1
|
Zou J, Zhang P, Solari FA, Schönichen C, Provenzale I, Mattheij NJA, Kuijpers MJE, Rauch JS, Swieringa F, Sickmann A, Zieger B, Jurk K, Heemskerk JWM. Suppressed ORAI1-STIM1-dependent Ca 2+ entry by protein kinase C isoforms regulating platelet procoagulant activity. J Biol Chem 2024; 300:107899. [PMID: 39424145 PMCID: PMC11742345 DOI: 10.1016/j.jbc.2024.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
Agonist-induced rises in cytosolic Ca2+ control most platelet responses in thrombosis and hemostasis. In human platelets, we earlier demonstrated that the ORAI1-STIM1 pathway is a major component of extracellular Ca2+ entry, in particular when induced via the ITAM-linked collagen receptor, glycoprotein VI (GPVI). In the present article, using functionally defective platelets from patients with a loss-of-function mutation in ORAI1 or STIM1, we show that Ca2+ entry induced by the endoplasmic reticulum ATPase inhibitor, thapsigargin, fully relies on this pathway. We demonstrate that both the GPVI-induced and thapsigargin-induced Ca2+ entry are strongly suppressed by protein kinase C (PKC) activation while leaving intracellular Ca2+ mobilization unchanged. Comparing the effects of a PKC inhibitory panel pointed to redundant roles of beta and theta PKC isoforms in Ca2+-entry suppression. In contrast, tyrosine kinases positively regulated GPVI-induced Ca2+ entry and mobilization. Label-free and stable isotope phosphoproteome analysis of GPVI-stimulated platelets suggested a regulatory role of bridging integrator-2 (BIN2), known as an important mediator of the ORAI1-STIM1 pathway in mouse platelets. Identified were 25 to 45 regulated phospho-sites in BIN2 and 16 to 18 in STIM1. Five of these were characterized as direct substrates of the expressed PKC isoforms alpha, beta delta, and theta. Functional platelet testing indicated that the downregulation of Ca2+ entry by PKC resulted in suppressed phosphatidylserine exposure and plasmatic thrombin generation. Conclusively, our results indicate that in platelets multiple PKC isoforms constrain the store-regulated Ca2+ entry via ORAI1-BIN2-STIM1, and hence downregulate platelet-dependent coagulation.
Collapse
Affiliation(s)
- Jinmi Zou
- Synapse Research Institute Maastricht, Maastricht, The Netherlands; Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands
| | - Pengyu Zhang
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Fiorella A Solari
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Claudia Schönichen
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands; Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Isabella Provenzale
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands
| | - Nadine J A Mattheij
- Department of Clinical Chemistry and Hematology, Maxima Medical Center Veldhoven, Veldhoven, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands
| | - Julia S Rauch
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Frauke Swieringa
- Synapse Research Institute Maastricht, Maastricht, The Netherlands
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany; Medizinische Fakultät, Medizinische Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany; Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johan W M Heemskerk
- Synapse Research Institute Maastricht, Maastricht, The Netherlands; Department of Biochemistry, CARIM, 6200 MD Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
2
|
Kunapuli SP, Tsygankov AY. TULA-Family Regulators of Platelet Activation. Int J Mol Sci 2022; 23:ijms232314910. [PMID: 36499237 PMCID: PMC9736690 DOI: 10.3390/ijms232314910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
The two members of the UBASH3/TULA/STS-protein family have been shown to critically regulate cellular processes in multiple biological systems. The regulatory function of TULA-2 (also known as UBASH3B or STS-1) in platelets is one of the best examples of the involvement of UBASH3/TULA/STS proteins in cellular regulation. TULA-2 negatively regulates platelet signaling mediated by ITAM- and hemITAM-containing membrane receptors that are dependent on the protein tyrosine kinase Syk, which currently represents the best-known dephosphorylation target of TULA-2. The biological responses of platelets to collagen and other physiological agonists are significantly downregulated as a result. The protein structure, enzymatic activity and regulatory functions of UBASH3/TULA/STS proteins in the context of platelet responses and their regulation are discussed in this review.
Collapse
|
3
|
Kostyak JC, Mauri B, Dangelmaier C, Vari HR, Patel A, Wright M, Reddy H, Tsygankov AY, Kunapuli SP. Phosphorylation on Syk Y342 is important for both ITAM and hemITAM signaling in platelets. J Biol Chem 2022; 298:102189. [PMID: 35753354 PMCID: PMC9287148 DOI: 10.1016/j.jbc.2022.102189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022] Open
Abstract
Immune cells express receptors bearing an immune tyrosine activation motif (ITAM) containing two YXXL motifs or hemITAMs containing only one YXXL motif. Phosphorylation of the ITAM/hemITAM is mediated by Src family kinases allowing for the binding and activation of spleen tyrosine kinase (Syk). It is believed that Syk must be phosphorylated on tyrosine residues for activation, and Tyr342, а conserved tyrosine in the interdomain B region, has been shown to be critical for regulating Syk in FcεR1-activated mast cells. Syk is a key mediator of signaling pathways downstream of several platelet pathways including the ITAM bearing glycoprotein VI (GPVI)/Fc receptor gamma chain collagen receptor and the hemITAM containing C-type lectin-like receptor-2 (CLEC-2). Since platelet activation is a crucial step in both hemostasis and thrombosis, we evaluated the importance of Syk Y342 in these processes by producing an Syk Y342F knock-in mouse. When using a CLEC-2 antibody as an agonist, reduced aggregation and secretion were observed in Syk Y342F mouse platelets when compared with control mouse platelets. Platelet reactivity was also reduced in response to the GPVI agonist collagen-related peptide. Signaling initiated by either GPVI or CLEC-2 was also greatly inhibited, including Syk Y519/520 phosphorylation. Hemostasis, as measured by tail bleeding time, was not altered in Syk Y342F mice, but thrombus formation in response to FeCl3 injury was prolonged in Syk Y342F mice. These data demonstrate that phosphorylation of Y342 on Syk following stimulation of either GPVI or CLEC-2 receptors is important for the ability of Syk to transduce a signal.
Collapse
Affiliation(s)
- John C Kostyak
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Benjamin Mauri
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Carol Dangelmaier
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Hymavathi Reddy Vari
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Akruti Patel
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Monica Wright
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Haritha Reddy
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Alexander Y Tsygankov
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
4
|
|
5
|
Getz TM, Manne B, Buitrago L, Mao Y, Kunapuli SP. Dextran sulphate induces fibrinogen receptor activation through a novel Syk-independent PI-3 kinase-mediated tyrosine kinase pathway in platelets. Thromb Haemost 2017; 109:1131-40. [DOI: 10.1160/th12-09-0645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 03/01/2013] [Indexed: 12/14/2022]
Abstract
SummaryIn our attempt to find a physiological agonist that activates PAR3 receptors, we screened several coagulation proteases using PAR4 null platelets. We observed that FXIIa and heat inactivated FXIIa, but not FXII, caused platelet aggregation. We have identified a contaminant activating factor in FXIIa preparation as dextran sulfate (DxS), which caused aggregation of both human and mouse platelets. DxS-induced platelet aggregation was unaffected by YM254890, a Gq inhibitor, but abolished by pan-Src family kinase (SFK) inhibitor PP2, suggesting a role for SFKs in this pathway. However, DxS-induced platelet aggregation was unaffected in FcRγ-chain null murine platelets, ruling out the possibility of glycoprotein VI-mediated events. More interesting, OXSI-2 and Go6976, two structurally unrelated inhibitors shown to affect Syk, had only a partial effect on DxS-induced PAC-1 binding. DxS-induced platelet aggregation and intracellular calcium increases were abolished by the pan PI-3 kinase inhibitor LY294002, or an isoform-specific PI-3 kinase β inhibitor TGX-221. Pretreatment of platelets with Syk inhibitors or ADP receptor antagonists had little effect on Akt phosphorylation following DxS stimulation. These results, for the first time, establish a novel tyrosine kinase pathway in platelets that causes fibrinogen receptor activation in a PI-3 kinase-dependent manner without a crucial role for Syk.
Collapse
|
6
|
Lever RA, Hussain A, Sun BB, Sage SO, Harper AGS. Conventional protein kinase C isoforms differentially regulate ADP- and thrombin-evoked Ca²⁺ signalling in human platelets. Cell Calcium 2015; 58:577-88. [PMID: 26434503 DOI: 10.1016/j.ceca.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 11/15/2022]
Abstract
Rises in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) are central in platelet activation, yet many aspects of the underlying mechanisms are poorly understood. Most studies examine how experimental manipulations affect agonist-evoked rises in [Ca(2+)]cyt, but these only monitor the net effect of manipulations on the processes controlling [Ca(2+)]cyt (Ca(2+) buffering, sequestration, release, entry and removal), and cannot resolve the source of the Ca(2+) or the transporters or channels affected. To investigate the effects of protein kinase C (PKC) on platelet Ca(2+) signalling, we here monitor Ca(2+) flux around the platelet by measuring net Ca(2+) fluxes to or from the extracellular space and the intracellular Ca(2+) stores, which act as the major sources and sinks for Ca(2+) influx into and efflux from the cytosol, as well as monitoring the cytosolic Na(+) concentration ([Na(+)]cyt), which influences platelet Ca(2+) fluxes via Na(+)/Ca(2+) exchange. The intracellular store Ca(2+) concentration ([Ca(2+)]st) was monitored using Fluo-5N, the extracellular Ca(2+) concentration ([Ca(2+)]ext) was monitored using Fluo-4 whilst [Ca(2+)]cyt and [Na(+)]cyt were monitored using Fura-2 and SFBI, respectively. PKC inhibition using Ro-31-8220 or bisindolylmaleimide I potentiated ADP- and thrombin-evoked rises in [Ca(2+)]cyt in the absence of extracellular Ca(2+). PKC inhibition potentiated ADP-evoked but reduced thrombin-evoked intracellular Ca(2+) release and Ca(2+) removal into the extracellular medium. SERCA inhibition using thapsigargin and 2,5-di(tert-butyl) l,4-benzohydroquinone abolished the effect of PKC inhibitors on ADP-evoked changes in [Ca(2+)]cyt but only reduced the effect on thrombin-evoked responses. Thrombin evokes substantial rises in [Na(+)]cyt which would be expected to reduce Ca(2+) removal via the Na(+)/Ca(2+) exchanger (NCX). Thrombin-evoked rises in [Na(+)]cyt were potentiated by PKC inhibition, an effect which was not due to altered changes in non-selective cation permeability of the plasma membrane as assessed by Mn(2+) quench of Fura-2 fluorescence. PKC inhibition was without effect on thrombin-evoked rises in [Ca(2+)]cyt following SERCA inhibition and either removal of extracellular Na(+) or inhibition of Na(+)/K(+)-ATPase activity by removal of extracellular K(+) or treatment with digoxin. These data suggest that PKC limits ADP-evoked rises in [Ca(2+)]cyt by acceleration of SERCA activity, whilst rises in [Ca(2+)]cyt evoked by the stronger platelet activator thrombin are limited by PKC through acceleration of both SERCA and Na(+)/K(+)-ATPase activity, with the latter limiting the effect of thrombin on rises in [Na(+)]cyt and so forward mode NCX activity. The use of selective PKC inhibitors indicated that conventional and not novel PKC isoforms are responsible for the inhibition of agonist-evoked Ca(2+) signalling.
Collapse
Affiliation(s)
- Robert A Lever
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Azhar Hussain
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Benjamin B Sun
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Stewart O Sage
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Alan G S Harper
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom; Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, United Kingdom.
| |
Collapse
|
7
|
Manne BK, Badolia R, Dangelmaier C, Eble JA, Ellmeier W, Kahn M, Kunapuli SP. Distinct pathways regulate Syk protein activation downstream of immune tyrosine activation motif (ITAM) and hemITAM receptors in platelets. J Biol Chem 2015; 290:11557-68. [PMID: 25767114 DOI: 10.1074/jbc.m114.629527] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 11/06/2022] Open
Abstract
Tyrosine kinase pathways are known to play an important role in the activation of platelets. In particular, the GPVI and CLEC-2 receptors are known to activate Syk upon tyrosine phosphorylation of an immune tyrosine activation motif (ITAM) and hemITAM, respectively. However, unlike GPVI, the CLEC-2 receptor contains only one tyrosine motif in the intracellular domain. The mechanisms by which this receptor activates Syk are not completely understood. In this study, we identified a novel signaling mechanism in CLEC-2-mediated Syk activation. CLEC-2-mediated, but not GPVI-mediated, platelet activation and Syk phosphorylation were abolished by inhibition of PI3K, which demonstrates that PI3K regulates Syk downstream of CLEC-2. Ibrutinib, a Tec family kinase inhibitor, also completely abolished CLEC-2-mediated aggregation and Syk phosphorylation in human and murine platelets. Furthermore, embryos lacking both Btk and Tec exhibited cutaneous edema associated with blood-filled vessels in a typical lymphatic pattern similar to CLEC-2 or Syk-deficient embryos. Thus, our data show, for the first time, that PI3K and Tec family kinases play a crucial role in the regulation of platelet activation and Syk phosphorylation downstream of the CLEC-2 receptor.
Collapse
Affiliation(s)
- Bhanu Kanth Manne
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Rachit Badolia
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Carol Dangelmaier
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Johannes A Eble
- the Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany
| | - Wilfried Ellmeier
- the Division of Immunobiology, Institution of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, A-1090 Vienna, Austria, and
| | - Mark Kahn
- the Department of Medicine and Division of Cardiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-5159
| | - Satya P Kunapuli
- From the Department of Physiology, Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140,
| |
Collapse
|
8
|
Vara D, Campanella M, Pula G. The novel NOX inhibitor 2-acetylphenothiazine impairs collagen-dependent thrombus formation in a GPVI-dependent manner. Br J Pharmacol 2014; 168:212-24. [PMID: 22881838 DOI: 10.1111/j.1476-5381.2012.02130.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/05/2012] [Accepted: 07/20/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE NADPH oxidases (NOXs) contribute to platelet activation by a largely unknown mechanism. Here, we studied the effect of the novel NOX inhibitor 2-acetylphenothiazine (2-APT) on human platelet functional responses and intracellular signaling pathways. EXPERIMENTAL APPROACH The generation of superoxide ions was assessed by single cell imaging on adhering platelets using dihydroethidium (DHE), while other reactive oxygen species (ROS) were detected with 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate (CM-H(2)-DCFDA). Whole blood thrombus formation, washed platelet aggregation, integrin αIIbβ3 inside-out signalling, Syk phosphorylation and PKC activation were analysed to understand the functional consequences of NOX inhibition by 2-APT in platelets. KEY RESULTS Superoxide ion generation stimulated by platelet adhesion on collagen and fibrinogen was significantly inhibited by 2-APT in concentration-dependent manner (IC(50) = 306 nM and 227 nM, respectively), whereas cumulative ROS accumulation was not affected by this pharmacological agent. 2-APT also abolished collagen-dependent whole blood thrombus formation and washed platelet aggregation in response to collagen but not thrombin. The activation of integrin αIIbβ3 and PKC in response to the GPVI-specific agonist collagen-related peptide (CRP) was significantly reduced, whereas the same responses to thrombin were not significantly affected by 2-APT. Finally, Syk activation in response to collagen but not thrombin was inhibited by 2-APT. CONCLUSIONS AND IMPLICATIONS Taken together, our results suggest that 2-APT attenuates GPVI-specific signalling and is a novel inhibitor of collagen-induced platelet responses. Therefore, NOXs could represent a novel target for the discovery of anti-thrombotic drugs.
Collapse
Affiliation(s)
- D Vara
- Department of Pharmacy and Pharmacology, University of Bath, Bath Spa, UK
| | | | | |
Collapse
|
9
|
Bhavanasi D, Kostyak JC, Swindle J, Kilpatrick LE, Kunapuli SP. CGX1037 is a novel PKC isoform delta selective inhibitor in platelets. Platelets 2014; 26:2-9. [PMID: 24433221 DOI: 10.3109/09537104.2013.868877] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Platelets upon activation change their shape, aggregate and secrete alpha and dense granule contents among which ADP acts as a feedback activator. Different Protein Kinase C (PKC) isoforms have specific non-redundant roles in mediating platelet responses including secretion and thrombus formation. Murine platelets lacking specific PKC isoforms have been used to evaluate the isoform specific functions. Novel PKC isoform δ has been shown to play an important role in some pathological processes. Lack of specific inhibitors for PKCδ has restricted analysis of its role in various cells. The current study was carried out to evaluate a novel small molecule PKCδ inhibitor, CGX1037 in platelets. Platelet aggregation, dense granule secretion and western blotting experiments were performed to evaluate CGX1037. In human platelets, CGX1037 inhibited PAR4-mediated phosphorylation on PKD2, a PKCδ-specific substrate. Pre-treatment of human or murine platelets with CGX1037 inhibited PAR4-mediated dense granule secretion whereas it potentiated GPVI-mediated dense granule secretion similar to the responses observed in murine platelets lacking PKCδ· Furthermore, pre-treatment of platelets from PKCδ(-/-) mice with CGX1037 had no significant additive effect on platelet responses suggesting the specificity of CGX1037. Hence, we show that CGX1037 is a selective small molecule inhibitor of PKCδ in platelets.
Collapse
Affiliation(s)
- Dheeraj Bhavanasi
- Department of Physiology, Temple University School of Medicine , Philadelphia, PA , USA
| | | | | | | | | |
Collapse
|
10
|
Manne BK, Getz TM, Hughes CE, Alshehri O, Dangelmaier C, Naik UP, Watson SP, Kunapuli SP. Fucoidan is a novel platelet agonist for the C-type lectin-like receptor 2 (CLEC-2). J Biol Chem 2013; 288:7717-7726. [PMID: 23341451 DOI: 10.1074/jbc.m112.424473] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fucoidan, a sulfated polysaccharide from Fucus vesiculosus, decreases bleeding time and clotting time in hemophilia, possibly through inhibition of tissue factor pathway inhibitor. However, its effect on platelets and the receptor by which fucoidan induces cellular processes has not been elucidated. In this study, we demonstrate that fucoidan induces platelet activation in a concentration-dependent manner. Fucoidan-induced platelet activation was completely abolished by the pan-Src family kinase (SFK) inhibitor, PP2, or when Syk is inhibited. PP2 abolished phosphorylations of Syk and Phospholipase C-γ2. Fucoidan-induced platelet activation had a lag phase, which is reminiscent of platelet activation by collagen and CLEC-2 receptor agonists. Platelet activation by fucoidan was only slightly inhibited in FcRγ-chain null mice, indicating that fucoidan was not acting primarily through GPVI receptor. On the other hand, fucoidan-induced platelet activation was inhibited in platelet-specific CLEC-2 knock-out murine platelets revealing CLEC-2 as a physiological target of fucoidan. Thus, our data show fucoidan as a novel CLEC-2 receptor agonist that activates platelets through a SFK-dependent signaling pathway. Furthermore, the efficacy of fucoidan in hemophilia raises the possibility that decreased bleeding times could be achieved through activation of platelets.
Collapse
Affiliation(s)
- Bhanu Kanth Manne
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Todd M Getz
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Craig E Hughes
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Osama Alshehri
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Carol Dangelmaier
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | - Ulhas P Naik
- Cardiovascular Research Institute, University of Delaware, Newark, Delaware 19716
| | - Steve P Watson
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, The College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Satya P Kunapuli
- Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140; Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140.
| |
Collapse
|
11
|
Bynagari-Settipalli YS, Lakhani P, Jin J, Bhavaraju K, Rico MC, Kim S, Woulfe D, Kunapuli SP. Protein kinase C isoform ε negatively regulates ADP-induced calcium mobilization and thromboxane generation in platelets. Arterioscler Thromb Vasc Biol 2012; 32:1211-9. [PMID: 22362759 DOI: 10.1161/atvbaha.111.242388] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Members of the protein kinase C (PKC) family are shown to positively and negatively regulate platelet activation. Although positive regulatory roles are extensively studied, negative regulatory roles of PKCs are poorly understood. We investigated the mechanism and specific isoforms involved in PKC-mediated negative regulation of ADP-induced functional responses. METHODS AND RESULTS A pan-PKC inhibitor, GF109203X, potentiated ADP-induced cPLA(2) phosphorylation and thromboxane generation as well as ERK activation and intracellular calcium (Ca(2+)(i)) mobilization, 2 signaling molecules, upstream of cPLA(2) activation. Thus, PKCs inhibit cPLA(2) activation by inhibiting ERK and Ca(2+)(i) mobilization. Because the inhibitor of classic PKC isoforms, GO-6976, did not affect ADP-mediated thromboxane generation, we investigated the role of novel class of PKC isoforms. ADP-induced thromboxane generation, calcium mobilization, and ERK phosphorylation were potentiated in PKCε null murine platelets compared with platelets from wild-type littermates. Interestingly, when thromboxane release is blocked, ADP-induced aggregation in PKCε knockout and wild-type was similar, suggesting that PKCε does not affect ADP-induced aggregation directly. PKCε knockout mice exhibited shorter times to occlusion in an FeCl(3)-induced arterial injury model and shorter bleeding times in tail-bleeding experiments. CONCLUSIONS We conclude that PKCε negatively regulates ADP-induced thromboxane generation in platelets and offers protection against thrombosis.
Collapse
|
12
|
Harper MT, Poole AW. PKC inhibition markedly enhances Ca2+ signaling and phosphatidylserine exposure downstream of protease-activated receptor-1 but not protease-activated receptor-4 in human platelets. J Thromb Haemost 2011; 9:1599-607. [PMID: 21649850 DOI: 10.1111/j.1538-7836.2011.04393.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cytosolic calcium concentration is a critical regulator of platelet activation, and so platelet Ca(2+) signaling must be tightly controlled. Thrombin-induced Ca(2+) signaling is enhanced by inhibitors of protein kinase C (PKC), suggesting that PKC negatively regulates the Ca(2+) signal, although the mechanisms by which this occurs and its physiological relevance are still unclear. OBJECTIVES To investigate the mechanisms by which PKC inhibitors enhance thrombin-induced Ca(2+) signaling, and to determine the importance of this pathway in platelet activation. METHODS Cytosolic Ca(2+) signaling was monitored in fura-2-loaded human platelets. Phosphatidylserine (PS) exposure, a marker of platelet procoagulant activity, was measured by annexin V binding and flow cytometry. RESULTS PKC inhibition by bisindolylmaleimide-I (BIM-I) enhanced α-thrombin-induced Ca(2+) signaling in a concentration-dependent manner. PAR1 signaling, activated by SFLLRN, was enhanced much more strongly than PAR4, activated by AYPGKF or γ-thrombin, which is a potent PAR4 agonist but a poor activator of PAR1. BIM-I had little effect on α-thrombin-induced signaling following treatment with the PAR1 antagonist, SCH-79797. BIM-I enhanced Ca(2+) release from intracellular stores and Ca(2+) entry, as assessed by Mn(2+) quench. However, the plasma membrane Ca(2+) ATPase inhibitor, 5(6)-carboxyeosin, did not prevent the effect of BIM-I. PKC inhibition strongly enhanced α-thrombin-induced PS exposure, which was reversed by blockade of PAR1. CONCLUSIONS Together, these data show that when PAR1 is stimulated, PKC negatively regulates Ca(2+) release and Ca(2+) entry, which leads to reduced platelet PS exposure.
Collapse
Affiliation(s)
- M T Harper
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK.
| | | |
Collapse
|
13
|
Unsworth AJ, Smith H, Gissen P, Watson SP, Pears CJ. Submaximal inhibition of protein kinase C restores ADP-induced dense granule secretion in platelets in the presence of Ca2+. J Biol Chem 2011; 286:21073-82. [PMID: 21489985 PMCID: PMC3122168 DOI: 10.1074/jbc.m110.187138] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protein kinase C (PKC) is a family of serine/threonine kinases that play isoform-specific inhibitory and stimulatory roles in platelet activation. We show here that the pan-PKC inhibitor Ro31-8220 can be used to dissect these events following platelet activation by ADP. Submaximal concentrations of Ro31-8220 potentiated aggregation and dense granule secretion to ADP in plasma anticoagulated with citrate, in d-Phe-Pro-Arg-chloromethyl ketone-anticoagulated plasma, which has physiological levels of Ca2+, and in washed platelets. Potentiation was retained on inhibition of cyclooxygenase and was associated with an increase in intracellular Ca2+. Potentiation of aggregation and secretion was abolished by a maximally effective concentration of Ro31-8220, consistent with a critical role of PKC in secretion. ADP-induced secretion was potentiated in the presence of an inhibitor of PKCβ but not in the presence of available inhibitors of other PKC isoforms in human and mouse platelets. ADP-induced secretion was also potentiated in mouse platelets deficient in PKCϵ but not PKCθ. These results demonstrate that partial blockade of PKC potentiates aggregation and dense granule secretion by ADP in association with increased Ca2+. This provides a molecular explanation for the inability of ADP to induce secretion in plasma in the presence of physiological Ca2+ concentrations, and it reveals a novel role for PKC in inhibiting platelet activation by ADP in vivo. These results also demonstrate isoform-specific inhibitory effects of PKC in platelets.
Collapse
Affiliation(s)
- Amanda J Unsworth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | |
Collapse
|