1
|
Schuster CJ, Murray KN, Sanders JL, Couch CE, Kent ML. Review of Pseudoloma neurophilia (Microsporidia): A common neural parasite of laboratory zebrafish (Danio rerio). J Eukaryot Microbiol 2024:e13040. [PMID: 38961716 DOI: 10.1111/jeu.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Zebrafish (Danio rerio) is now the second most used animal model in biomedical research. As with other vertebrate models, underlying diseases and infections often impact research. Beyond mortality and morbidity, these conditions can compromise research end points by producing nonprotocol induced variation within experiments. Pseudoloma neurophilia, a microsporidium that targets the central nervous system, is the most frequently diagnosed pathogen in zebrafish facilities. The parasite undergoes direct, horizontal transmission within populations, and is also maternally transmitted with spores in ovarian fluid and occasionally within eggs. This transmission explains the wide distribution among research laboratories as new lines are generally introduced as embryos. The infection is chronic, and fish apparently never recover following the initial infection. However, most fish do not exhibit outward clinical signs. Histologically, the parasite occurs as aggregates of spores throughout the midbrain and spinal cord and extends to nerve roots. It often elicits meninxitis, myositis, and myodegeneration when it infects the muscle. There are currently no described therapies for the parasite, thus the infection is best avoided by screening with PCR-based tests and removal of infected fish from a facility. Examples of research impacts include reduced fecundity, behavioral changes, transcriptome alterations, and autofluorescent lesions.
Collapse
Affiliation(s)
- Corbin J Schuster
- Department of Natural Science, Heritage University, Toppenish, Washington, USA
| | - Katrina N Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon, USA
| | - Justin L Sanders
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Claire E Couch
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Michael L Kent
- Zebrafish International Resource Center, University of Oregon, Eugene, Oregon, USA
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
2
|
Schuster CJ, Marancik DP, Couch CE, Leong C, Edwards JJ, Kaplan RM, Kent ML. A novel neurotropic microsporidium from the swamp guppy Micropoecilia picta from Grenada, West Indies. DISEASES OF AQUATIC ORGANISMS 2024; 158:133-141. [PMID: 38813854 DOI: 10.3354/dao03789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A novel microsporidium was observed in wild swamp guppies Micropoecilia picta from Levera Pond within Levera National Park Grenada, West Indies. Initial observations indicated similarity with Pseudoloma neurophilia, an important pathogen in zebrafish Danio rerio. P. neurophilia exhibit broad host specifity, including members of the family Poecillidae, and both parasites infect the central nervous system. However, spore morphology and molecular phylogeny based on rDNA showed that the swamp guppy microsporidium (SGM) is distinct from P. neurophilia and related microsporidia (Microsporidium cerebralis and M. luceopercae). Spores of the SGM were smaller than others in the clade (3.6 µm long). Differences were also noted in histology; the SGM formed large aggregates of spores within neural tissues along with a high incidence of numerous smaller aggregates and single spores within the surface tissue along the ventricular spaces that extended submeninx, whereas P. neurophilia and M. cerebralis infect deep into the neuropile and cause associated lesions. Analysis of small subunit ribosomal DNA sequences showed that the SGM was <93% similar to these related microsporidia. Nevertheless, one of 2 commonly used PCR tests for P. neurophilia cross reacted with tissues infected with SGM. These data suggest that there could be other related microsporidia capable of infecting zebrafish and other laboratory fishes that are not being detected by these highly specific assays. Consequently, exclusive use of these PCR tests may not accurately diagnose other related microsporidia infecting animals in laboratory and ornamental fish facilities.
Collapse
Affiliation(s)
- C J Schuster
- Department of Natural Science, Heritage University, Toppenish, Washington 98948, USA
| | - D P Marancik
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - C E Couch
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon 97333, USA
| | - C Leong
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon 97333, USA
| | - J J Edwards
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - R M Kaplan
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada, West Indies
| | - M L Kent
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon 97333, USA
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97333, USA
| |
Collapse
|
3
|
Rice MC, Janik AJ, Elde NC, Gagnon JA, Balla KM. Microbe transmission from pet shop to lab-reared zebrafish reveals a pathogenic birnavirus. PLoS Biol 2024; 22:e3002606. [PMID: 38814944 PMCID: PMC11139271 DOI: 10.1371/journal.pbio.3002606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/27/2024] [Indexed: 06/01/2024] Open
Abstract
Zebrafish are popular research organisms selected for laboratory use due in part to widespread availability from the pet trade. Many contemporary colonies of laboratory zebrafish are maintained in aquaculture facilities that monitor and aim to curb infections that can negatively affect colony health and confound experiments. The impact of laboratory control on the microbial constituents associated with zebrafish in research environments compared to the pet trade are unclear. Diseases of unknown causes are common in both environments. We conducted a metatranscriptomic survey to broadly compare the zebrafish-associated microbes in pet trade and laboratory environments. We detected many microbes in animals from the pet trade that were not found in laboratory animals. Cohousing experiments revealed several transmissible microbes including a newly described non-enveloped, double-stranded RNA virus in the Birnaviridae family we name Rocky Mountain birnavirus (RMBV). Infections were detected in asymptomatic animals from the pet trade, but when transmitted to laboratory animals RMBV was associated with pronounced antiviral responses and hemorrhagic disease. These experiments highlight the pet trade as a distinct source of diverse microbes that associate with zebrafish and establish a paradigm for the discovery of newly described pathogenic viruses and other infectious microbes that can be developed for study in the laboratory.
Collapse
Affiliation(s)
- Marlen C. Rice
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Andrew J. Janik
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Nels C. Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - James A. Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Keir M. Balla
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| |
Collapse
|
4
|
Rice MC, Elde NC, Gagnon JA, Balla KM. Microbe transmission from pet shop to lab-reared zebrafish reveals a pathogenic birnavirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555169. [PMID: 37693489 PMCID: PMC10491165 DOI: 10.1101/2023.08.28.555169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Zebrafish are popular research organisms selected for laboratory use due in part to widespread availability from the pet trade. Many contemporary colonies of laboratory zebrafish are maintained in aquaculture facilities that monitor and aim to curb infections that can negatively affect colony health and confound experiments. The impact of laboratory control on the microbial constituents associated with zebrafish in research environments compared to the pet trade are unclear. Diseases of unknown causes are common in both environments. We conducted a metagenomic survey to broadly compare the zebrafish-associated microbes in pet trade and laboratory environments. We detected many microbes in animals from the pet trade that were not found in laboratory animals. Co-housing experiments revealed several transmissible microbes including a newly described non-enveloped, double-stranded RNA virus in the Birnaviridae family we name Rocky Mountain birnavirus (RMBV). Infections were detected in asymptomatic animals from the pet trade, but when transmitted to laboratory animals RMBV was associated with pronounced antiviral responses and hemorrhagic disease. These experiments highlight the pet trade as a distinct source of diverse microbes that associate with zebrafish and establish a paradigm for the discovery of newly described pathogenic viruses and other infectious microbes that can be developed for study in the laboratory.
Collapse
Affiliation(s)
- Marlen C. Rice
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112 USA
| | - Nels C. Elde
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 USA
| | - James A. Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112 USA
| | - Keir M. Balla
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Current Address: Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
| |
Collapse
|
5
|
Calabon MS, Hyde KD, Jones EBG, Luo ZL, Dong W, Hurdeal VG, Gentekaki E, Rossi W, Leonardi M, Thiyagaraja V, Lestari AS, Shen HW, Bao DF, Boonyuen N, Zeng M. Freshwater fungal numbers. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00503-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Muñoz-Montecinos C, Romero A, Sepúlveda V, Vira MÁ, Fehrmann-Cartes K, Marcellini S, Aguilera F, Caprile T, Fuentes R. Turning the Curve Into Straight: Phenogenetics of the Spine Morphology and Coordinate Maintenance in the Zebrafish. Front Cell Dev Biol 2022; 9:801652. [PMID: 35155449 PMCID: PMC8826430 DOI: 10.3389/fcell.2021.801652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
The vertebral column, or spine, provides mechanical support and determines body axis posture and motion. The most common malformation altering spine morphology and function is adolescent idiopathic scoliosis (AIS), a three-dimensional spinal deformity that affects approximately 4% of the population worldwide. Due to AIS genetic heterogenicity and the lack of suitable animal models for its study, the etiology of this condition remains unclear, thus limiting treatment options. We here review current advances in zebrafish phenogenetics concerning AIS-like models and highlight the recently discovered biological processes leading to spine malformations. First, we focus on gene functions and phenotypes controlling critical aspects of postembryonic aspects that prime in spine architecture development and straightening. Second, we summarize how primary cilia assembly and biomechanical stimulus transduction, cerebrospinal fluid components and flow driven by motile cilia have been implicated in the pathogenesis of AIS-like phenotypes. Third, we highlight the inflammatory responses associated with scoliosis. We finally discuss recent innovations and methodologies for morphometrically characterize and analyze the zebrafish spine. Ongoing phenotyping projects are expected to identify novel and unprecedented postembryonic gene functions controlling spine morphology and mutant models of AIS. Importantly, imaging and gene editing technologies are allowing deep phenotyping studies in the zebrafish, opening new experimental paradigms in the morphometric and three-dimensional assessment of spinal malformations. In the future, fully elucidating the phenogenetic underpinnings of AIS etiology in zebrafish and humans will undoubtedly lead to innovative pharmacological treatments against spinal deformities.
Collapse
Affiliation(s)
- Carlos Muñoz-Montecinos
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Adrián Romero
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Vania Sepúlveda
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - María Ángela Vira
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Karen Fehrmann-Cartes
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de las Américas, Concepción, Chile
| | - Sylvain Marcellini
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Aguilera
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Ricardo Fuentes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Grupo de Procesos en Biología del Desarrollo (GDeP), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
7
|
Abstract
Around 57.1% of microsporidia occupy aquatic environments, excluding a further 25.7% that utilise both terrestrial and aquatic systems. The aquatic microsporidia therefore compose the most diverse elements of the Microsporidia phylum, boasting unique structural features, variable transmission pathways, and significant ecological influence. From deep oceans to tropical rivers, these parasites are present in most aquatic environments and have been shown to infect hosts from across the Protozoa and Animalia. The consequences of infection range from mortality to intricate behavioural change, and their presence in aquatic communities often alters the overall functioning of the ecosystem.In this chapter, we explore aquatic microsporidian diversity from the perspective of aquatic animal health. Examples of microsporidian parasitism of importance to an aquacultural ('One Health') context and ecosystem context are focussed upon. These include infection of commercially important penaeid shrimp by Enterocytozoon hepatopenaei and interesting hyperparasitic microsporidians of wild host groups.Out of ~1500 suggested microsporidian species, 202 have been adequately taxonomically described using a combination of ultrastructural and genetic techniques from aquatic and semi-aquatic hosts. These species are our primary focus, and we suggest that the remaining diversity have additional genetic or morphological data collected to formalise their underlying systematics.
Collapse
Affiliation(s)
- Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.
- National Horizons Centre, Teesside University, Darlington, UK.
| | - Grant D Stentiford
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| |
Collapse
|
8
|
Murray KN, Clark TS, Kebus MJ, Kent ML. Specific Pathogen Free - A review of strategies in agriculture, aquaculture, and laboratory mammals and how they inform new recommendations for laboratory zebrafish. Res Vet Sci 2021; 142:78-93. [PMID: 34864461 PMCID: PMC9120263 DOI: 10.1016/j.rvsc.2021.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Specific pathogen-free (SPF) animals are bred and managed to exclude pathogens associated with significant morbidity or mortality that may secondarily pose a risk to public health, food safety and food security, and research replicability. Generating and maintaining SPF animals requires detailed biosecurity planning for control of housing, environmental, and husbandry factors and a history of regimented pathogen testing. Successful programs involve comprehensive risk analysis and exclusion protocols that are rooted in a thorough understanding of pathogen lifecycle and modes of transmission. In this manuscript we review the current state of SPF in domestic agriculture (pigs and poultry), aquaculture (salmonids and shrimp), and small laboratory mammals. As the use of laboratory fish, especially zebrafish (Danio rerio), as models of human disease is expanding exponentially, it is prudent to define standards for SPF in this field. We use the guiding principles from other SPF industries and evaluate zebrafish pathogens against criteria to be on an SPF list, to propose recommendations for establishing and maintaining SPF laboratory zebrafish.
Collapse
Affiliation(s)
- Katrina N Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403, USA.
| | - Tannia S Clark
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Myron J Kebus
- Wisconsin Department of Agriculture, Trade and Consumer Protection, Madison, WI 53708, USA
| | - Michael L Kent
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403, USA; Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA; Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
9
|
Liu X, Xu L, Hu K, Ren S, Weng M, Yu J, Li D, Zhang J. New isolate of Loma psittaca (Microsporidia: Glugeidae) infecting the stomach wall of cultured hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) in South China. J Eukaryot Microbiol 2021; 68:e12868. [PMID: 34378290 DOI: 10.1111/jeu.12868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Loma psittaca, previously described as inhabiting the intestinal mucosa of an anadromous fish, Colomesus pisttacus, from the Amazon Basin, is reported as being found for the first time in a marine fish, the hybrid grouper (Epinephelus lanceolatus♂×Epinephelus fuscoguttatus♀), from Lingshui city, Hainan Province, China, expanding the geographical distribution and host range of this parasite. Numerous whitish xenomas (0.5-0.7 mm in diameter) of this new isolate of L. psittaca were found distinctly in the muscle layer of the host stomach wall. Electron microscopic observations showed a monokaryotic nucleus in all developmental stages. Round or elongated multinucleate merogonial plasmodia surrounded by numerous mitochondria were observed initially, subsequently transforming into uninucleate sporonts through multiple fissions. Sporonts, each with a large centrally positioned nucleus, further developed into sporoblasts. Each sporoblast mother cell gave rise to two uninucleate sporoblasts by binary fission. Mature spores were ellipsoidal, measuring 4.0 ± 0.3 (3.7-4.3) μm in length and 2.2 ± 0.2 (2.1-2.5) μm in width. Spores possessed a mushroom-like anchoring disk, a bipartite polarplast, isofilar polar filaments arranged in 12-14 turns in one row, and a trilaminar spore wall. The obtained partial SSU rRNA gene sequence of the new isolate was 1330 bp in length and showed 99.4% sequence similarity with an estuary isolate of L. psittaca previously reported in South America. SSU rRNA gene-based phylogenetic analyses demonstrated that the two L. psittaca isolates first clustered together and then formed a dichotomy that included the digestive-tract-infecting Loma species, L. acerinae, with high support values within group I.
Collapse
Affiliation(s)
- Xinhua Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China.,Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Liwen Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Kai Hu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shisi Ren
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Meiqi Weng
- Key Laboratory of Aquaculture Diseases Control, Ministry of Agriculture, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jianbo Yu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Deliang Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Jinyong Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
10
|
Tetra disseminated microsporidiosis: a novel disease in ornamental fish caused by Fusasporis stethaprioni n. gen. n. sp. Parasitol Res 2021; 120:497-514. [PMID: 33415390 DOI: 10.1007/s00436-020-06988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
A novel microsporidial disease was documented in two ornamental fish species, black tetra Gymnocorymbus ternetzi Boulenger 1895 and cardinal tetra Paracheirodon axelrodi Schultz 1956. The non-xenoma-forming microsporidium occurred diffusely in most internal organs and the gill, thus referring to the condition as tetra disseminated microsporidiosis (TDM). The occurrence of TDM in black tetra was associated with chronic mortality in a domestic farmed population, while the case in cardinal tetra occurred in moribund fish while in quarantine at a public aquarium. Histology showed that coelomic visceral organs were frequently necrotic and severely disrupted by extensive infiltrates of macrophages. Infected macrophages were presumed responsible for the dissemination of spores throughout the body. Ultrastructural characteristics of the parasite developmental cycle included uninucleate meronts directly in the host cell cytoplasm. Sporonts were bi-nucleated as a result of karyokinesis and a parasite-produced sporophorous vesicle (SPV) became apparent at this stage. Cytokinesis resulted in two spores forming within each SPV. Spores were uniform in size, measuring about 3.9 ± 0.33 long by 2.0 ± 0.2 μm wide. Ultrastructure demonstrated two spore types, one with 9-12 polar filament coils and a double-layered exospore and a second type with 4-7 polar filament coils and a homogenously electron-dense exospore, with differences perhaps related to parasite transmission mechanisms. The 16S rDNA sequences showed closest identity to the genus Glugea (≈ 92%), though the developmental cycle, specifically being a non-xenoma-forming species and having two spores forming within a SPV, did not fit within the genus. Based on combined phylogenetic and ultrastructural characteristics, a new genus (Fusasporis) is proposed, with F. stethaprioni n. gen. n. sp. as the type species.
Collapse
|
11
|
Midttun HLE, Vindas MA, Whatmore PJ, Øverli Ø, Johansen IB. Effects of Pseudoloma neurophilia infection on the brain transcriptome in zebrafish (Danio rerio). JOURNAL OF FISH DISEASES 2020; 43:863-875. [PMID: 32542843 DOI: 10.1111/jfd.13198] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Laboratory zebrafish are commonly infected with the intracellular, brain-infecting microsporidian parasite Pseudoloma neurophilia. Chronic P. neurophilia infections induce inflammation in meninges, brain and spinal cord, and have been suggested to affect neural functions since parasite clusters reside inside neurons. However, underlying neural and immunological mechanisms associated with infection have not been explored. Utilizing RNA-sequencing analysis, we found that P. neurophilia infection upregulated 175 and downregulated 45 genes in the zebrafish brain, compared to uninfected controls. Four biological pathways were enriched by the parasite, all of which were associated with immune function. In addition, 14 gene ontology (GO) terms were enriched, eight of which were associated with immune responses and five with circadian rhythm. Surprisingly, no differentially expressed genes or enriched pathways were specific for nervous system function. Upregulated immune-related genes indicate that the host generally show a pro-inflammatory immune response to infection. On the other hand, we found a general downregulation of immune response genes associated with anti-pathogen functions, suggesting an immune evasion strategy by the parasite. The results reported here provide important information on host-parasite interaction and highlight possible pathways for complex effects of parasite infections on zebrafish phenotypes.
Collapse
Affiliation(s)
- Helene L E Midttun
- Faculty of Veterinary Medicine, Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Marco A Vindas
- Faculty of Veterinary Medicine, Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Paul J Whatmore
- Faculty of Science, Health, Education and Engineering, Genecology Research Center, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Øyvind Øverli
- Faculty of Veterinary Medicine, Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Ida B Johansen
- Faculty of Veterinary Medicine, Department of Paraclinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
12
|
Behavioural effects of the common brain-infecting parasite Pseudoloma neurophilia in laboratory zebrafish (Danio rerio). Sci Rep 2020; 10:8083. [PMID: 32415102 PMCID: PMC7228949 DOI: 10.1038/s41598-020-64948-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/22/2020] [Indexed: 12/19/2022] Open
Abstract
Research conducted on model organisms may be biased due to undetected pathogen infections. Recently, screening studies discovered high prevalence of the microsporidium Pseudoloma neurophilia in zebrafish (Danio rerio) facilities. This spore-forming unicellular parasite aggregates in brain regions associated with motor function and anxiety, and despite its high occurrence little is known about how sub-clinical infection affects behaviour. Here, we assessed how P. neurophilia infection alters the zebrafish´s response to four commonly used neurobehavioral tests, namely: mirror biting, open field, light/dark preference and social preference, used to quantify aggression, exploration, anxiety, and sociability. Although sociability and aggression remained unaltered, infected hosts exhibited reduced activity, elevated rates of freezing behaviour, and sex-specific effects on exploration. These results indicate that caution is warranted in the interpretation of zebrafish behaviour, particularly since in most cases infection status is unknown. This highlights the importance of comprehensive monitoring procedures to detect sub-clinical infections in laboratory animals.
Collapse
|
13
|
Bojko J, Behringer DC, Moler P, Stratton CE, Reisinger L. A new lineage of crayfish-infecting Microsporidia: The Cambaraspora floridanus n. gen. n. sp. (Glugeida: Glugeidae) complex from Floridian freshwaters (USA). J Invertebr Pathol 2020; 171:107345. [DOI: 10.1016/j.jip.2020.107345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 11/26/2022]
|
14
|
Sanders JL, Monteiro JF, Martins S, Certal AC, Kent ML. The Impact of Pseudoloma neurophilia Infection on Body Condition of Zebrafish. Zebrafish 2020; 17:139-146. [PMID: 31971888 DOI: 10.1089/zeb.2019.1812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The zebrafish is a widely used animal model in biomedical research. Despite this, pathogens continue to be common in laboratory zebrafish. It is important to determine and describe the pathophysiology of cryptic infections on zebrafish to elucidate the impacts on experimental endpoints. Body condition is a basic measurement used experimentally and in health monitoring of animals. We exposed three wild-type zebrafish strains: AB, WIK, and 5D to Pseudoloma neurophilia. After 8 weeks postexposure, we individually imaged and processed fish for histology. Morphometric analysis was performed on images and an index of body condition was calculated based on the ratio of length/width from the dorsal aspect. Histological sections from each fish were examined to establish sex, severity of infection, and tissue distribution. We observed a significant decrease in body condition in female fish that was not observed in males. In addition, we observed a negative correlation between the total gonadal area of P. neurophilia exposed females and unexposed controls. These results illustrate the sex-specific impacts of a common chronic pathogen on zebrafish health and a commonly used experimental endpoint, further supporting the establishment of rigorous health monitoring programs in laboratory zebrafish colonies that include screening for chronic infectious diseases.
Collapse
Affiliation(s)
- Justin L Sanders
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon
| | - Joana F Monteiro
- Fish Platform, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sandra Martins
- Division of Aquaculture and Seafood Upgrading (DivAV), Portuguese Institute of Sea and Atmosphere (IPMA, I.P.), Lisboa, Portugal.,MARE-Marine Environmental Sciences Centre & Laboratório Marítimo da Guia, Faculty of Sciences, University of Lisbon, Cascais, Portugal
| | | | - Michael L Kent
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon.,Department of Microbiology, Oregon State University, Corvallis, Oregon
| |
Collapse
|
15
|
Elmore SA, Cesta MF, Crabbs TA, Janardhan KS, Krane GA, Mahapatra D, Quist EM, Rinke M, Schaaf GW, Travlos GS, Wang H, Willson CJ, Wolf JC. Proceedings of the 2019 National Toxicology Program Satellite Symposium. Toxicol Pathol 2019; 47:913-953. [PMID: 31645210 PMCID: PMC6911009 DOI: 10.1177/0192623319876929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The 2019 annual National Toxicology Program Satellite Symposium, entitled "Pathology Potpourri," was held in Raleigh, North Carolina, at the Society of Toxicologic Pathology's 38th annual meeting. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers' talks along with select images that were used by the audience for voting and discussion. Various lesions and topics covered during the symposium included aging mouse lesions from various strains, as well as the following lesions from various rat strains: rete testis sperm granuloma/fibrosis, ovarian cystadenocarcinoma, retro-orbital schwannoma, periductal cholangiofibrosis of the liver and pancreas, pars distalis hypertrophy, chronic progressive nephropathy, and renal tubule regeneration. Other cases included polyovular follicles in young beagle dogs and a fungal blood smear contaminant. One series of cases challenged the audience to consider how immunohistochemistry may improve the diagnosis of some tumors. Interesting retinal lesions from a rhesus macaque emphasized the difficulty in determining the etiology of any particular retinal lesion due to the retina's similar response to vascular injury. Finally, a series of lesions from the International Harmonization of Nomenclature and Diagnostic Criteria Non-Rodent Fish Working Group were presented.
Collapse
Affiliation(s)
- Susan A. Elmore
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Mark F. Cesta
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Torrie A Crabbs
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | | | - Gregory A. Krane
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Debabrata Mahapatra
- Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina, USA
| | - Erin M. Quist
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, USA
| | | | - George W. Schaaf
- Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | - Gregory S. Travlos
- Cellular and Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Haoan Wang
- West China-Frontier Pharma Tech Co., Ltd., Chengdu, Sichuan, China
| | - Cynthia J. Willson
- Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina, USA
| | - Jeffrey C. Wolf
- Experimental Pathology Laboratories, Inc., Sterling, Virginia, USA
| |
Collapse
|
16
|
Sokolova YY, Weidner E, DiMario PJ. Development of Anncaliia algerae (Microsporidia) in Drosophila melanogaster. J Eukaryot Microbiol 2019; 67:125-131. [PMID: 31529563 DOI: 10.1111/jeu.12762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/24/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022]
Abstract
Representatives of the genus Anncaliia are known as natural parasites of dipteran and coleopteran insects, amphipod crustaceans, but also humans, primarily with immunodeficiency. Anncaliia algerae-caused fatal myositis is considered as an emergent infectious disease in humans. A. (=Nosema, Brachiola) algerae, the best studied species of the genus, demonstrates the broadest among microsporidia range of natural and experimental hosts, but it has never been propagated in Drosophila. We present ultrastructural analysis of development of A. algerae in visceral muscles and adipocytes of Drosophila melanogaster 2 wk after per oral experimental infection. We observed typical to Anncaliia spp. features of ultrastructure and cell pathology including spore morphology, characteristic extensions of the plasma membrane, and presence of "ridges" and appendages of tubular material at proliferative stages. Anncaliia algerae development in D. melanogaster was particularly similar to one of A. algerae and A.(Brachiola) vesicularum in humans with acute myositis. Given D. melanogaster is currently the most established genetic model, with a fully sequenced genome and easily available transgenic forms and genomic markers, a novel host-parasite system might provide new genetic tools to investigate host-pathogen interactions of A. algerae, as well to test antimicrosporidia drugs.
Collapse
Affiliation(s)
- Yuliya Y Sokolova
- Institute of Cytology, 4 Tikhoretsky Av\194064, St. Petersburg, Russia.,Louisiana State University, Life Sciences Bldg, Baton Rouge, Louisiana, 70803, USA.,The George Washington University, Washington, District of Columbia, 20037, USA
| | - Earl Weidner
- Louisiana State University, Life Sciences Bldg, Baton Rouge, Louisiana, 70803, USA
| | - Patrick J DiMario
- Louisiana State University, Life Sciences Bldg, Baton Rouge, Louisiana, 70803, USA
| |
Collapse
|
17
|
Iaria C, Saoca C, Guerrera MC, Ciulli S, Brundo MV, Piccione G, Lanteri G. Occurrence of diseases in fish used for experimental research. Lab Anim 2019; 53:619-629. [DOI: 10.1177/0023677219830441] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The objective of the present study was to evaluate the occurrence of pathogens and diseases in laboratory fish over a 10-year period at the Centre for Experimental Fish Pathology of Sicily, University of Messina. This report also emphasizes the adverse effects of subclinical infections on research endpoints, as well as the importance of animal health with respect to welfare. Infections in fish used for research can alter experimental outcomes, increase the variability of data, and impede experimental reproducibility. For this purpose, 411 diseased fish of different species (out of a total of 2820 fish) that belonged to four marine species ( Dicentrarchus labrax, Sparus aurata, Argyrosomus regius and Mugil cephalus) and to four fresh water species ( Danio rerio, Carassius auratus, Xiphophorus variatus and Poecilia reticulata) were examined in this study. Our results showed that mycobacteriosis and myxosporidiosis were the most important diseases found in our research fish, and the results represent a useful tool to obtain wider knowledge on the incidence of various diseases in different fish species. Further studies in this field are necessary to improve knowledge on the state of the health of fish used for research.
Collapse
Affiliation(s)
- Carmelo Iaria
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Concetta Saoca
- Department of Veterinary Sciences, Experimental Ichthyopathology Center of Sicily, University of Messina, Italy
| | - Maria Cristina Guerrera
- Department of Veterinary Sciences, Experimental Ichthyopathology Center of Sicily, University of Messina, Italy
| | - Sara Ciulli
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Maria Violetta Brundo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, Experimental Ichthyopathology Center of Sicily, University of Messina, Italy
| | - Giovanni Lanteri
- Department of Veterinary Sciences, Experimental Ichthyopathology Center of Sicily, University of Messina, Italy
| |
Collapse
|
18
|
Azevedo C, Feltran R, Rocha S, Matos E, Maciel E, Oliveira E, Al-Quraishy S, Casal G. Simultaneous occurrence of two new myxosporean species infecting the central nervous system of Hypopygus lepturus from Brazil. DISEASES OF AQUATIC ORGANISMS 2018; 131:143-156. [PMID: 30460920 DOI: 10.3354/dao03283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper describes 2 new myxosporean species, Henneguya lepturus sp. nov. and Thelohanellus lepturus sp. nov., simultaneously infecting the brain and spinal cord of Hypopygus lepturus Hoedeman, 1962 (Teleostei, Hypopomidae) from the Brazilian Amazon (Roraima State). Several spherical cysts of varying dimensions (up to 135 µm) were microscopically observed. The myxospores of H. lepturus sp. nov. measured 25.8 µm in total length, having an ellipsoidal body (12.4 × 6.4 × 2.2 µm) and 2 equal tapering tails (13.4 µm in length). Each of the 2 pyriform polar capsules measured 4.4 × 1.6 µm and possessed a polar filament coiled in 8-9 turns. The myxospores of T. lepturus sp. nov. were pyriform, formed by 2 equal valves (17.7 × 9.1 × 4.3 µm) surrounding a single polar capsule (10.9 × 3.5 µm) that had a coiled polar filament with 13-16 turns and a binucleated sporoplasm that contained several circular sporoplasmosomes. Molecular analysis of the small subunit (SSU) rRNA gene sequences of these 2 species were in agreement with the taxonomic classification derived from the ultrastructure of the myxospores. Histopathology of the host tissue showed degradation of the myelinated axons surrounding the cysts of both species, with the hosts displaying behavioural changes and erratic movements when observed in an aquarium.
Collapse
Affiliation(s)
- Carlos Azevedo
- Laboratory of Cell Biology, Institute of Biomedical Sciences (ICBAS / UP), University of Porto, 4050-313 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Peneyra SM, Cardona-Costa J, White J, Whipps CM, Riedel ER, Lipman NS, Lieggi C. Transmission of Pseudoloma neurophilia in Laboratory Zebrafish (Danio rerio) When Using Mass Spawning Chambers and Recommendations for Chamber Disinfection. Zebrafish 2017; 15:63-72. [PMID: 29048998 DOI: 10.1089/zeb.2017.1493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pseudoloma neurophilia, a microsporidium that primarily infects neural tissues, is a common pathogen in laboratory zebrafish. The risk of parasite transmission with different spawning apparatuses and the effectiveness of disinfection are unknown. In this study, we spawned uninfected zebrafish with P. neurophilia-infected zebrafish in either 50 L mass spawning chambers (MSCs) or 1 L standard breeding tanks (BTs). Fish were spawned once or thrice, with and without chamber disinfection between uses, to evaluate risk of vertical and horizontal transmission. Six disinfection protocols were tested to determine which effectively eliminated residual spores. We demonstrated that three consecutive uses of an MSC significantly increased the risk of transmission to other fish when compared to the use of BTs or only one spawning event in an MSC (both p < 0.0001). Vertical transmission was not detected with any method. Disinfection with ∼100 ppm bleach soak (pH ∼7.0), 75 ppm Wescodyne® soak, and 175 ppm Wescodyne Plus spray was 100% effective in eliminating spores from the MSCs. Disinfection of MSCs before spawning did not decrease P. neurophilia transmission when infected fish remained present in the breeding population. Researchers should avoid using endemically infected fish in MSCs to minimize transmission of pathogens within their colonies.
Collapse
Affiliation(s)
- Samantha M Peneyra
- 1 Tri-Institutional Training Program in Laboratory Animal Medicine and Science , New York, New York.,2 Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine , New York, New York
| | - Jose Cardona-Costa
- 2 Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine , New York, New York
| | - Julie White
- 1 Tri-Institutional Training Program in Laboratory Animal Medicine and Science , New York, New York.,2 Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine , New York, New York
| | - Christopher M Whipps
- 3 Department of Environment and Forest Biology, State University of New York College of Environmental Science and Forestry , Syracuse, New York
| | - Elyn R Riedel
- 4 Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center , New York, New York
| | - Neil S Lipman
- 1 Tri-Institutional Training Program in Laboratory Animal Medicine and Science , New York, New York.,2 Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine , New York, New York
| | - Christine Lieggi
- 1 Tri-Institutional Training Program in Laboratory Animal Medicine and Science , New York, New York.,2 Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine , New York, New York
| |
Collapse
|
21
|
Ndikumana S, Pelin A, Williot A, Sanders JL, Kent M, Corradi N. Genome Analysis of Pseudoloma neurophilia: A Microsporidian Parasite of Zebrafish (Danio rerio). J Eukaryot Microbiol 2017; 64:18-30. [PMID: 27230544 PMCID: PMC5124540 DOI: 10.1111/jeu.12331] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 12/23/2022]
Abstract
Microsporidia are highly successful parasites that infect virtually all known animal lineages, including the model Danio rerio (zebrafish). The widespread use of this aquatic model for biomedical research has resulted in an unexpected increase in infections from the microsporidium Pseudoloma neurophilia, which can lead to significant physical, behavioral, and immunological modifications, resulting in nonprotocol variation during experimental procedures. Here, we seek to obtain insights into the biology of P. neurophilia by investigating its genome content, which was obtained from only 29 nanograms of DNA using the MiSeq technology and paired-end Illumina sequencing. We found that the genome of P. neurophilia is phylogenetically and genetically related to other fish-microsporidians, but features unique to this intracellular parasite are also found. The small 5.25-Mb genome assembly includes 1,139 unique open-reading frames and an unusually high number of transposable elements for such a small genome. Investigations of intragenomic diversity also provided strong indications that the mononucleate nucleus of this species is diploid. Overall, our study provides insights into the dynamics of microsporidian genomes and a solid sequence reference to be used in future studies of host-parasite interactions using the zebrafish D. rerio and P. neurophilia as a model.
Collapse
Affiliation(s)
- Steve Ndikumana
- Center for Advanced Research in Environment Genomic, Department of Biology, University of Ottawa, ON, Canada
| | - Adrian Pelin
- Center for Advanced Research in Environment Genomic, Department of Biology, University of Ottawa, ON, Canada
| | - Alex Williot
- Center for Advanced Research in Environment Genomic, Department of Biology, University of Ottawa, ON, Canada
| | - Justin L. Sanders
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Michael Kent
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Nicolas Corradi
- Center for Advanced Research in Environment Genomic, Department of Biology, University of Ottawa, ON, Canada
| |
Collapse
|
22
|
Health monitoring and disease prevention at the Zebrafish International Resource Center. Methods Cell Biol 2016; 135:535-51. [PMID: 27443943 DOI: 10.1016/bs.mcb.2016.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
In this chapter we review the components of the fish health program at the Zebrafish International Resource Center. We describe health-monitoring strategies to assess individual and colony health, practices to prevent the spread of pathogens within the fish colony, and a biosecurity program designed to prevent entry of new fish pathogens. While this program is designed for a facility on a recirculating water system with expectations of high volumes of import and export, many of the components can be directly applied or modified for application in facilities of different sizes and with other programmatic goals.
Collapse
|
23
|
Liu L, Pan L, Li K, Zhang Y, Zhu Z, Sun Y. Zebrafish Health Conditions in the China Zebrafish Resource Center and 20 Major Chinese Zebrafish Laboratories. Zebrafish 2016; 13 Suppl 1:S8-S18. [DOI: 10.1089/zeb.2015.1224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Liyue Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, China Zebrafish Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Luyuan Pan
- State Key Laboratory of Freshwater Ecology and Biotechnology, China Zebrafish Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kuoyu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, China Zebrafish Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yun Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, China Zebrafish Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, China Zebrafish Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, China Zebrafish Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
24
|
Legendre L, Guillet B, Leguay E, Meunier E, Labrut S, Keck N, Bardotti M, Michelet L, Sohm F. RESAMA: A Network for Monitoring Health and Husbandry Practices in Aquatic Research Facilities. Zebrafish 2016; 13 Suppl 1:S56-65. [PMID: 27192449 DOI: 10.1089/zeb.2015.1199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Health monitoring is a crucial aspect of the management of any research animal house. RESAMA is a network strong of 60 academic and private partners acting in France since the end of 2012. The network aims to increase awareness of animal caretakers and researchers on health management issues in facilities holding aquatic model species (zebrafish, Xenopus, medaka, Mexican tetra). To do so, each partner research facility will be visited at least once. The visiting team is composed at least of one veterinarian and one zootechnician specialized in aquatic species. The visit results in a health-monitoring assessment of the facility, which includes a sampling for histo-pathological, bacteriological, and molecular pathogen detection. During the visit, rearing practices are also reviewed through an interview of animal caretakers. However, the present report essentially focuses on the health-monitoring aspect. The ultimate goal of the project is to provide a network-wide picture of health issues in aquatic facilities. Performed in parallel, the rearing practice assessment will ultimately help to establish rational relationship between handling practices and animal health in aquatic facilities. The study is still in progress. Here, we describe the results to be drawn from an analysis of the 23 facilities that had been visited so far. We sampled 720 fish and 127 amphibians and performed a little less than 1400 individual tests.
Collapse
Affiliation(s)
- Laurent Legendre
- 1 UMS AMAGEN, CNRS, INRA, Université Paris-Saclay , Gif sur Yvette, France
| | - Brigitte Guillet
- 2 CRB Xénope, UMS 3387 CNRS, Université de Rennes 1 , Rennes, France
| | | | | | | | - Nicolas Keck
- 5 Laboratoire Départemental Vétérinaire de l'Hérault, Montpellier, France
| | - Massimiliano Bardotti
- 6 UMR 9197 Neuro-PSI, CNRS, Université Paris-Sud , Université Paris-Saclay, Gif sur Yvette, France
| | - Lorraine Michelet
- 7 Université Paris-Est, Laboratoire National de Référence de la Tuberculose, Unité de Zoonoses Bactériennes, Laboratoire de Santé Animale , ANSES, Maisons-Alfort, France
| | - Frédéric Sohm
- 1 UMS AMAGEN, CNRS, INRA, Université Paris-Saclay , Gif sur Yvette, France
| |
Collapse
|
25
|
Sanders JL, Watral V, Stidworthy MF, Kent ML. Expansion of the Known Host Range of the Microsporidium, Pseudoloma neurophilia. Zebrafish 2016; 13 Suppl 1:S102-6. [PMID: 27182659 DOI: 10.1089/zeb.2015.1214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The microsporidium, Pseudoloma neurophilia, is the most common infectious organism found in laboratory zebrafish colonies. Many currently used zebrafish lines originally came from pet store fish, and the initial description of P. neurophilia came from zebrafish obtained from a retail pet store. However, as P. neurophilia has not been described from wild-caught zebrafish, whether P. neurophilia is a natural pathogen of zebrafish is an open question. The pooling of fish of different species in the aquarium fish trade is common and a generalist parasite could be transmitted to novel hosts in this scenario. We determined that P. neurophilia can infect seven species of fishes from five families by cohabitation with infected zebrafish: Betta splendens, Xiphophorus maculatus, Devario aequipinnatus, Pimephales promelas, Oryzias latipes, Carassius auratus and Paracheirodon innesi. Infections in these fishes were histologically similar to those of zebrafish. We include a case report of a laboratory population of fathead minnows with naturally acquired P. neurophilia infections. With such a broad host range, including several fish families, other laboratory fishes should be screened routinely for this and other microsporidian parasites.
Collapse
Affiliation(s)
- Justin L Sanders
- 1 Department of Microbiology, Oregon State University , Corvallis, Oregon
| | - Virginia Watral
- 1 Department of Microbiology, Oregon State University , Corvallis, Oregon
| | - Mark F Stidworthy
- 2 International Zoo Veterinary Group , Keighley, West Yorkshire, United Kingdom
| | - Michael L Kent
- 1 Department of Microbiology, Oregon State University , Corvallis, Oregon.,3 Department of Biomedical Sciences, Oregon State University , Corvallis, Oregon
| |
Collapse
|
26
|
Spagnoli ST, Sanders JL, Watral V, Kent ML. Pseudoloma neurophilia Infection Combined with Gamma Irradiation Causes Increased Mortality in Adult Zebrafish (Danio rerio) Compared to Infection or Irradiation Alone: New Implications for Studies Involving Immunosuppression. Zebrafish 2016; 13 Suppl 1:S107-14. [PMID: 27123755 DOI: 10.1089/zeb.2015.1223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gamma irradiation is commonly used as a bone marrow suppressant in studies of the immune system and hematopoiesis, most commonly in mammals. With the rising utility and popularity of the zebrafish (Danio rerio), gamma irradiation is being used for similar studies in this species. Pseudoloma neurophilia, a microparasite and common contaminant of zebrafish facilities, generally produces subclinical disease. However, like other microsporidia, P. neurophilia is a disease of opportunity and can produce florid infections with high morbidity and mortality, secondary to stress or immune suppression. In this study, we exposed zebrafish to combinations of P. neurophilia infection and gamma irradiation to explore the interaction between this immunosuppressive experimental modality and a normally subclinical infection. Zebrafish infected with P. neurophilia and exposed to gamma irradiation exhibited higher mortality, increased parasite loads, and increased incidences of myositis and extraneural parasite infections than fish exposed either to P. neurophilia or gamma irradiation alone. This experiment highlights the devastating effects of opportunistic diseases on immunosuppressed individuals and should caution researchers utilizing immunosuppressive modalities to carefully monitor their stocks to ensure that their experimental animals are not infected.
Collapse
Affiliation(s)
- Sean T Spagnoli
- 1 Department of Biomedical Sciences, Oregon State University , Corvallis, Oregon
| | - Justin L Sanders
- 2 Department of Microbiology, Oregon State University , Corvallis, Oregon
| | - Virginia Watral
- 2 Department of Microbiology, Oregon State University , Corvallis, Oregon
| | - Michael L Kent
- 1 Department of Biomedical Sciences, Oregon State University , Corvallis, Oregon.,2 Department of Microbiology, Oregon State University , Corvallis, Oregon
| |
Collapse
|
27
|
Hobbs MR, Shankaran SS, James WL. Controlling Endemic Pathogens-Challenges and Opportunities. Zebrafish 2016; 13 Suppl 1:S66-71. [PMID: 26982004 DOI: 10.1089/zeb.2015.1207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
By most measures, the University of Utah Centralized Zebrafish Animal Resource is a successful zebrafish core facility: we house ∼4000-5000 tanks for over 16 research groups; provide services and equipment for ∼150 users; are currently undergoing an expansion by 3000 tanks; and have been praised by institutional and national regulatory agencies for the cleanliness and efficiency of our facility. In recent years, we have implemented new programs to improve the overall health of our colony and believe we have seen a reduction in apparently sick fish. However, there are still deficiencies in our monitoring and pathogen control programs. Our histopathology sample sizes have been insufficient to estimate prevalence, but our sentinel tank program reveals the presence of Pseudoloma neurophilia and myxozoan, presumably Myxidium streisinger, in our facility. As we develop protocols to further reduce the burden of disease, we are focused on defining our baseline, establishing goals, and implementing methods to monitor our progress. The data generated by this approach will allow us to evaluate and implement the most cost-effective protocols to improve fish health.
Collapse
Affiliation(s)
- Maurine R Hobbs
- 1 CZAR Zebrafish Core Facility, University of Utah , Salt Lake City, Utah
| | - Sunita S Shankaran
- 2 Cardiovascular Research and Training Institute, University of Utah , Salt Lake City, Utah
| | - William L James
- 1 CZAR Zebrafish Core Facility, University of Utah , Salt Lake City, Utah
| |
Collapse
|
28
|
Murray KN, Peterson TS. Pathology in practice. P tomentosa infection in zebrafish. J Am Vet Med Assoc 2015; 246:201-3. [PMID: 25554935 DOI: 10.2460/javma.246.2.201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Katrina N Murray
- Zebrafish International Resource Center, University of Oregon, Eugene, OR 97403
| | | |
Collapse
|
29
|
Spagnoli ST, Xue L, Murray KN, Chow F, Kent ML. Pseudoloma neurophilia: a retrospective and descriptive study of nervous system and muscle infections, with new implications for pathogenesis and behavioral phenotypes. Zebrafish 2015; 12:189-201. [PMID: 25789546 DOI: 10.1089/zeb.2014.1055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Pseudoloma neurophilia is a microsporidium of zebrafish (Danio rerio) that preferentially infects neural tissue. It is one of the most common pathogens of zebrafish in research laboratories based on diagnostic data from the Zebrafish International Resource Center diagnostic service (Eugene, OR). Five hundred fifty-nine zebrafish infected with P. neurophilia submitted to ZIRC from 86 laboratories between the years 2000 and 2013 were examined via histopathology to develop a retrospective study of the features of neural microsporidiosis. Parasite clusters (PCs) occurred in distinct axonal swellings, frequently with no associated inflammation. Inflammation was observed in viable cell bodies distant from PCs. Multiple PCs occasionally occurred within a single axon, suggesting axonal transport. PCs occurred most frequently in the spinal cord ventral white matter (40.3% of all PCs) and the spinal nerve roots (25.6%). Within the rhombencephalon, PCs were most common in the primary descending white matter tracts. Within the rhombencephalon gray matter, PCs occurred most frequently in the reticular formation and the griseum centrale (61% and 39%, respectively). High numbers of PCs within brain and spinal cord structures mediating startle responses and anxiety suggest that related behaviors could be altered by neural microsporidiosis. Infection could, therefore, introduce unacceptable variation in studies utilizing these behaviors.
Collapse
Affiliation(s)
- Sean Thomas Spagnoli
- 1 Environmental Health Sciences Center, Oregon State University , Corvallis, Oregon
| | | | | | | | | |
Collapse
|
30
|
Gratacap RL, Wheeler RT. Utilization of zebrafish for intravital study of eukaryotic pathogen-host interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:108-15. [PMID: 24491522 PMCID: PMC4028364 DOI: 10.1016/j.dci.2014.01.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 05/04/2023]
Abstract
Unique imaging tools and practical advantages have made zebrafish a popular model to investigate in vivo host-pathogen interactions. These studies have uncovered details of the mechanisms involved in several human infections. Until recently, studies using this versatile host were limited to viral and prokaryotic pathogens. Eukaryotic pathogens are a diverse group with a major impact on the human and fish populations. The relationships of eukaryote pathogens with their hosts are complex and many aspects remain obscure. The small and transparent zebrafish, with its conserved immune system and amenability to genetic manipulation, make it an exciting model for quantitative study of the core strategies of eukaryotic pathogens and their hosts. The only thing to do now is realize its potential for advancement of biomedical and aquaculture research.
Collapse
Affiliation(s)
- Remi L Gratacap
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469, United States
| | - Robert T Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
31
|
Sanders JL, Peterson TS, Kent ML. Early development and tissue distribution of Pseudoloma neurophilia in the zebrafish, Danio rerio. J Eukaryot Microbiol 2014; 61:238-46. [PMID: 24411000 DOI: 10.1111/jeu.12101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/11/2013] [Accepted: 12/17/2013] [Indexed: 11/30/2022]
Abstract
The early proliferative stages of the microsporidian parasite, Pseudoloma neurophilia were visualized in larval zebrafish, Danio rerio, using histological sections with a combination of an in situ hybridization probe specific to the P. neurophilia small-subunit ribosomal RNA gene, standard hematoxylin-eosin stain, and the Luna stain to visualize spores. Beginning at 5 d post fertilization, fish were exposed to P. neurophilia and examined at 12, 24, 36, 48, 72, 96, and 120 h post exposure (hpe). At 12 hpe, intact spores in the intestinal lumen and proliferative stages developing in the epithelial cells of the anterior intestine and the pharynx and within hepatocytes were observed. Proliferative stages were visualized in the pancreas and kidney at 36-48 hpe and in the spinal cord, eye, and skeletal muscle beginning at 72 hpe. The first spore stages of P. neurophilia were observed at 96 hpe in the pharyngeal epithelium, liver, spinal cord, and skeletal muscle. The parasite was only observed in the brain of larval fish at 120 hpe. The distribution of the early stages of P. neurophilia and the lack of mature spores until 96 hpe indicates that the parasite gains access to organs distant from the initial site of entry, likely by penetrating the intestinal wall with the polar tube.
Collapse
Affiliation(s)
- Justin L Sanders
- Department of Microbiology, Oregon State University, Corvallis, Oregon, 97331
| | | | | |
Collapse
|
32
|
Sanders JL, Watral V, Clarkson K, Kent ML. Verification of intraovum transmission of a microsporidium of vertebrates: Pseudoloma neurophilia infecting the Zebrafish, Danio rerio. PLoS One 2013; 8:e76064. [PMID: 24086686 PMCID: PMC3781086 DOI: 10.1371/journal.pone.0076064] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/22/2013] [Indexed: 01/28/2023] Open
Abstract
Direct transmission from parents to offspring, referred to as vertical transmission, occurs within essentially all major groups of pathogens. Several microsporidia (Phylum Microsporidia) that infect arthropods employ this mode of transmission, and various lines of evidence have suggested this might occur with certain fish microsporidia. The microsporidium, Pseudoloma neurophilia, is a common pathogen of the laboratory zebrafish, Danio rerio. We previously verified that this parasite is easily transmitted horizontally, but previous studies also indicated that maternal transmission occurs. We report here direct observation of Pseudoloma neurophilia in the progeny of infected zebrafish that were reared in isolation, including microscopic visualization of the parasite in all major stages of development. Histological examination of larval fish reared in isolation from a group spawn showed microsporidian spores in the resorbing yolk sac of a fish. Infections were also observed in three of 36 juvenile fish. Eggs from a second group spawn of 30 infected fish were examined using a stereomicroscope and the infection was observed from 4 to 48 hours post-fertilization in two embryos. Intraovum infections were detected in embryos from 4 of 27 pairs of infected fish that were spawned based on qPCR detection of P. neurophilia DNA. The prevalence of intraovum infections from the four spawns containing infected embryos was low (∼1%) based on calculation of prevalence using a maximum likelihood analysis for pooled samples. Parasite DNA was detected in the water following spawning of 11 of the infected pairs, suggesting there was also potential for extraovum transmission in these spawning events. Our study represents the first direct observation of vertical transmission within a developing embryo of a microsporidian parasite in a vertebrate. The low prevalence of vertical transmission in embryos is consistent with observations of some other fish pathogens that are also readily transmitted by both vertical and horizontal routes.
Collapse
Affiliation(s)
- Justin L. Sanders
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Virginia Watral
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Keri Clarkson
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Michael L. Kent
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
33
|
Abstract
Parasitism, aptly defined as one of the 'living-together' strategies (Trager, 1986), presents a dynamic system in which the parasite and its host are under evolutionary pressure to evolve new and specific adaptations, thus enabling the coexistence of the two closely interacting partners. Microsporidia are very frequently encountered obligatory intracellular protistan parasites that can infect both animals and some protists and are a consummate example of various aspects of the 'living-together' strategy. Microsporidia, relatives of fungi in the superkingdom Opisthokonta, belong to the relatively small group of parasites for which the host cell cytoplasm is the site of both reproduction and maturation. The structural and physiological reduction of their vegetative stage, together with the manipulation of host cell physiology, enables microsporidia to live in the cytosolic environment for most of their life cycle in a way resembling endocytobionts. The ability to form structurally complex spores and the invention and assembly of a unique injection mechanism enable microsporidia to disperse within host tissues and between host organisms, resulting in long-lasting infections. Microsporidia have adapted their genomes to the intracellular way of life, evolved strategies how to obtain nutrients directly from the host and how to manipulate not only the infected cells, but also the hosts themselves. The enormous variability of host organisms and their tissues provide microsporidian parasites a virtually limitless terrain for diversification and ecological expansion. This review attempts to present a general overview of microsporidia, emphasising some less known and/or more recently discovered facets of their biology.
Collapse
|
34
|
Ultrastructure and molecular phylogenetics of a new isolate of Pleistophora pagri sp. nov. (Microsporidia, Pleistophoridae) from Pagrus pagrus in Egypt. Parasitol Res 2012; 111:1587-97. [PMID: 22773009 DOI: 10.1007/s00436-012-3012-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
Abstract
The spore morphology and molecular systematic of a new microsporidian which was isolated from the common sea bream Pagrus pagrus (F: Sparidae Linnaeus, 1758) from the Red Sea, Egypt have been studied. Fifty-six out of 300 (18.7%) of this fish were infected with microsporidian parasites. The infection was appeared as whitish, ellipsoid, round, or elongated nodules embedded in the epithelial lining of the peritoneum and also in the intestinal epithelium. Light microscopic study revealed that nodules were encapsulated by a fibrous layer encircling numerous mature spores measuring 1.7 ± 0.6 (1.5-2.7 μm) × 1.5 ± 0.3 μm (1.2-1.8 μm) in size. Ultrastructure of spores was characteristic for the genus Pleistophora: dimorphic, uninucleate spores (each spore possesses three to five polar filament coils) and a posterior vacuole. Also, the early recognizable stages of the parasite within nodules include uninucleated, binucleated, and multinucleated meronts followed by detachment of the plasmalemma of the sporont producing sporoblasts which mature to spores that consist of a spore coat and spore contents. Also, we analyzed the small subunit ribosomal gene (SSUrDNA) using PCR and sequencing specimens from the marine populations of P. pagrus fish from the Red Sea. From blast searches, sequence analysis, and phylogenetic analysis, we did not find corresponding GenBank entries to our species. Comparison of the nucleotide sequences showed that the sequence of our microsporidium was most similar to five Pleistophora species with degrees of identity (>91.5%). It was most similar (97.8% identity) to that of Pleistophora hyphessobryconis (account no. GU126672) differing in 19 nucleotide positions and with lower divergence value, Pleistophora ovariae (96.2% identity, account no. AJ252955), Pleistophora hippoglossoideos (91.9% identity, account no. AJ252953), Pleistophora mulleri (91.9% identity, account no. EF119339), and Pleistophora typicalis (91.9% identity, account no. AJ252956). So, they likely represent new species named Pleistophora pagri sp. n. with accession number JF797622 and a GC content of 53%.
Collapse
|
35
|
Lawrence C, Ennis DG, Harper C, Kent ML, Murray K, Sanders GE. The challenges of implementing pathogen control strategies for fishes used in biomedical research. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:160-6. [PMID: 21726668 PMCID: PMC3338152 DOI: 10.1016/j.cbpc.2011.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Over the past several decades, a number of fish species, including the zebrafish, medaka, and platyfish/swordtail, have become important models for human health and disease. Despite the increasing prevalence of these and other fish species in research, methods for health maintenance and the management of diseases in laboratory populations of these animals are underdeveloped. There is a growing realization that this trend must change, especially as the use of these species expands beyond developmental biology and more towards experimental applications where the presence of underlying disease may affect the physiology animals used in experiments and potentially compromise research results. Therefore, there is a critical need to develop, improve, and implement strategies for managing health and disease in aquatic research facilities. The purpose of this review is to report the proceedings of a workshop entitled "Animal Health and Disease Management in Research Animals" that was recently held at the 5th Aquatic Animal Models for Human Disease in September 2010 at Corvallis, Oregon to discuss the challenges involved with moving the field forward on this front.
Collapse
Affiliation(s)
- Christian Lawrence
- Aquatic Resources Program, Children's Hospital Boston, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Pseudoloma neurophilia (Microsporidia) is the most common pathogen detected in zebrafish (Danio rerio) from research facilities. The parasite infects the central nervous system and muscle and may be associated with emaciation and skeletal deformities. However, many fish exhibit subclinical infections. Another microsporidium, Pleistophora hyphessobryconis, has recently been detected in a few zebrafish facilities. Here, we review the methods for diagnosis and detection, modes of transmission, and approaches used to control microsporidia in zebrafish, focusing on P. neurophilia. The parasite can be readily transmitted by feeding spores or infected tissues, and we show that cohabitation with infected fish is also an effective means of transmission. Spores are released from live fish in various manners, including through the urine, feces, and sex products during spawning. Indeed, P. neurophilia infects both the eggs and ovarian tissues, where we found concentrations ranging from 12,000 to 88,000 spores per ovary. Hence, various lines of evidence support the conclusion that maternal transmission is a route of infection: spores are numerous in ovaries and developing follicles in infected females, spores are present in spawned eggs and water from spawning tanks based on polymerase chain reaction tests, and larvae are very susceptible to the infection. Furthermore, egg surface disinfectants presently used in zebrafish laboratories are ineffective against microsporidian spores. At this time, the most effective method for prevention of these parasites is avoidance.
Collapse
Affiliation(s)
- Justin L Sanders
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA.
| | | | | |
Collapse
|
37
|
Kent ML, Harper C, Wolf JC. Documented and potential research impacts of subclinical diseases in zebrafish. ILAR J 2012; 53:126-34. [PMID: 23382344 PMCID: PMC3703941 DOI: 10.1093/ilar.53.2.126] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The zebrafish (Danio rerio) has become a very important animal model in biomedical research. In contrast with other models, such as mice, there has been relatively little documentation or control of subclinical disease in zebrafish research facilities. Several infectious and noninfectious conditions are consistently detected by histopathology in apparently healthy D. rerio. The most commonly observed infectious agent in zebrafish is Pseudoloma neurophilia, which is a microsporidian organism that targets the central nervous system, peripheral nerves, and occasionally other tissues. Mycobacteriosis, caused by Mycobacterium chelonae and other species, is also a frequent finding. Less commonly encountered agents include Pseudocapillaria tomentosa, which can cause extensive proliferative enteritis, and a myxozoan (Myxidium sp.) that inhabits the urinary tract but appears to cause few if any pathological changes. Noninfectious diseases that are often clinically unapparent in zebrafish include hepatic megalocytosis, bile and pancreatic ductal proliferation, and neoplasms of the ultimobranchial gland, gastrointestinal tract, and testis. To date, there is little information on the degree to which these conditions may impact research in subclinically affected fish, but there is reason to believe that they should be considered as potentially significant causes of nonprotocol variation in experiments. Therefore, it is imperative that research facilities monitor their stocks for the presence of these occult diseases and be aware of their existence when interpreting study results. Furthermore, for underlying disease conditions that cannot be readily eradicated, it is essential to determine the physiological and immunological changes that they elicit in zebrafish. Understanding the cause, modes of transmission, and distribution of the pathogens would provide useful information for the development of control and prevention strategies.
Collapse
Affiliation(s)
- Michael L. Kent
- Department of Microbiology, 220 Nash Hall, Oregon State University, Corvallis, Oregon, 977331.
| | | | - Jeffrey C. Wolf
- DVM, Dipl. ACVP Experimental Pathology Laboratories, Inc. 45600 Terminal Drive, Sterling, VA, 20166 USA Tel: 703-471-7060 Ext 242 Fax: 703-471-8447
| |
Collapse
|
38
|
Miwa S, Kamaishi T, Hirae T, Murase T, Nishioka T. Encephalomyelitis associated with microsporidian infection in farmed greater amberjack, Seriola dumerili (Risso). JOURNAL OF FISH DISEASES 2011; 34:901-910. [PMID: 22074018 DOI: 10.1111/j.1365-2761.2011.01312.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An outbreak of a disease characterized by a peculiar spiral movement in farmed greater amberjack, Seriola dumerili (Risso), occurred in Kagoshima Prefecture, Japan, in May 2008, immediately after importing the fish from China. Although neither bacteria nor viruses were detected in routine diagnostic tests, histopathological observations of the affected fish revealed severe inflammation in the tegmentum of the brain including the medulla oblongata and the anterior part of the spinal cord. In addition, a microsporidian parasite was observed in the nerve cell bodies or axons in the inflamed tissues. We identified a microsporidian small subunit rRNA gene (SSU rDNA) from the lesion, and the sequence showed 96.1% identity with that of Spraguea lophii. Subsequent in situ hybridization using probes presumably specific to the SSU rRNA confirmed that the parasite observed in histopathology harboured the identified SSU rRNA. Apparently degenerated microsporidian cells or spores were also frequently observed in tissue sections. Thus, the disease was most probably caused by the infection of a hitherto unknown microsporidian parasite that has a genetic affinity to the genus Spraguea, in the central nervous system of the amberjack.
Collapse
Affiliation(s)
- S Miwa
- Inland Station, National Research Institute of Aquaculture, Fisheries Research Agency, Tamaki, Japan.
| | | | | | | | | |
Collapse
|
39
|
Cali A, Kent M, Sanders J, Pau C, Takvorian PM. Development, ultrastructural pathology, and taxonomic revision of the Microsporidial genus, Pseudoloma and its type species Pseudoloma neurophilia, in skeletal muscle and nervous tissue of experimentally infected zebrafish Danio rerio. J Eukaryot Microbiol 2011; 59:40-8. [PMID: 22092657 DOI: 10.1111/j.1550-7408.2011.00591.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/15/2011] [Indexed: 11/29/2022]
Abstract
The microsporidium Pseudoloma neurophilia was initially reported to infect the central nervous system of zebrafish causing lordosis and eventually death. Subsequently, muscle tissue infections were also identified. To understand the infection process, development, and ultrastructural pathology of this microsporidium, larval and adult zebrafish were fed P. neurophilia spores. Spores were detected in the larval fish digestive tract 3-h postexposure (PE). By 4.5-d PE, developing parasite stages were identified in muscle tissue. Wet preparations of larvae collected at 8-d PE showed aggregates of spores in the spinal cord adjacent to the notochord. All parasite stages, including spores, were present in the musculature of larval fish 8-d PE. Adult zebrafish sacrificed 45-d PE had fully developed infections in nerves. Ultrastructural study of the developmental cycle of P. neurophilia revealed that proliferative stages undergo karyokinesis, producing tetranucleate stages that then divide into uninucleate cells. The plasmalemma of proliferative cells has a previously unreported glycocalyx-like coat that interfaces with the host cell cytoplasm. Sporogonic stages form sporophorous vacuoles (SPOV) derived from the plasmalemmal dense surface coat, which "blisters" off sporonts. Uninucleate sporoblasts and spores develop in the SPOV. The developmental cycle is identical in both nerve and muscle. The SPOV surface is relatively thick and is the outermost parasite surface entity; thus, xenomas are not formed. Based on the new information provided by this study, the taxonomic description of the genus Pseudoloma and its type species, P. neurophilia, is modified and its life cycle described.
Collapse
Affiliation(s)
- Ann Cali
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA.
| | | | | | | | | |
Collapse
|
40
|
Sanders JL, Kent ML. Development of a sensitive assay for the detection of Pseudoloma neurophilia in laboratory populations of the zebrafish Danio rerio. DISEASES OF AQUATIC ORGANISMS 2011; 96:145-56. [PMID: 22013754 PMCID: PMC3358228 DOI: 10.3354/dao02375] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The zebrafish Danio rerio is an increasingly important biological model in many areas of research. Due to the potential for non-protocol-induced variation, diseases of zebrafish, especially those resulting in chronic, sub-lethal infections, are of great concern. The microsporidium Pseudoloma neurophilia is a common parasite of laboratory zebrafish. Current methods for detection of this parasite require lethal sampling of fish, which is often undesirable with poorly spawning mutant lines and small populations. We present here an improved molecular-based diagnostic assay using real-time polymerase chain reaction (PCR), and including sonication treatment prior to DNA extraction. Comparisons of several DNA extraction methods were performed to determine the method providing the maximum sensitivity. Sonication was found to be the most effective method for disrupting spores. Compared to previously published data on PCR-based assay using a dilution experiment, sensitivity is increased. This shows that our assay, which includes sonication, is capable of detecting parasite DNA at 1 log higher dilution than the conventional PCR-based assay, which does not include sonication. Furthermore, we demonstrate the application of this method to testing of water, eggs, and sperm, providing a potential non-lethal method for detection of this parasite in zebrafish colonies with a sensitivity of 10 spores 1(-1) of water, 2 spores per spiked egg sample, and 10 spores microl(-1) of spiked sperm sample.
Collapse
Affiliation(s)
- Justin L Sanders
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA.
| | | |
Collapse
|
41
|
Abdel-Ghaffar F, Bashtar AR, Morsy K, Mehlhorn H, Al Quraishy S, Al-Rasheid K, Abdel-Gaber R. Morphological and molecular biological characterization of Pleistophora aegyptiaca sp. nov. infecting the Red Sea fish Saurida tumbil. Parasitol Res 2011; 110:741-52. [PMID: 21858478 DOI: 10.1007/s00436-011-2597-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 07/03/2011] [Indexed: 11/25/2022]
Abstract
One hundred three out of 225 (45.8%) of the Red Sea fish Saurida tumbil were infected with microsporidian parasites. The infection was recorded as tumor-like masses (whitish macroscopic cysts) or xenomas often up to 2 cm in diameter and embedded in the peritoneal cavity. Generally, the infection was increased during winter 63.8% (86 out of 135) and fall to 18.9% (17 out of 90) in summer. Light microscopic study revealed that xenomas were encapsulated by a fibrous layer encircling numerous sporophorous vesicles filled with mature spores measuring 1.7 ± 0.6 (1.5-2.7 μm) × 1.5 ± 0.3 μm (1.2-1.8 μm) in size. Ultrastructural microscopic study showed the presence of smooth membranes of the sarcoplasmic reticulum forming a thick, amorphous coat surrounding various developmental stages of the parasite. The various recognizable stages of the parasite were uninuclear, binucleated, and multinucleated meronts followed by detachment of the plasmalemma of the sporont from the sporophorous vesicle producing sporoblasts. Mature spores consist of a spore coat and spore contents. The spore contents consist of the uninucleated sporoplasm and a posterior vacuole located at the posterior end. The polar tube consists of a straight shaft and a coiled region (26-32 coils) arranged in many rows along the inside periphery of the spore. The polaroplast consisted of an anterior region of closely and loosely packed membranes. Molecular analysis based on the small subunit rDNA gene was performed to determine the phylogenetic position of the present species. The percentage identity between this species and a range of other microsporidia predominantly from aquatic hosts demonstrated a high degree of similarity (>92%) with eight Pleistophora species. Comparison of the nucleotide sequences and divergence showed that the sequence of the present microsporidium was most similar to that of Pleistophora anguillarum (99.8% identity) differing in 13 nucleotide positions. So, the present species was recorded and phylogenetically positioned as a new species of Pleistophora.
Collapse
|
42
|
Peterson TS, Spitsbergen JM, Feist SW, Kent ML. Luna stain, an improved selective stain for detection of microsporidian spores in histologic sections. DISEASES OF AQUATIC ORGANISMS 2011; 95:175-80. [PMID: 21848126 PMCID: PMC4097144 DOI: 10.3354/dao02346] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microsporidia in histologic sections are most often diagnosed by observing spores in host tissues. Spores are easy to identify if they occur in large aggregates or xenomas when sections are stained with hematoxylin and eosin (H&E). However, individual spores are not frequently detected in host tissues with conventional H&E staining, particularly if spores are scattered within the tissues, areas of inflammation, or small spores in nuclei (i.e. Nucleospora salmonis). Hence, a variety of selective stains that enhance visualization of spores is recommended. We discovered that the Luna stain, used to highlight eosinophils, red blood cells, and chitin in arthropods and other invertebrates, also stains spores of Pseudoloma neurophilia. We compared this stain to the Gram, Fite's acid fast, Giemsa, and H&E stains on 8 aquatic microsporidian organisms that were readily available in our 2 laboratories: Loma salmonae, Glugea anomala, Pseudoloma neurophilia, Pleistophora hyphessobryconis, Pleistophora vermiformis, Glugea sp., Steinhausia mytilovum, and an unidentified microsporidian from UK mitten crabs Eriocheir sinensis. Based on tinctorial properties and background staining, the Luna stain performed better for detection of 6 of the 8 microsporidia. Gram stain was superior for the 2 microsporidia from invertebrates: S. mytilovum and the unidentified microsporidian from E. sinensis.
Collapse
Affiliation(s)
- Tracy S Peterson
- Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, Oregon 97331, USA.
| | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Emily R Troemel
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
44
|
Casal G, Matos E, Teles-Grilo L, Azevedo C. Ultrastructural and molecular characterization of a new microsporidium parasite from the Amazonian fish, Gymnorhamphichthys rondoni (Rhamphichthyidae). J Parasitol 2011; 96:1155-63. [PMID: 21158628 DOI: 10.1645/ge-2182.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A new species of a microsporidium found in the freshwater teleost Gymnorhamphichthys rondoni, collected on the lower Amazon River, is described based on light, ultrastructural, and phylogenetic studies. This parasite develops in the skeletal muscle of the abdominal cavity, forming whitish cyst-like structures containing numerous spores. Mature spores, lightly pyriform to ellipsoidal with rounded ends and measuring 4.25 ± 0.38 × 2.37 ± 0.42 µm (n = 30), were observed. The spore wall, which measured about 102 nm, was composed of 2 layers with approximately the same thickness. The isofilar polar filament was coiled, with 9-10 (rarely 8) turns. The posterior vacuole appeared as a pale area, occupying about 1/3 of the spore length, and contained a spherical posterosome composed of granular material that was denser at the periphery. The myofibrils located near the spores appeared to be in advanced degradation. Molecular analysis of the rRNA genes, including the ITS region, and phylogenetic analyses using maximum parsimony, maximum likelihood, and Baysesian inference were performed. The ultrastructural characteristics of the spores and the phylogenetic data strongly suggested that it is a new species related to Kabatana, Microgemma, Potaspora, Spraguea, and Tetramicra. We named this new microsporidian from Amazonian fauna as Kabatana rondoni n. sp.
Collapse
Affiliation(s)
- G Casal
- Department of Cell Biology, Institute of Biomedical Sciences (ICBAS) and Laboratory of Pathology, Centre for Marine and Environmental Research (CIIMAR), University of Porto, Lg. Abel Salazar no. 2, P-4099-003 Porto, Portugal
| | | | | | | |
Collapse
|
45
|
|
46
|
Ramsay JM, Watral V, Schreck CB, Kent ML. Husbandry stress exacerbates mycobacterial infections in adult zebrafish, Danio rerio (Hamilton). JOURNAL OF FISH DISEASES 2009; 32:931-41. [PMID: 19531062 PMCID: PMC2765522 DOI: 10.1111/j.1365-2761.2009.01074.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mycobacteria are significant pathogens of laboratory zebrafish, Danio rerio (Hamilton). Stress is often implicated in clinical disease and morbidity associated with mycobacterial infections but has yet to be examined with zebrafish. The aim of this study was to examine the effects of husbandry stressors on zebrafish infected with mycobacteria. Adult zebrafish were exposed to Mycobacterium marinum or Mycobacterium chelonae, two species that have been associated with disease in zebrafish. Infected fish and controls were then subjected to chronic crowding and handling stressors and examined over an 8-week period. Whole-body cortisol was significantly elevated in stressed fish compared to non-stressed fish. Fish infected with M. marinum ATCC 927 and subjected to husbandry stressors had 14% cumulative mortality while no mortality occurred among infected fish not subjected to husbandry stressors. Stressed fish, infected with M. chelonae H1E2 from zebrafish, were 15-fold more likely to be infected than non-stressed fish at week 8 post-injection. Sub-acute, diffuse infections were more common among stressed fish infected with M. marinum or M. chelonae than non-stressed fish. This is the first study to demonstrate an effect of stress and elevated cortisol on the morbidity, prevalence, clinical disease and histological presentation associated with mycobacterial infections in zebrafish. Minimizing husbandry stress may be effective at reducing the severity of outbreaks of clinical mycobacteriosis in zebrafish facilities.
Collapse
Affiliation(s)
- J M Ramsay
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
47
|
Casal G, Matos E, Teles-Grilo ML, Azevedo C. Morphological and genetical description of Loma psittaca sp. n. isolated from the Amazonian fish species Colomesus psittacus. Parasitol Res 2009; 105:1261-71. [DOI: 10.1007/s00436-009-1547-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
|
48
|
Kent ML, Feist SW, Harper C, Hoogstraten-Miller S, Law JM, Sánchez-Morgado JM, Tanguay RL, Sanders GE, Spitsbergen JM, Whipps CM. Recommendations for control of pathogens and infectious diseases in fish research facilities. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:240-8. [PMID: 18755294 PMCID: PMC3270489 DOI: 10.1016/j.cbpc.2008.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 08/05/2008] [Accepted: 08/05/2008] [Indexed: 11/20/2022]
Abstract
Concerns about infectious diseases in fish used for research have risen along with the dramatic increase in the use of fish as models in biomedical research. In addition to acute diseases causing severe morbidity and mortality, underlying chronic conditions that cause low-grade or subclinical infections may confound research results. Here we present recommendations and strategies to avoid or minimize the impacts of infectious agents in fishes maintained in the research setting. There are distinct differences in strategies for control of pathogens in fish used for research compared to fishes reared as pets or in aquaculture. Also, much can be learned from strategies and protocols for control of diseases in rodents used in research, but there are differences. This is due, in part, the unique aquatic environment that is modified by the source and quality of the water provided and the design of facilities. The process of control of pathogens and infectious diseases in fish research facilities is relatively new, and will be an evolving process over time. Nevertheless, the goal of documenting, detecting, and excluding pathogens in fish is just as important as in mammalian research models.
Collapse
Affiliation(s)
- Michael L Kent
- Center for Fish Disease Research, Department of Microbiology, 220 Nash Hall, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
The western mosquitofish (Gambusia affinis affinis): a new laboratory animal resource for the study of sexual dimorphism in neural circuits. Lab Anim (NY) 2008; 37:263-9. [PMID: 18496545 DOI: 10.1038/laban0608-263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Accepted: 10/04/2007] [Indexed: 11/09/2022]
Abstract
The western mosquitofish (Gambusia affinis affinis) is a useful model for the study of sexual dimorphism and the neural circuits associated with sexual differentiation. This is largely because of its anal fin, which undergoes radical postnatal transformation in males. Understanding the neural mechanisms involved in this process may also help elucidate basic principles of the nervous system. The authors describe the mosquitofish as a model for research and present guidelines for the care and use of this species.
Collapse
|
50
|
Villeneuve DL, Curtis LR, Jenkins JJ, Warner KE, Tilton F, Kent ML, Watral VG, Cunningham ME, Markle DF, Sethajintanin D, Krissanakriangkrai O, Johnson ER, Grove R, Anderson KA. Environmental stresses and skeletal deformities in fish from the Willamette River, Oregon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:3495-506. [PMID: 15954223 DOI: 10.1021/es048570c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Willamette River, one of 14 American Heritage Rivers, flows through the most densely populated and agriculturally productive region of Oregon. Previous biological monitoring of the Willamette River detected elevated frequencies of skeletal deformities in fish from certain areas of the lower (Newberg pool [NP], rivermile [RM] 26 - 55) and middle (Wheatland Ferry [WF], RM 72 - 74) river, relative to those in the upper river (Corvallis [CV], RM 125-138). The objective of this study was to determine the likely cause of these skeletal deformities. In 2002 and 2003, deformity loads in Willamette River fishes were 2-3 times greater at the NP and WF locations than at the CV location. There were some differences in water quality parameters between the NP and CV sites, but they did not readily explain the difference in deformity loads. Concentrations of bioavailable metals were below detection limits (0.6 - 1 microg/ L). Concentrations of bioavailable polychlorinated biphenyls (PCBs) and chlorinated pesticides were generally below 0.25 ng/L. Concentrations of bioavailable polycyclic aromatic hydrocarbons were generally less than 5 ng/L. Concentrations of most persistent organic pollutants were below detection limits in ovary/oocyte tissue samples and sediments, and those that were detected were not significantly different among sites. Bioassay of Willamette River water extracts provided no evidence that unidentified compounds or the complex mixture of compounds present in the extracts could induce skeletal deformities in cyprinid fish. However, metacercariae of a digenean trematode were directly associated with a large percentage of deformities detected in two Willamette River fishes, and similar deformities were reproduced in laboratoryfathead minnows exposed to cercariae extracted from Willamette River snails. Thus, the weight of evidence suggests that parasitic infection, not chemical contaminants, was the primary cause of skeletal deformities observed in Willamette River fish.
Collapse
Affiliation(s)
- Daniel L Villeneuve
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|