1
|
Shih HW, Alas GCM, Paredez AR. A cell-cycle-dependent GARP-like transcriptional repressor regulates the initiation of differentiation in Giardia lamblia. Proc Natl Acad Sci U S A 2022; 119:e2204402119. [PMID: 35613049 PMCID: PMC9295799 DOI: 10.1073/pnas.2204402119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
Transcriptional regulation of differentiation is critical for parasitic pathogens to adapt to environmental changes and regulate transmission. In response to encystation stimuli, Giardia lamblia shifts the distribution of the cell cycle toward G2 and induces the expression of cyst wall proteins (CWPs) within 2 to 4 h, indicating that key regulatory steps occur within the first 4 h of encystation. However, the role of transcription factors (TFs) in encystation has primarily been investigated at later time points. How TFs initiate encystation and link it to the cell cycle remains enigmatic. Here, we systematically screened six putative early up-regulated TFs for nuclear localization, established their dynamic expression profiles, and determined their functional role in regulating encystation. We found a critical repressor, Golden2, ARR-B, Psr-1–like protein 1 (GARP)–like protein 4 (GLP4), that increases rapidly after 30 min of encystation stimuli and down-regulates encystation-specific markers, including CWPs and enzymes in the cyst N-acetylgalactosamine pathway. Depletion of GLP4 increases cyst production. Importantly, we observe that G2+M cells exhibit higher levels of CWP1, resulting from the activation of myeloblastosis domain protein 2 (MYB2), a TF previously linked to encystation in Giardia. GLP4 up-regulation occurs in G1+S cells, suggesting a role in repressing MYB2 and encystation-specific genes in the G1+S phase of the cell cycle. Furthermore, we demonstrate that depletion of GLP4 up-regulates MYB2 and promotes encystation while overexpression of GLP4 down-regulates MYB2 and represses encystation. Together, these results suggest that Giardia employs a dose-dependent transcriptional response that involves the cell-cycle–regulated repressor GLP4 to orchestrate MYB2 and entry into the encystation pathway.
Collapse
Affiliation(s)
- Han-Wei Shih
- Department of Biology, University of Washington, Seattle, WA 98195
| | | | | |
Collapse
|
2
|
A Detailed Gene Expression Map of Giardia Encystation. Genes (Basel) 2021; 12:genes12121932. [PMID: 34946882 PMCID: PMC8700996 DOI: 10.3390/genes12121932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Giardia intestinalis is an intestinal protozoan parasite that causes diarrheal infections worldwide. A key process to sustain its chain of transmission is the formation of infectious cysts in the encystation process. We combined deep RNAseq of a broad range of encystation timepoints to produce a high-resolution gene expression map of Giardia encystation. This detailed transcriptomic map of encystation confirmed a gradual change of gene expression along the time course of encystation, showing the most significant gene expression changes during late encystation. Few genes are differentially expressed early in encystation, but the major cyst wall proteins CWP-1 and -2 are highly up-regulated already after 3.5 h encystation. Several transcription factors are sequentially up-regulated throughout the process, but many up-regulated genes at 7, 10, and 14 h post-induction of encystation have binding sites in the upstream regions for the Myb2 transcription factor, suggesting that Myb2 is a master regulator of encystation. We observed major changes in gene expression of several meiotic-related genes from 10.5 h of encystation to the cyst stage, and at 17.5 h encystation, there are changes in many different metabolic pathways and protein synthesis. Late encystation, 21 h to cysts, show extensive gene expression changes, most of all in VSP and HCMP genes, which are involved in antigenic variation, and genes involved in chromatin modifications. This high-resolution gene expression map of Giardia encystation will be an important tool in further studies of this important differentiation process.
Collapse
|
3
|
Oxygen levels are key to understanding "Anaerobic" protozoan pathogens with micro-aerophilic lifestyles. Adv Microb Physiol 2021; 79:163-240. [PMID: 34836611 DOI: 10.1016/bs.ampbs.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Publications abound on the physiology, biochemistry and molecular biology of "anaerobic" protozoal parasites as usually grown under "anaerobic" culture conditions. The media routinely used are poised at low redox potentials using techniques that remove O2 to "undetectable" levels in sealed containers. However there is growing understanding that these culture conditions do not faithfully resemble the O2 environments these organisms inhabit. Here we review for protists lacking oxidative energy metabolism, the oxygen cascade from atmospheric to intracellular concentrations and relevant methods of measurements of O2, some well-studied parasitic or symbiotic protozoan lifestyles, their homeodynamic metabolic and redox balances, organism-drug-oxygen interactions, and the present and future prospects for improved drugs and treatment regimes.
Collapse
|
4
|
Pham JK, Nosala C, Scott EY, Nguyen KF, Hagen KD, Starcevich HN, Dawson SC. Transcriptomic Profiling of High-Density Giardia Foci Encysting in the Murine Proximal Intestine. Front Cell Infect Microbiol 2017; 7:227. [PMID: 28620589 PMCID: PMC5450421 DOI: 10.3389/fcimb.2017.00227] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
Giardia is a highly prevalent, understudied protistan parasite causing significant diarrheal disease worldwide. Its life cycle consists of two stages: infectious cysts ingested from contaminated food or water sources, and motile trophozoites that colonize and attach to the gut epithelium, later encysting to form new cysts that are excreted into the environment. Current understanding of parasite physiology in the host is largely inferred from transcriptomic studies using Giardia grown axenically or in co-culture with mammalian cell lines. The dearth of information about the diversity of host-parasite interactions occurring within distinct regions of the gastrointestinal tract has been exacerbated by a lack of methods to directly and non-invasively interrogate disease progression and parasite physiology in live animal hosts. By visualizing Giardia infections in the mouse gastrointestinal tract using bioluminescent imaging (BLI) of tagged parasites, we recently showed that parasites colonize the gut in high-density foci. Encystation is initiated in these foci throughout the entire course of infection, yet how the physiology of parasites within high-density foci in the host gut differs from that of cells in laboratory culture is unclear. Here we use BLI to precisely select parasite samples from high-density foci in the proximal intestine to interrogate in vivo Giardia gene expression in the host. Relative to axenic culture, we noted significantly higher expression (>10-fold) of oxidative stress, membrane transporter, and metabolic and structural genes associated with encystation in the high-density foci. These differences in gene expression within parasite foci in the host may reflect physiological changes associated with high-density growth in localized regions of the gut. We also identified and verified six novel cyst-specific proteins, including new components of the cyst wall that were highly expressed in these foci. Our in vivo transcriptome data support an emerging view that parasites encyst early in localized regions in the gut, possibly as a consequence of nutrient limitation, and also impact local metabolism and physiology.
Collapse
Affiliation(s)
- Jonathan K Pham
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Christopher Nosala
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Erica Y Scott
- Department of Animal Science, University of California, DavisDavis, CA, United States
| | - Kristofer F Nguyen
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Kari D Hagen
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Hannah N Starcevich
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| |
Collapse
|
5
|
Rac Regulates Giardia lamblia Encystation by Coordinating Cyst Wall Protein Trafficking and Secretion. mBio 2016; 7:mBio.01003-16. [PMID: 27555307 PMCID: PMC4999545 DOI: 10.1128/mbio.01003-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Encystation of the common intestinal parasite Giardia lamblia involves the production, trafficking, and secretion of cyst wall material (CWM). However, the molecular mechanism responsible for the regulation of these sequential processes remains elusive. Here, we examined the role of GlRac, Giardia’s sole Rho family GTPase, in the regulation of endomembrane organization and cyst wall protein (CWP) trafficking. Localization studies indicated that GlRac is associated with the endoplasmic reticulum (ER) and the Golgi apparatus-like encystation-specific vesicles (ESVs). Constitutive GlRac signaling increased levels of the ER marker PDI2, induced ER swelling, reduced overall CWP1 production, and promoted the early maturation of ESVs. Quantitative analysis of cells expressing constitutively active hemagglutinin (HA)-tagged GlRac (HA-RacCA) revealed fewer but larger ESVs than control cells. Consistent with the phenotype of premature maturation of ESVs in HA-RacCA-expressing cells, constitutive GlRac signaling resulted in increased CWP1 secretion and, conversely, morpholino depletion of GlRac blocked CWP1 secretion. Wild-type cells unexpectedly secreted large quantities of CWP1 into the medium, and free CWP1 was used cooperatively during cyst formation. These results, in part, could account for the previously reported observation that G. lamblia encysts more efficiently at high cell densities. These studies of GlRac show that it regulates encystation at several levels, and our findings support its coordinating role as a regulator of CWP trafficking and secretion. The central role of GlRac in regulating membrane trafficking and the cytoskeleton, both of which are essential to Giardia parasitism, further suggests its potential as a novel target for drug development to treat giardiasis. The encystation process is crucial for the transmission of giardiasis and the life cycle of many protists. Encystation for Giardia lamblia involves the assembly of a protective cyst wall via sequential production, trafficking, and secretion of cyst wall material. However, the regulatory pathways that coordinate cargo maturation and secretion remain unknown. Here, we asked whether the signaling activities of G. lamblia’s single Rho family GTPase, GlRac, might have a regulatory role in the encystation process. We show that GlRac localizes to endomembranes and its signaling activities regulate the production of cyst wall protein 1 (CWP1), the maturation of encystation-specific vesicles (ESVs), and secretion of CWP1. We also show that secreted CWP1 is available for the development of cysts at the population level, a finding that in part could explain why Giardia encystation proceeds more efficiently at high cell densities.
Collapse
|
6
|
Mendez TL, De Chatterjee A, Duarte TT, Gazos-Lopes F, Robles-Martinez L, Roy D, Sun J, Maldonado RA, Roychowdhury S, Almeida IC, Das S. Glucosylceramide transferase activity is critical for encystation and viable cyst production by an intestinal protozoan, Giardia lamblia. J Biol Chem 2013; 288:16747-16760. [PMID: 23589290 DOI: 10.1074/jbc.m112.438416] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The production of viable cysts by Giardia is essential for its survival in the environment and for spreading the infection via contaminated food and water. The hallmark of cyst production (also known as encystation) is the biogenesis of encystation-specific vesicles (ESVs) that transport cyst wall proteins to the plasma membrane of the trophozoite before laying down the protective cyst wall. However, the molecules that regulate ESV biogenesis and maintain cyst viability have never before been identified. Here, we report that giardial glucosylceramide transferase-1 (gGlcT1), an enzyme of sphingolipid biosynthesis, plays a key role in ESV biogenesis and maintaining cyst viability. We find that overexpression of this enzyme induced the formation of aggregated/enlarged ESVs and generated clustered cysts with reduced viability. The silencing of gGlcT1 synthesis by antisense morpholino oligonucleotide abolished ESV production and generated mostly nonviable cysts. Interestingly, when gGlcT1-overexpressed Giardia was transfected with anti-gGlcT1 morpholino, the enzyme activity, vesicle biogenesis, and cyst viability returned to normal, suggesting that the regulated expression of gGlcT1 is important for encystation and viable cyst production. Furthermore, the overexpression of gGlcT1 increased the influx of membrane lipids and fatty acids without altering the fluidity of plasma membranes, indicating that the expression of gGlcT1 activity is linked to lipid internalization and maintaining the overall lipid balance in this parasite. Taken together, our results suggest that gGlcT1 is a key player of ESV biogenesis and cyst viability and therefore could be targeted for developing new anti-giardial therapies.
Collapse
Affiliation(s)
- Tavis L Mendez
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Atasi De Chatterjee
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Trevor T Duarte
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Felipe Gazos-Lopes
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Leobarda Robles-Martinez
- From Infectious Disease and Immunology; Neuroscience and Metabolic Disorder Clusters, Border Biomedical Research Center, El Paso, Texas 79968-5808
| | - Debarshi Roy
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Jianjun Sun
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Rosa A Maldonado
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Sukla Roychowdhury
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808; Neuroscience and Metabolic Disorder Clusters, Border Biomedical Research Center, El Paso, Texas 79968-5808
| | - Igor C Almeida
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808
| | - Siddhartha Das
- From Infectious Disease and Immunology; Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas 79968-5808.
| |
Collapse
|
7
|
Silencing of Entamoeba histolytica glucosamine 6-phosphate isomerase by RNA interference inhibits the formation of cyst-like structures. BIOMED RESEARCH INTERNATIONAL 2013; 2013:758341. [PMID: 23484154 PMCID: PMC3581238 DOI: 10.1155/2013/758341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 11/11/2012] [Accepted: 11/20/2012] [Indexed: 11/24/2022]
Abstract
Encystment is an essential process in the biological cycle of the human parasite Entamoeba histolytica. In the present study, we evaluated the participation of E. histolytica Gln6Pi in the formation of amoeba cyst-like structures by RNA interference assay. Amoeba trophozoites transfected with two Gln6Pi siRNAs reduced the expression of the enzyme in 85%, which was confirmed by western blot using an anti-Gln6Pi antibody. The E. histolytica Gln6Pi knockdown with the mix of both siRNAs resulted in the loss of its capacity to form cyst-like structures (CLSs) and develop a chitin wall under hydrogen peroxide treatment, as evidenced by absence of both resistance to detergent treatment and calcofluor staining. Thus, only 5% of treated trophozoites were converted to CLS, from which only 15% were calcofluor stained. These results represent an advance in the understanding of chitin biosynthesis in E. histolytica and provide insight into the encystment process in this parasite, which could allow for the developing of new control strategies for this parasite.
Collapse
|
8
|
A new set of carbohydrate-positive vesicles in encysting Giardia lamblia. Protist 2012; 164:261-71. [PMID: 23266141 DOI: 10.1016/j.protis.2012.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 11/04/2012] [Accepted: 11/05/2012] [Indexed: 11/24/2022]
Abstract
Giardia lamblia is a protozoan parasite that presents both trophozoite and cyst forms. In this study, the distribution of the different sugar residues and the origin of the carbohydrate components of the cyst wall were studied using transmission electron microscopy, ultrastructural cytochemistry for carbohydrate detection and immunocytochemistry. Immunofluorescence microscopy using anti-cyst wall protein 1 (CWP1) and gold- and fluorescent-conjugated lectins, such as WGA and DBA, were also used. Interestingly, a population of carbohydrate-containing vesicles, distinct from the encystation-specific vesicles (ESVs) was found in the encysting cells and was named encystation carbohydrate-positive vesicles (ECVs). The differences between the ECVs and the ESVs were: (1) they are electron-translucent, whereas ESVs are electron dense; (2) they do not react with antibodies against cyst wall proteins; (3) the contents are positive for carbohydrates, whereas ESVs display a negative reaction; and (4) they exhibit a positive labeling for DBA indicating the presence of N-acetyl-galactosamine, whereas ESVs are negative. To evaluate if ECVs could be vesicles involved in the endocytic pathway, endocytic markers were used. No co-localization of these markers with ECVs was observed. We suggest that the ECVs may represent a new structure involved in cyst wall formation.
Collapse
|
9
|
Samanta SK, Ghosh SK. The chitin biosynthesis pathway in Entamoeba and the role of glucosamine-6-P isomerase by RNA interference. Mol Biochem Parasitol 2012; 186:60-8. [DOI: 10.1016/j.molbiopara.2012.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 09/17/2012] [Accepted: 09/28/2012] [Indexed: 02/05/2023]
|
10
|
Cyst and encystment in protozoan parasites: optimal targets for new life-cycle interrupting strategies? Trends Parasitol 2011; 27:450-8. [PMID: 21775209 DOI: 10.1016/j.pt.2011.06.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 11/24/2022]
Abstract
Certain protozoan parasites use survival strategies to reside outside the host such as the formation of cysts. This dormant and resistant stage results from the complex process of encystment that involves diverse molecular and cellular modifications. The stimuli and changes associated with cyst biogenesis are a matter of ongoing studies in human and animal protozoan parasites such as amoeba and Giardia species because blocking every step in the encystment pathway should, in theory, interrupt their life cycles. The present review thoroughly examines this essential process in those protozoan parasites and discusses the possibility of using that information to develop new kinds of anti-parasite specific and life cycle-interrupting drugs, aimed at holding back the dissemination of these infections.
Collapse
|
11
|
Giardia intestinalis: Expression of ubiquitin, glucosamine-6-phosphate and cyst wall protein genes during the encystment process. Exp Parasitol 2011; 127:382-6. [DOI: 10.1016/j.exppara.2010.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/16/2010] [Accepted: 08/19/2010] [Indexed: 11/23/2022]
|
12
|
Possenti A, Cherchi S, Bertuccini L, Pozio E, Dubey J, Spano F. Molecular characterisation of a novel family of cysteine-rich proteins of Toxoplasma gondii and ultrastructural evidence of oocyst wall localisation. Int J Parasitol 2010; 40:1639-49. [DOI: 10.1016/j.ijpara.2010.06.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 06/22/2010] [Accepted: 06/24/2010] [Indexed: 11/25/2022]
|
13
|
Aguilar-Díaz H, Díaz-Gallardo M, Laclette JP, Carrero JC. In vitro induction of Entamoeba histolytica cyst-like structures from trophozoites. PLoS Negl Trop Dis 2010; 4:e607. [PMID: 20169067 PMCID: PMC2821915 DOI: 10.1371/journal.pntd.0000607] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 12/29/2009] [Indexed: 11/18/2022] Open
Abstract
Inhibition of encystment can be conceived as a potentially useful mechanism to block the transmission of Entamoeba histolytica under natural conditions. Unfortunately, amoeba encystment has not been achieved in vitro and drugs inhibiting the formation of cysts are not available. Luminal conditions inducing encystment in vivo are also unknown, but cellular stress such as exposure to reactive oxygen species from immune cells or intestinal microbiota could be involved. A role for certain divalent cations as cofactors of enzymes involved in excystment has also been described. In this study, we show that trophozoite cultures, treated with hydrogen peroxide in the presence of trace amounts of several cations, transform into small-sized spherical and refringent structures that exhibit resistance to different detergents. Ultrastructural analysis under scanning and transmission electron microscopy revealed multinucleated structures (some with four nuclei) with smooth, thick membranes and multiple vacuoles. Staining with calcofluor white, as well as an ELISA binding assay using wheat germ agglutinin, demonstrated the presence of polymers of N-acetylglucosamine (chitin), which is the primary component of the natural cyst walls. Over-expression of glucosamine 6-phosphate isomerase, likely to be the rate-limiting enzyme in the chitin synthesis pathway, was also confirmed by RT-PCR. These results suggest that E. histolytica trophozoites activated encystment pathways when exposed to our treatment.
Collapse
Affiliation(s)
- Hugo Aguilar-Díaz
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Martha Díaz-Gallardo
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, México
| | - Juan P. Laclette
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
- * E-mail: (JPL); (JCC)
| | - Julio C. Carrero
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
- * E-mail: (JPL); (JCC)
| |
Collapse
|
14
|
Stefanic S, Morf L, Kulangara C, Regös A, Sonda S, Schraner E, Spycher C, Wild P, Hehl AB. Neogenesis and maturation of transient Golgi-like cisternae in a simple eukaryote. J Cell Sci 2009; 122:2846-56. [PMID: 19622633 DOI: 10.1242/jcs.049411] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The highly reduced protozoan parasite Giardia lamblia has minimal machinery for cellular processes such as protein trafficking. Giardia trophozoites maintain diverse and regulated secretory pathways but lack an identifiable Golgi complex. During differentiation to cysts, however, they produce specialized compartments termed encystation-specific vesicles (ESVs). ESVs are hypothesized to be unique developmentally regulated Golgi-like organelles dedicated to maturation and export of pre-sorted cyst wall proteins. Here we present a functional analysis of this unusual compartment by direct interference with the functions of the small GTPases Sar1, Rab1 and Arf1. Conditional expression of dominant-negative variants revealed an essential role of Sar1 in early events of organelle neogenesis, whilst inhibition of Arf1 uncoupled morphological changes and cell cycle progression from extracellular matrix export. The latter led to development of ;naked cysts', which lacked water resistance and thus infectivity. Time-lapse microscopy and photobleaching experiments showed that putative Golgi-like cisternae in Giardia develop into a network capable of exchanging soluble cargo at a high rate via dynamic, tubular connections, presumably to synchronize maturation. The minimized and naturally pulsed trafficking machinery for export of the cyst wall biopolymer in Giardia is a simple model for investigating basic principles of neogenesis and maturation of Golgi compartments.
Collapse
Affiliation(s)
- Sasa Stefanic
- Institute of Parasitology, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Elias EV, Quiroga R, Gottig N, Nakanishi H, Nash TE, Neiman A, Lujan HD. Characterization of SNAREs determines the absence of a typical Golgi apparatus in the ancient eukaryote Giardia lamblia. J Biol Chem 2008; 283:35996-6010. [PMID: 18930915 DOI: 10.1074/jbc.m806545200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Giardia is a eukaryotic protozoal parasite with unusual characteristics, such as the absence of a morphologically evident Golgi apparatus. Although both constitutive and regulated pathways for protein secretion are evident in Giardia, little is known about the mechanisms involved in vesicular docking and fusion. In higher eukaryotes, soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) of the vesicle-associated membrane protein and syntaxin families play essential roles in these processes. In this work we identified and characterized genes for 17 SNAREs in Giardia to define the minimal set of subcellular organelles present during growth and encystation, in particular the presence or not of a Golgi apparatus. Expression and localization of all Giardia SNAREs demonstrate their presence in distinct subcellular compartments, which may represent the extent of the endomembrane system in eukaryotes. Remarkably, Giardia SNAREs, homologous to Golgi SNAREs from other organisms, do not allow the detection of a typical Golgi apparatus in either proliferating or differentiating trophozoites. However, some features of the Golgi, such as the packaging and sorting function, seem to be performed by the endoplasmic reticulum and/or the nuclear envelope. Moreover, depletion of individual genes demonstrated that several SNAREs are essential for viability, whereas others are dispensable. Thus, Giardia requires a smaller number of SNAREs compared with other eukaryotes to accomplish all of the vesicle trafficking events that are critical for the growth and differentiation of this important human pathogen.
Collapse
Affiliation(s)
- Eliana V Elias
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Cordoba/National Council for Science and Technology, Cordoba CP X5004ASK, Argentina
| | | | | | | | | | | | | |
Collapse
|
16
|
Lopez AB, Sener K, Trosien J, Jarroll EL, van Keulen H. UDP-N-acetylglucosamine 4'-epimerase from the intestinal protozoan Giardia intestinalis lacks UDP-glucose 4'-epimerase activity. J Eukaryot Microbiol 2007; 54:154-60. [PMID: 17403156 DOI: 10.1111/j.1550-7408.2007.00246.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protozoan parasite Giardia intestinalis has a simple life cycle consisting of an intestinal trophozoite stage and an environmentally resistant cyst stage. The cyst is formed when a trophozoite encases itself within an external filamentous covering, the cyst wall, which is crucial to the cyst's survival outside of the host. The filaments in the cyst wall consist mainly of a beta (1-3) polymer of N-acetylgalactosamine. Its precursor, UDP-N-acetylgalactosamine, is synthesized from fructose 6-phosphate by a pathway of five inducible enzymes. The fifth, UDP-N-acetylglucosamine 4'-epimerase, epimerizes UDP-N-acetylglucosamine to UDP-N-acetylgalactosamine reversibly. The epimerase of G. intestinalis lacks UDP-glucose/UDP-galactose 4'-epimerase activity and shows characteristic amino acyl residues to allow binding of only the larger UDP-N-acetylhexosamines. While the Giardia epimerase catalyzes the reversible epimerization of UDP-N-acetylglucosamine to UDP-N-acetylgalactosamine, the reverse reaction apparently is favored. The enzyme has a higher Vmax and a smaller Km in this direction. Therefore, an excess of UDP-N-acetylglucosamine is required to drive the reaction towards the synthesis of UDP-N-acetylgalactosamine, when it is needed for cyst wall formation. This forms the ultimate regulatory step in cyst wall biosynthesis.
Collapse
Affiliation(s)
- Alex B Lopez
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | | | | | | | | |
Collapse
|
17
|
Chávez-Munguía B, Omaña-Molina M, González-Lázaro M, González-Robles A, Cedillo-Rivera R, Bonilla P, Martínez-Palomo A. Ultrastructure of cyst differentiation in parasitic protozoa. Parasitol Res 2007; 100:1169-75. [PMID: 17252271 DOI: 10.1007/s00436-006-0447-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 12/14/2006] [Indexed: 11/29/2022]
Abstract
Cysts represent a phase in the life cycle of biphasic parasitic protozoa that allow them to survive under adverse environmental conditions. Two events are required for the morphological differentiation from trophozoite to cyst and from cyst to trophozoite: the encystation and excystation processes. In this paper, we present a review of the ultrastructure of the encystation and excystation processes in Entamoeba invadens, Acanthamoeba castellanii, and Giardia lamblia. The comparative electron microscopical observations of these events here reported provide a morphological background to better understand recent advances in the biochemistry and molecular biology of the differentiation phenomena in these microorganisms.
Collapse
Affiliation(s)
- Bibiana Chávez-Munguía
- Department of Experimental Pathology, Center for Research and Advanced Studies, Av. IPN 2508, Zacatenco, 07360, Mexico City, Mexico.
| | | | | | | | | | | | | |
Collapse
|
18
|
Mok MTS, Tay E, Sekyere E, Glenn WK, Bagnara AS, Edwards MR. Giardia intestinalis: Molecular characterization of UDP-N-acetylglucosamine pyrophosphorylase. Gene 2005; 357:73-82. [PMID: 15951138 DOI: 10.1016/j.gene.2005.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 04/25/2005] [Accepted: 05/10/2005] [Indexed: 01/18/2023]
Abstract
The flagellated protozoan Giardia intestinalis is one of the most prevalent human-infective parasites with a worldwide distribution. This parasite must encyst to complete the life cycle and N-acetylgalactosamine is produced from endogenous glucose for cyst wall synthesis during the transformation. UDP-N-acetylglucosamine pyrophosphorylase in G. intestinalis (GiUAP, EC 2.7.7.23) is the fourth enzyme in the inducible pathway of N-acetylgalactosamine biosynthesis, catalysing the conversion of N-acetylglucosamine-1-P to UDP-N-acetylglucosamine. In this study the gene GiUAP was cloned and sequenced from the Portland 1 strain using PCR techniques. It has an ORF of approximately 1.3 kb and contains no introns. BLAST and ClustalW analysis of the deduced amino acid sequence revealed significant similarities to other eukaryotic UAPs with putative active sites identified. Southern hybridization showed that GiUAP exists as a single-copy gene and it was shown to have two transcripts by RT-PCR and Northern hybridization. RLM-RACE identified both 5' and 3' untranslated regions and suggested the transcripts exist as a 5'-capped mRNA, with the use of two tandem polyadenylation sites to generate two unusually long giardial 3' untranslated regions of approximately 522 bp and approximately 3 kb. Moreover, a recombinant protein (rGiUAP) was expressed in E. coli and subjected to physical characterizations. Surprisingly the results obtained in this study were significantly different from those reported for the GiUAP in MR4 strain, suggesting this gene is under different transcription control in different strains of G. intestinalis. This report describes the molecular characterization of GiUAP and provides an opportunity to explore the control of gene expression during encystation of the parasite.
Collapse
Affiliation(s)
- Myth T S Mok
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia.
| | | | | | | | | | | |
Collapse
|
19
|
Sener K, Shen Z, Newburg DS, Jarroll EL. Amino sugar phosphate levels in Giardia change during cyst wall formation. MICROBIOLOGY-SGM 2004; 150:1225-1230. [PMID: 15133084 DOI: 10.1099/mic.0.26898-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The parasite Giardia intestinalis exists as a trophozoite (vegetative) that infects the human small intestine, and a cyst (infective) that is shed in host faeces. Cyst viability in the environment depends upon a protective cyst wall, which consists of proteins and a unique beta(1-3) GalNAc homopolymer. UDP-GalNAc, the precursor for this polysaccharide, is synthesized from glucose by an enzyme pathway that involves amino sugar phosphate intermediates. Using a novel method of microanalysis by capillary electrophoresis, the levels of amino sugar phosphate intermediates in trophozoites before encystment, during a period of active encystment and after the peak of encystment were measured. These levels were used to deduce metabolic control of amino sugar phosphates associated with encystment. Levels of amino sugar phosphate intermediates increased during encystment, and then decreased to nearly non-encysting levels. The most pronounced increase was in glucosamine 6-phosphate, which is the first substrate unique in this pathway, and which is the positive effector for the pathway's putative rate-controlling enzyme, UDP-GlcNAc pyrophosphorylase. Moreover, more UDP-GalNAc than UDP-GlcNAc, its direct precursor, was detected at 24 h. It is postulated that the enhanced UDP-GalNAc is a result of enhanced synthesis of UDP-GlcNAc by the pyrophosphorylase, and its preferential conversion to UDP-GalNAc. These results suggest that kinetics of amino sugar phosphate synthesis in encysting Giardia favours the direction that supports cyst wall synthesis. The enzymes involved in synthesis of UDP-GalNAc and its conversion to cyst wall might be potential targets for therapeutic inhibitors of Giardia infection.
Collapse
Affiliation(s)
- Keriman Sener
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Zuojun Shen
- Program in Glycobiology, Shriver Center at University of Massachusetts Medical School, 200 Trapelo Road, Waltham, MA 02452, USA
| | - David S Newburg
- Program in Glycobiology, Shriver Center at University of Massachusetts Medical School, 200 Trapelo Road, Waltham, MA 02452, USA
| | - Edward L Jarroll
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
20
|
Chávez-Munguía B, Cedillo-Rivera R, Martínez-Palomo A. The Ultrastructure of the Cyst Wall of Giardia lamblia. J Eukaryot Microbiol 2004; 51:220-6. [PMID: 15134259 DOI: 10.1111/j.1550-7408.2004.tb00549.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Giardiasis is the most common human protozoal infection. In their cystic phase, giardias are protected from the environment by a filamentous cyst wall made up of carbohydrates, proteins, and by two outer membranes separated from the plasma membrane of the parasite by a peripheral space. The present transmission electron microscope observations of G. lamblia cysts of human origin suggest that the extracellular peritrophic space originates from the growth, elongation, and fusion of large cytoplasmic vacuoles. As the large clear vacuoles grew in size, flattening against the inner face of the plasma membrane, they formed a single vacuole that surrounded the body of the parasite, eventually forming two outer membranes. In mature Giardia cysts, the original plasma membrane of the trophozoite becomes the outermost membrane of the cyst wall (CM1). The large vacuoles form a second membrane surrounding the cyst (CM2), and also form a third membrane (CM3), that becomes the new plasma membrane of the trophozoite. During excystation CM1 and CM2 attach to each other and fragment, leaving abundant membrane residues in the peritrophic space. Knowledge of the biochemical composition and functional properties of the complex outer membranous system of G. lamblia cysts here described will be of use to understand the survival of Giardia cysts in the environment, a major factor responsible for the high prevalence of giardiasis worldwide.
Collapse
Affiliation(s)
- Bibiana Chávez-Munguía
- Department of Experimental Pathology, Center for Research and Advanced Studies, Av. IPN 2508, Zacatenco, 07360 Mexico City, Mexico
| | | | | |
Collapse
|
21
|
Marti M, Hehl AB. Encystation-specific vesicles in Giardia: a primordial Golgi or just another secretory compartment? Trends Parasitol 2004; 19:440-6. [PMID: 14519581 DOI: 10.1016/s1471-4922(03)00201-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Matthias Marti
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | |
Collapse
|
22
|
Larocque R, Nakagaki K, Lee P, Abdul-Wahid A, Faubert GM. Oral immunization of BALB/c mice with Giardia duodenalis recombinant cyst wall protein inhibits shedding of cysts. Infect Immun 2003; 71:5662-9. [PMID: 14500486 PMCID: PMC201086 DOI: 10.1128/iai.71.10.5662-5669.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The process of encystation is a key step in the Giardia duodenalis life cycle that allows this intestinal protozoan to survive between hosts during person-to-person, animal-to-person, waterborne, or food-borne transmission. The release of cysts from infected persons and animals is the main contributing factor to contamination of the environment. Genes coding for cyst wall proteins (CWPs), which could be used for developing a transmission-blocking vaccine, have been cloned. Since the immunogenicity of recombinant Giardia CWP is unknown, we have investigated the immunogenicity of recombinant CWP2 (rCWP2) and its efficacy in interfering with the phenomenon of encystation taking place in the small bowels of BALB/c mice vaccinated with the recombinant protein. Here we report that the immunization of BALB/c mice with rCWP2 stimulated the immune system in a manner comparable to that for a live infection with Giardia muris cysts. Fecal and serum anti-rCWP2 immunoglobulin A (IgA) antibodies were detected in the immunized mice. In addition, anti-rCWP2 IgG1 and IgG2a antibodies were detected in the serum. mRNAs coding for Th1 and Th2 types of cytokines were detected in spleen and Peyer's patch cells from immunized mice. When the vaccinated mice were challenged with live cysts, the animals shed fewer cysts. We conclude that rCWP2 is a possible candidate antigen for the development of a transmission-blocking vaccine.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/metabolism
- Base Sequence
- Cytokines/genetics
- DNA, Protozoan/genetics
- Feces/parasitology
- Female
- Genes, Protozoan
- Giardia/genetics
- Giardia/immunology
- Giardia/physiology
- Giardiasis/genetics
- Giardiasis/immunology
- Giardiasis/prevention & control
- Humans
- Mice
- Mice, Inbred BALB C
- Protozoan Proteins/administration & dosage
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
Collapse
Affiliation(s)
- R Larocque
- Institute of Parasitology, McGill University, 21 111 Lakeshore Road, Ste-Anne de Bellevue, Québec, Canada H9X 3V9
| | | | | | | | | |
Collapse
|
23
|
Abstract
Given that resistance to antiprotozoal drugs exists and is likely to increase and given that currently no reliable treatments exist for some of these infections, efforts to find new targets for chemotherapy must be continued. In the case of cyst-forming pathogenic protozoa, one such target might be encystment pathways and cyst-wall assembly. Information is increasing on protozoan encystment and, as it does, we can begin to answer the question of whether targeting it for chemotherapy is a viable drug strategy. Currently, there are significant efforts to understand encystment in Giardia and Entamoeba, and potential targets are being discovered as work on their encystment mechanisms progress. We know with certainty now that Giardia and Entamoeba cyst walls contain unique proteins and polysaccharides which differ from those of their hosts and thus make them potentially interesting targets for a variety of chemotherapeutic attacks. Although we lack detailed information about the other protozoan cyst formers, enough evidence exists for Giardia and Entamoeba that it seems prudent to screen them with some of the antifungal drugs, especially those that target mannoproteins, chitin synthesis, and beta (1, 3) glucan synthesis to ascertain if they target elements in these protozoan pathways that are similar to those found in fungi.
Collapse
Affiliation(s)
- Edward L Jarroll
- Department of Biology, Northeastern University, 106 Egan Bldg., 360 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
24
|
Sun CH, McCaffery JM, Reiner DS, Gillin FD. Mining the Giardia lamblia genome for new cyst wall proteins. J Biol Chem 2003; 278:21701-8. [PMID: 12686559 DOI: 10.1074/jbc.m302023200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Giardia lamblia cyst wall (CW), which is required for survival outside the host and infection, is a primitive extracellular matrix. Because of the importance of the CW, we queried the Giardia Genome Project Database with the coding sequences of the only two known CW proteins, which are cysteine-rich and contain leucine-rich repeats (LRRs). We identified five new LRR-containing proteins, of which only one (CWP3) is up-regulated during encystation and incorporated into the cyst wall. Sequence comparison with CWP1 and -2 revealed conservation within the LRRs and the 44-amino-acid N-flanking region, although CWP3 is more divergent. Interestingly, all 14 cysteine residues of CWP3 are positionally conserved with CWP1 and -2. During encystation, C-terminal epitope-tagged CWP3 was transported to the wall of water-resistant cysts via the novel regulated secretory pathway in encystation-secretory vesicles (ESVs). Deletion analysis revealed that the four LRRs are each essential to target CWP3 to the ESVs and cyst wall. In a deletion of the most C-terminal region, fewer ESVs were stained in encysting cells, and there was no staining in cysts. In contrast, deletion of the 44 amino acids between the signal sequence and the LRRs or the region just C-terminal to the LRRs only decreased the number of cells with CWP3 targeting to ESVs and cyst wall by approximately 50%. Our studies indicate that virtually every portion of the CWP3 protein is needed for efficient targeting to the regulated secretory pathway and incorporation into the cyst wall. Further, these data demonstrate the power of genomics in combination with rigorous functional analyses to verify annotation.
Collapse
Affiliation(s)
- Chin-Hung Sun
- Department of Pathology, School of Medicine, University of California at San Diego, 214 Dickinson Street, San Diego, CA 92103-8416, USA
| | | | | | | |
Collapse
|
25
|
Lopez AB, Sener K, Jarroll EL, van Keulen H. Transcription regulation is demonstrated for five key enzymes in Giardia intestinalis cyst wall polysaccharide biosynthesis. Mol Biochem Parasitol 2003; 128:51-7. [PMID: 12706796 DOI: 10.1016/s0166-6851(03)00049-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cyst wall of Giardia intestinalis contains proteins and a novel N-acetylgalactosamine (GalNAc) polysaccharide, which is its major constituent. GalNAc is not present in growing trophozoites, but is synthesized during encystment via an inducible pathway of enzymes that produce UDP-GalNAc from fructose 6-phosphate. This report focuses on the regulation of these enzymes and thus the genes for glucosamine 6-phosphate N-acetyltransferase (GNA), phosphoacetylglucosamine mutase (AGM), UDP-N-acetylglucosamine pyrophosphorylase (UAP), and UDP-N-acetylglucosamine 4-epimerase (UAE) were cloned and expressed in Escherichia coli. Each of these expressed enzymes had the predicted activity and was used to generate antibodies. Northern and Western blot analyses demonstrated that both the mRNA and protein levels for all of these enzymes increase during encystment. Nuclear run-on assays of these and the previously analyzed glucosamine 6-phosphate deaminase (GNP; glucosamine 6-P isomerase) showed that all of the genes responsible for UDP-GalNAc synthesis during encystment are induced at the transcription level.
Collapse
Affiliation(s)
- Alex B Lopez
- Department of Biological, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | | | | | | |
Collapse
|
26
|
Svärd SG, Hagblom P, Palm JED. Giardia lamblia -- a model organism for eukaryotic cell differentiation. FEMS Microbiol Lett 2003; 218:3-7. [PMID: 12583890 DOI: 10.1111/j.1574-6968.2003.tb11490.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Giardia lamblia is a binucleated, flagellated protozoan parasite that inhabits the upper small intestine of its vertebrate hosts. The entire life cycle, which can be completed in vitro, is simple with cycling between a vegetative trophozoite and a highly resistant cystic form. The parasite is one of the earliest diverging eukaryotes known and more than 95% of the genome is sequenced. This makes Giardia an excellent model system for studies of basic eukaryotic processes like cell differentiation. In this review we will discuss recent data concerning Giardia differentiation with a focus on DNA replication and cytokinesis.
Collapse
Affiliation(s)
- Staffan G Svärd
- Microbiology and Tumour Biology Center, Karolinska Institutet, Box 280, 171 77, Stockholm, Sweden.
| | | | | |
Collapse
|
27
|
Ellis JG, Davila M, Chakrabarti R. Potential involvement of extracellular signal-regulated kinase 1 and 2 in encystation of a primitive eukaryote, Giardia lamblia. Stage-specific activation and intracellular localization. J Biol Chem 2003; 278:1936-45. [PMID: 12397063 DOI: 10.1074/jbc.m209274200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are major signaling systems by which eukaryotic cells convert environmental cues to intracellular events such as proliferation and differentiation. We have identified Giardia lamblia homologues of two members of the MAPK family ERK1 and ERK2. Functional characterization of giardial ERK1 and ERK2 revealed that both kinases were expressed in trophozoites and encysting cells as 44- and 41-kDa polypeptides, respectively, and were catalytically active. Analysis of the kinetic parameters of the recombinant proteins showed that ERK2 is approximately 5 times more efficient than ERK1 in phosphorylating myelin basic protein as a substrate, although the phosphorylating efficiency of the native ERK1 and ERK2 appeared to be the same. Immunofluorescence analysis of the subcellular localization of ERK1 and ERK2 in trophozoites showed ERK1 staining mostly in the median body and in the outer edges of the adhesive disc and ERK2 staining in the nuclei and in the caudal flagella. Our study also showed a noticeable change in the subcellular distribution of ERK2 during encystation, which became more punctate and mostly cytoplasmic, but no significant change in the ERK1 localization at any time during encystation. Interestingly, both ERK1 and ERK2 enzymes exhibited a significantly reduced kinase activity during encystation reaching a minimum at 24 h, except for an initial approximately 2.5-fold increase in the ERK1 activity at 2 h, which resumed back to the normal levels at 48 h despite no apparent change in the expression level of either one of these kinases in encysting cells. A reduced concentration of the phosphorylated ERK1 and ERK2 was also evident in these cells at 24 h. Our study suggests a functional distinction between ERK1 and ERK2 and that these kinases may play a critical role in trophozoite differentiation into cysts.
Collapse
Affiliation(s)
- John G Ellis
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida 32826-2362, USA
| | | | | |
Collapse
|
28
|
Widmer G, Clancy T, Ward HD, Miller D, Batzer GM, Pearson CB, Bukhari Z. Structural and biochemical alterations in Giardia lamblia cysts exposed to ozone. J Parasitol 2002; 88:1100-6. [PMID: 12537101 DOI: 10.1645/0022-3395(2002)088[1100:sabaig]2.0.co;2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Because of its efficacy in inactivating waterborne protozoan cysts and oocysts, ozone is frequently used for disinfection of drinking water. The effect of ozone on cysts of Giardia lamblia was investigated in gerbils (Meriones unguiculatus), using an infectivity assay by scanning electron microscopy, immunoblotting, and flow cytometry. Cysts recovered from experimentally infected gerbils were exposed to an initial ozone concentration of 1.5 mg/L for 0, 30, 60, and 120 sec. This treatment resulted in a dose-dependent reduction in cysts concentration, loss of infectivity in gerbils, and profound structural modifications to the cyst wall. Exposure for 60 sec or longer resulted in extensive protein degradation and in the disappearance of a cyst wall and a trophozoite antigen.
Collapse
Affiliation(s)
- Giovanni Widmer
- Tufts University School of Veterinary Medicine, Building 20, 200 Westboro Road, North Grafton, Massachusetts 01536, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Clark CG, Diamond LS. Methods for cultivation of luminal parasitic protists of clinical importance. Clin Microbiol Rev 2002; 15:329-41. [PMID: 12097242 PMCID: PMC118080 DOI: 10.1128/cmr.15.3.329-341.2002] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cultivation of luminal protistan parasites has a long history. In this review we discuss the methods and media that are most widely used for the establishment and maintenance of the following organisms in culture: Entamoeba histolytica, Giardia intestinalis, Trichomonas vaginalis, Dientamoeba fragilis, Blastocystis hominis, and Balantidium coli. While cultivation is of limited importance in the diagnostic laboratory, it is essential to most research laboratories, and it is toward the latter that this review is primarily aimed.
Collapse
Affiliation(s)
- C Graham Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, Great Britain.
| | | |
Collapse
|
30
|
Das S, Stevens T, Castillo C, Villasenõr A, Arredondo H, Reddy K. Lipid metabolism in mucous-dwelling amitochondriate protozoa. Int J Parasitol 2002; 32:655-75. [PMID: 12062485 DOI: 10.1016/s0020-7519(02)00006-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Entamoeba, Giardia, and trichomonads are the prominent members of a group known as 'mucosal parasites'. While Entamoeba and Giardia trophozoites colonise the small intestine, trichomonads inhabit the genitourinary tracts of humans and animals. These protozoa lack mitochondria, well-developed Golgi complexes, and other organelles typical of higher eukaryotes. Nonetheless, they have developed unique metabolic pathways that allow them to survive and multiply in the small intestine and reproductive tracts by scavenging nutrients from the host. Various investigators have shown that these protozoa are unable to synthesise the majority of their own lipids and cholesterol de novo; rather, they depend mostly on supplies from outside sources. Therefore, questions of how they transport and utilise exogenous lipids for metabolic purposes are extremely important. There is evidence suggesting that these parasites can take up the lipids and cholesterol they need from lipoprotein particles present in the host and/or in the growth medium. Studies also support the idea that individual lipid and fatty acid molecules can be transported without the help of lipoproteins. Exogenous phospholipids have been shown to undergo fatty acid remodelling (by deacylation/reacylation reactions), which allows these protozoa to alter lipids, bypassing the synthesis of entirely new phospholipid molecules. In addition, many of these amitochondriates are, however, capable of elongating/desaturating long-chain fatty acids, and assembling novel glycophospholipid molecules. In this review, progress in various aspects of lipid research on these organisms is discussed. Attempts are also made to identify steps of lipid metabolic pathways that can be used to develop chemotherapeutic agents against these and other mucosal parasites.
Collapse
Affiliation(s)
- Siddhartha Das
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Slavin I, Saura A, Carranza PG, Touz MC, Nores MJ, Luján HD. Dephosphorylation of cyst wall proteins by a secreted lysosomal acid phosphatase is essential for excystation of Giardia lamblia. Mol Biochem Parasitol 2002; 122:95-8. [PMID: 12076774 DOI: 10.1016/s0166-6851(02)00065-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ileana Slavin
- Catedra de Bioquimica y Biologia Molecular, Facultad de Ciencias Medicas, Universidad Nacional de Cordoba, Pabellon Argentina 2do piso, Ciudad Universitaria, CP 5000 Cordoba, Argentina
| | | | | | | | | | | |
Collapse
|
32
|
Touz MC, Nores MJ, Slavin I, Carmona C, Conrad JT, Mowatt MR, Nash TE, Coronel CE, Luján HD. The activity of a developmentally regulated cysteine proteinase is required for cyst wall formation in the primitive eukaryote Giardia lamblia. J Biol Chem 2002; 277:8474-81. [PMID: 11773053 DOI: 10.1074/jbc.m110250200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Giardia is an intestinal parasite that belongs to the earliest diverging branch of the eukaryotic lineage of descent. Giardia undergoes adaptation for survival outside the host's intestine by differentiating into infective cysts. Encystation involves the synthesis and transport of cyst wall constituents to the plasma membrane for release and extracellular organization. Nevertheless, little is known about the molecular events related to cyst wall biogenesis in Giardia. Among the components of the cyst wall there are two proteins that we have previously identified and characterized: CWP1 (26 kDa) and CWP2 (39 kDa). Expression of these proteins is coordinately induced, and both concentrated within encystation-specific secretory vesicles before their extracellular polymerization. Although highly similar to each other at the amino terminus, CWP2 includes a COOH-terminal 121-amino acid extension. Here, we show that this extension, rich in basic residues, is cleaved from CWP2 before cyst wall formation by an intracellular cysteine proteinase activity, which is induced during encystation like CWPs. Specific inhibitors prevent release of cyst wall materials, abolishing cyst wall formation. We also report the purification, cloning, and characterization of the encystation-specific cysteine proteinase responsible for the proteolytic processing of CWP2, which is homologue to lysosomal cathepsin C. Encystation-specific cysteine proteinase ESCP possesses unique characteristics compared with cathepsins from higher eukaryotes, such as a transmembrane domain and a short cytoplasmic tail. These features make this enzyme the most divergent cathepsin C identified to date and provide new insights regarding cyst wall formation in Giardia.
Collapse
Affiliation(s)
- María C Touz
- Catedra de Bioquimica y Biologia Molecular, Facultad de Ciencias Medicas, Universidad Nacional de Cordoba, CP5000 Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lopez AB, Hossain MT, van Keulen H. Giardia intestinalis glucosamine 6-phosphate isomerase: the key enzyme to encystment appears to be controlled by ubiquitin attachment. J Eukaryot Microbiol 2002; 49:134-6. [PMID: 12043960 DOI: 10.1111/j.1550-7408.2002.tb00356.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cyst wall of the parasitic protozoan, Giardia intestinalis, is composed of a polymer of N-acetylgalactosamine, the precursor of which is synthesized by an inducible enzyme pathway. The first enzyme in this pathway, glucosamine 6-phosphate isomerase, is transcriptionally regulated. During encystment and in mature cysts this isomerase appears to be modified by ubiquitin attachment. Thus, it might be targeted for destruction by an ubiquitin-mediated pathway, suggesting that glucosamine 6-phosphate isomerase expression is tightly regulated.
Collapse
Affiliation(s)
- Alex B Lopez
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Ohio 44115, USA
| | | | | |
Collapse
|
34
|
Abstract
The phylogeny of the commonest protozoal agent of intestinal disease, Giardia, is unclear. Although recent intensive research suggests this important human parasite is an early branching eukaryote that evolved before the endosymbiotic origin of mitochondria, there is also evidence to suggest that, as a highly evolved parasite, it has lost many of its ancestral characteristics. In this case, these organisms might have arisen much more recently from aerobic free-living flagellates.
Collapse
Affiliation(s)
- David Lloyd
- Microbiology (BIOSI), Cardiff University, PO Box 915, Wales, CF10 3TL., Cardiff, UK.
| | | |
Collapse
|