1
|
Patterson DR, Pan JA, Hosadurg N, Morsy M. Sudden Cardiac Arrest in the Postpartum Period Due to Long QT Syndrome and Dilated Cardiomyopathy. JACC Case Rep 2023; 16:101882. [PMID: 37396328 PMCID: PMC10313482 DOI: 10.1016/j.jaccas.2023.101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 07/04/2023]
Abstract
We describe the case of a previously healthy patient presenting with sudden cardiac arrest in the postpartum period as a result of concomitant congenital type 1 long QT syndrome and BAG3 dilated cardiomyopathy. This case highlights the increased rate of cardiac events for patients with long QT syndrome in the postpartum period. (Level of Difficulty: Advanced.).
Collapse
Affiliation(s)
| | | | | | - Mohamed Morsy
- University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Maddali MM, Thomas E, Al-Abri IA, Patel MH, Al-Maskari SN, Al-Yamani MI. Dilated Cardiomyopathy Phenotype Associated Left Ventricular Noncompaction And Congenital Long QT Syndrome Type-2 In Infancy With KCNH2 Gene Mutation: Anesthetic Considerations. J Cardiothorac Vasc Anesth 2022; 36:3662-3667. [DOI: 10.1053/j.jvca.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022]
|
3
|
Peters S, Thompson BA, Perrin M, James P, Zentner D, Kalman JM, Vandenberg JI, Fatkin D. Arrhythmic Phenotypes Are a Defining Feature of Dilated Cardiomyopathy-Associated SCN5A Variants: A Systematic Review. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003432. [PMID: 34949099 DOI: 10.1161/circgen.121.003432] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Variants in the SCN5A gene, that encodes the cardiac sodium channel, Nav1.5, are associated with a highly arrhythmogenic form of dilated cardiomyopathy (DCM). Our aim was to review the phenotypes, natural history, functional effects, and treatment outcomes of DCM-associated rare SCN5A variants. METHODS A systematic review of reported DCM-associated rare SCN5A variants was undertaken using PubMed and Embase. RESULTS Eighteen SCN5A rare variants in 29 families with DCM (173 affected individuals) were identified. Eleven variants had undergone experimental evaluation, with 7 of these resulting in increased sustained current flow during the action potential (eg, increased window current) and at resting membrane potentials (eg, creation of a new gating pore current). These variants were located in transmembrane voltage-sensing domains and had a consistent phenotype characterized by frequent multifocal narrow and broad complex ventricular premature beats (VPB; 72% of affected relatives), ventricular arrhythmias (33%), atrial arrhythmias (32%), sudden cardiac death (13%), and DCM (56%). This VPB-predominant phenotype was not seen with 1 variant that increased late sodium current, or with variants that reduced peak current density or had mixed effects. In the latter groups, affected individuals mainly showed sinus node dysfunction, conduction defects, and atrial arrhythmias, with infrequent VPB and ventricular arrhythmias. DCM did not occur in the absence of arrhythmias for any variant. Twelve studies (23 total patients) reported treatment success in the VPB-predominant cardiomyopathy using sodium channel-blocking drug therapy. CONCLUSIONS SCN5A variants can present with a diverse spectrum of primary arrhythmic features. A majority of DCM-associated variants cause a multifocal VPB-predominant cardiomyopathy that is reversible with sodium channel blocking drug therapy. Early recognition of the distinctive phenotype and prompt genetic testing to identify variant carriers are needed. Our findings have implications for interpretation and management of SCN5A variants found in DCM patients with and without arrhythmias.
Collapse
Affiliation(s)
- Stacey Peters
- Department of Cardiology (S.P., M.P., D.Z., J.M.K.), Royal Melbourne Hospital
- Department of Genomic Medicine (S.P., B.A.T., M.P., P.J., D.Z.), Royal Melbourne Hospital
- Department of Medicine, University of Melbourne (S.P., P.J., D.Z., J.M.K.)
| | - Bryony A Thompson
- Department of Genomic Medicine (S.P., B.A.T., M.P., P.J., D.Z.), Royal Melbourne Hospital
- Department of Pathology (B.A.T.), Royal Melbourne Hospital
| | - Mark Perrin
- Department of Genomic Medicine (S.P., B.A.T., M.P., P.J., D.Z.), Royal Melbourne Hospital
| | - Paul James
- Department of Genomic Medicine (S.P., B.A.T., M.P., P.J., D.Z.), Royal Melbourne Hospital
- Department of Medicine, University of Melbourne (S.P., P.J., D.Z., J.M.K.)
- Familial Cancer Centre, Peter MacCallum Centre, Melbourne, Victoria (P.J.)
| | - Dominica Zentner
- Department of Genomic Medicine (S.P., B.A.T., M.P., P.J., D.Z.), Royal Melbourne Hospital
- Department of Medicine, University of Melbourne (S.P., P.J., D.Z., J.M.K.)
| | - Jonathan M Kalman
- Department of Medicine, University of Melbourne (S.P., P.J., D.Z., J.M.K.)
| | - Jamie I Vandenberg
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute (J.I.V., D.F.)
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney (J.I.V., D.F.)
| | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute (J.I.V., D.F.)
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney (J.I.V., D.F.)
- Cardiology Department, St. Vincent's Hospital, Sydney, New South Wales, Australia (D.F.)
| |
Collapse
|
4
|
Clinical Spectrum of SCN5A Channelopathy in Children with Primary Electrical Disease and Structurally Normal Hearts. Genes (Basel) 2021; 13:genes13010016. [PMID: 35052356 PMCID: PMC8774384 DOI: 10.3390/genes13010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/19/2022] Open
Abstract
Sodium voltage-gated channel α subunit 5 (SCN5A)-mutations may cause an array of arrhythmogenic syndromes most frequently as an autosomal dominant trait, with incomplete penetrance, variable expressivity and male predominance. In the present study, we retrospectively describe a group of Mexican patients with SCN5A-disease causing variants in whom the onset of symptoms occurred in the pediatric age range. The study included 17 patients with clinical diagnosis of primary electrical disease, at least one SCN5A pathogenic or likely pathogenic mutation and age of onset <18 years, and all available first- and second-degree relatives. Fifteen patients (88.2%) were male, and sixteen independent variants were found (twelve missense, three truncating and one complex inframe deletion/insertion). The frequency of compound heterozygosity was remarkably high (3/17, 17.6%), with early childhood onset and severe disease. Overall, 70.6% of pediatric patients presented with overlap syndrome, 11.8% with isolated sick sinus syndrome, 11.8% with isolated Brugada syndrome (BrS) and 5.9% with isolated type 3 long QT syndrome (LQTS). A total of 24/45 SCN5A mutation carriers were affected (overall penetrance 53.3%), and penetrance was higher in males (63.3%, 19 affected/30 mutation carriers) than in females (33.3%, 5 affected/15 carriers). In conclusion, pediatric patients with SCNA-disease causing variants presented mainly as overlap syndrome, with predominant loss-of-function phenotypes of sick sinus syndrome (SSS), progressive cardiac conduction disease (PCCD) and ventricular arrhythmias.
Collapse
|
5
|
Solé L, Wagnon JL, Tamkun MM. Functional analysis of three Na v1.6 mutations causing early infantile epileptic encephalopathy. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165959. [PMID: 32916281 DOI: 10.1016/j.bbadis.2020.165959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 11/24/2022]
Abstract
The voltage-gated sodium channel Nav1.6 is associated with more than 300 cases of epileptic encephalopathy. Nav1.6 epilepsy-causing mutations are spread over the entire channel's structure and only 10% of mutations have been characterized at the molecular level, with most of them being gain of function mutations. In this study, we analyzed three previously uncharacterized Nav1.6 epilepsy-causing mutations: G214D, N215D and V216D, located within a mutation hot-spot at the S3-S4 extracellular loop of Domain1. Voltage clamp experiments showed a 6-16 mV hyperpolarizing shift in the activation mid-point for all three mutants. V216D presented the largest shift along with decreased current amplitude, enhanced inactivation and a lack of persistent current. Recordings at hyperpolarized potentials indicated that all three mutants presented gating pore currents. Furthermore, trafficking experiments performed in cultured hippocampal neurons demonstrated that the mutants trafficked properly to the cell surface, with no significant differences regarding surface expression within the axon initial segment or soma compared to wild-type. These trafficking data suggest that the disease-causing consequences are due to only changes in the biophysical properties of the channel. Interestingly, the patient carrying the V216D mutation, which is the mutant with the greatest electrophysiological changes as compared to wild-type, exhibited the most severe phenotype. These results emphasize that these mutations will mandate unique treatment approaches, for normal sodium channel blockers may not work given that the studied mutations present gating pore currents. This study emphasizes the importance of molecular characterization of disease-causing mutations in order to improve the pharmacological treatment of patients.
Collapse
Affiliation(s)
- Laura Solé
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO 80523, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jacy L Wagnon
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Michael M Tamkun
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO 80523, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
6
|
Elmén L, Volpato CB, Kervadec A, Pineda S, Kalvakuri S, Alayari NN, Foco L, Pramstaller PP, Ocorr K, Rossini A, Cammarato A, Colas AR, Hicks AA, Bodmer R. Silencing of CCR4-NOT complex subunits affects heart structure and function. Dis Model Mech 2020; 13:dmm044727. [PMID: 32471864 PMCID: PMC7390626 DOI: 10.1242/dmm.044727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of genetic variants that predispose individuals to cardiovascular disease and a better understanding of their targets would be highly advantageous. Genome-wide association studies have identified variants that associate with QT-interval length (a measure of myocardial repolarization). Three of the strongest associating variants (single-nucleotide polymorphisms) are located in the putative promotor region of CNOT1, a gene encoding the central CNOT1 subunit of CCR4-NOT: a multifunctional, conserved complex regulating gene expression and mRNA stability and turnover. We isolated the minimum fragment of the CNOT1 promoter containing all three variants from individuals homozygous for the QT risk alleles and demonstrated that the haplotype associating with longer QT interval caused reduced reporter expression in a cardiac cell line, suggesting that reduced CNOT1 expression might contribute to abnormal QT intervals. Systematic siRNA-mediated knockdown of CCR4-NOT components in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) revealed that silencing CNOT1 and other CCR4-NOT genes reduced their proliferative capacity. Silencing CNOT7 also shortened action potential duration. Furthermore, the cardiac-specific knockdown of Drosophila orthologs of CCR4-NOT genes in vivo (CNOT1/Not1 and CNOT7/8/Pop2) was either lethal or resulted in dilated cardiomyopathy, reduced contractility or a propensity for arrhythmia. Silencing CNOT2/Not2, CNOT4/Not4 and CNOT6/6L/twin also affected cardiac chamber size and contractility. Developmental studies suggested that CNOT1/Not1 and CNOT7/8/Pop2 are required during cardiac remodeling from larval to adult stages. To summarize, we have demonstrated how disease-associated genes identified by GWAS can be investigated by combining human cardiomyocyte cell-based and whole-organism in vivo heart models. Our results also suggest a potential link of CNOT1 and CNOT7/8 to QT alterations and further establish a crucial role of the CCR4-NOT complex in heart development and function.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lisa Elmén
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Claudia B Volpato
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Anaïs Kervadec
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Santiago Pineda
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sreehari Kalvakuri
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Nakissa N Alayari
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Luisa Foco
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Karen Ocorr
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alessandra Rossini
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Anthony Cammarato
- Johns Hopkins University, Division of Cardiology, 720 Rutland Ave., Baltimore, MD 21205, USA
| | - Alexandre R Colas
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Galvani 31, 39100 Bolzano, Italy
| | - Rolf Bodmer
- Development Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Son MJ, Kim MK, Yang KM, Choi BH, Lee BW, Yoo SH. Retrospective Genetic Analysis of 200 Cases of Sudden Infant Death Syndrome and Its Relationship with Long QT Syndrome in Korea. J Korean Med Sci 2018; 33:e200. [PMID: 30079003 PMCID: PMC6070466 DOI: 10.3346/jkms.2018.33.e200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/16/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND There has been a campaign by the National Education on Sleeping Habits and Living Environment, to reduce the incidence of sudden infant death syndrome (SIDS). However, more than 100 infants die suddenly and unexplainably before the age of 1 year in Korea. Long QT syndrome (LQTS), an inheritable cardiac disease, has been reported to likely be associated with up to 14% of SIDS cases. However, genetic studies of the association between SIDS and LQTS have not yet been conducted in Korea. METHODS We conducted genetic analysis using genomic DNA extracted from paraffin-embedded tissue blocks from 200 SIDS cases autopsied between 2005 and 2013. We analyzed the following genetic mutations associated with LQTS, KCNQ1, SCN5A, KCNE1, KCNE2, KCNJ2, and CAV3. RESULTS Of the 200 SIDS cases, 58% involved male infants (116 male and 84 female infants, respectively), the mean age was 140 days (median, 107 days; range, 24-270 days), and they were all of Asian-Korean ethnicity. SIDS IA category criteria comprised 45 cases (22.5%) while the rest were SIDS IB. Fifteen infants (7.5%) had R1193Q in SCN5A, of doubtful pathogenicity, and no pathogenic LQTS variants were observed. CONCLUSION This genetic investigation of LQTS in SIDS showed a low diagnostic yield. These findings suggest that LQTS molecular autopsy could be cautiously conducted in selected cases with family involvement to improve the available genetic counseling information. Meanwhile, a national SIDS registry should be established to document and evaluate the genetic risk of SIDS in Korea.
Collapse
Affiliation(s)
- Min-Jeong Son
- Department of Forensic Medicine and Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Min-Kyoung Kim
- Department of Forensic Medicine and Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Kyung-moo Yang
- Division of Forensic Medicine, National Forensic Service, Seoul, Korea
| | - Byung-Ha Choi
- Medical Examiner's Office, National Forensic Service, Wonju, Korea
| | - Bong Woo Lee
- Medical Examiner's Office, National Forensic Service, Wonju, Korea
| | - Seong Ho Yoo
- Department of Forensic Medicine and Institute of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Abdelsayed M, Ruprai M, Ruben PC. The efficacy of Ranolazine on E1784K is altered by temperature and calcium. Sci Rep 2018; 8:3643. [PMID: 29483621 PMCID: PMC5827758 DOI: 10.1038/s41598-018-22033-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/15/2018] [Indexed: 12/19/2022] Open
Abstract
E1784K is the most common mixed syndrome SCN5a mutation underpinning both Brugada syndrome type 1 (BrS1) and Long-QT syndrome type 3 (LQT3). The charge reversal mutant enhances the late sodium current (INa) passed by the cardiac voltage-gated sodium channel (NaV1.5), delaying cardiac repolarization. Exercise-induced triggers, like elevated temperature and cytosolic calcium, exacerbate E1784K late INa. In this study, we tested the effects of Ranolazine, the late INa blocker, on voltage-dependent and kinetic properties of E1784K at elevated temperature and cytosolic calcium. We used whole-cell patch clamp to measure INa from wild type and E1784K channels expressed in HEK293 cells. At elevated temperature, Ranolazine attenuated gain-of-function in E1784K by decreasing late INa, hyperpolarizing steady-state fast inactivation, and increasing use-dependent inactivation. Both elevated temperature and cytosolic calcium hampered the capacity of Ranolazine to suppress E1784K late INa. In-silico action potential (AP) simulations were done using a modified O'Hara Rudy (ORd) cardiac model. Simulations showed that Ranolazine failed to shorten AP duration, an effect augmented at febrile temperatures. The drug-channel interaction is clearly affected by external triggers, as reported previously with ischemia. Determining drug efficacy under various physiological states in SCN5a cohorts is crucial for accurate management of arrhythmias.
Collapse
Affiliation(s)
- Mena Abdelsayed
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Manpreet Ruprai
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
9
|
Kimura M, Kohno T, Aizawa Y, Inohara T, Shiraishi Y, Katsumata Y, Egashira T, Fukushima H, Kosaki K, Fukuda K. A Novel SCN5A Mutation Found in a Familial Case of Long QT Syndrome Complicated by Severe Left Ventricular Dysfunction. Can J Cardiol 2016; 33:554.e5-554.e7. [PMID: 28011106 DOI: 10.1016/j.cjca.2016.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/20/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022] Open
Abstract
A 16-year-old boy with long QT syndrome type 3 (LQT3) was admitted for decompensated heart failure resulting from dilated cardiomyopathy (DCM). His brother was also diagnosed with LQT3 and DCM. A comprehensive genetic analysis identified a novel SCN5A missense mutation-p.Q371E-in these 2 affected living family members. It might be important to suspect the coexistence of DCM and LQT3 (which is rare according to previous articles) in cases with this novel SCN5A missense mutation.
Collapse
Affiliation(s)
- Mai Kimura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Kohno
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Yoshiyasu Aizawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Taku Inohara
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Yasuyuki Shiraishi
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | | | - Toru Egashira
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Fukushima
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Rai V, Agrawal DK. Role of risk stratification and genetics in sudden cardiac death. Can J Physiol Pharmacol 2016; 95:225-238. [PMID: 27875062 DOI: 10.1139/cjpp-2016-0457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sudden cardiac death (SCD) is a major public health issue due to its increasing incidence in the general population and the difficulty in identifying high-risk individuals. Nearly 300 000 - 350 000 patients in the United States and 4-5 million patients in the world die annually from SCD. Coronary artery disease and advanced heart failure are the main etiology for SCD. Ischemia of any cause precipitates lethal arrhythmias, and ventricular tachycardia and ventricular fibrillation are the most common lethal arrhythmias precipitating SCD. Pulseless electrical activity, bradyarrhythmia, and electromechanical dissociation also result in SCD. Most SCDs occur outside of the hospital setting, so it is difficult to estimate the public burden, which results in overestimating the incidence of SCD. The insufficiency and limited predictive value of various indicators and criteria for SCD result in the increasing incidence. As a result, there is a need to develop better risk stratification criteria and find modifiable variables to decrease the incidence. Primary and secondary prevention and treatment of SCD need further research. This critical review is focused on the etiology, risk factors, prognostic factors, and importance of risk stratification of SCD.
Collapse
Affiliation(s)
- Vikrant Rai
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA.,Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| |
Collapse
|
11
|
Allen KY, Vetter VL, Shah MJ, O'Connor MJ. Familial long QT syndrome and late development of dilated cardiomyopathy in a child with a KCNQ1 mutation: A case report. HeartRhythm Case Rep 2015; 2:128-131. [PMID: 28491650 PMCID: PMC5412615 DOI: 10.1016/j.hrcr.2015.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Kiona Y Allen
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Victoria L Vetter
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Maully J Shah
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Matthew J O'Connor
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Progressive cardiac conduction disorder (PCCD) is an inherited cardiac disease that may present as a primary electrical disease or be associated with structural heart disease. In this brief review, we present recent clinical, genetic, and molecular findings relating to PCCD. RECENT FINDINGS Inherited PCCD in structurally normal hearts has been found to be linked to genetic variants in the ion channel genes SCN5A, SCN1B, SCN10A, TRPM4, and KCNK17, as well as in genes coding for cardiac connexin proteins. In addition, several SCN5A mutations lead to 'cardiac sodium channelopathy overlap syndrome'. Other genes coding for cardiac transcription factors, such as NKX2.5 and TBX5, are involved in the development of the cardiac conduction system and in the morphogenesis of the heart. Mutations in these two genes have been shown to cause cardiac conduction disorders associated with various congenital heart defects. SUMMARY PCCD is a hereditary syndrome, and genetic variants in multiple genes have been described to date. Genetic screening and identification of the causal mutation are crucial for risk stratification and family counselling.
Collapse
|
13
|
Fontaine GH, Zhang L. Is the phenotype-genotype relationship necessary to understand cardiomyopathies? CIRCULATION. CARDIOVASCULAR GENETICS 2014; 7:405-6. [PMID: 25140060 DOI: 10.1161/circgenetics.114.000743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Guy H Fontaine
- From Institut de Cardiologie - Unité de Rythmologie, La Salpêtrière Hospital, Paris, France (G.H.F.); and Center for Clinical Cardiology, Lankenau Institute for Medical Research, Jefferson Medical College, Philadelphia, PA (L.Z.).
| | - Li Zhang
- From Institut de Cardiologie - Unité de Rythmologie, La Salpêtrière Hospital, Paris, France (G.H.F.); and Center for Clinical Cardiology, Lankenau Institute for Medical Research, Jefferson Medical College, Philadelphia, PA (L.Z.)
| |
Collapse
|
14
|
Boehringer T, Bugert P, Borggrefe M, Elmas E. SCN5A mutations and polymorphisms in patients with ventricular fibrillation during acute myocardial infarction. Mol Med Rep 2014; 10:2039-44. [PMID: 25051102 DOI: 10.3892/mmr.2014.2401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 04/01/2014] [Indexed: 11/05/2022] Open
Abstract
Mutations in the SCN5A gene encoding the Nav1.5 channel α-subunit are known to be risk factors of arrhythmia, including Brugada Syndrome and Long QT syndrome subtype 3. The present study focused on the role of SCN5A variants in the development of ventricular fibrillation (VF) during acute myocardial infarction (AMI). Since VF during AMI is the major cause of sudden death in the Western world, SCN5A mutations represent genetic risk factors for sudden death. By exon re-sequencing, the entire coding region and flanking intron regions were sequenced in 46 AMI/VF+ patients. In total, nine single nucleotide variants were identified of which four represented common single nucleotide polymorphisms (SNPs; 87G>A, 1673A>G, IVS16‑6C>T and 5457T>A). Only five rare variants were identified, each in only one patient. Only two of the rare variants represented missense mutations (3578G>A and 4786T>A). The common SNPs and the missense mutations were also genotyped using polymerase chain reaction methods in 79 AMI/VF‑ patients and 480 healthy controls. The SNPs did not demonstrate significant differences in allele and genotype frequencies between the study groups. The 3578G>A mutation was identified in one out of the 480 controls, whereas the 4786T>A mutation was not present in AMI/VF- patients and controls. In conclusion, the majority of AMI/VF+ patients demonstrated a wild type sequence or common SNPs in SCN5A. Only two out of 46 (4.3%) AMI/VF+ patients revealed mutations that may be involved in Nav1.5 dysfunction and VF. However, this requires further functional validation.
Collapse
Affiliation(s)
- Tim Boehringer
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden‑Württemberg, Hessen 68167, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden‑Württemberg, Hessen 68167, Germany
| | - Martin Borggrefe
- Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| | - Elif Elmas
- Medical Faculty Mannheim, Heidelberg University, Mannheim 68167, Germany
| |
Collapse
|
15
|
Gosselin-Badaroudine P, Moreau A, Chahine M. Nav 1.5 mutations linked to dilated cardiomyopathy phenotypes: Is the gating pore current the missing link? Channels (Austin) 2013; 8:90-4. [PMID: 24300601 DOI: 10.4161/chan.27179] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nav 1.5 dysfunctions are commonly linked to rhythms disturbances that include type 3 long QT syndrome (LQT3), Brugada syndrome (BrS), sick sinus syndrome (SSS) and conduction defects. Recently, this channel protein has been also linked to structural heart diseases such as dilated cardiomyopathy (DCM).
Collapse
Affiliation(s)
| | - Adrien Moreau
- Centre de recherche; Institut universitaire en santé mentale de Québec; Quebec City, QC Canada
| | - Mohamed Chahine
- Centre de recherche; Institut universitaire en santé mentale de Québec; Quebec City, QC Canada; Department of Medicine; Université Laval; Quebec City, QC Canada
| |
Collapse
|
16
|
Jin BK, Bang JS, Choi EY, Kim GB, Kwon BS, Bae EJ, Noh CI, Choi JY, Kim WH. Implantable cardioverter defibrillator therapy in pediatric and congenital heart disease patients: a single tertiary center experience in Korea. KOREAN JOURNAL OF PEDIATRICS 2013; 56:125-9. [PMID: 23559974 PMCID: PMC3611046 DOI: 10.3345/kjp.2013.56.3.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/16/2012] [Accepted: 10/25/2012] [Indexed: 11/27/2022]
Abstract
PURPOSE The use of implantable cardioverter defibrillators (ICDs) to prevent sudden cardiac death is increasing in children and adolescents. This study investigated the use of ICDs in children with congenital heart disease. METHODS This retrospective study was conducted on the clinical characteristics and effectiveness of ICD implantation at the department of pediatrics of a single tertiary center between 2007 and 2011. RESULTS Fifteen patients underwent ICD implantation. Their mean age at the time of implantation was 14.5±5.4 years (range, 2 to 22 years). The follow-up duration was 28.9±20.4 months. The cause of ICD implantation was cardiac arrest in 7, sustained ventricular tachycardia in 6, and syncope in 2 patients. The underlying disorders were as follows: ionic channelopathy in 6 patients (long QT type 3 in 4, catecholaminergic polymorphic ventricular tachycardia [CPVT] in 1, and J wave syndrome in 1), cardiomyopathy in 5 patients, and postoperative congenital heart disease in 4 patients. ICD coils were implanted in the pericardial space in 2 children (ages 2 and 6 years). Five patients received appropriate ICD shock therapy, and 2 patients received inappropriate shocks due to supraventricular tachycardia. During follow-up, 2 patients required lead dysfunction-related revision. One patient with CPVT suffered from an ICD storm that was resolved using sympathetic denervation surgery. CONCLUSION The overall ICD outcome was acceptable in most pediatric patients. Early diagnosis and timely ICD implantation are recommended for preventing sudden death in high-risk children and patients with congenital heart disease.
Collapse
Affiliation(s)
- Bo Kyung Jin
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|