1
|
Huang J, Gao Z, Xuan J, Gao N, Wei C, Gu J. Metabolic insights into tumor lymph node metastasis in melanoma. Cell Oncol (Dordr) 2024; 47:2099-2112. [PMID: 39704926 DOI: 10.1007/s13402-024-01027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2024] [Indexed: 12/21/2024] Open
Abstract
Although accounting for only a small amount of skin cancers, melanoma contributes prominently to skin cancer-related deaths, which are mostly caused by metastatic diseases, and lymphatic metastasis constitutes the main route. In this review, we concentrate on the metabolic mechanisms of tumor lymph node (LN) metastasis in melanoma. Two hypotheses of melanoma LN metastasis are introduced, which are the premetastatic niche (PMN) and parallel progression model. Dysregulation of oxidative stress, lactic acid concentration, fatty acid synthesis, amino acid metabolism, autophagy, and ferroptosis construct the metabolic mechanisms in LN metastasis of melanoma. Moreover, melanoma cells also promote LN metastasis by interacting with non-tumor cells through metabolic reprogramming in TIME. This review will deepen our understanding of the mechanism of lymph node metastasis in melanoma.
Collapse
Affiliation(s)
- Jiayi Huang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Zixu Gao
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Jiangying Xuan
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Ningyuan Gao
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
| | - Jianying Gu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
2
|
Ferreira AMC, Carron J, Gomez GVB, Vazquez VDL, Serrano SV, Lourenço GJ, Lima CSP. Association of Cytotoxic T-Lymphocyte Antigen-4 ( CTLA-4) Genetic Variants with Risk and Outcome of Cutaneous Melanoma. Int J Mol Sci 2024; 25:12327. [PMID: 39596391 PMCID: PMC11594856 DOI: 10.3390/ijms252212327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to verify whether germline single nucleotide variants (SNV) in CTLA-4 gene, c.-1765C>T, c.-1661A>G, c.-1577G>A, and c.-1478G>A, influence the risk, clinicopathological aspects, and survival of patients with CM, as well as its functional consequences. A total of 432 patients with CM and 504 controls were evaluated. CTLA-4 genotypes were identified by real-time polymerase chain reaction (RT-PCR) and expression of CTLA-4 by quantitative PCR (qPCR) and luciferase assay. Cell cycle, proliferation, apoptosis/necrosis, and migration analyses were performed in SK-MEL-28 and A-375 cell lines modified to present homozygous ancestral or variant genotypes by CRISPR technique. Individuals with the CTLA-4 c.-1577 AA genotype and the combined CTLA-4 c.-1577 and c.-1478 AA + AA genotypes were at 1.60- and 3.12-fold higher risk of developing CM, respectively. The CTLA-4 c.-1577 AA genotype was seen as an independent predictor of worse event-free survival and was also associated with higher gene expression, higher cell proliferation, lower cell apoptosis, and higher cell migration. Our data present, for the first time, evidence that CTLA-4 c.-1577G>A alters the risk and clinical aspects of CM treated with conventional procedures and may be used for selecting individuals for tumor prevention and patients for distinct treatment.
Collapse
Affiliation(s)
- Ana Maria Castro Ferreira
- Laboratory of Cancer Genetics, School of Medical Sciences, State University of Campinas, Campinas 13083-970, SP, Brazil; (A.M.C.F.); (J.C.); (G.V.B.G.); (G.J.L.)
| | - Juliana Carron
- Laboratory of Cancer Genetics, School of Medical Sciences, State University of Campinas, Campinas 13083-970, SP, Brazil; (A.M.C.F.); (J.C.); (G.V.B.G.); (G.J.L.)
- Department of Anesthesiology, Oncology and Radiology, School of Medical Sciences, State University of Campinas, Campinas 13083-970, SP, Brazil
| | - Gabriela Vilas Bôas Gomez
- Laboratory of Cancer Genetics, School of Medical Sciences, State University of Campinas, Campinas 13083-970, SP, Brazil; (A.M.C.F.); (J.C.); (G.V.B.G.); (G.J.L.)
| | - Vinicius de Lima Vazquez
- Melanoma and Sarcoma Surgery Department, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil;
| | - Sergio Vicente Serrano
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil;
| | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, School of Medical Sciences, State University of Campinas, Campinas 13083-970, SP, Brazil; (A.M.C.F.); (J.C.); (G.V.B.G.); (G.J.L.)
| | - Carmen Silvia Passos Lima
- Laboratory of Cancer Genetics, School of Medical Sciences, State University of Campinas, Campinas 13083-970, SP, Brazil; (A.M.C.F.); (J.C.); (G.V.B.G.); (G.J.L.)
- Department of Anesthesiology, Oncology and Radiology, School of Medical Sciences, State University of Campinas, Campinas 13083-970, SP, Brazil
| |
Collapse
|
3
|
Jung H, Paust S. Chemokines in the tumor microenvironment: implications for lung cancer and immunotherapy. Front Immunol 2024; 15:1443366. [PMID: 39114657 PMCID: PMC11304008 DOI: 10.3389/fimmu.2024.1443366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The tumor microenvironment (TME) is a complex interconnected network of immune cells, fibroblasts, blood vessels, and extracellular matrix surrounding the tumor. Because of its immunosuppressive nature, the TME can pose a challenge for cancer immunotherapies targeting solid tumors. Chemokines have emerged as a crucial element in enhancing the efficacy of cancer immunotherapy, playing a direct role in immune cell signaling within the TME and facilitating immune cell migration towards cancer cells. However, chemokine ligands and their receptors exhibit context-dependent diversity, necessitating evaluation of their tumor-promoting or inhibitory effects based on tumor type and immune cell characteristics. This review explores the role of chemokines in tumor immunity and metastasis in the context of the TME. We also discuss current chemokine-related advances in cancer immunotherapy research, with a particular focus on lung cancer, a common cancer with a low survival rate and limited immunotherapy options.
Collapse
Affiliation(s)
| | - Silke Paust
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| |
Collapse
|
4
|
Jeong J, Lee W, Kim YA, Lee YJ, Kim S, Shin J, Choi Y, Kim J, Lee Y, Kim MS, Kwon SH. Multi-System-Level Analysis Reveals Differential Expression of Stress Response-Associated Genes in Inflammatory Solar Lentigo. Int J Mol Sci 2024; 25:3973. [PMID: 38612783 PMCID: PMC11012242 DOI: 10.3390/ijms25073973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Although the pathogenesis of solar lentigo (SL) involves chronic ultraviolet (UV) exposure, cellular senescence, and upregulated melanogenesis, underlying molecular-level mechanisms associated with SL remain unclear. The aim of this study was to investigate the gene regulatory mechanisms intimately linked to inflammation in SL. Skin samples from patients with SL with or without histological inflammatory features were obtained. RNA-seq data from the samples were analyzed via multiple analysis approaches, including exploration of core inflammatory gene alterations, identifying functional pathways at both transcription and protein levels, comparison of inflammatory module (gene clusters) activation levels, and analyzing correlations between modules. These analyses disclosed specific core genes implicated in oxidative stress, especially the upregulation of nuclear factor kappa B in the inflammatory SLs, while genes associated with protective mechanisms, such as SLC6A9, were highly expressed in the non-inflammatory SLs. For inflammatory modules, Extracellular Immunity and Mitochondrial Innate Immunity were exclusively upregulated in the inflammatory SL. Analysis of protein-protein interactions revealed the significance of CXCR3 upregulation in the pathogenesis of inflammatory SL. In conclusion, the upregulation of stress response-associated genes and inflammatory pathways in response to UV-induced oxidative stress implies their involvement in the pathogenesis of inflammatory SL.
Collapse
Affiliation(s)
- Jisu Jeong
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Wonmin Lee
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Medicine, Kyung Hee University College of Medicine, Seoul 02453, Republic of Korea
| | - Ye-Ah Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Yun-Ji Lee
- Department of Dermatology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea;
| | - Sohyun Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Medicine, Kyung Hee University College of Medicine, Seoul 02453, Republic of Korea
| | - Jaeyeon Shin
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Mathematics, Kyung Hee University College of Science, Seoul 02453, Republic of Korea
| | - Yueun Choi
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Jihan Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
- Department of Medicine, Kyung Hee University College of Medicine, Seoul 02453, Republic of Korea
| | - Yoonsung Lee
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
| | - Man S. Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (J.J.); (W.L.); (Y.-A.K.); (S.K.); (J.S.); (Y.C.); (J.K.); (Y.L.)
| | - Soon-Hyo Kwon
- Department of Dermatology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea;
| |
Collapse
|
5
|
Balema W, Morton J, Larson RA, Li L, Velasquez FC, Fowlkes NW, Krishnamurthy S, Debeb BG, Sevick-Muraca E, Woodward WA. High-fat diet, but not duration of lactation, increases mammary gland lymphatic vessel function and subsequent growth of inflammatory breast cancer cells. J Mammary Gland Biol Neoplasia 2023; 28:21. [PMID: 37801190 PMCID: PMC10558390 DOI: 10.1007/s10911-023-09548-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/09/2023] [Indexed: 10/07/2023] Open
Abstract
Inflammatory breast cancer (IBC) presents as rapid-onset swelling and breast skin changes caused by tumor emboli in the breast and breast skin lymphatics. IBC has been linked with obesity and duration of breastfeeding, but how these factors affect IBC tumor progression is not clear. We modeled the simultaneous effects of diet and weaning in mice on in vivo lymphatic function; on IBC tumor growth; and on aspects of the mammary gland microenvironment before and after IBC (SUM149) xenograft inoculation. We hypothesized that weaning status and diet would have synergistic effects on lymphatic function and the breast microenvironment to enhance IBC tumor growth. Changes in lymphatic structure and function were characterized with in vivo near-infrared fluorescence (NIRF) imaging. Mice were fed either a high-fat diet (HFD; 60 kcal%) or a normal/low-fat diet (LFD; 10 kcal%), bred twice, and subjected to either normal-duration nursing (NW) or forced weaning (FW). SUM149 IBC tumors were implanted at 14 months; images were obtained before and after implantation. Multiparous mice fed HFD showed increased pre-tumor lymphatic pulsing in both the FW and NW groups relative to mice fed LFD. HFD promoted tumor growth independent of weaning time (P = 0.04). Pre-tumor lymphatic pulsing was associated with tumor volume at 8 weeks (P = 0.02) and was significantly correlated with expression of the lymphatic tracking ligand CCL21 (P = 0.05, Table 1). HFD significantly increased the numbers of monocyte-derived IBA1+, CD163+, and CD11c+ cells (P < 0.0001, P < 0.0001, P = 0.0005) in the contralateral, non-tumor-bearing mammary gland. Numbers of lymphangiogenic podoplanin+/IBA1+ macrophages were increased in the ducts of HFD and FW mice (all P < 0.003). HFD in nulliparous mice had a similar increase in lymphatic pulsing at 14 weeks (P = 0.006), indicating that this functional change was independent of parity. We conclude that HFD induced increases in mammary gland lymphatic function, assessed as pulsing rate before tumor initiation, and correlated with inflammation in the mammary gland and increased SUM149 tumor growth. The relationship between diet, lymphatic pulsing, and tumor growth warrants further investigation.
Collapse
Affiliation(s)
- Wintana Balema
- MD Anderson UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Morgan Welch IBC Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Janelle Morton
- The University of Texas Health Science Center, Institute of Molecular Imaging, Center for Molecular Imaging, Houston, TX, USA
| | - Richard A Larson
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Morgan Welch IBC Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The Morgan Welch IBC Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fred Christian Velasquez
- The University of Texas Health Science Center, Institute of Molecular Imaging, Center for Molecular Imaging, Houston, TX, USA
| | - Natalie W Fowlkes
- Department of Veterinary Medicine and Surgery, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Savitri Krishnamurthy
- The Morgan Welch IBC Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Pathology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Bisrat G Debeb
- The Morgan Welch IBC Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eva Sevick-Muraca
- The University of Texas Health Science Center, Institute of Molecular Imaging, Center for Molecular Imaging, Houston, TX, USA
| | - Wendy A Woodward
- The Morgan Welch IBC Clinic and Research Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Breast Radiation Oncology, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Suman S, Markovic SN. Melanoma-derived mediators can foster the premetastatic niche: crossroad to lymphatic metastasis. Trends Immunol 2023; 44:724-743. [PMID: 37573226 PMCID: PMC10528107 DOI: 10.1016/j.it.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/14/2023]
Abstract
The natural history of advanced malignant melanoma demonstrates that, in most cases, widespread tumor dissemination is preceded by regional metastases involving tumor-draining lymph nodes [sentinel lymph nodes (SLNs)]. Under physiological conditions, LNs play a central role in immunosurveillance to non-self-antigens to which they are exposed via afferent lymph. The dysfunctional immunity in SLNs is mediated by tumor secretory factors that allow the survival of metastatic melanoma cells within the LN by creating a premetastatic niche (PMN). Recent studies outline the altered microenvironment of LNs shaped by melanoma mediators. Here, we discuss tumor secretory factors involved in subverting tumor immunity and remodeling LNs and highlight emerging therapeutic strategies to reinvigorate antitumoral immunity in SLNs.
Collapse
Affiliation(s)
- Shankar Suman
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Svetomir N Markovic
- Department of Oncology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
C-C Chemokine Receptor 7 in Cancer. Cells 2022; 11:cells11040656. [PMID: 35203305 PMCID: PMC8870371 DOI: 10.3390/cells11040656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
C-C chemokine receptor 7 (CCR7) was one of the first two chemokine receptors that were found to be upregulated in breast cancers. Chemokine receptors promote chemotaxis of cells and tissue organization. Since under homeostatic conditions, CCR7 promotes migration of immune cells to lymph nodes, questions immediately arose regarding the ability of CCR7 to direct migration of cancer cells to lymph nodes. The literature since 2000 was examined to determine to what extent the expression of CCR7 in malignant tumors promoted migration to the lymph nodes. The data indicated that in different cancers, CCR7 plays distinct roles in directing cells to lymph nodes, the skin or to the central nervous system. In certain tumors, it may even serve a protective role. Future studies should focus on defining mechanisms that differentially regulate the unfavorable or beneficial role that CCR7 plays in cancer pathophysiology, to be able to improve outcomes in patients who harbor CCR7-positive cancers.
Collapse
|
8
|
Adams R, Moser B, Karagiannis SN, Lacy KE. Chemokine Pathways in Cutaneous Melanoma: Their Modulation by Cancer and Exploitation by the Clinician. Cancers (Basel) 2021; 13:cancers13225625. [PMID: 34830780 PMCID: PMC8615762 DOI: 10.3390/cancers13225625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/01/2023] Open
Abstract
The incidence of cutaneous malignant melanoma is rising globally and is projected to continue to rise. Advances in immunotherapy over the last decade have demonstrated that manipulation of the immune cell compartment of tumours is a valuable weapon in the arsenal against cancer; however, limitations to treatment still exist. Cutaneous melanoma lesions feature a dense cell infiltrate, coordinated by chemokines, which control the positioning of all immune cells. Melanomas are able to use chemokine pathways to preferentially recruit cells, which aid their growth, survival, invasion and metastasis, and which enhance their ability to evade anticancer immune responses. Aside from this, chemokine signalling can directly influence angiogenesis, invasion, lymph node, and distal metastases, including epithelial to mesenchymal transition-like processes and transendothelial migration. Understanding the interplay of chemokines, cancer cells, and immune cells may uncover future avenues for melanoma therapy, namely: identifying biomarkers for patient stratification, augmenting the effect of current and emerging therapies, and designing specific treatments to target chemokine pathways, with the aim to reduce melanoma pathogenicity, metastatic potential, and enhance immune cell-mediated cancer killing. The chemokine network may provide selective and specific targets that, if included in current therapeutic regimens, harbour potential to improve outcomes for patients.
Collapse
Affiliation(s)
- Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
| | - Bernhard Moser
- Division of Infection & Immunity, Henry Wellcome Building, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4YS, UK;
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
- Guy’s Cancer Centre, Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, London WC2R 2LS, UK
- Correspondence: (S.N.K.); (K.E.L.); Tel.: +44-0-20-7188-6355 (K.E.L.)
| | - Katie E. Lacy
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London WC2R 2LS, UK;
- Correspondence: (S.N.K.); (K.E.L.); Tel.: +44-0-20-7188-6355 (K.E.L.)
| |
Collapse
|
9
|
Fujimoto N, Dieterich LC. Mechanisms and Clinical Significance of Tumor Lymphatic Invasion. Cells 2021; 10:cells10102585. [PMID: 34685565 PMCID: PMC8533989 DOI: 10.3390/cells10102585] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 12/17/2022] Open
Abstract
Tumor-associated lymphatic vessels play an important role in tumor progression, mediating lymphatic dissemination of malignant cells to tumor-draining lymph nodes and regulating tumor immunity. An early, necessary step in the lymphatic metastasis cascade is the invasion of lymphatic vessels by tumor cell clusters or single tumor cells. In this review, we discuss our current understanding of the underlying cellular and molecular mechanisms, which include tumor-specific as well as normal, developmental and immunological processes “hijacked” by tumor cells to gain access to the lymphatic system. Furthermore, we summarize the prognostic value of lymphatic invasion, discuss its relationship with local recurrence, lymph node and distant metastasis, and highlight potential therapeutic options and challenges.
Collapse
Affiliation(s)
- Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science, Otsu 520-2192, Japan;
| | - Lothar C. Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
10
|
Abstract
Early engagement of the lymphatic system by solid tumors in peripheral, nonlymphoid tissues is a clinical hallmark of cancer and often forecasts poor prognosis. The significance of lymph node metastasis for distant spread, however, has been questioned by large-scale lymph node dissection trials and the likely prevalence of direct hematogenous metastasis. Still, an emerging appreciation for the immunological role of the tumor-draining lymph node has renewed interest in its basic biology, role in metastatic progression, antitumor immunity, and patient outcomes. In this review, we discuss our current understanding of the early mechanisms through which tumors engage lymphatic transport and condition tumor-draining lymph nodes, the significance of these changes for both metastasis and immunity, and potential implications of the tumor-draining lymph node for immunotherapy.
Collapse
Affiliation(s)
- Haley du Bois
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016
| | - Taylor A. Heim
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016
| | - Amanda W. Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY 10016
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016
- Laura and Isaac Perlmutter Cancer Center NYU Langone Health, New York, NY 10016
| |
Collapse
|
11
|
Frenkel N, Poghosyan S, Alarcón CR, García SB, Queiroz K, van den Bent L, Laoukili J, Rinkes IB, Vulto P, Kranenburg O, Hagendoorn J. Long-Lived Human Lymphatic Endothelial Cells to Study Lymphatic Biology and Lymphatic Vessel/Tumor Coculture in a 3D Microfluidic Model. ACS Biomater Sci Eng 2021; 7:3030-3042. [PMID: 34185991 DOI: 10.1021/acsbiomaterials.0c01378] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lymphatic system is essential in maintaining tissue fluid homeostasis as well as antigen and immune cell transport to lymph nodes. Moreover, lymphatic vasculature plays an important role in various pathological processes, such as cancer. Fundamental to this research field are representative in vitro models. Here we present a microfluidic lymphatic vessel model to study lymphangiogenesis and its interaction with colon cancer organoids using a newly developed lymphatic endothelial cell (LEC) line. We generated immortalized human LECs by lentiviral transduction of human telomerase (hTERT) and BMI-1 expression cassettes into primary LECs. Immortalized LECs showed an increased growth potential, reduced senescence, and elongated lifespan with maintenance of typical LEC morphology and marker expression for over 12 months while remaining nontransformed. Immortalized LECs were introduced in a microfluidic chip, comprising a free-standing extracellular matrix, where they formed a perfusable vessel-like structure against the extracellular matrix. A gradient of lymphangiogenic factors over the extracellular matrix gel induced the formation of luminated sprouts. Adding mouse colon cancer organoids adjacent to the lymphatic vessel resulted in a stable long-lived coculture model in which cancer cell-induced lymphangiogenesis and cancer cell motility can be investigated. Thus, the development of a stable immortalized lymphatic endothelial cell line in a membrane-free, perfused microfluidic chip yields a highly standardized lymphangiogenesis and lymphatic vessel-tumor cell coculture assay.
Collapse
Affiliation(s)
- Nicola Frenkel
- UMC Utrecht Cancer Center, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Susanna Poghosyan
- UMC Utrecht Cancer Center, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Carmen Rubio Alarcón
- UMC Utrecht Cancer Center, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | | | | | - Lotte van den Bent
- UMC Utrecht Cancer Center, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Jamila Laoukili
- UMC Utrecht Cancer Center, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Inne Borel Rinkes
- UMC Utrecht Cancer Center, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Paul Vulto
- Mimetas BV, JH Oortweg 19, Leiden, The Netherlands
| | - Onno Kranenburg
- UMC Utrecht Cancer Center, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| | - Jeroen Hagendoorn
- UMC Utrecht Cancer Center, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, Utrecht 3584CX, The Netherlands
| |
Collapse
|
12
|
Zhang Q, Lin ZN, Chen J, Zheng WX. A multi-omics study on cutaneous and uveal melanoma. Int J Ophthalmol 2021; 14:32-41. [PMID: 33469481 DOI: 10.18240/ijo.2021.01.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
AIM To present the multi-omics landscape of cutaneous melanoma (CM) and uveal melanoma (UM) from The Cancer Genome Atlas (TCGA). METHODS The differentially expressed genes (DEGs) between CM and UM were found and integrated into a gene ontology enrichment analysis. Besides, the differentially expressed miRNAs were also identified. We also compared the methylation level of CM with UM and identified the differentially methylated regions to integrate with the DEGs to display the relationship between the gene expression and DNA methylation. The differentially expressed transcription factors (TFs) were identified. RESULTS Though CM had more mutational burden than UM, they shared several similarities such as the same rankings in diverse variant types. Except GNAQ and GNA11, the other top 18 mutated genes of the combined group were mostly detected in CM instead of UM. On the transcriptomic level, 4610 DEGs were found and integrated into a gene ontology enrichment analysis. We also identified 485 differentially expressed miRNAs. The methylation analysis showed that UM had a significantly higher methylation level than CM. The integration of differentially methylated regions and DEGs demonstrated that most DEGs were downregulated in UM and the hypo- and hypermethylation presented no obvious difference within these DEGs. Finally, 116 hypermethylated TFs and 114 hypomethylated TFs were identified as differentially expressed TFs in CM when compared with UM. CONCLUSION This multi-omics study on comparing CM with UM confirms that they differ in all analyzed levels. Of notice, the results also offer new insights with implications for elucidating certain unclear problems such as the distinct role of epithelial mesenchymal transition in two melanomas, the different metastatic routes of CM and UM and the liver tropism of metastatic UM.
Collapse
Affiliation(s)
- Qi Zhang
- Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen 72076, Germany
| | - Ze-Nan Lin
- University Eye Hospital, Center for Ophthalmology, University of Tuebingen, Tuebingen 72076, Germany
| | - Jie Chen
- Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wen-Xu Zheng
- Department of Ophthalmology, the Second Hospital Affiliated to Jilin University, Jilin University, Changchun 130041, Jilin Province, China
| |
Collapse
|
13
|
Mabeta P. Paradigms of vascularization in melanoma: Clinical significance and potential for therapeutic targeting. Biomed Pharmacother 2020; 127:110135. [PMID: 32334374 DOI: 10.1016/j.biopha.2020.110135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most aggressive form of skin cancer. Malignant melanoma in particular has a poor prognosis and although treatment has improved, drug resistance continues to be a challenge. Angiogenesis, the formation of blood vessels from existing microvessels, precedes the progression of melanoma from a radial growth phase to a malignant phenotype. In addition, melanoma cells can form networks of vessel-like fluid conducting channels through vasculogenic mimicry (VM). Both angiogenesis and VM have been postulated to contribute to the development of resistance to treatment and to enable metastasis. Also, the metastatic spread of melanoma is highly dependent on lymphangiogenesis, the formation of lymphatic vessels from pre-existing vessels. Interestingly, the design and clinical testing of drugs that target VM and lymphangiogenesis lag behind that of angiogenesis inhibitors. Despite this, antiangiogenic drugs have not significantly improved the overall survival of melanoma patients, thus necessitating the targeting of alternative mechanisms. In this article, I review the roles of the three paradigms of tissue perfusion, namely, angiogenesis, VM and lymphangiogenesis, in promoting melanoma progression and metastasis. This article also explores the latest development and potential opportunities in the therapeutic targeting of these processes.
Collapse
Affiliation(s)
- Peace Mabeta
- Angiogenesis Laboratory, Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
14
|
An S, Tiruthani K, Wang Y, Xu L, Hu M, Li J, Song W, Jiang H, Sun J, Liu R, Huang L. Locally Trapping the C-C Chemokine Receptor Type 7 by Gene Delivery Nanoparticle Inhibits Lymphatic Metastasis Prior to Tumor Resection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805182. [PMID: 30690891 PMCID: PMC6878664 DOI: 10.1002/smll.201805182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Indexed: 05/29/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Currently, no targeted treatment is available for TNBC, and the most common clinical therapy is tumor resection, which often promotes metastasis risks. Strong evidence suggests that the lymphatic metastasis is mediated by the C-C chemokine receptor type 7 (CCR7)/C-C motif chemokine ligand 21 crosstalk between tumor cells and the lymphatic system. It is hypothesized that CCR7 is a key immune modulator in the tumor microenvironment and the local blockade of CCR7 could effectively inhibit TNBC lymphatic metastasis. Accordingly, a plasmid encoding an antagonistic CCR7 affinity protein-CCR7 trap is delivered by tumor targeting nanoparticles in a highly metastatic 4T1 TNBC mouse model. Results show that CCR7 traps are transiently expressed, locally disrupt the signaling pathways in the tumor site, and efficiently inhibit TNBC lymphatic metastasis, without inducing immunosuppression as observed in systemic therapies using CCR7 monoclonal antibody. Significantly, upon applying CCR7 trap therapy prior to tumor resection, a 4T1 TNBC mouse model shows good prognosis without any further metastasis and relapse. In addition, CCR7 trap therapy efficiently inhibits the lymphatic metastasis in a B16F10 melanoma mouse model, indicating its great potential for various metastatic diseases treatment.
Collapse
Affiliation(s)
- Sai An
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Karthik Tiruthani
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ying Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ligeng Xu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mengying Hu
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jingjing Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Wantong Song
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hongnan Jiang
- Department of Breast Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030013, China
| | - Jirui Sun
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei, 071000, China
| | - Rihe Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
15
|
Du H, Zhang L, Li G, Liu W, Tang W, Zhang H, Luan J, Gao L, Wang X. CXCR4 and CCR7 Expression in Primary Nodal Diffuse Large B-Cell Lymphoma-A Clinical and Immunohistochemical Study. Am J Med Sci 2019; 357:302-310. [PMID: 30904045 DOI: 10.1016/j.amjms.2019.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 11/08/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND A few studies have evaluated the expression of chemokine receptors CXCR4 and CCR7 in diffuse large B-cell lymphoma (DLBCL); however, the association between CXCR4 and CCR7 with bone marrow (BM) involvement and their synergistic effect on prognosis is still unclear. Our study investigated this aspect. METHODS Specimens were obtained from 61 primary nodal DLBCL patients and 100 reactive proliferative lymphadenitis patients. CXCR4 and CCR7 expression levels were examined by immunohistochemical staining; the relationship between these levels and clinical parameters and the differences in overall survival were analyzed. RESULTS CXCR4 and CCR7 overexpression was observed in the malignant lymph node tissues from most DLBCL patients. CCR7 expression was significantly higher in the non-GCB than the GCB subtype; CXCR4 positivity rates showed no significant difference between the 2 subtypes. In DLBCL patients with BM involvement, CXCR4 was overexpressed in almost all BM samples, but CCR7 expression was low in BM. CXCR4 overexpression was associated with advanced Ann Arbor stages, MYC overexpression, and increased extranodal infiltration; CCR7 was associated with advanced Ann Arbor stages and elevated LDH. Like the case for CCR7, the survival rate of CXCR4-positive DLBCL patients was significantly lower than that of the CXCR4-negative patients. CXCR4+CCR7+ patients had the lowest survival rate. CONCLUSIONS There is a positive correlation between CXCR4 overexpression and BM involvement. CXCR4 and CCR7 overexpression is associated with poorer overall survival, especially in CXCR4 and CCR7 copositive patients. CXCR4, CCR7, Ki-67 index, and MYC were independent prognostic factors for DLBCL. Blocking CXCR4 and/or CCR7 can be a novel therapeutic strategy for DLBCL.
Collapse
Affiliation(s)
- Hui Du
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China; Division of Hematology
| | | | | | - Wei Liu
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | - Wenqiang Tang
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, Shandong, People's Republic of China
| | | | | | | | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China.
| |
Collapse
|
16
|
Du R, Tang G, Tang Z, Kuang Y. Ectopic expression of CC chemokine receptor 7 promotes prostate cancer cells metastasis via Notch1 signaling. J Cell Biochem 2018; 120:9639-9647. [PMID: 30548287 DOI: 10.1002/jcb.28242] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/16/2018] [Indexed: 12/14/2022]
Abstract
There currently exists no satisfactory treatment for patients with prostate cancer with local evolution and distant metastasis. Previous studies have confirmed the importance of CC chemokine receptor 7 (CCR7) in the invasion and metastasis of prostate cancer. And increasing evidence prove that Notch1 can play diametrically opposite roles in the development and progression of different tumors. To demonstrate the correlation between CCR7 and Notch1, PC-3 cells were transfected with pcDNA3.1-CCR7 or CCR7 si-RNA, respectively. Then Western blot analysis was used to detect the expressions of Notch1, ERK, P38, JNK, NF-κB, MMP-9, and epithelial-mesenchymal transition (EMT)-related proteins. Moreover, matrigel invasion assays were performed to assess the migratory and invasive activities of PC-3 cells. PcDNA3.1-CCR7 increased the expression of Notch1, phospho-MAPK, phospho-P65, MMP-9, N-cadherin, and Snail in PC-3 cells, but decreased the expression of E-cadherin. PcDNA3.1-CCR7 also promoted the migration and invasion of PC-3 cells. However, CCR7 si-RNA reversed the effect of pcDNA3.1-CCR7 in PC-3 cells. And MAPK and NF-κB pathway inhibitors were used to testify that activation of Notch1 induces EMT through MAPK and NF-κB pathway. All these results indicate that upregulation of Notch1 by CCR7 can accelerate the evolution of EMT and develop the invasion and metastasis in prostate cancer cells by activating MAPK and NF-κB signaling pathways in prostate cancer cells, which provides a new molecular evidence for targeted therapy in metastatic prostate cancer.
Collapse
Affiliation(s)
- Ruoyang Du
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guanlin Tang
- Department of Urology, Chengdu Sixth People's Hospital, Chengdu, China
| | - Zhaobing Tang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Youlin Kuang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Bourland J, Fradette J, Auger FA. Tissue-engineered 3D melanoma model with blood and lymphatic capillaries for drug development. Sci Rep 2018; 8:13191. [PMID: 30181613 PMCID: PMC6123405 DOI: 10.1038/s41598-018-31502-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
While being the rarest skin cancer, melanoma is also the deadliest. To further drug discovery and improve clinical translation, new human cell-based in vitro models are needed. Our work strives to mimic the melanoma microenvironment in vitro as an alternative to animal testing. We used the self-assembly method to produce a 3D human melanoma model exempt of exogenous biomaterial. This model is based on primary human skin cells and melanoma cell lines while including a key feature for tumor progression: blood and lymphatic capillaries. Major components of the tumor microenvironment such as capillaries, human extracellular matrix, a stratified epidermis (involucrin, filaggrin) and basement membrane (laminin 332) are recapitulated in vitro. We demonstrate the persistence of CD31+ blood and podoplanin+/LYVE-1+ lymphatic capillaries in the engineered tissue. Chronic treatment with vemurafenib was applied to the model and elicited a dose-dependent response on proliferation and apoptosis, making it a promising tool to test new compounds in a human-like environment.
Collapse
Affiliation(s)
- Jennifer Bourland
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, Qc, Canada
- Division of Regenerative Medicine, CHU de Québec-Université Laval Research Center, Québec, Qc, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Qc, Canada
| | - Julie Fradette
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, Qc, Canada
- Division of Regenerative Medicine, CHU de Québec-Université Laval Research Center, Québec, Qc, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Qc, Canada
| | - François A Auger
- Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, Qc, Canada.
- Division of Regenerative Medicine, CHU de Québec-Université Laval Research Center, Québec, Qc, Canada.
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, Qc, Canada.
| |
Collapse
|
18
|
Schineis P, Runge P, Halin C. Cellular traffic through afferent lymphatic vessels. Vascul Pharmacol 2018; 112:31-41. [PMID: 30092362 DOI: 10.1016/j.vph.2018.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/26/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022]
Abstract
The lymphatic system has long been known to serve as a highway for migrating leukocytes from peripheral tissue to draining lymph nodes (dLNs) and back to circulation, thereby contributing to the induction of adaptive immunity and immunesurveillance. Lymphatic vessels (LVs) present in peripheral tissues upstream of a first dLN are generally referred to as afferent LVs. In contrast to migration through blood vessels (BVs), the detailed molecular and cellular requirements of cellular traffic through afferent LVs have only recently started to be unraveled. Progress in our ability to track the migration of lymph-borne cell populations, in combination with cutting-edge imaging technologies, nowadays allows the investigation and visualization of lymphatic migration of endogenous leukocytes, both at the population and at the single-cell level. These studies have revealed that leukocyte trafficking through afferent LVs generally follows a step-wise migration pattern, relying on the active interplay of numerous molecules. In this review, we will summarize and discuss current knowledge of cellular traffic through afferent LVs. We will first outline how the structure of the afferent LV network supports leukocyte migration and highlight important molecules involved in the migration of dendritic cells (DCs), T cells and neutrophils, i.e. the most prominent cell types trafficking through afferent LVs. Additionally, we will describe how tumor cells hijack the lymphatic system for their dissemination to draining LNs. Finally, we will summarize and discuss our current understanding of the functional significance as well as the therapeutic implications of cell traffic through afferent LVs.
Collapse
Affiliation(s)
| | - Peter Runge
- Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland.
| |
Collapse
|
19
|
Chen K, Bao Z, Tang P, Gong W, Yoshimura T, Wang JM. Chemokines in homeostasis and diseases. Cell Mol Immunol 2018; 15:324-334. [PMID: 29375126 PMCID: PMC6052829 DOI: 10.1038/cmi.2017.134] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/19/2022] Open
Abstract
For the past twenty years, chemokines have emerged as a family of critical mediators of cell migration during immune surveillance, development, inflammation and cancer progression. Chemokines bind to seven transmembrane G protein-coupled receptors (GPCRs) that are expressed by a wide variety of cell types and cause conformational changes in trimeric G proteins that trigger the intracellular signaling pathways necessary for cell movement and activation. Although chemokines have evolved to benefit the host, inappropriate regulation or utilization of these small proteins may contribute to or even cause diseases. Therefore, understanding the role of chemokines and their GPCRs in the complex physiological and diseased microenvironment is important for the identification of novel therapeutic targets. This review introduces the functional array and signals of multiple chemokine GPCRs in guiding leukocyte trafficking as well as their roles in homeostasis, inflammation, immune responses and cancer.
Collapse
Affiliation(s)
- Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
| | - Zhiyao Bao
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
- Department of Pulmonary & Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 200025, Shanghai, P. R. China
| | - Peng Tang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA
- Department of Breast Surgery, Southwest Hospital, Third Military Medical University, 400038, Chongqing, China
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., 21702, Frederick, MD, USA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 700-8558, Okayama, Japan
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, 21702, Frederick, MD, USA.
| |
Collapse
|
20
|
Tumor Microenvironment on a Chip: The Progress and Future Perspective. Bioengineering (Basel) 2017; 4:bioengineering4030064. [PMID: 28952543 PMCID: PMC5615310 DOI: 10.3390/bioengineering4030064] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 01/24/2023] Open
Abstract
Tumors develop in intricate microenvironments required for their sustained growth, invasion, and metastasis. The tumor microenvironment plays a critical role in the malignant or drug resistant nature of tumors, becoming a promising therapeutic target. Microengineered physiological systems capable of mimicking tumor environments are one emerging platform that allows for quantitative and reproducible characterization of tumor responses with pathophysiological relevance. This review highlights the recent advancements of engineered tumor microenvironment systems that enable the unprecedented mechanistic examination of cancer progression and metastasis. We discuss the progress and future perspective of these microengineered biomimetic approaches for anticancer drug prescreening applications.
Collapse
|
21
|
Roberts EW, Broz ML, Binnewies M, Headley MB, Nelson AE, Wolf DM, Kaisho T, Bogunovic D, Bhardwaj N, Krummel MF. Critical Role for CD103(+)/CD141(+) Dendritic Cells Bearing CCR7 for Tumor Antigen Trafficking and Priming of T Cell Immunity in Melanoma. Cancer Cell 2016; 30:324-336. [PMID: 27424807 PMCID: PMC5374862 DOI: 10.1016/j.ccell.2016.06.003] [Citation(s) in RCA: 695] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 02/08/2016] [Accepted: 06/04/2016] [Indexed: 12/24/2022]
Abstract
Intratumoral dendritic cells (DC) bearing CD103 in mice or CD141 in humans drive intratumoral CD8(+) T cell activation. Using multiple strategies, we identified a critical role for these DC in trafficking tumor antigen to lymph nodes (LN), resulting in both direct CD8(+) T cell stimulation and antigen hand-off to resident myeloid cells. These effects all required CCR7. Live imaging demonstrated direct presentation to T cells in LN, and CCR7 loss specifically in these cells resulted in defective LN T cell priming and increased tumor outgrowth. CCR7 expression levels in human tumors correlate with signatures of CD141(+) DC, intratumoral T cells, and better clinical outcomes. This work identifies an ongoing pathway to T cell priming, which should be harnessed for tumor therapies.
Collapse
Affiliation(s)
- Edward W Roberts
- Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0511, USA
| | - Miranda L Broz
- Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0511, USA
| | - Mikhail Binnewies
- Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0511, USA
| | - Mark B Headley
- Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0511, USA
| | - Amanda E Nelson
- Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0511, USA
| | - Denise M Wolf
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tsuneyasu Kaisho
- Institute of Advanced Medicine, Wakayama Medical University, Wakayama 641-8509, Japan
| | - Dusan Bogunovic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0511, USA.
| |
Collapse
|
22
|
Correlation of intratumoral lymphatic microvessel density, vascular endothelial growth factor C and cell proliferation in salivary gland tumors. Med Mol Morphol 2016; 50:17-24. [DOI: 10.1007/s00795-016-0142-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/10/2016] [Indexed: 12/11/2022]
|
23
|
Hong H, He C, Zhu S, Zhang Y, Wang X, She F, Chen Y. CCR7 mediates the TNF-α-induced lymphatic metastasis of gallbladder cancer through the "ERK1/2 - AP-1" and "JNK - AP-1" pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:51. [PMID: 27009073 PMCID: PMC4806413 DOI: 10.1186/s13046-016-0318-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
Abstract
Background CC-chemokine receptor 7 (CCR7), which plays an important role in cell directional movement, is highly expressed in various cancers and positively related to lymph node metastasis. The inflammatory cytokine tumour necrosis factor (TNF)-α promotes tumour progression and lymph node metastasis in gallbladder cancer (GBC). However, the expression of CCR7 in GBC is unclear, and its role in the TNF-α-induced lymphatic metastasis of GBC requires further research. Methods The expression of CCR7 in clinical samples was detected by immunohistochemistry, and the relationship between CCR7 and clinicopathological factors or the TNF-α level of the bile was analyzed. After treatment with various concentrations of TNF-α, CCR7 expression in GBC cell lines was measured by Western blotting. The relative luciferase reporter assay, site-directed mutagenesis and chromatin immunoprecipitation were used to analyze the promoter activity and transcriptional regulation of CCR7. MAPKs inhibitors were used to explore the upstream signalling molecules of AP-1. We established a NOZ cell line stably expressing lentiviral CCR7 shRNA that effectively silenced the expression of CCR7, and to determine the role of TNF-α - CCR7 axis in the migration of GBC cells to the lymphatic system by transwell assays and animal experiments. Results CCR7 was highly expressed in GBC samples. Higher expression of CCR7 was associated with American Joint Committee on Cancer (AJCC) staging and lymph node metastasis. Moreover, we found that CCR7 expression in GBC tissue was positively correlated with the levels of TNF-α in the bile, and that TNF-α enhanced the promoter activity and protein expression of CCR7 through the “ERK1/2-AP-1” and “JNK-AP-1” pathways. Finally, we revealed that TNF-α could promote GBC cell migration to lymphatic endothelial cells or lymph nodes through upregulation of CCR7 in vitro and in vivo. Conclusions Our study suggests that CCR7 is highly expressed in GBC, and mediates the TNF-α-induced lymphatic metastasis of GBC through the “TNF-α - ERK1/2 - AP-1 - CCR7” and “TNF-α - JNK - AP-1 - CCR7” pathways.
Collapse
Affiliation(s)
- HaiJie Hong
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou, 350108, China
| | - CaiLong He
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou, 350108, China
| | - SiYuan Zhu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou, 350108, China
| | - YanHui Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou, 350108, China
| | - XiaoQian Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
| | - FeiFei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou, 350108, China. .,Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou, 350108, China.
| | - YanLing Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China. .,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xueyuan Road, Minhou, Fuzhou, 350108, China.
| |
Collapse
|
24
|
Fink DM, Steele MM, Hollingsworth MA. The lymphatic system and pancreatic cancer. Cancer Lett 2015; 381:217-36. [PMID: 26742462 DOI: 10.1016/j.canlet.2015.11.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
Abstract
This review summarizes current knowledge of the biology, pathology and clinical understanding of lymphatic invasion and metastasis in pancreatic cancer. We discuss the clinical and biological consequences of lymphatic invasion and metastasis, including paraneoplastic effects on immune responses and consider the possible benefit of therapies to treat tumors that are localized to lymphatics. A review of current techniques and methods to study interactions between tumors and lymphatics is presented.
Collapse
Affiliation(s)
- Darci M Fink
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | | |
Collapse
|
25
|
Nasti TH, Cochran JB, Tsuruta Y, Yusuf N, McKay KM, Athar M, Timares L, Elmets CA. A murine model for the development of melanocytic nevi and their progression to melanoma. Mol Carcinog 2015; 55:646-58. [PMID: 25788145 PMCID: PMC4575238 DOI: 10.1002/mc.22310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/22/2015] [Accepted: 02/06/2015] [Indexed: 01/25/2023]
Abstract
Acquired melanocytic nevi are commonly found in sun exposed and unexposed human skin, but the potential for their transformation into invasive melanoma is not clear. Therefore, a mouse model of nevus initiation and progression was developed in C3H/HeN mice using a modified chemical carcinogenesis protocol. Nevi develop due to DNA damage initiated by dimethylbenz(a) anthracene (DMBA) followed by chronic promotion with 12‐O‐tetradecanoyl‐phorbol‐13‐acetate (TPA). Dysplastic pigmented skin lesions appeared in 7–9 wk with 100% penetrance. Nests of melanocytic cells appeared in a subset of skin draining lymph nodes (dLN) by 25 wk, but not in age matched controls. Immunohistochemistry, real‐time PCR, and flow cytometric analyses confirmed their melanocytic origin. Transformed cells were present in a subset of nevi and dLNs, which exhibited anchorage‐independent growth, tumor development, and metastasis in nude mice. Approximately 50% of the cell lines contained H‐Ras mutations and lost tumor suppressor p16Ink4a expression. While most studies of melanoma focus on tumor progression in transgenic mouse models where the mutations are present from birth, our model permits investigation of acquired mutations at the earliest stages of nevus initiation and promotion of nevus cell transformation. This robust nevus/melanoma model may prove useful for identifying genetic loci associated with nevus formation, novel oncogenic pathways, tumor targets for immune‐prevention, screening therapeutics, and elucidating mechanisms of immune surveillance and immune evasion. © 2015 The Authors. Molecular Carcinogenesis, published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tahseen H Nasti
- The Department of Dermatology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - J Barry Cochran
- The Department of Dermatology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Yuko Tsuruta
- The Department of Dermatology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,The Skin Diseases Research Center, and The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Nabiha Yusuf
- The Department of Dermatology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,The Skin Diseases Research Center, and The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,The Birmingham VA Medical Center, Birmingham, Alabama
| | - Kristopher M McKay
- The Department of Dermatology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Mohammad Athar
- The Department of Dermatology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,The Skin Diseases Research Center, and The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | - Laura Timares
- The Department of Dermatology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,The Skin Diseases Research Center, and The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,The Birmingham VA Medical Center, Birmingham, Alabama
| | - Craig A Elmets
- The Department of Dermatology, The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,The Skin Diseases Research Center, and The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama.,The Birmingham VA Medical Center, Birmingham, Alabama
| |
Collapse
|
26
|
Sarvaiya PJ, Guo D, Ulasov I, Gabikian P, Lesniak MS. Chemokines in tumor progression and metastasis. Oncotarget 2014; 4:2171-85. [PMID: 24259307 PMCID: PMC3926818 DOI: 10.18632/oncotarget.1426] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chemokines play a vital role in tumor progression and metastasis. Chemokines are involved in the growth of many cancers including breast cancer, ovarian cancer, pancreatic cancer, melanoma, lung cancer, gastric cancer, acute lymphoblastic leukemia, colon cancer, non-small lung cancer, non-hodgkin's lymphoma, etc. The expression of chemokines and their receptors is altered in many malignancies and leads to aberrant chemokine receptor signaling. This review focuses on the role of chemokines in key processes that facilitate tumor progression including proliferation, senescence, angiogenesis, epithelial mesenchymal transition, immune evasion and metastasis.
Collapse
Affiliation(s)
- Purvaba J Sarvaiya
- The Brain Tumor Center, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
27
|
Liu FY, Safdar J, Li ZN, Fang QG, Zhang X, Xu ZF, Sun CF. CCR7 regulates cell migration and invasion through MAPKs in metastatic squamous cell carcinoma of head and neck. Int J Oncol 2014; 45:2502-10. [PMID: 25270024 DOI: 10.3892/ijo.2014.2674] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/12/2014] [Indexed: 11/06/2022] Open
Abstract
Migration and invasion of tumor cells are essential prerequisites for the formation of metastasis in malignant diseases. Previously, we have reported that CC chemokine receptor 7 (CCR7) regulates the mobility of squamous cell carcinoma of head and neck (SCCHN) cells through several pathways, such as integrin and cdc42. In this study, we investigated the connection between CCR7 and mitogen-activated protein kinase (MAPK) family members, and their influence on cell invasion and migration in metastatic SCCHN cells. Western blotting, immunostaining and fluorescence microcopy were used to detect the protein expression and distribution of MAPKs, and the Migration assay, Matrigel invasion assay and wound-healing assay to detect the role of MAPKs in CCR7 regulating cell mobility. To analyze the correlation between CCR7 and MAPK activity and clinicopathological factors immunohistochemical staining was emplyed. The results showed stimulation of CCL19 and the activation of CCR7 could induce ERK1/2 and JNK phosphorylation, while it had no efect on p38. After activation, ERK1/2 and JNK promoted E-cadherin low expression and Vimentin high expression. The MAPK pathway not only mediated CCR7 induced cell migration, but also mediated invasion speed. The immunohistochemistry results showed that CCR7 was correlated with the phosphorylation of ERK1/2 and JNK in SCCHN, and these molecules were all associated with lymph node metastasis. Therefore, our study demonstrates that MAPK members (ERK1/2 and JNK) play a key role in CCR7 regulating SCCHN metastasis.
Collapse
Affiliation(s)
- Fa-Yu Liu
- Departments of Oromaxillofacial ‑ Head and Neck Surgery and Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Jawad Safdar
- Departments of Oromaxillofacial ‑ Head and Neck Surgery and Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Zhen-Ning Li
- Departments of Oromaxillofacial ‑ Head and Neck Surgery and Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Qi-Gen Fang
- Departments of Oromaxillofacial ‑ Head and Neck Surgery and Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Xu Zhang
- Departments of Oromaxillofacial ‑ Head and Neck Surgery and Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Zhong-Fei Xu
- Departments of Oromaxillofacial ‑ Head and Neck Surgery and Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Chang-Fu Sun
- Departments of Oromaxillofacial ‑ Head and Neck Surgery and Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| |
Collapse
|
28
|
Legler DF, Uetz-von Allmen E, Hauser MA. CCR7: roles in cancer cell dissemination, migration and metastasis formation. Int J Biochem Cell Biol 2014; 54:78-82. [PMID: 25019368 DOI: 10.1016/j.biocel.2014.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/27/2014] [Accepted: 07/03/2014] [Indexed: 12/11/2022]
Abstract
The CC-chemokine receptor 7 (CCR7) coordinates the migration of cancer cells as well as immune cells towards lymphatic organs where its two ligands CCL19 and CCL21 are constitutively expressed. Here we provide a topological model of CCR7, which belongs to the class A of G-protein coupled, seven-transmembrane spanning receptors, and describe how CCR7 expression is regulated. We focus on its role in cancer cell migration and metastasis formation and discuss how cancer cells can utilize CCR7 or its ligands to escape from immune surveillance.
Collapse
Affiliation(s)
- Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.
| | - Edith Uetz-von Allmen
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Mark A Hauser
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| |
Collapse
|
29
|
Zhou J, Xiang Y, Yoshimura T, Chen K, Gong W, Huang J, Zhou Y, Yao X, Bian X, Wang JM. The role of chemoattractant receptors in shaping the tumor microenvironment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:751392. [PMID: 25110692 PMCID: PMC4119707 DOI: 10.1155/2014/751392] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Abstract
Chemoattractant receptors are a family of seven transmembrane G protein coupled receptors (GPCRs) initially found to mediate the chemotaxis and activation of immune cells. During the past decades, the functions of these GPCRs have been discovered to not only regulate leukocyte trafficking and promote immune responses, but also play important roles in homeostasis, development, angiogenesis, and tumor progression. Accumulating evidence indicates that chemoattractant GPCRs and their ligands promote the progression of malignant tumors based on their capacity to orchestrate the infiltration of the tumor microenvironment by immune cells, endothelial cells, fibroblasts, and mesenchymal cells. This facilitates the interaction of tumor cells with host cells, tumor cells with tumor cells, and host cells with host cells to provide a basis for the expansion of established tumors and development of distant metastasis. In addition, many malignant tumors of the nonhematopoietic origin express multiple chemoattractant GPCRs that increase the invasiveness and metastasis of tumor cells. Therefore, GPCRs and their ligands constitute targets for the development of novel antitumor therapeutics.
Collapse
Affiliation(s)
- Jiamin Zhou
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Endoscopic Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Xiang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Teizo Yoshimura
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Keqiang Chen
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Jian Huang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ye Zhou
- Department of Gastric Cancer and Soft Tissue Surgery, Fudan University Cancer Center, Shanghai 200032, China
| | - Xiaohong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
30
|
Xia X, Liu K, Zhang H, Shang Z. Correlation between
CCR
7 expression and lymph node metastatic potential of human tongue carcinoma. Oral Dis 2014; 21:123-31. [DOI: 10.1111/odi.12228] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 01/01/2014] [Accepted: 02/03/2014] [Indexed: 12/26/2022]
Affiliation(s)
- X Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University WuhanChina
| | - K Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University WuhanChina
- Department of Oral and Maxillofacial and Head and Neck Oncology School and Hospital of Stomatology Wuhan University Wuhan China
| | - H Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University WuhanChina
| | - Z Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University WuhanChina
- Department of Oral and Maxillofacial and Head and Neck Oncology School and Hospital of Stomatology Wuhan University Wuhan China
| |
Collapse
|
31
|
Xiao Z, Luo G, Liu C, Wu C, Liu L, Liu Z, Ni Q, Long J, Yu X. Molecular mechanism underlying lymphatic metastasis in pancreatic cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:925845. [PMID: 24587996 PMCID: PMC3919106 DOI: 10.1155/2014/925845] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 11/10/2013] [Indexed: 02/07/2023]
Abstract
As the most challenging human malignancies, pancreatic cancer is characterized by its insidious symptoms, low rate of surgical resection, high risk of local invasion, metastasis and recurrence, and overall dismal prognosis. Lymphatic metastasis, above all, is recognized as an early adverse event in progression of pancreatic cancer and has been described to be an independent poor prognostic factor. It should be noted that the occurrence of lymphatic metastasis is not a casual or stochastic but an ineluctable and designed event. Increasing evidences suggest that metastasis-initiating cells (MICs) and the microenvironments may act as a double-reed style in this crime. However, the exact mechanisms on how they function synergistically for this dismal clinical course remain largely elusive. Therefore, a better understanding of its molecular and cellular mechanisms involved in pancreatic lymphatic metastasis is urgently required. In this review, we will summarize the latest advances on lymphatic metastasis in pancreatic cancer.
Collapse
Affiliation(s)
- Zhiwen Xiao
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, No. 270, Dong'An Road, Xuhui District, Shanghai 200032, China
| | - Guopei Luo
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, No. 270, Dong'An Road, Xuhui District, Shanghai 200032, China
| | - Chen Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, No. 270, Dong'An Road, Xuhui District, Shanghai 200032, China
| | - Chuntao Wu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, No. 270, Dong'An Road, Xuhui District, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, No. 270, Dong'An Road, Xuhui District, Shanghai 200032, China
| | - Zuqiang Liu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, No. 270, Dong'An Road, Xuhui District, Shanghai 200032, China
| | - Quanxing Ni
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, No. 270, Dong'An Road, Xuhui District, Shanghai 200032, China
| | - Jiang Long
- Pancreatic Cancer Institute, Fudan University, No. 270, Dong'An Road, Xuhui District, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic and Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, No. 270, Dong'An Road, Xuhui District, Shanghai 200032, China
| |
Collapse
|
32
|
Somovilla-Crespo B, Alfonso-Pérez M, Cuesta-Mateos C, Carballo-de Dios C, Beltrán AE, Terrón F, Pérez-Villar JJ, Gamallo-Amat C, Pérez-Chacón G, Fernández-Ruiz E, Zapata JM, Muñoz-Calleja C. Anti-CCR7 therapy exerts a potent anti-tumor activity in a xenograft model of human mantle cell lymphoma. J Hematol Oncol 2013; 6:89. [PMID: 24305507 PMCID: PMC3879031 DOI: 10.1186/1756-8722-6-89] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/19/2013] [Indexed: 12/19/2022] Open
Abstract
Background The chemokine receptor CCR7 mediates lymphoid dissemination of many cancers, including lymphomas and epithelial carcinomas, thus representing an attractive therapeutic target. Previous results have highlighted the potential of the anti-CCR7 monoclonal antibodies to inhibit migration in transwell assays. The present study aimed to evaluate the in vivo therapeutic efficacy of an anti-CCR7 antibody in a xenografted human mantle cell lymphoma model. Methods NOD/SCID mice were either subcutaneously or intravenously inoculated with Granta-519 cells, a human cell line derived from a leukemic mantle cell lymphoma. The anti-CCR7 mAb treatment (3 × 200 μg) was started on day 2 or 7 to target lymphoma cells in either a peri-implantation or a post-implantation stage, respectively. Results The anti-CCR7 therapy significantly delayed the tumor appearance and also reduced the volumes of tumors in the subcutaneous model. Moreover, an increased number of apoptotic tumor cells was detected in mice treated with the anti-CCR7 mAb compared to the untreated animals. In addition, significantly reduced number of Granta-519 cells migrated from subcutaneous tumors to distant lymphoid organs, such as bone marrow and spleen in the anti-CCR7 treated mice. In the intravenous models, the anti-CCR7 mAb drastically increased survival of the mice. Accordingly, dissemination and infiltration of tumor cells in lymphoid and non-lymphoid organs, including lungs and central nervous system, was almost abrogated. Conclusions The anti-CCR7 mAb exerts a potent anti-tumor activity and might represent an interesting therapeutic alternative to conventional therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Cecilia Muñoz-Calleja
- Instituto de Investigación Sanitaria Princesa, Department of Immunology, Hospital Universitario de La Princesa, C/Diego de León 62, Madrid 28006, Spain.
| |
Collapse
|
33
|
Abstract
Melanoma is an immunogenic tumor that has developed methods to successfully evade immune recognition, while paradoxically spreading through the lymphatic system. Increasing evidence supports that melanoma-derived factors suppress regional immunity within the host. At a very early stage, melanoma communicates with the tumor-draining lymph nodes, and prepares them for seeding of metastatic disease by stimulating lymphangiogenesis and downregulation of the sentinel lymph node immunity well before the malignant cells arrive. Investigations have demonstrated that the induction of suppressor cells, peripheral tolerance, and a less tumor-responsive Th2 cytokine environment may provide a hospitable environment for subsequent lymphatic metastasis. Patients with early-stage disease may benefit from the restoration of the regional immune function to a level that controls the progression of residual occult metastases and ensures a durable clinical response. Herein we provide a succinct summary of the current progress in this field in order to guide future investigations.
Collapse
|
34
|
Gao Q, Zhao YJ, Wang XY, Qiu SJ, Shi YH, Sun J, Yi Y, Shi JY, Shi GM, Ding ZB, Xiao YS, Zhao ZH, Zhou J, He XH, Fan J. CXCR6 upregulation contributes to a proinflammatory tumor microenvironment that drives metastasis and poor patient outcomes in hepatocellular carcinoma. Cancer Res 2012; 72:3546-56. [PMID: 22710437 DOI: 10.1158/0008-5472.can-11-4032] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CXC chemokines and their cognate receptors have been implicated widely in cancer pathogenesis. In this study, we report a critical causal relationship between CXCR6 expression and tumorigenesis in the setting of human hepatocellular carcinoma (HCC). Among the CXC chemokine receptors, only CXCR6 was detected in all the hepatoma cell lines studied. Moreover, in HCC tissue, CXCR6 expression was significantly higher than in noncancerous liver tissues. Reduction of CXCR6 or its ligand CXCL16 in cancer cells reduced cell invasion in vitro and tumor growth, angiogenesis, and metastases in vivo. Importantly, loss of CXCR6 led to reduced Gr-1+ neutrophil infiltration and decreased neoangiogenesis in hepatoma xenografts via inhibition of proinflammatory cytokine production. Clinically, high expression of CXCR6 was an independent predictor of increased recurrence and poor survival in HCCs. Human HCC samples expressing high levels of CXCR6 also contained an increased number of CD66b+ neutrophils and microvessels, and the combination of CXCR6 and neutrophils was a superior predictor of recurrence and survival than either marker used alone. Together, our findings suggest that elevated expression of CXCR6 promotes HCC invasiveness and a protumor inflammatory environment and is associated with poor patient outcome. These results support the concept that inhibition of the CXCR6-CXCL16 pathway may improve prognosis after HCC treatment.
Collapse
Affiliation(s)
- Qiang Gao
- Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The lymphatic system has long been accepted as a passive escape route for metastasizing tumor cells. The classic view that lymphatics solely regulate fluid balance, lipid metabolism, and immune cell trafficking to the LN is now being challenged. Research in the field is entering a new phase with increasing evidence suggesting that lymphatics play an active role modulating inflammation, autoimmune disease, and the anti-tumor immune response. Evidence exists to suggest that the lymphatics and chemokines guide LN bi-functionally, driving immunity vs. tolerance according to demand. At sites of chronic inflammation, autoimmunity, and tumors, however, the same chemokines and aberrant lymphangiogenesis foster disease progression. These caveats point to the existence of a complex, finely balanced relationship between lymphatics and the immune system in health and disease. This review discusses emerging concepts in the fields of immunology, tumor biology, and lymphatic physiology, identifying critical, overlapping functions of lymphatics, the LN and lymphoid factors in tipping the balance of immunity vs. tolerance in favor of a growing tumor.
Collapse
Affiliation(s)
- Jacqueline D Shields
- Medical Research Council Cancer Cell Unit, Hutchison/Medical Research Council Research Centre, Cambridge, UK.
| |
Collapse
|
36
|
Abstract
It has been 10 years since the role of a chemokine receptor, CXCR4, in breast cancer metastasis was first documented. Since then, the field of chemokines and cancer has grown significantly, so it is timely to review the progress, analyse the studies to date and identify future challenges facing this field. Metastasis is the major factor that limits survival in most patients with cancer. Therefore, understanding the molecular mechanisms that control the metastatic behaviour of tumour cells is pivotal for treating cancer successfully. Substantial experimental and clinical evidence supports the conclusion that molecular mechanisms control organ-specific metastasis. One of the most important mechanisms operating in metastasis involves homeostatic chemokines and their receptors. Here, we review this field and propose a model of 'cellular highways' to explain the effects of homeostatic chemokines on cancer cells and how they influence metastasis.
Collapse
|
37
|
Wu X, Takekoshi T, Sullivan A, Hwang ST. Inflammation and tumor microenvironment in lymph node metastasis. Cancers (Basel) 2011; 3:927-44. [PMID: 24212647 PMCID: PMC3756397 DOI: 10.3390/cancers3010927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 02/17/2011] [Accepted: 02/21/2011] [Indexed: 11/17/2022] Open
Abstract
In nearly all human cancers, the presence of lymph node (LN) metastasis increases clinical staging and portends worse prognosis (compared to patients without LN metastasis). Herein, principally reviewing experimental and clinical data related to malignant melanoma, we discuss diverse factors that are mechanistically involved in LN metastasis. We highlight recent data that link tumor microenvironment, including inflammation (at the cellular and cytokine levels) and tumor-induced lymphangiogenesis, with nodal metastasis. Many of the newly identified genes that appear to influence LN metastasis facilitate general motility, chemotactic, or invasive properties that also increase the ability of cancer cells to disseminate and survive at distant organ sites. These new biomarkers will help predict clinical outcome and point to novel future therapies in metastatic melanoma as well as other cancers.
Collapse
Affiliation(s)
- Xuesong Wu
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | |
Collapse
|