to exposure to particulates of less than 500 nm in size. Biomarkers 2015; 21:1-47. [PMID: 26643755 DOI: 10.3109/1354750x.2015.1118540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Ultrafine particulate matter contribution to cardiovascular disease is not known and not regulated. PM up to 500 nm are abundant in urban air and alveolar deposition is significant. OBJECTIVE Effects beyond the alveolar barrier within the body or in vitro tissues exposed to particles <500 nm. METHODS AND RESULTS DATABASES MEDLINE; Ovid-MEDLINE PREM; Web of Science; PubMed (SciGlobe). 127 articles. Results in tables: "subject type exposed", "exposure type", "technique". CONCLUSION Heart rate, vasoactivity, atherosclerotic advancement, oxidative stress, coagulability, inflammatory changes are affected. Production of reactive oxygen species is a useful target to limit outcomes associated with UFP exposure.
Collapse
Affiliation(s)
- James Clark
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Clive C Gregory
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Ian P Matthews
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| | - Bastiaan Hoogendoorn
- a Institute of Primary Care and Public Health, School of Medicine, Cardiff University , Cardiff , UK
| |
Collapse
|
19
|
Fent J, Bihari P, Vippola M, Sarlin E, Lakatos S. In vitro platelet activation, aggregation and platelet–granulocyte complex formation induced by surface modified single-walled carbon nanotubes. Toxicol In Vitro 2015; 29:1132-9. [DOI: 10.1016/j.tiv.2015.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 01/16/2023]
|
20
|
Kermanizadeh A, Balharry D, Wallin H, Loft S, Møller P. Nanomaterial translocation–the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs–a review. Crit Rev Toxicol 2015; 45:837-72. [DOI: 10.3109/10408444.2015.1058747] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Haberl N, Hirn S, Holzer M, Zuchtriegel G, Rehberg M, Krombach F. Effects of acute systemic administration of TiO2, ZnO, SiO2, and Ag nanoparticles on hemodynamics, hemostasis and leukocyte recruitment. Nanotoxicology 2015; 9:963-71. [DOI: 10.3109/17435390.2014.992815] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Upadhyay S, Stoeger T, George L, Schladweiler MC, Kodavanti U, Ganguly K, Schulz H. Ultrafine carbon particle mediated cardiovascular impairment of aged spontaneously hypertensive rats. Part Fibre Toxicol 2014; 11:36. [PMID: 25442699 PMCID: PMC4410795 DOI: 10.1186/s12989-014-0036-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/29/2014] [Indexed: 01/09/2023] Open
Abstract
Background Studies provide compelling evidences for particulate matter (PM) associated cardiovascular health effects. Elderly individuals, particularly those with preexisting conditions like hypertension are regarded to be vulnerable. Experimental data are warranted to reveal the molecular pathomechanism of PM related cardiovascular impairments among aged/predisposed individuals. Thus we investigated the cardiovascular effects of ultrafine carbon particles (UfCP) on aged (12–13 months) spontaneously hypertensive rats (SHRs) and compared the findings with our pervious study on adult SHRs (6–7 months) to identify age related predisposition events in cardiovascular compromised elderly individuals. Methods Aged SHRs were inhalation exposed to UfCP for 24 h (~180 μg/m3) followed by radio-telemetric assessment for blood pressure (BP) and heart rate (HR). Bronchoalveolar lavage (BAL) fluid cell differentials, interleukin 6 (IL-6) and other proinflammatory cytokines; serum C-reactive protein (CRP) and haptoglobin (HPT); and plasma fibrinogen were measured. Transcript levels of hemeoxygenase 1 (HO-1), endothelin 1 (ET1), endothelin receptors A, B (ETA, ETB), tissue factor (TF), and plasminogen activator inhibitor-1 (PAI-1) were measured in the lung and heart to assess oxidative stress, endothelial dysfunction and coagulation cascade. Result UfCP exposed aged SHRs exhibited increased BP (4.4%) and HR (6.3%) on 1st recovery day paralleled by a 58% increase of neutrophils and 25% increase of IL-6 in the BAL fluid. Simultaneously higher CRP, HPT and fibrinogen levels in exposed SHRs indicate systemic inflammation. HO-1, ET1, ET-A, ET-B, TF and PAI-1 were induced by 1.5-2.0 folds in lungs of aged SHRs on 1st recovery day. However, in UfCP exposed adult SHRs these markers were up-regulated (2.5-6 fold) on 3rd recovery day in lung without detectable pulmonary/systemic inflammation. Conclusions The UfCP induced pulmonary and systemic inflammation in aged SHRs is associated with oxidative stress, endothelial dysfunction and disturbed coagulatory hemostasis. UfCP exposure increased BP and HR in aged SHRs rats which was associated with lung inflammation, and increased expression of inflammatory, vasoconstriction and coagulation markers as well as systemic changes in biomarkers of thrombosis in aged SHRs. Our study provides further evidence for potential molecular mechanisms explaining the increased risk of particle mediated cardiac health effects in cardiovascular compromised elderly individuals.
Collapse
Affiliation(s)
- Swapna Upadhyay
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. .,Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, India.
| | - Tobias Stoeger
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany.
| | - Leema George
- SRM Research Institute, SRM University, Chennai, 603203, India.
| | - Mette C Schladweiler
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, NC, 27711, USA.
| | - Urmila Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, NC, 27711, USA.
| | - Koustav Ganguly
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. .,SRM Research Institute, SRM University, Chennai, 603203, India.
| | - Holger Schulz
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany. .,Institute of Epidemiology I, Helmholtz Zentrum München, German Research Center for Environmental Health, D-85764, Neuherberg/München, Germany.
| |
Collapse
|
23
|
Shvedova AA, Kisin ER, Murray AR, Mouithys-Mickalad A, Stadler K, Mason RP, Kadiiska M. ESR evidence for in vivo formation of free radicals in tissue of mice exposed to single-walled carbon nanotubes. Free Radic Biol Med 2014; 73:154-65. [PMID: 24863695 DOI: 10.1016/j.freeradbiomed.2014.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/28/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Abstract
Nanomaterials are being utilized in an increasing variety of manufactured goods. Because of their unique physicochemical, electrical, mechanical, and thermal properties, single-walled carbon nanotubes (SWCNTs) have found numerous applications in the electronics, aerospace, chemical, polymer, and pharmaceutical industries. Previously, we have reported that pharyngeal exposure of C57BL/6 mice to SWCNTs caused dose-dependent formation of granulomatous bronchial interstitial pneumonia, fibrosis, oxidative stress, acute inflammatory/cytokine responses, and a decrease in pulmonary function. In the current study, we used electron spin resonance (ESR) to directly assess whether exposure to respirable SWCNTs caused formation of free radicals in the lungs and in two distant organs, the heart and liver. Here we report that exposure to partially purified SWCNTs (HiPco technique, Carbon Nanotechnologies, Inc., Houston, TX, USA) resulted in the augmentation of oxidative stress as evidenced by ESR detection of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone spin-trapped carbon-centered lipid-derived radicals recorded shortly after the treatment. This was accompanied by a significant depletion of antioxidants and elevated biomarkers of inflammation presented by recruitment of inflammatory cells and an increase in proinflammatory cytokines in the lungs, as well as development of multifocal granulomatous pneumonia, interstitial fibrosis, and suppressed pulmonary function. Moreover, pulmonary exposure to SWCNTs also caused the formation of carbon-centered lipid-derived radicals in the heart and liver at later time points (day 7 postexposure). Additionally, SWCNTs induced a significant accumulation of oxidatively modified proteins, increase in lipid peroxidation products, depletion of antioxidants, and inflammatory response in both the heart and the liver. Furthermore, the iron chelator deferoxamine noticeably reduced lung inflammation and oxidative stress, indicating an important role for metal-catalyzed species in lung injury caused by SWCNTs. Overall, we provide direct evidence that lipid-derived free radicals are a critical contributor to tissue damage induced by SWCNTs not only in the lungs, but also in distant organs.
Collapse
Affiliation(s)
- A A Shvedova
- Pathology and Physiology Research Branch, HELD, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA; Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA.
| | - E R Kisin
- Pathology and Physiology Research Branch, HELD, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - A R Murray
- Pathology and Physiology Research Branch, HELD, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA; Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, USA
| | | | - K Stadler
- National Institute of Environmental Health Science, Research Triangle Park, NC 27709, USA
| | - R P Mason
- National Institute of Environmental Health Science, Research Triangle Park, NC 27709, USA
| | - M Kadiiska
- National Institute of Environmental Health Science, Research Triangle Park, NC 27709, USA
| |
Collapse
|
24
|
Kim JW, Park S, Lim CW, Lee K, Kim B. The role of air pollutants in initiating liver disease. Toxicol Res 2014; 30:65-70. [PMID: 25071914 PMCID: PMC4112066 DOI: 10.5487/tr.2014.30.2.065] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 06/28/2014] [Indexed: 12/16/2022] Open
Abstract
Recent episodes of severe air pollution in eastern Asia have been reported in the scientific literature and news media. Therefore, there is growing concern about the systemic effects of air pollution on human health. Along with the other well-known harmful effects of air pollution, recently, several animal models have provided strong evidence that air pollutants can induce liver toxicity and act to accelerate liver inflammation and steatosis. This review briefly describes examples where exposure to air pollutants was involved in liver toxicity, focusing on how particulate matter (PM) or carbon black (CB) may be translocated from lung to liver and what liver diseases are closely associated with these air pollutants.
Collapse
Affiliation(s)
- Jong Won Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - Surim Park
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - Chae Woong Lim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| | - Kyuhong Lee
- Inhalation Toxicology Research Center, Korea Institute of Toxicology, Jeonbuk, Korea ; Human and Environment Toxicology, University of Science and Technology, Daejeon, Korea
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Pathology (BK21 Plus Program), College of Veterinary Medicine, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
25
|
Holzer M, Bihari P, Praetner M, Uhl B, Reichel C, Fent J, Vippola M, Lakatos S, Krombach F. Carbon-based nanomaterials accelerate arteriolar thrombus formation in the murine microcirculation independently of their shape. J Appl Toxicol 2014; 34:1167-76. [PMID: 24531921 DOI: 10.1002/jat.2996] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 01/06/2014] [Accepted: 01/16/2014] [Indexed: 01/13/2023]
Abstract
Although carbon-based nanomaterials (CBNs) have been shown to exert prothrombotic effects in microvessels, it is poorly understood whether CBNs also have the potential to interfere with the process of leukocyte-endothelial cell interactions and whether the shape of CBNs plays a role in these processes. Thus, the aim of this study was to compare the acute effects of two differently shaped CBNs, fiber-shaped single-walled carbon nanotubes (SWCNT) and spherical ultrafine carbon black (CB), on thrombus formation as well as on leukocyte-endothelial cell interactions and leukocyte transmigration in the murine microcirculation upon systemic administration in vivo. Systemic administration of both SWCNT and CB accelerated arteriolar thrombus formation at a dose of 1 mg kg(-1) body weight, whereas SWCNT exerted a prothrombotic effect also at a lower dose (0.1 mg kg(-1) body weight). In vitro, both CBNs induced P-selectin expression on human platelets and formation of platelet-granulocyte complexes. In contrast, injection of fiber-shaped SWCNT or of spherical CB did not induce leukocyte-endothelial cell interactions or leukocyte transmigration. In vitro, both CBNs slightly increased the expression of activation markers on human monocytes and granulocytes. These findings suggest that systemic administration of CBNs accelerates arteriolar thrombus formation independently of the CBNs' shape, but does not induce leukocyte-endothelial cell interactions or leukocyte transmigration.
Collapse
Affiliation(s)
- Martin Holzer
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Tian F, Habel NC, Yin R, Hirn S, Banerjee A, Ercal N, Takenaka S, Estrada G, Kostarelos K, Kreyling W, Stoeger T. Pulmonary DWCNT exposure causes sustained local and low-level systemic inflammatory changes in mice. Eur J Pharm Biopharm 2013; 84:412-20. [DOI: 10.1016/j.ejpb.2013.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 03/02/2013] [Accepted: 03/13/2013] [Indexed: 12/18/2022]
|
27
|
Ilinskaya AN, Dobrovolskaia MA. Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomedicine (Lond) 2013; 8:969-81. [PMID: 23730696 PMCID: PMC3939602 DOI: 10.2217/nnm.13.49] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nanoparticle interactions with the blood coagulation system can be beneficial or adverse depending on the intended use of a nanomaterial. Nanoparticles can be engineered to be procoagulant or to carry coagulation-initiating factors to treat certain disorders. Likewise, they can be designed to be anticoagulant or to carry anticoagulant drugs to intervene in other pathological conditions in which coagulation is a concern. An overview of the coagulation system was given and a discussion of a desirable interface between this system and engineered nanomaterials was assessed in part I, which was published in the May 2013 issue of Nanomedicine. Unwanted pro- and anti-coagulant properties of nanoparticles represent significant concerns in the field of nanomedicine, and often hamper the development and transition into the clinic of many promising engineered nanocarriers. This part will focus on the undesirable effects of engineered nanomaterials on the blood coagulation system. We will discuss the relationship between the physicochemical properties of nanoparticles (e.g., size, charge and hydrophobicity) that determine their negative effects on the blood coagulation system in order to understand how manipulation of these properties can help to overcome unwanted side effects.
Collapse
Affiliation(s)
- Anna N Ilinskaya
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, 1050 Boyles Street, Building 469, Frederick, MD 21702, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick Inc., NCI-Frederick, 1050 Boyles Street, Building 469, Frederick, MD 21702, USA
| |
Collapse
|
28
|
Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: a time-course study. Int J Mol Sci 2012. [PMID: 23203034 PMCID: PMC3509550 DOI: 10.3390/ijms131113781] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Engineered nanomaterials have been developed for widespread applications due to many highly unique and desirable characteristics. The purpose of this study was to assess pulmonary inflammation and subepicardial arteriolar reactivity in response to multi-walled carbon nanotube (MWCNT) inhalation and evaluate the time course of vascular alterations. Rats were exposed to MWCNT aerosols producing pulmonary deposition. Pulmonary inflammation via bronchoalveolar lavage and MWCNT translocation from the lungs to systemic organs was evident 24 h post-inhalation. Coronary arterioles were evaluated 24-168 h post-exposure to determine microvascular response to changes in transmural pressure, endothelium-dependent and -independent reactivity. Myogenic responsiveness, vascular smooth muscle reactivity to nitric oxide, and α-adrenergic responses all remained intact. However, a severe impact on endothelium-dependent dilation was observed within 24 h after MWCNT inhalation, a condition which improved, but did not fully return to control after 168 h. In conclusion, results indicate that MWCNT inhalation not only leads to pulmonary inflammation and cytotoxicity at low lung burdens, but also a low level of particle translocation to systemic organs. MWCNT inhalation also leads to impairments of endothelium-dependent dilation in the coronary microcirculation within 24 h, a condition which does not fully dissipate within 168 h. The innovations within the field of nanotechnology, while exciting and novel, can only reach their full potential if toxicity is first properly assessed.
Collapse
|
29
|
Gavins FNE. Intravital microscopy: new insights into cellular interactions. Curr Opin Pharmacol 2012; 12:601-7. [PMID: 22981814 DOI: 10.1016/j.coph.2012.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/23/2012] [Accepted: 08/27/2012] [Indexed: 12/30/2022]
Abstract
Inflammation is the body's way of combating invading pathogens or noxious stimuli. Under normal conditions, the complex host response of rubor, dolor, calor, tumor, and functio laesa is essential for survival and the return to homeostasis. However, unregulated inflammation is all too often observed in diseases such as rheumatoid arthritis, stroke, and cancer. The host inflammatory response is governed by a number of tightly regulated processes that enable cellular trafficking to occur at the sites of damage to ultimately ensure the resolution of inflammation. Intravital microscopy (IVM) provides quantitative, qualitative, and dynamic insights into cell biology and these cellular interactions. This review highlights the pros and cons of this specialized technique and how it has evolved to help understand the physiology and pathophysiology of inflammatory events in a number of different disease states, leading to a number of potential therapeutic targets for drug discovery.
Collapse
Affiliation(s)
- Felicity N E Gavins
- Division of Brain Sciences, Department of Medicine, Imperial College London, UK.
| |
Collapse
|
30
|
Diesel exhaust particles impair platelet response to collagen and are associated with GPIbα shedding. Toxicol In Vitro 2012; 26:930-8. [DOI: 10.1016/j.tiv.2012.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 04/03/2012] [Accepted: 04/05/2012] [Indexed: 02/06/2023]
|
31
|
Stapleton PA, Minarchick VC, McCawley M, Knuckles TL, Nurkiewicz TR. Xenobiotic particle exposure and microvascular endpoints: a call to arms. Microcirculation 2012; 19:126-42. [PMID: 21951337 DOI: 10.1111/j.1549-8719.2011.00137.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xenobiotic particles can be considered in two genres: air pollution particulate matter and engineered nanoparticles. Particle exposures can occur in the greater environment, the workplace, and our homes. The majority of research in this field has, justifiably, focused on pulmonary reactions and outcomes. More recent investigations indicate that cardiovascular effects are capable of correlating with established mortality and morbidity epidemiological data following particle exposures. While the preliminary and general cardiovascular toxicology has been defined, the mechanisms behind these effects, specifically within the microcirculation, are largely unexplored. Therefore, the purpose of this review is several fold: first, a historical background on toxicological aspects of particle research is presented. Second, essential definitions, terminology, and techniques that may be unfamiliar to the microvascular scientist will be discussed. Third, the most current concepts and hypotheses driving cardiovascular research in this field will be reviewed. Lastly, potential future directions for the microvascular scientist will be suggested. Collectively speaking, microvascular research in the particle exposure field represents far more than a "niche." The immediate demand for basic, translational, and clinical studies is high and diverse. Microvascular scientists at all career stages are strongly encouraged to expand their research interests to include investigations associated with particle exposures.
Collapse
|
32
|
Landsiedel R, Ma-Hock L, Haussmann HJ, van Ravenzwaay B, Kayser M, Wiench K. Inhalation studies for the safety assessment of nanomaterials: status quo and the way forward. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:399-413. [PMID: 22639437 DOI: 10.1002/wnan.1173] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
While technical and medical potential offered by nanotechnologies increase, the safety assessment of engineered nanomaterials (NMs) needs to follow this pace. Inhalation is a major route of occupational and environmental exposure, and is most relevant for most of the respective safety assessment studies. Control and generation of aerosol from the test materials for this route of administration are technically demanding, and not surprisingly, there are relatively few NMs tested in toxicokinetic, short-term, and subchronic inhalation studies. These studies were in part adapted to the peculiarities of inhaled NMs, but few were also conducted according to organization for economic co-operation and development (OECD) test guidelines. Inhalation studies on the potential to develop chronic diseases, or studies to check the potential analogy to cardiovascular diseases associated with adverse health effects from ambient air pollution, are largely missing. On the way forward, appropriate inhalation studies need to be performed on a number of NMs to assess their hazards and to provide a sound database for correlation and validation of alternative in vitro methods. Moreover, these studies can potentially aid in the grouping of different NMs based on their biokinetics or biological effects. For carcinogenic and cardiovascular effects, research studies are needed to verify-or disprove-the relevance and the mechanisms by which NMs contribute to these effects.
Collapse
|
33
|
Haase A, Tentschert J, Luch A. Nanomaterials: a challenge for toxicological risk assessment? EXPERIENTIA SUPPLEMENTUM (2012) 2012; 101:219-50. [PMID: 22945571 DOI: 10.1007/978-3-7643-8340-4_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nanotechnology has emerged as one of the central technologies in the twenty-first century. This judgment becomes apparent by considering the increasing numbers of people employed in this area; the numbers of patents, of scientific publications, of products on the market; and the amounts of money invested in R&D. Prospects originating from different fields of nanoapplication seem unlimited. However, nanotechnology certainly will not be able to meet all of the ambitious expectations communicated, yet has high potential to heavily affect our daily life in the years to come. This might occur in particular in the field of consumer products, for example, by introducing nanomaterials in cosmetics, textiles, or food contact materials. Another promising area is the application of nanotechnology in medicine fueling hopes to significantly improve diagnosis and treatment of all kinds of diseases. In addition, novel technologies applying nanomaterials are expected to be instrumental in waste remediation and in the production of efficient energy storage devices and thus may help to overcome world's energy problems or to revolutionize computer and data storage technologies. In this chapter, we will focus on nanomaterials. After a brief historic and general overview, current proposals of how to define nanomaterials will be summarized. Due to general limitations, there is still no single, internationally accepted definition of the term "nanomaterial." After elaborating on the status quo and the scope of nanoanalytics and its shortcomings, the current thinking about possible hazards resulting from nanoparticulate exposures, there will be an emphasis on the requirements to be fulfilled for appropriate health risk assessment and regulation of nanomaterials. With regard to reliable risk assessments, until now there is still the remaining issue to be resolved of whether or not specific challenges and unique features exist on the nanoscale that have to be tackled and distinctively addressed, given that they substantially differ from those encountered with microsized materials or regular chemicals. Based on the current knowledge, we finally provide a proposal on how risk assessment in the nanofield could be achieved and how it might look like in the near future.
Collapse
Affiliation(s)
- Andrea Haase
- Department of Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | | | | |
Collapse
|
34
|
Fenoglio I, Fubini B, Ghibaudi EM, Turci F. Multiple aspects of the interaction of biomacromolecules with inorganic surfaces. Adv Drug Deliv Rev 2011; 63:1186-209. [PMID: 21871508 DOI: 10.1016/j.addr.2011.08.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/01/2011] [Accepted: 08/02/2011] [Indexed: 12/19/2022]
Abstract
The understanding of the mechanisms involved in the interaction of biological systems with inorganic materials is of interest in both fundamental and applied disciplines. The adsorption of proteins modulates the formation of biofilms onto surfaces, a process important in infections associated to medical implants, in dental caries, in environmental technologies. The interaction with biomacromolecules is crucial to determine the beneficial/adverse response of cells to foreign inorganic materials as implants, engineered or accidentally produced inorganic nanoparticles. A detailed knowledge of the surface/biological fluids interface processes is needed for the design of new biocompatible materials. Researchers involved in the different disciplines face up with similar difficulties in describing and predicting phenomena occurring at the interface between solid phases and biological fluids. This review represents an attempt to integrate the knowledge from different research areas by focussing on the search for determinants driving the interaction of inorganic surfaces with biological matter.
Collapse
|
35
|
Kilinç E, Van Oerle R, Borissoff JI, Oschatz C, Gerlofs-Nijland ME, Janssen NA, Cassee FR, Sandström T, Renné T, Ten Cate H, Spronk HMH. Factor XII activation is essential to sustain the procoagulant effects of particulate matter. J Thromb Haemost 2011; 9:1359-67. [PMID: 21481175 DOI: 10.1111/j.1538-7836.2011.04280.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Particulate matter (PM) is a key component of ambient air pollution and has been associated with an increased risk of thrombotic events and mortality. The underlying mechanisms remain unclear. OBJECTIVES To study the mechanisms of PM-driven procoagulant activity in human plasma and to investigate mainly, the coagulation driven by ultrafine particles (UFPs; < 0.1 μm) in genetically modified mice. METHODS Thrombin generation in response to PM of different sizes was assessed in normal human platelet-poor plasma, as well as in plasmas deficient in the intrinsic pathway proteases factors XII (FXII) or XI (FXI). In addition, UFPs were intratracheally instilled in wild-type (WT) and FXII-deficient (FXII(-/-) ) mice and plasma thrombin generation was analyzed in plasma from treated mice at 4 and 20 h post-exposure. RESULTS In normal human plasma, thrombin generation was enhanced in the presence of PM, whereas PM-driven thrombin formation was completely abolished in FXII- and FXI-deficient plasma. UFPs induced a transient increase in tissue factor (TF)-driven thrombin formation at 4 h post-instillation in WT mice compared with saline instillation. Intratracheal instillation of UFPs resulted in a procoagulant response in WT mice plasma at 20 h, whereas it was entirely suppressed in FXII(-/-) mice. CONCLUSIONS Overall, the data suggest that PM promotes its early procoagulant actions mostly through the TF-driven extrinsic pathway of coagulation, whereas PM-driven long lasting thrombogenic effects are predominantly mediated via formation of activated FXII. Hence, FXII-driven thrombin formation may be relevant to an enhanced thrombotic susceptibility upon chronic exposure to PM in humans.
Collapse
Affiliation(s)
- E Kilinç
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Roller J, Laschke MW, Tschernig T, Schramm R, Veith NT, Thorlacius H, Menger MD. How to detect a dwarf: in vivo imaging of nanoparticles in the lung. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2011; 7:753-62. [PMID: 21419874 DOI: 10.1016/j.nano.2011.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/10/2011] [Accepted: 02/24/2011] [Indexed: 11/30/2022]
Abstract
UNLABELLED Nanotechnology is a rapidly developing field in science and industry. The exposure to nanoparticles (NPs) will steadily grow in the future and there is thus an urgent need to study potential impacts of the interaction between NPs and the human body. The respiratory tract is the route of entry for all accidentally inhaled NPs. Moreover, NPs may intentionally be delivered into the lung as contrast agents and drug delivery systems. The present review provides an overview of currently used techniques for the in vivo imaging of NPs in the lung, including x-ray imaging, computed tomography, gamma camera imaging, positron emission tomography, magnetic resonance imaging, near-infrared imaging, and intravital fluorescence microscopy. Studies based on these techniques may contribute to the development of novel NP-based drug delivery systems and contrast agents. In addition, they may provide completely new insights into nanotoxicological processes. FROM THE CLINICAL EDITOR Nanoparticles are rapidly gaining ground in various therapeutic and diagnostic applications. This review provides an overview of current in vivo imaging techniques of NPs in the lung, including x-ray, CT, gamma camera imaging, PET, MRI, near-infrared imaging, and intravital fluorescence microscopy, aiding the development of novel NP-based techniques and nanotoxicology.
Collapse
Affiliation(s)
- Jonas Roller
- Institute for Clinical & Experimental Surgery, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | | | |
Collapse
|