1
|
Guillemin C, Vandeleene N, Charonitis M, Requier F, Delrue G, Lommers E, Maquet P, Phillips C, Collette F. Brain microstructure is linked to cognitive fatigue in early multiple sclerosis. J Neurol 2024; 271:3537-3545. [PMID: 38538776 DOI: 10.1007/s00415-024-12316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 05/30/2024]
Abstract
Cognitive fatigue is a major symptom of Multiple Sclerosis (MS), from the early stages of the disease. This study aims to detect if brain microstructure is altered early in the disease course and is associated with cognitive fatigue in people with MS (pwMS) compared to matched healthy controls (HC). Recently diagnosed pwMS (N = 18, age < 45 years old) with either a Relapsing-Remitting or a Clinically Isolated Syndrome course of the disease, and HC (N = 19) matched for sex, age and education were analyzed. Quantitative multiparameter maps (MTsat, PD, R1 and R2*) of pwMS and HC were calculated. Parameters were extracted within the normal appearing white matter, cortical grey matter and deep grey matter (NAWM, NACGM and NADGM, respectively). Bayesian T-test for independent samples assessed between-group differences in brain microstructure while associations between score at a cognitive fatigue scale and each parameter in each tissue class were investigated with Generalized Linear Mixed Models. Patients exhibited lower MTsat and R1 values within NAWM and NACGM, and higher R1 values in NADGM compared to HC. Cognitive fatigue was associated with PD measured in every tissue class and to MTsat in NAWM, regardless of group. Disease-specific negative correlations were found in pwMS in NAWM (R1, R2*) and NACGM (R1). These findings suggest that brain microstructure within normal appearing tissues is already altered in the very early stages of the disease. Moreover, additional microstructure alterations (e.g. diffuse and widespread demyelination or axonal degeneration) in pwMS may lead to disease-specific complaint of cognitive fatigue.
Collapse
Affiliation(s)
- Camille Guillemin
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Nora Vandeleene
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
| | - Maëlle Charonitis
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Florence Requier
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Gaël Delrue
- Department of Neurology, CHU of Liège Sart Tilman, Liège, Belgium
| | - Emilie Lommers
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
- Department of Neurology, CHU of Liège Sart Tilman, Liège, Belgium
| | - Pierre Maquet
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
- Department of Neurology, CHU of Liège Sart Tilman, Liège, Belgium
| | - Christophe Phillips
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
- GIGA In Silico Medicine, University of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium.
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium.
| |
Collapse
|
2
|
Weigand-Whittier J, Sedykh M, Herz K, Coll-Font J, Foster AN, Gerstner ER, Nguyen C, Zaiss M, Farrar CT, Perlman O. Accelerated and quantitative three-dimensional molecular MRI using a generative adversarial network. Magn Reson Med 2023; 89:1901-1914. [PMID: 36585915 PMCID: PMC9992146 DOI: 10.1002/mrm.29574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/01/2023]
Abstract
PURPOSE To substantially shorten the acquisition time required for quantitative three-dimensional (3D) chemical exchange saturation transfer (CEST) and semisolid magnetization transfer (MT) imaging and allow for rapid chemical exchange parameter map reconstruction. METHODS Three-dimensional CEST and MT magnetic resonance fingerprinting (MRF) datasets of L-arginine phantoms, whole-brains, and calf muscles from healthy volunteers, cancer patients, and cardiac patients were acquired using 3T clinical scanners at three different sites, using three different scanner models and coils. A saturation transfer-oriented generative adversarial network (GAN-ST) supervised framework was then designed and trained to learn the mapping from a reduced input data space to the quantitative exchange parameter space, while preserving perceptual and quantitative content. RESULTS The GAN-ST 3D acquisition time was 42-52 s, 70% shorter than CEST-MRF. The quantitative reconstruction of the entire brain took 0.8 s. An excellent agreement was observed between the ground truth and GAN-based L-arginine concentration and pH values (Pearson's r > 0.95, ICC > 0.88, NRMSE < 3%). GAN-ST images from a brain-tumor subject yielded a semi-solid volume fraction and exchange rate NRMSE of3 . 8 ± 1 . 3 % $$ 3.8\pm 1.3\% $$ and4 . 6 ± 1 . 3 % $$ 4.6\pm 1.3\% $$ , respectively, and SSIM of96 . 3 ± 1 . 6 % $$ 96.3\pm 1.6\% $$ and95 . 0 ± 2 . 4 % $$ 95.0\pm 2.4\% $$ , respectively. The mapping of the calf-muscle exchange parameters in a cardiac patient, yielded NRMSE < 7% and SSIM > 94% for the semi-solid exchange parameters. In regions with large susceptibility artifacts, GAN-ST has demonstrated improved performance and reduced noise compared to MRF. CONCLUSION GAN-ST can substantially reduce the acquisition time for quantitative semi-solid MT/CEST mapping, while retaining performance even when facing pathologies and scanner models that were not available during training.
Collapse
Affiliation(s)
- Jonah Weigand-Whittier
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Maria Sedykh
- Institute of Neuroradiology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Kai Herz
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Jaume Coll-Font
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Anna N. Foster
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Elizabeth R. Gerstner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| | - Christopher Nguyen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Charlestown, Massachusetts
- Health Science Technology, Harvard-MIT, Cambridge, Massachusetts
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Moritz Zaiss
- Institute of Neuroradiology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian T. Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
| | - Or Perlman
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Campillo BW, Galguera D, Cerdan S, López-Larrubia P, Lizarbe B. Short-term high-fat diet alters the mouse brain magnetic resonance imaging parameters consistently with neuroinflammation on males and metabolic rearrangements on females. A pre-clinical study with an optimized selection of linear mixed-effects models. Front Neurosci 2022; 16:1025108. [PMID: 36507349 PMCID: PMC9729798 DOI: 10.3389/fnins.2022.1025108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction High-fat diet (HFD) consumption is known to trigger an inflammatory response in the brain that prompts the dysregulation of energy balance, leads to insulin and leptin resistance, and ultimately obesity. Obesity, at the same, has been related to cerebral magnetic resonance imaging (MRI) alterations, but the onset of HFD-induced neuroinflammation, however, has been principally reported on male rodents and by ex vivo methods, with the effects on females and the origin of MRI changes remaining unassessed. Methods We characterized the onset and evolution of obesity on male and female mice during standard or HFD administration by physiological markers and multiparametric MRI on four cerebral regions involved in appetite regulation and energy homeostasis. We investigated the effects of diet, time under diet, brain region and sex by identifying their significant contributions to sequential linear mixed-effects models, and obtained their regional neurochemical profiles by high-resolution magic angle spinning spectroscopy. Results Male mice developed an obese phenotype paralleled by fast increases in magnetization transfer ratio values, while females delayed the obesity progress and showed no MRI-signs of cerebral inflammation, but larger metabolic rearrangements on the neurochemical profile. Discussion Our study reveals early MRI-detectable changes compatible with the development of HFD-induced cerebral cytotoxic inflammation on males but suggest the existence of compensatory metabolic adaptations on females that preclude the corresponding detection of MRI alterations.
Collapse
Affiliation(s)
- Basilio Willem Campillo
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - David Galguera
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Sebastian Cerdan
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain,Pilar López-Larrubia,
| | - Blanca Lizarbe
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain,Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain,*Correspondence: Blanca Lizarbe,
| |
Collapse
|
4
|
Xiang B, Wen J, Schmidt RE, Sukstanskii AL, Mamah D, Yablonskiy DA, Cross AH. Evaluating brain damage in multiple sclerosis with simultaneous multi-angular-relaxometry of tissue. Ann Clin Transl Neurol 2022; 9:1514-1527. [PMID: 36178006 PMCID: PMC9539387 DOI: 10.1002/acn3.51621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Multiple sclerosis (MS) is a common demyelinating central nervous system disease. MRI methods that can quantify myelin loss are needed for trials of putative remyelinating agents. Quantitative magnetization transfer MRI introduced the macromolecule proton fraction (MPF), which correlates with myelin concentration. We developed an alternative approach, Simultaneous-Multi-Angular-Relaxometry-of-Tissue (SMART) MRI, to generate MPF. Our objective was to test SMART-derived MPF metric as a potential imaging biomarker of demyelination. METHODS Twenty healthy control (HC), 11 relapsing-remitting MS (RRMS), 22 progressive MS (PMS), and one subject with a biopsied tumefactive demyelinating lesion were scanned at 3T using SMART MRI. SMART-derived MPF metric was determined in normal-appearing cortical gray matter (NAGM), normal-appearing subcortical white matter (NAWM), and demyelinating lesions. MPF metric was evaluated for correlations with physical and cognitive test scores. Comparisons were made between HC and MS and between MS subtypes. Furthermore, correlations were determined between MPF and neuropathology in the biopsied person. RESULTS SMART-derived MPF in NAGM and NAWM were lower in MS than HC (p < 0.001). MPF in NAGM, NAWM and lesions differentiated RRMS from PMS (p < 0.01, p < 0.001, p < 0.001, respectively), whereas lesion volumes did not. MPF in NAGM, NAWM and lesions correlated with the Expanded Disability Status Scale (p < 0.01, p < 0.001, p < 0.001, respectively) and nine-hole peg test (p < 0.001, p < 0.001, p < 0.01, respectively). MPF was lower in the histopathologically confirmed inflammatory demyelinating lesion than the contralateral NAWM and increased in the biopsied lesion over time, mirroring improved clinical performance. INTERPRETATION SMART-derived MPF metric holds potential as a quantitative imaging biomarker of demyelination and remyelination.
Collapse
Affiliation(s)
- Biao Xiang
- Department of RadiologyWashington UniversitySt. LouisMissouri63110USA
| | - Jie Wen
- Department of RadiologyWashington UniversitySt. LouisMissouri63110USA
| | - Robert E. Schmidt
- Department of PathologyWashington UniversitySt. LouisMissouri63110USA
| | | | - Daniel Mamah
- Department of PsychiatryWashington UniversitySt. LouisMissouri63110USA
| | | | - Anne H. Cross
- Department of NeurologyWashington UniversitySt. LouisMissouri63110USA
| |
Collapse
|
5
|
York EN, Thrippleton MJ, Meijboom R, Hunt DPJ, Waldman AD. Quantitative magnetization transfer imaging in relapsing-remitting multiple sclerosis: a systematic review and meta-analysis. Brain Commun 2022; 4:fcac088. [PMID: 35652121 PMCID: PMC9149789 DOI: 10.1093/braincomms/fcac088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/17/2021] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Myelin-sensitive MRI such as magnetization transfer imaging has been widely used in multiple sclerosis. The influence of methodology and differences in disease subtype on imaging findings is, however, not well established. Here, we systematically review magnetization transfer brain imaging findings in relapsing-remitting multiple sclerosis. We examine how methodological differences, disease effects and their interaction influence magnetization transfer imaging measures. Articles published before 06/01/2021 were retrieved from online databases (PubMed, EMBASE and Web of Science) with search terms including 'magnetization transfer' and 'brain' for systematic review, according to a pre-defined protocol. Only studies that used human in vivo quantitative magnetization transfer imaging in adults with relapsing-remitting multiple sclerosis (with or without healthy controls) were included. Additional data from relapsing-remitting multiple sclerosis subjects acquired in other studies comprising mixed disease subtypes were included in meta-analyses. Data including sample size, MRI acquisition protocol parameters, treatments and clinical findings were extracted and qualitatively synthesized. Where possible, effect sizes were calculated for meta-analyses to determine magnetization transfer (i) differences between patients and healthy controls; (ii) longitudinal change and (iii) relationships with clinical disability in relapsing-remitting multiple sclerosis. Eighty-six studies met inclusion criteria. MRI acquisition parameters varied widely, and were also underreported. The majority of studies examined the magnetization transfer ratio in white matter, but magnetization transfer metrics, brain regions examined and results were heterogeneous. The analysis demonstrated a risk of bias due to selective reporting and small sample sizes. The pooled random-effects meta-analysis across all brain compartments revealed magnetization transfer ratio was 1.17 per cent units (95% CI -1.42 to -0.91) lower in relapsing-remitting multiple sclerosis than healthy controls (z-value: -8.99, P < 0.001, 46 studies). Linear mixed-model analysis did not show a significant longitudinal change in magnetization transfer ratio across all brain regions [β = 0.12 (-0.56 to 0.80), t-value = 0.35, P = 0.724, 14 studies] or normal-appearing white matter alone [β = 0.037 (-0.14 to 0.22), t-value = 0.41, P = 0.68, eight studies]. There was a significant negative association between the magnetization transfer ratio and clinical disability, as assessed by the Expanded Disability Status Scale [r = -0.32 (95% CI -0.46 to -0.17); z-value = -4.33, P < 0.001, 13 studies]. Evidence suggests that magnetization transfer imaging metrics are sensitive to pathological brain changes in relapsing-remitting multiple sclerosis, although effect sizes were small in comparison to inter-study variability. Recommendations include: better harmonized magnetization transfer acquisition protocols with detailed methodological reporting standards; larger, well-phenotyped cohorts, including healthy controls; and, further exploration of techniques such as magnetization transfer saturation or inhomogeneous magnetization transfer ratio.
Collapse
Affiliation(s)
- Elizabeth N. York
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
| | | | - Rozanna Meijboom
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
| | - David P. J. Hunt
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of
Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic,
University of Edinburgh, Edinburgh, UK
| | - Adam D. Waldman
- Centre for Clinical Brain Sciences, University of
Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, University of
Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Jeong KE, Lee SY, Yeom SK, Carlson N, Shah LM, Rose J, Jeong EK. Ultrahigh-b diffusion-weighted imaging for quantitative evaluation of myelination in shiverer mouse spinal cord. Magn Reson Med 2021; 87:179-192. [PMID: 34418157 DOI: 10.1002/mrm.28978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE To perform a quantitative evaluation of myelination on WT and myelin-deficient (shiverer) mouse spinal cords using ultrahigh-b diffusion-weighted imaging (UHb-DWI). METHODS UHb-DWI of ex vivo on spinal cord specimens of two shiverer (C3HeB/FeJ-shiverer, homozygous genotype for MbPshi ) and six WT (Black Six, C3HeB/FeJ) mice were acquired using 3D multishot diffusion-weighted stimulated-echo EPI, a homemade RF coil, and a small-bore 7T MRI system. Imaging was performed in transaxial plane with 75 × 75 μm2 in-plane resolution, 1-mm-slice thickness, and radial DWI using bmax = 42,890 s/mm2 . Histological evaluation was performed on upper thoracic sections using optical and transmission electron microscopy. Numerical Monte Carlo simulations (MCSs) of water diffusion were performed to facilitate interpretation of UHb-DWI signal-b curves. RESULTS The white matter ultrahigh-b radial DWI (UHb-rDWI) signal-b curves of WT mouse cords behaved biexponentially with high-b diffusion coefficient DH < 0.020 × 10-3 mm2 /s. However, as expected with less myelination, the signal-b of shiverer mouse cords behaved monoexponentially with significantly greater DH = 0.162 × 10-3 , 0.142 × 10-3 , and 0.164 × 10-3 mm2 /s at anterodorsal, posterodorsal, and lateral columns, respectively. The axial DWI signals of all mouse cords behaved monoexponentially with D = (0.718-1.124) × 10-3 mm2 /s. MCS suggests that these elevated DH are mainly induced by increased water exchange at the myelin sheath. Microscopic results were consistent with the UHb-rDWI findings. CONCLUSION UHb-DWI provides quantitative differences in myelination of spinal cords from myelin-deficit shiverer and WT mice. UHb-DWI may become a powerful tool to evaluate myelination in demyelinating disease models that may translate to human diseases, including multiple sclerosis.
Collapse
Affiliation(s)
- Kyle E Jeong
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Sophie YouJung Lee
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| | - Suk-Keu Yeom
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA.,Korea University Ansan Medical Center, Ansan, Korea
| | - Noel Carlson
- Neuroimmunology Division, University of Utah, Salt Lake City, Utah, USA.,Neurobiology, University of Utah, Salt Lake City, Utah, USA.,GRECC, VA Salt Lake City Healthcare System, Salt Lake City, Utah, USA.,Neurovirology Research Laboratory, VA Salt Lake City Healthcare System, Salt Lake City, Utah, USA
| | - Lubdha M Shah
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - John Rose
- Neuroimmunology Division, University of Utah, Salt Lake City, Utah, USA.,Neurovirology Research Laboratory, VA Salt Lake City Healthcare System, Salt Lake City, Utah, USA
| | - Eun-Kee Jeong
- Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA.,Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Jeong K, Shah LM, Lee YJ, Thapa B, Sapkota N, Bisson E, Carlson NG, Jeong EK, Rose JW. High-b diffusivity of MS lesions in cervical spinal cord using ultrahigh-b DWI (UHb-DWI). Neuroimage Clin 2021; 30:102610. [PMID: 33752076 PMCID: PMC7985401 DOI: 10.1016/j.nicl.2021.102610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE The purpose of this study was to investigate UHb-rDWI signal in white matter tracts of the cervical spinal cord (CSC) and compare quantitative values between healthy control WM with both MS NAWM and MS WM lesions. METHODS UHb-rDWI experiments were performed on (a) 7 MS patients with recently active or chronic lesions in CSC and on (b) 7 healthy control of similar age range and gender distribution to MS subjects. All MRI data were acquired using clinical 3T MRI system. Axial high-b diffusion images were acquired using 2D single-shot DW stimulated EPI with reduced FOV and a CSC-dedicated 8 channel array coil. High-b diffusion coefficient DH was estimated by fitting the signal-b curve to a double or single-exponential function. RESULTS The high-b diffusivity DH values were measured as (0.767 ± 0.297) × 10-3 mm2/s in the posterior column lesions, averaged over 6 MS patients, and 0.587 × 10-3 mm2/s in the corticospinal tract for another patient. The averaged DH values of the 7 healthy volunteers from the posterior and lateral column were (0.0312 ± 0.0306) × 10-3 and (0.0505 ± 0.0205) × 10-3 mm2/s, respectively. UHb-rDWI signal-b curves of the MS patients revealed to noticeably behave differently to that of the healthy controls. The patient signal-b curves decayed with greater high-b decay constants to reach lower signal intensities relative to signal-b curves of the healthy controls. CONCLUSION UHb-DWI of the CSC reveals a marked difference in signal-b-curves and DH values in MS lesions compared to NAWM and healthy control WM. Based on physical principles, we interpret these altered observations of quantitative diffusion values to be indicative of demyelination. Further studies in animal models will be required to fully interpret UHb-DWI quantitative diffusion values during demyelination and remyelination.
Collapse
Affiliation(s)
- Kyle Jeong
- Utah Center for Advanced Imaging Research, University of Utah, Utah, USA
| | - Lubdha M Shah
- Department of Radiology and Imaging Sciences, University of Utah, Utah, USA
| | - You-Jung Lee
- Utah Center for Advanced Imaging Research, University of Utah, Utah, USA
| | - Bijaya Thapa
- Utah Center for Advanced Imaging Research, University of Utah, Utah, USA
| | - Nabraj Sapkota
- Utah Center for Advanced Imaging Research, University of Utah, Utah, USA
| | - Erica Bisson
- Department of Neurosurgery, University of Utah, Utah, USA
| | - Noel G Carlson
- Neuroimmunology and Neurovirology Division, Department of Neurology, University of Utah, Utah, USA; GRECC, VA Salt Lake City Health Care System, Utah, USA; Department of Neurobiology, University of Utah, Utah, USA
| | - E K Jeong
- Utah Center for Advanced Imaging Research, University of Utah, Utah, USA; Department of Radiology and Imaging Sciences, University of Utah, Utah, USA
| | - John W Rose
- Neuroimmunology and Neurovirology Division, Department of Neurology, University of Utah, Utah, USA; Neurology Service, VA Salt Lake City Health Care System, Utah, USA.
| |
Collapse
|
8
|
Rasoanandrianina H, Demortière S, Trabelsi A, Ranjeva JP, Girard O, Duhamel G, Guye M, Pelletier J, Audoin B, Callot V. Sensitivity of the Inhomogeneous Magnetization Transfer Imaging Technique to Spinal Cord Damage in Multiple Sclerosis. AJNR Am J Neuroradiol 2020; 41:929-937. [PMID: 32414903 DOI: 10.3174/ajnr.a6554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE The inhomogeneous magnetization transfer technique has demonstrated high specificity for myelin, and has shown sensitivity to multiple sclerosis-related impairment in brain tissue. Our aim was to investigate its sensitivity to spinal cord impairment in MS relative to more established MR imaging techniques (volumetry, magnetization transfer, DTI). MATERIALS AND METHODS Anatomic images covering the cervical spinal cord from the C1 to C6 levels and DTI, magnetization transfer/inhomogeneous magnetization transfer images at the C2/C5 levels were acquired in 19 patients with MS and 19 paired healthy controls. Anatomic images were segmented in spinal cord GM and WM, both manually and using the AMU40 atlases. MS lesions were manually delineated. MR metrics were analyzed within normal-appearing and lesion regions in anterolateral and posterolateral WM and compared using Wilcoxon rank tests and z scores. Correlations between MR metrics and clinical scores in patients with MS were evaluated using the Spearman rank correlation. RESULTS AMU40-based C1-to-C6 GM/WM automatic segmentations in patients with MS were evaluated relative to manual delineation. Mean Dice coefficients were 0.75/0.89, respectively. All MR metrics (WM/GM cross-sectional areas, normal-appearing and lesion diffusivities, and magnetization transfer/inhomogeneous magnetization transfer ratios) were observed altered in patients compared with controls (P < .05). Additionally, the absolute inhomogeneous magnetization transfer ratio z scores were significantly higher than those of the other MR metrics (P < .0001), suggesting a higher inhomogeneous magnetization transfer sensitivity toward spinal cord impairment in MS. Significant correlations with the Expanded Disability Status Scale (ρ = -0.73/P = .02, ρ = -0.81/P = .004) and the total Medical Research Council scale (ρ = 0.80/P = .009, ρ = -0.74/P = .02) were observed for inhomogeneous magnetization transfer and magnetization transfer ratio z scores, respectively, in normal-appearing WM regions, while weaker and nonsignificant correlations were obtained for DTI metrics. CONCLUSIONS With inhomogeneous magnetization transfer being highly sensitive to spinal cord damage in MS compared with conventional magnetization transfer and DTI, it could generate great clinical interest for longitudinal follow-up and potential remyelinating clinical trials. In line with other advanced myelin techniques with which it could be compared, it opens perspectives for multicentric investigations.
Collapse
Affiliation(s)
- H Rasoanandrianina
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France.,Laboratoire de Biomécanique Appliquée, Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Reseaux, Aix-Marseille Université; iLab-Spine International Associated Laboratory (H.R., J.P.R., V.C.), Marseille-Montreal, France-Canada
| | - S Demortière
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France.,Department of Neurology (S.D., J.P., B.A.), Centre Hospitalier Universitaire Timone, Assistance Publique-Hopitaux de Marseille, Marseille, France
| | - A Trabelsi
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France
| | - J P Ranjeva
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France.,Laboratoire de Biomécanique Appliquée, Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Reseaux, Aix-Marseille Université; iLab-Spine International Associated Laboratory (H.R., J.P.R., V.C.), Marseille-Montreal, France-Canada
| | - O Girard
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France
| | - G Duhamel
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France
| | - M Guye
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France
| | - J Pelletier
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France.,Department of Neurology (S.D., J.P., B.A.), Centre Hospitalier Universitaire Timone, Assistance Publique-Hopitaux de Marseille, Marseille, France
| | - B Audoin
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France.,Department of Neurology (S.D., J.P., B.A.), Centre Hospitalier Universitaire Timone, Assistance Publique-Hopitaux de Marseille, Marseille, France
| | - V Callot
- From the Center for Magnetic Resonance in Biology and Medicine (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France .,Centre d'Exploration Métabolique par Résonance Magnétique (H.R., S.D., A.T., J.P.R., O.G., G.D., M.G., J.P., B.A., V.C.), Assistance Publique-Hopitaux de Marseille, Hôpital Universitaire Timone, Marseille, France.,Laboratoire de Biomécanique Appliquée, Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Reseaux, Aix-Marseille Université; iLab-Spine International Associated Laboratory (H.R., J.P.R., V.C.), Marseille-Montreal, France-Canada
| |
Collapse
|
9
|
Lommers E, Guillemin C, Reuter G, Fouarge E, Delrue G, Collette F, Degueldre C, Balteau E, Maquet P, Phillips C. Voxel-Based quantitative MRI reveals spatial patterns of grey matter alteration in multiple sclerosis. Hum Brain Mapp 2020; 42:1003-1012. [PMID: 33155763 PMCID: PMC7856642 DOI: 10.1002/hbm.25274] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 12/22/2022] Open
Abstract
Despite robust postmortem evidence and potential clinical importance of gray matter (GM) pathology in multiple sclerosis (MS), assessing GM damage by conventional magnetic resonance imaging (MRI) remains challenging. This prospective cross‐sectional study aimed at characterizing the topography of GM microstructural and volumetric alteration in MS using, in addition to brain atrophy measures, three quantitative MRI (qMRI) parameters—magnetization transfer (MT) saturation, longitudinal (R1), and effective transverse (R2*) relaxation rates, derived from data acquired during a single scanning session. Our study involved 35 MS patients (14 relapsing–remitting MS; 21 primary or secondary progressive MS) and 36 age‐matched healthy controls (HC). The qMRI maps were computed and segmented in different tissue classes. Voxel‐based quantification (VBQ) and voxel‐based morphometry (VBM) statistical analyses were carried out using multiple linear regression models. In MS patients compared with HC, three configurations of GM microstructural/volumetric alterations were identified. (a) Co‐localization of GM atrophy with significant reduction of MT, R1, and/or R2*, usually observed in primary cortices. (b) Microstructural modifications without significant GM loss: hippocampus and paralimbic cortices, showing reduced MT and/or R1 values without significant atrophy. (c) Atrophy without significant change in microstructure, identified in deep GM nuclei. In conclusion, this quantitative multiparametric voxel‐based approach reveals three different spatially‐segregated combinations of GM microstructural/volumetric alterations in MS that might be associated with different neuropathology.
Collapse
Affiliation(s)
- Emilie Lommers
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,Clinical Neuroimmunology Unit, Neurology Department, CHU Liège, Liège, Belgium
| | - Camille Guillemin
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Gilles Reuter
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,Neurosurgery Department, CHU Liège, Liège, Belgium
| | - Eve Fouarge
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium
| | - Gaël Delrue
- Clinical Neuroimmunology Unit, Neurology Department, CHU Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | | | - Evelyne Balteau
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium
| | - Pierre Maquet
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,Clinical Neuroimmunology Unit, Neurology Department, CHU Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA - CRC in vivo imaging, University of Liège, Liège, Belgium.,GIGA - in silico medicine, University of Liège, Liège, Belgium
| |
Collapse
|
10
|
Leutritz T, Seif M, Helms G, Samson RS, Curt A, Freund P, Weiskopf N. Multiparameter mapping of relaxation (R1, R2*), proton density and magnetization transfer saturation at 3 T: A multicenter dual-vendor reproducibility and repeatability study. Hum Brain Mapp 2020; 41:4232-4247. [PMID: 32639104 PMCID: PMC7502832 DOI: 10.1002/hbm.25122] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Accepted: 06/16/2020] [Indexed: 01/10/2023] Open
Abstract
Multicenter clinical and quantitative magnetic resonance imaging (qMRI) studies require a high degree of reproducibility across different sites and scanner manufacturers, as well as time points. We therefore implemented a multiparameter mapping (MPM) protocol based on vendor's product sequences and demonstrate its repeatability and reproducibility for whole‐brain coverage. Within ~20 min, four MPM metrics (magnetization transfer saturation [MT], proton density [PD], longitudinal [R1], and effective transverse [R2*] relaxation rates) were measured using an optimized 1 mm isotropic resolution protocol on six 3 T MRI scanners from two different vendors. The same five healthy participants underwent two scanning sessions, on the same scanner, at each site. MPM metrics were calculated using the hMRI‐toolbox. To account for different MT pulses used by each vendor, we linearly scaled the MT values to harmonize them across vendors. To determine longitudinal repeatability and inter‐site comparability, the intra‐site (i.e., scan‐rescan experiment) coefficient of variation (CoV), inter‐site CoV, and bias across sites were estimated. For MT, R1, and PD, the intra‐ and inter‐site CoV was between 4 and 10% across sites and scan time points for intracranial gray and white matter. A higher intra‐site CoV (16%) was observed in R2* maps. The inter‐site bias was below 5% for all parameters. In conclusion, the MPM protocol yielded reliable quantitative maps at high resolution with a short acquisition time. The high reproducibility of MPM metrics across sites and scan time points combined with its tissue microstructure sensitivity facilitates longitudinal multicenter imaging studies targeting microstructural changes, for example, as a quantitative MRI biomarker for interventional clinical trials.
Collapse
Affiliation(s)
- Tobias Leutritz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Maryam Seif
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Gunther Helms
- Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Rebecca S Samson
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Patrick Freund
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK.,Department of Brain Repair & Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| |
Collapse
|
11
|
Klok MPC, van Eijndhoven PF, Argyelan M, Schene AH, Tendolkar I. Structural brain characteristics in treatment-resistant depression: review of magnetic resonance imaging studies. BJPsych Open 2019; 5:e76. [PMID: 31474243 PMCID: PMC6737518 DOI: 10.1192/bjo.2019.58] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) has been related to structural brain characteristics that are correlated with the severity of disease. However, the correlation of these structural changes is less well clarified in treatment-resistant depression (TRD). AIMS To summarise the existing literature on structural brain characteristics in TRD to create an overview of known abnormalities of the brain in patients with MDD, to form hypotheses about the absence or existence of a common pathophysiology of MDD and TRD. METHOD A systematic search of PubMed and the Cochrane Library for studies published between 1998 and August of 2016 investigating structural brain changes in patients with TRD compared with healthy controls or patients with MDD. RESULTS Fourteen articles are included in this review. Lower grey matter volume (GMV) in the anterior cingulate cortex, right cerebellum, caudate nucleus, superior/medial frontal gyrus and hippocampus does not seem to differentiate TRD from milder forms of MDD. However, lower GMV in the putamen, inferior frontal gyrus, precentral gyrus, angular- and post-central gyri together with specific mainly parietal white matter tract changes seem to be more specific structural characteristics of TRD. CONCLUSIONS The currently available data on structural brain changes in patients with TRD compared with milder forms of MDD and healthy controls cannot sufficiently distinguish between a 'shared continuum hypothesis' and a 'different entity hypothesis'. Our review clearly suggests that although there is some overlap in affected brain regions between milder forms of MDD and TRD, TRD also comes with specific alterations in mainly the putamen and parietal white matter tracts. DECLARATION OF INTEREST None.
Collapse
Affiliation(s)
| | - Philip F van Eijndhoven
- Psychiatrist, Department of Psychiatry, Radboud University Medical Center; and Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, the Netherlands
| | - Miklos Argyelan
- Psychiatrist, Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research; andDivision of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, USA
| | - Aart H Schene
- Professor of Psychiatry, Department of Psychiatry, Radboud University Medical Center; and Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, the Netherlands
| | - Indira Tendolkar
- Professor of Psychiatry, Department of Psychiatry, Radboud University Medical Center; Donders Institute for Brain Cognition and Behavior, Centre for Cognitive Neuroimaging, the Netherlands;and LVR-Hospital Essen, Department for Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, Germany
| |
Collapse
|
12
|
Inojosa H, Proschmann U, Akgün K, Ziemssen T. A focus on secondary progressive multiple sclerosis (SPMS): challenges in diagnosis and definition. J Neurol 2019. [PMID: 31363847 DOI: 10.1007/s00415-019-09489-5.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Secondary progressive multiple sclerosis (SPMS) is the second most common form of multiple sclerosis (MS). One in two relapse remitting multiple sclerosis (RRMS) patients will develop SPMS within 15 years and up to two-thirds after 30 years, leading to a progressive decrease of neurological function and limitation of daily activities. Nevertheless, the SPMS diagnosis is often established retrospectively and delayed up to 3 years due to several patient- and clinician-related factors. Definitive clinical diagnostic criteria are lacking and research is currently ongoing to identify imaging and biochemical biomarkers. As new therapies are introduced, early SPMS diagnosis may represent a window of opportunity for intervention. New approaches, endpoints or technologies could help physicians establishing a diagnosis. Here, we review SPMS in relation to its diagnostic and definition challenges and current screening techniques and tools.
Collapse
Affiliation(s)
- Hernan Inojosa
- Department of Neurology, Center of Clinical Neuroscience, Carl Gustav Carus University Clinic, University Hospital of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Undine Proschmann
- Department of Neurology, Center of Clinical Neuroscience, Carl Gustav Carus University Clinic, University Hospital of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Katja Akgün
- Department of Neurology, Center of Clinical Neuroscience, Carl Gustav Carus University Clinic, University Hospital of Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Tjalf Ziemssen
- Department of Neurology, Center of Clinical Neuroscience, Carl Gustav Carus University Clinic, University Hospital of Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
13
|
A focus on secondary progressive multiple sclerosis (SPMS): challenges in diagnosis and definition. J Neurol 2019; 268:1210-1221. [PMID: 31363847 DOI: 10.1007/s00415-019-09489-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 12/23/2022]
Abstract
Secondary progressive multiple sclerosis (SPMS) is the second most common form of multiple sclerosis (MS). One in two relapse remitting multiple sclerosis (RRMS) patients will develop SPMS within 15 years and up to two-thirds after 30 years, leading to a progressive decrease of neurological function and limitation of daily activities. Nevertheless, the SPMS diagnosis is often established retrospectively and delayed up to 3 years due to several patient- and clinician-related factors. Definitive clinical diagnostic criteria are lacking and research is currently ongoing to identify imaging and biochemical biomarkers. As new therapies are introduced, early SPMS diagnosis may represent a window of opportunity for intervention. New approaches, endpoints or technologies could help physicians establishing a diagnosis. Here, we review SPMS in relation to its diagnostic and definition challenges and current screening techniques and tools.
Collapse
|
14
|
Imaging in mice and men: Pathophysiological insights into multiple sclerosis from conventional and advanced MRI techniques. Prog Neurobiol 2019; 182:101663. [PMID: 31374243 DOI: 10.1016/j.pneurobio.2019.101663] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/17/2019] [Accepted: 07/17/2019] [Indexed: 01/16/2023]
Abstract
Magnetic resonance imaging (MRI) is the most important tool for diagnosing multiple sclerosis (MS). However, MRI is still unable to precisely quantify the specific pathophysiological processes that underlie imaging findings in MS. Because autopsy and biopsy samples of MS patients are rare and biased towards a chronic burnt-out end or fulminant acute early stage, the only available methods to identify human disease pathology are to apply MRI techniques in combination with subsequent histopathological examination to small animal models of MS and to transfer these insights to MS patients. This review summarizes the existing combined imaging and histopathological studies performed in MS mouse models and humans with MS (in vivo and ex vivo), to promote a better understanding of the pathophysiology that underlies conventional MRI, diffusion tensor and magnetization transfer imaging findings in MS patients. Moreover, it provides a critical view on imaging capabilities and results in MS patients and mouse models and for future studies recommends how to combine those particular MR sequences and parameters whose underlying pathophysiological basis could be partly clarified. Further combined longitudinal in vivo imaging and histopathological studies on rationally selected, appropriate mouse models are required.
Collapse
|
15
|
Lommers E, Simon J, Reuter G, Delrue G, Dive D, Degueldre C, Balteau E, Phillips C, Maquet P. Multiparameter MRI quantification of microstructural tissue alterations in multiple sclerosis. NEUROIMAGE-CLINICAL 2019; 23:101879. [PMID: 31176293 PMCID: PMC6555891 DOI: 10.1016/j.nicl.2019.101879] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/23/2019] [Accepted: 05/25/2019] [Indexed: 01/25/2023]
Abstract
Objectives Conventional MRI is not sensitive to many pathological processes underpinning multiple sclerosis (MS) ongoing in normal appearing brain tissue (NABT). Quantitative MRI (qMRI) and a multiparameter mapping (MPM) protocol are used to simultaneously quantify magnetization transfer (MT) saturation, transverse relaxation rate R2* (1/T2*) and longitudinal relaxation rate R1 (1/T1), and assess differences in NABT microstructure between MS patients and healthy controls (HC). Methods This prospective cross-sectional study involves 36 MS patients (21 females, 15 males; age range 22–63 years; 15 relapsing-remitting MS - RRMS; 21 primary or secondary progressive MS - PMS) and 36 age-matched HC (20 females, 16 males); age range 21–61 years). The qMRI maps are computed and segmented in lesions and 3 normal appearing cerebral tissue classes: normal appearing cortical grey matter (NACGM), normal appearing deep grey matter (NADGM), normal appearing white matter (NAWM). Individual median values are extracted for each tissue class and MR parameter. MANOVAs and stepwise regressions assess differences between patients and HC. Results MS patients are characterized by a decrease in MT, R2* and R1 within NACGM (p < .0001) and NAWM (p < .0001). In NADGM, MT decreases (p < .0001) but R2* and R1 remain normal. These observations tend to be more pronounced in PMS. Quantitative MRI parameters are independent predictors of clinical status: EDSS is significantly related to R1 in NACGM and R2* in NADGM; the latter also predicts motor score. Cognitive score is best predicted by MT parameter within lesions. Conclusions Multiparametric data of brain microstructure concord with the literature, predict clinical performance and suggest a diffuse reduction in myelin and/or iron content within NABT of MS patients. We revisit microstructural alterations of NABT in MS patients by simultaneously quantifying three MRI parameters. Data suggest reduction of MT/R2*/R1 in NABT of MS patients, suggesting a reduction in myelin and/or iron content. Quantitative MRI parameters in NABT are independent predictors of clinical status.
Collapse
Affiliation(s)
- Emilie Lommers
- GIGA - CRC in vivo Imaging, University of Liège, Liège, Belgium; Clinical Neuroimmunology Unit, Neurology Department, CHU Liège, Belgium.
| | - Jessica Simon
- Psychology and Neurosciences of Cognition Research Unit, University of Liège, Belgium
| | - Gilles Reuter
- GIGA - CRC in vivo Imaging, University of Liège, Liège, Belgium; Neurosurgery Department, CHU Liège, Belgium
| | - Gaël Delrue
- Clinical Neuroimmunology Unit, Neurology Department, CHU Liège, Belgium
| | - Dominique Dive
- Clinical Neuroimmunology Unit, Neurology Department, CHU Liège, Belgium
| | | | - Evelyne Balteau
- GIGA - CRC in vivo Imaging, University of Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA - CRC in vivo Imaging, University of Liège, Liège, Belgium; GIGA - in silico Medicine, University of Liège, Liège, Belgium
| | - Pierre Maquet
- GIGA - CRC in vivo Imaging, University of Liège, Liège, Belgium; Clinical Neuroimmunology Unit, Neurology Department, CHU Liège, Belgium
| |
Collapse
|
16
|
Bonnier G, Fischi-Gomez E, Roche A, Hilbert T, Kober T, Krueger G, Granziera C. Personalized pathology maps to quantify diffuse and focal brain damage. NEUROIMAGE-CLINICAL 2018; 21:101607. [PMID: 30502080 PMCID: PMC6413479 DOI: 10.1016/j.nicl.2018.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 10/02/2018] [Accepted: 11/18/2018] [Indexed: 01/04/2023]
Abstract
Background and objectives Quantitative MRI (qMRI) permits the quantification of brain changes compatible with inflammation, degeneration and repair in multiple sclerosis (MS) patients. In this study, we propose a new method to provide personalized maps of tissue alterations and longitudinal brain changes based on different qMRI metrics, which provide complementary information about brain pathology. Methods We performed baseline and two-years follow-up on (i) 13 relapsing-remitting MS patients and (ii) four healthy controls. A group consisting of up to 65 healthy controls was used to compute the reference distribution of qMRI metrics in healthy tissue. All subjects underwent 3T MRI examinations including T1, T2, T2* relaxation and Magnetization Transfer Ratio (MTR) imaging. We used a recent partial volume estimation algorithm to estimate the concentration of different brain tissue types on T1 maps; then, we computed a deviation map (z-score map) for each contrast at both time-points. Finally, we subtracted those deviation maps only for voxels showing a significant difference with healthy tissue in one of the time points, to obtain a difference map for each subject. Results and conclusion Control subjects did not show any significant z-score deviations or longitudinal z-score changes. On the other hand, MS patients showed brain regions with cross-sectional and longitudinal concomitant increase in T1, T2, T2* z-scores and decrease of MTR z-scores, suggesting brain tissue degeneration/loss. In the lesion periphery, we observed areas with cross-sectional and longitudinal decreased T1/T2 and slight decrease in T2* most likely related to iron accumulation. Moreover, we measured longitudinal decrease in T1, T2 - and to a lesser extent in T2* - as well as a concomitant increase in MTR, suggesting remyelination/repair. In summary, we have developed a method that provides whole-brain personalized maps of cross-sectional and longitudinal changes in MS patients, which are computed in patient space. These maps may open new perspectives to complement and support radiological evaluation of brain damage for a given patient.
Collapse
Affiliation(s)
- G Bonnier
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - E Fischi-Gomez
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - A Roche
- Advanced Clinical Imaging Technology (HC CEMEA SUI DI PI), Siemens Healthcare AG, Switzerland; Department of Radiology, University Hospital (CHUV), Lausanne, Switzerland; Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - T Hilbert
- Advanced Clinical Imaging Technology (HC CEMEA SUI DI PI), Siemens Healthcare AG, Switzerland; Department of Radiology, University Hospital (CHUV), Lausanne, Switzerland; Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - T Kober
- Advanced Clinical Imaging Technology (HC CEMEA SUI DI PI), Siemens Healthcare AG, Switzerland; Department of Radiology, University Hospital (CHUV), Lausanne, Switzerland; Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - G Krueger
- Siemens Healthcare AG (HC CEMEA DI), Zürich, Switzerland
| | - C Granziera
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
A G Teixeira RP, Malik SJ, Hajnal JV. Fast quantitative MRI using controlled saturation magnetization transfer. Magn Reson Med 2018; 81:907-920. [PMID: 30257044 PMCID: PMC6492254 DOI: 10.1002/mrm.27442] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/04/2018] [Accepted: 06/10/2018] [Indexed: 01/31/2023]
Abstract
Purpose This study demonstrates magnetization transfer (MT) effects directly affect relaxometry measurements and develops a framework that allows single‐pool models to be valid in 2‐pool MT systems. Methods A theoretical framework is developed in which a 2‐pool MT system effectively behaves as a single‐pool if the RMS RF magnetic field (B1rms{\text{B}}_{1}^{{{\text{rms}}}}) is kept fixed across all measurements. A practical method for achieving controlled saturation magnetization transfer (CSMT) using multiband RF pulses is proposed. Numerical, Phantom, and in vivo validations were performed directly comparing steady state (SS) estimation approaches that under correct single‐pool assumptions would be expected to vary in precision but not accuracy. Results Numerical simulations predict single‐pool estimates obtained from MT model generated data are not consistent for different SS estimation methods, and a systematic underestimation of T2 is expected. Neither effect occurs under the proposed CSMT approach. Both phantom and in vivo experiments corroborate the numerical predictions. Experimental data highlights that even when using the same relaxometry method, different estimates are obtained depending on which combination of flip angles (FAs) and TRs are used if the CSMT approach is not used. Using CSMT, stable measurements of both T1 and T2 are obtained. The measured T1(T1CSMT)) depends on B1rms{\text{B}}_{1}^{{{\text{rms}}}}, which is therefore an important parameter to specify. Conclusion This work demonstrates that conventional single pool relaxometry, which is highly efficient for human studies, results in unreliable parameter estimates in biological tissues because of MT effects. The proposed CSMT framework is shown to allow single‐pool assumptions to be valid, enabling reliable and efficient quantitative imaging to be performed.
Collapse
Affiliation(s)
- Rui Pedro A G Teixeira
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Shaihan J Malik
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom.,Centre for the Developing Brain, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Abstract
The 1996 originally established multiple sclerosis (MS) subtypes, based solely on clinical impression and consensus, were revised in 2013 to review potential imaging and biological correlates and to reflect recently identified clinical aspects of MS. As a result, potential new disease phenotypes, radiologically isolated syndrome, and clinically isolated syndrome were considered along with the addition of two new descriptor subtypes: activity and progression applied to relapsing remitting and progressive MS phenotypes. In this way, the description of an individual patient's disease course is refined and provides temporal information about the ongoing disease process. There is still a lack of imaging and biological markers that would distinguish MS phenotypes and prognosticate the disease course on an individual patient's level, creating a pressing need for large collaborative research efforts in this field.
Collapse
Affiliation(s)
- Sylvia Klineova
- The CGD Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Fred D Lublin
- The CGD Center for Multiple Sclerosis, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
19
|
Van Obberghen E, Mchinda S, le Troter A, Prevost VH, Viout P, Guye M, Varma G, Alsop DC, Ranjeva JP, Pelletier J, Girard O, Duhamel G. Evaluation of the Sensitivity of Inhomogeneous Magnetization Transfer (ihMT) MRI for Multiple Sclerosis. AJNR Am J Neuroradiol 2018; 39:634-641. [PMID: 29472299 DOI: 10.3174/ajnr.a5563] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/22/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Inhomogeneous magnetization transfer is a new endogenous MR imaging contrast mechanism that has demonstrated high specificity for myelin. Here, we tested the hypothesis that inhomogeneous magnetization transfer is sensitive to pathology in a population of patients with relapsing-remitting MS in a way that both differs from and complements conventional magnetization transfer. MATERIALS AND METHODS Twenty-five patients with relapsing-remitting MS and 20 healthy volunteers were enrolled in a prospective MR imaging research study, whose protocol included anatomic imaging, standard magnetization transfer, and inhomogeneous magnetization transfer imaging. Magnetization transfer and inhomogeneous magnetization transfer ratios measured in normal-appearing brain tissue and in MS lesions of patients were compared with values measured in control subjects. The potential association of inhomogeneous magnetization transfer ratio variations with the clinical scores (Expanded Disability Status Scale) of patients was further evaluated. RESULTS The magnetization transfer ratio and inhomogeneous magnetization transfer ratio measured in the thalami and frontal, occipital, and temporal WM of patients with MS were lower compared with those of controls (P < .05). The mean inhomogeneous magnetization transfer ratio measured in lesions was lower than that in normal-appearing WM (P < .05). Significant (P < .05) negative correlations were found between the clinical scores and inhomogeneous magnetization transfer ratio measured in normal-appearing WM structures. Weaker nonsignificant correlation trends were found for the magnetization transfer ratio. CONCLUSIONS The sensitivity of the inhomogeneous magnetization transfer technique for MS was highlighted by the reduction in the inhomogeneous magnetization transfer ratio in MS lesions and in normal-appearing WM of patients compared with controls. Stronger correlations with the Expanded Disability Status Scale score were obtained with the inhomogeneous magnetization transfer ratio compared with the standard magnetization transfer ratio, which may be explained by the higher specificity of inhomogeneous magnetization transfer for myelin.
Collapse
Affiliation(s)
- E Van Obberghen
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| | - S Mchinda
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| | - A le Troter
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| | - V H Prevost
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| | - P Viout
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| | - M Guye
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| | - G Varma
- Department of Radiology (G.V., D.C.A.), Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - D C Alsop
- Department of Radiology (G.V., D.C.A.), Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - J-P Ranjeva
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| | - J Pelletier
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
- Aix-Marseille University (J.P.), Assistance Publique des Hôpitaux de Marseille (APHM), Hôpital de La Timone, Pôle de Neurosciences Cliniques, Service de Neurologie, Marseille, France
| | - O Girard
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| | - G Duhamel
- From Aix-Marseille Université (E.V.O., S.M., A.l.T., V.H.P., P.V., M.G., J.-P.R., J.P., O.G., G.D.), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339 Centre National de Recherche Scientifique (CNRS), Marseille, France
| |
Collapse
|
20
|
Rocca MA, Comi G, Filippi M. The Role of T1-Weighted Derived Measures of Neurodegeneration for Assessing Disability Progression in Multiple Sclerosis. Front Neurol 2017; 8:433. [PMID: 28928705 PMCID: PMC5591328 DOI: 10.3389/fneur.2017.00433] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/08/2017] [Indexed: 12/26/2022] Open
Abstract
Introduction Multiple sclerosis (MS) is characterised by the accumulation of permanent neurological disability secondary to irreversible tissue loss (neurodegeneration) in the brain and spinal cord. MRI measures derived from T1-weighted image analysis (i.e., black holes and atrophy) are correlated with pathological measures of irreversible tissue loss. Quantifying the degree of neurodegeneration in vivo using MRI may offer a surrogate marker with which to predict disability progression and the effect of treatment. This review evaluates the literature examining the association between MRI measures of neurodegeneration derived from T1-weighted images and disability in MS patients. Methods A systematic PubMed search was conducted in January 2017 to identify MRI studies in MS patients investigating the relationship between “black holes” and/or atrophy in the brain and spinal cord, and disability. Results were limited to human studies published in English in the previous 10 years. Results A large number of studies have evaluated the association between the previous MRI measures and disability. These vary considerably in terms of study design, duration of follow-up, size, and phenotype of the patient population. Most, although not all, have shown that there is a significant correlation between disability and black holes in the brain, as well as atrophy of the whole brain and grey matter. The results for brain white matter atrophy are less consistently positive, whereas studies evaluating spinal cord atrophy consistently showed a significant correlation with disability. Newer ways of measuring atrophy, thanks to the development of segmentation and voxel-wise methods, have allowed us to assess the involvement of strategic regions of the CNS (e.g., thalamus) and to map the regional distribution of damage. This has resulted in better correlations between MRI measures and disability and in the identification of the critical role played by some CNS structures for MS clinical manifestations. Conclusion The evaluation of MRI measures of atrophy as predictive markers of disability in MS is a highly active area of research. At present, measurement of atrophy remains within the realm of clinical studies, but its utility in clinical practice has been recognized and barriers to its implementation are starting to be addressed.
Collapse
Affiliation(s)
- Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Giancarlo Comi
- Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.,Department of Neurology, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
21
|
Sanai SA, Saini V, Benedict RHB, Zivadinov R, Teter BE, Ramanathan M, Weinstock-Guttman B. Aging and multiple sclerosis. Mult Scler 2016; 22:717-25. [DOI: 10.1177/1352458516634871] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/01/2015] [Indexed: 01/30/2023]
Abstract
The life expectancy and average age of persons with multiple sclerosis (MS) have increased significantly during the last two decades. The introduction of disease-modifying therapies and a better delineation and understanding of the superimposed comorbidities often diagnosed in MS patients are probably the most important factors accountable for the increase in aging MS population worldwide. Healthcare teams must therefore address the problems arising due to advancing age superimposed on this chronic neurologic disease. In this review, we focus on the physiology of aging, its effects on MS disease course, and the pathological and immunological changes associated with aging and disease progression. Additionally, we discuss the common comorbidities that occur in aging persons with MS that may arise either as a result of the aging process or from relentless chronic MS disease progression as well as the challenges on differentiating the two processes for a more appropriate therapeutic approach.
Collapse
Affiliation(s)
- Shaik Ahmed Sanai
- Jacobs Comprehensive MS Treatment and Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Vasu Saini
- Jacobs Comprehensive MS Treatment and Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA/New York State MS Consortium, University at Buffalo, The State University of New York, Buffalo, NY, USA/Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Ralph HB Benedict
- Jacobs Comprehensive MS Treatment and Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA/New York State MS Consortium, University at Buffalo, The State University of New York, Buffalo, NY, USA/Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Jacobs Comprehensive MS Treatment and Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA/New York State MS Consortium, University at Buffalo, The State University of New York, Buffalo, NY, USA/Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Barbara E Teter
- Jacobs Comprehensive MS Treatment and Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA/New York State MS Consortium, University at Buffalo, The State University of New York, Buffalo, NY, USA/Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Murali Ramanathan
- Jacobs Comprehensive MS Treatment and Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA/New York State MS Consortium, University at Buffalo, The State University of New York, Buffalo, NY, USA/Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA/New York State MS Consortium, University at Buffalo, The State University of New York, Buffalo, NY, USA/Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
22
|
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory disease of the central nervous system characterised by immune-mediated demyelination, and is a leading cause of neurological disability worldwide. It has a wide spectrum of clinical presentations which overlap with other neurological conditions many times. Further, the radiological array of findings in MS can also be confused for multiple other conditions, leading to the need to look for the more typical findings, and interpret these in close conjunction with the clinical picture including temporal evolution. This review aims to revisit the MRI findings in MS, including recent innovations in imaging, and to help distinguish MS from its mimics.
Collapse
Affiliation(s)
- Aparna Katdare
- Department of Neuroradiology, Sir HN Reliance Foundation Hospital, Mumbai, Maharashtra, India
| | - Meher Ursekar
- Department of Neuroradiology, Sir HN Reliance Foundation Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
23
|
Tsili AC, Ntorkou A, Baltogiannis D, Sylakos A, Stavrou S, Astrakas LG, Maliakas V, Sofikitis N, Argyropoulou MI. Magnetization transfer imaging of normal and abnormal testis: preliminary results. Eur Radiol 2015; 26:613-21. [DOI: 10.1007/s00330-015-3867-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/01/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022]
|
24
|
Amann M, Papadopoulou A, Andelova M, Magon S, Mueller-Lenke N, Naegelin Y, Stippich C, Radue EW, Bieri O, Kappos L, Sprenger T. Magnetization transfer ratio in lesions rather than normal-appearing brain relates to disability in patients with multiple sclerosis. J Neurol 2015; 262:1909-17. [PMID: 26041614 DOI: 10.1007/s00415-015-7793-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 11/24/2022]
Abstract
Magnetization transfer ratio (MTR) is a semi-quantitative measure that seems to correlate with the degree of myelin loss and generally tissue destruction in multiple sclerosis (MS). Our objective was to comprehensively assess the MTR of lesions and normal appearing (NA) tissue separately in the white matter (WM), the cortex, the thalamus and the basal ganglia (BG) and determine their relative contribution to disability. In this cross-sectional study 71 patients were included (59 with relapsing-remitting MS, 12 with secondary progressive MS). We used a three-dimensional MTR sequence with high spatial resolution, based on balanced steady-state free precession. Mean MTR was calculated for lesions and NA tissue separately for each tissue type. Lesional MTR was lower than normal-appearing MTR in WM, cortex and thalamus. In the regression analysis, MTR of cortical lesions (β = -0.23, p = 0.05) and MTR of WML (β = -0.21, p = 0.08) were related by trend to the expanded disability status scale. MTR of WML significantly predicted the paced auditory serial-addition test (β = 0.35, p = 0.004). MTR of normal-appearing tissue did not relate to any outcome. Our results suggest that MTR of lesions in the white matter and cortex rather than of normal-appearing tissue relates to disability in patients with MS.
Collapse
Affiliation(s)
- Michael Amann
- Department of Neurology, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Siemonsen S, Young KL, Bester M, Sedlacik J, Heesen C, Fiehler J, Stellmann JP. Chronic T2 Lesions in Multiple Sclerosis are Heterogeneous Regarding Phase MR Imaging. Clin Neuroradiol 2015; 26:457-464. [PMID: 25895017 DOI: 10.1007/s00062-015-0389-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/23/2015] [Indexed: 01/26/2023]
Abstract
PURPOSE Phase imaging provides additional information on multiple sclerosis (MS) lesions and may in combination with mean diffusivity (MD) and magnetization transfer ratio (MTR) help differentiating heterogeneity of MS lesion pathology. METHODS Magnetic resonance imaging (MRI) was performed in 23 MS patients including diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), and SWI. Mean values (MTR, MD, and homodyne filtered phase) from 138 chronic MS lesions and normal appearing white matter (NAWM) were obtained and correlations examined. For explorative analysis, a divisive hierarchical clustering algorithm was applied. RESULTS Phase characteristics were an independent characteristic of chronic T2 lesions, as MTR and MD were not correlated with phase values (R = - 0.23, R = - 0.18). Dependent on MTR, MD, and phase, cluster analysis led to five lesion groups. Of the two groups with phase values close to NAWM, one presented with highest MD and most severe MTR decrease (p = 0.01), the other with slight MD increase and MTR decrease. Two lesion groups with highest phase values (p = 0.01) displayed slightly increased MD and moderate decrease in MTR. Clinical data including EDSS, disease duration, and age did not differ significantly between groups. CONCLUSIONS Increased phase is predominantly detectable in lesions with clear MTR decrease but only moderate MD increase. Phase images seem to represent an independent parameter for MS lesion characterization and may provide additional information on MS lesion heterogeneity.
Collapse
Affiliation(s)
- S Siemonsen
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - K L Young
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - M Bester
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - J Sedlacik
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - C Heesen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - J Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - J-P Stellmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
26
|
Alomair OI, Smith MT, Brereton IM, Galloway GJ, Kurniawan ND. Current developments in MRI for assessing rodent models of multiple sclerosis. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: MRI is a key radiological imaging technique that plays an important role in the diagnosis and characterization of heterogeneous multiple sclerosis (MS) lesions. Various MRI methodologies such as conventional T 1/T 2 contrast, contrast agent enhancement, diffusion-weighted imaging, magnetization transfer imaging and susceptibility weighted imaging have been developed to determine the severity of MS pathology, including demyelination/remyelination and brain connectivity impairment from axonal loss. The broad spectrum of MS pathology manifests in diverse patient MRI presentations and affects the accuracy of patient diagnosis. To study specific pathological aspects of the disease, rodent models such as experimental autoimmune encephalomyelitis, virus-induced and toxin-induced demyelination have been developed. This review aims to present key developments in MRI methodology for better characterization of rodent models of MS.
Collapse
Affiliation(s)
- Othman I Alomair
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
- College of Applied Medical Science, King Saud University, Riyadh, Saudi Arabia
| | - Maree T Smith
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Integrated Preclinical Drug Development, The University of Queensland, Brisbane, Queensland, Australia
| | - Ian M Brereton
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Graham J Galloway
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Voss P, Pike BG, Zatorre RJ. Evidence for both compensatory plastic and disuse atrophy-related neuroanatomical changes in the blind. ACTA ACUST UNITED AC 2014; 137:1224-40. [PMID: 24648057 DOI: 10.1093/brain/awu030] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The behavioural and neurofunctional consequences of blindness are becoming increasingly well established, and it has become evident that the amount of reorganization is directly linked to the behavioural adaptations observed in the blind. However investigations of potential neuroanatomical changes resulting from blindness have yielded conflicting results as to the nature of the observed changes, because apparent loss of occipital tissue is difficult to reconcile with observed functional recruitment. To address this issue we used two complementary brain measures of neuroanatomy, voxel-based morphometry and magnetization transfer imaging, with the latter providing insight into myelin concentration through the magnetization transfer ratio. Both early and late blind, as well as sighted control subjects participated in the study and were tested on a series of auditory and tactile tasks to provide behavioural data that we could relate to neuroanatomy. The behavioural findings show that the early blind outperform the sighted in four of five tasks, whereas the late blind do so for only one. Moreover, correlations between the auditory and tactile performance of early blind individuals seem to indicate that they might benefit from some general-purpose compensatory plasticity mechanisms, as opposed to modality-specific ones. Neuroanatomical findings reveal three key findings: (i) occipital regions in the early blind have higher magnetization transfer ratio and grey matter concentration than in the sighted; (ii) behavioural performance of the blind is strongly predicted by magnetization transfer ratio and grey matter concentration in different occipital regions; and (iii) lower grey matter and white matter concentration was also found in other occipital areas in the early blind compared to the sighted. We thus show a clear dissociation between anatomical changes that are direct result of sensory deprivation and consequent atrophy, and those related to compensatory reorganization and behavioural adaptations. Moreover, the magnetization transfer ratio results also suggest that one mechanism for this reorganization may be related to increased myelination of intracortical neurons, or perhaps of fibres conveying information to and from remote locations.
Collapse
Affiliation(s)
- Patrice Voss
- 1 Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | |
Collapse
|
28
|
Newbould RD, Nicholas R, Thomas CL, Quest R, Lee JSZ, Honeyfield L, Colasanti A, Malik O, Mattoscio M, Matthews PM, Sormani MP, Waldman AD, Muraro PA. Age independently affects myelin integrity as detected by magnetization transfer magnetic resonance imaging in multiple sclerosis. NEUROIMAGE-CLINICAL 2014; 4:641-8. [PMID: 24936415 PMCID: PMC4053639 DOI: 10.1016/j.nicl.2014.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/23/2014] [Accepted: 02/14/2014] [Indexed: 11/25/2022]
Abstract
Background Multiple sclerosis (MS) is a heterogeneous disorder with a progressive course that is difficult to predict on a case-by-case basis. Natural history studies of MS have demonstrated that age influences clinical progression independent of disease duration. Objective To determine whether age would be associated with greater CNS injury as detected by magnetization transfer MRI. Materials and methods Forty MS patients were recruited from out-patient clinics into two groups stratified by age but with similar clinical disease duration as well as thirteen controls age-matched to the older MS group. Images were segmented by automated programs and blinded readers into normal appearing white matter (NAWM), normal appearing gray matter (NAGM), and white matter lesions (WMLs) and gray matter lesions (GMLs) in the MS groups. WML and GML were delineated on T2-weighted 3D fluid-attenuated inversion recovery (FLAIR) and T1 weighted MRI volumes. Mean magnetization transfer ratio (MTR), region volume, as well as MTR histogram skew and kurtosis were calculated for each region. Results All MTR measures in NAGM and MTR histogram metrics in NAWM differed between MS subjects and controls, as expected and previously reported by several studies, but not between MS groups. However, MTR measures in the WML did significantly differ between the MS groups, in spite of no significant differences in lesion counts and volumes. Conclusions Despite matching for clinical disease duration and recording no significant WML volume difference, we demonstrated strong MTR differences in WMLs between younger and older MS patients. These data suggest that aging-related processes modify the tissue response to inflammatory injury and its clinical outcome correlates in MS. Magnetization transfer MRI was used in a cohort of 40 MS subjects differing by age. MTR metrics were different between MS groups and controls, as expected. MTR in normal appearing tissue did not differ between age-stratified MS groups. MTR in white matter lesions was strongly different between age-stratified MS groups. Results imply an age-related effect in tissue integrity in MR-visible lesions.
Collapse
Affiliation(s)
- R D Newbould
- Imanova Centre for Imaging Sciences, London, UK ; Division of Experimental Medicine, Imperial College London, UK
| | - R Nicholas
- Division of Brain Sciences, Imperial College London, UK
| | - C L Thomas
- Division of Brain Sciences, Imperial College London, UK
| | - R Quest
- Department of Imaging, Imperial College Healthcare NHS Trust, UK
| | - J S Z Lee
- Division of Brain Sciences, Imperial College London, UK
| | - L Honeyfield
- Department of Imaging, Imperial College Healthcare NHS Trust, UK
| | - A Colasanti
- Imanova Centre for Imaging Sciences, London, UK ; Division of Brain Sciences, Imperial College London, UK
| | - O Malik
- Division of Brain Sciences, Imperial College London, UK
| | - M Mattoscio
- Division of Brain Sciences, Imperial College London, UK
| | - P M Matthews
- Division of Brain Sciences, Imperial College London, UK ; Neurosciences, GlaxoSmithKline Research and Development, UK
| | - M P Sormani
- Department of Health Sciences (DISSAL), University of Genoa, Italy
| | - A D Waldman
- Division of Brain Sciences, Imperial College London, UK ; Department of Imaging, Imperial College Healthcare NHS Trust, UK
| | - P A Muraro
- Division of Brain Sciences, Imperial College London, UK ; Department of Clinical Neurosciences, Imperial College Healthcare NHS Trust, UK
| |
Collapse
|
29
|
Rovira A, Auger C, Alonso J. Magnetic resonance monitoring of lesion evolution in multiple sclerosis. Ther Adv Neurol Disord 2013; 6:298-310. [PMID: 23997815 DOI: 10.1177/1756285613484079] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Disease activity in multiple sclerosis (MS) is strongly linked to the formation of new lesions, which involves a complex sequence of inflammatory, degenerative, and reparative processes. Conventional magnetic resonance imaging (MRI) techniques, such as T2-weighted and gadolinium-enhanced T1-weighted sequences, are highly sensitive in demonstrating the spatial and temporal dissemination of demyelinating plaques in the brain and spinal cord. Hence, these techniques can provide quantitative assessment of disease activity in patients with MS, and they are commonly used in monitoring treatment efficacy in clinical trials and in individual cases. However, the correlation between conventional MRI measures of disease activity and the clinical manifestations of the disease, particularly irreversible disability, is weak. This has been explained by a process of exhaustion of both structural and functional redundancies that increasingly prevents repair and recovery, and by the fact that these imaging techniques do not suffice to explain the entire spectrum of the disease process and lesion development. Nonconventional MRI techniques, such as magnetization transfer imaging, diffusion-weighted imaging, and proton magnetic resonance spectroscopy, which can selectively measure the more destructive aspects of MS pathology and monitor the reparative mechanisms of this disease, are increasingly being used for serial analysis of new lesion formation and provide a better approximation of the pathological substrate of MS plaques. These nonconventional MRI-based measures better assess the serial changes in newly forming lesions and improve our understanding of the relationship between the damaging and reparative mechanisms that occur in MS.
Collapse
Affiliation(s)
- Alex Rovira
- Magnetic Resonance Unit (IDI), Department of Radiology, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | | | | |
Collapse
|
30
|
Abramson RG, Arlinghaus LR, Weis JA, Li X, Dula AN, Chekmenev EY, Smith SA, Miga MI, Abramson VG, Yankeelov TE. Current and emerging quantitative magnetic resonance imaging methods for assessing and predicting the response of breast cancer to neoadjuvant therapy. BREAST CANCER-TARGETS AND THERAPY 2012; 2012:139-154. [PMID: 23154619 DOI: 10.2147/bctt.s35882] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reliable early assessment of breast cancer response to neoadjuvant therapy (NAT) would provide considerable benefit to patient care and ongoing research efforts, and demand for accurate and noninvasive early-response biomarkers is likely to increase. Response assessment techniques derived from quantitative magnetic resonance imaging (MRI) hold great potential for integration into treatment algorithms and clinical trials. Quantitative MRI techniques already available for assessing breast cancer response to neoadjuvant therapy include lesion size measurement, dynamic contrast-enhanced MRI, diffusion-weighted MRI, and proton magnetic resonance spectroscopy. Emerging yet promising techniques include magnetization transfer MRI, chemical exchange saturation transfer MRI, magnetic resonance elastography, and hyperpolarized MR. Translating and incorporating these techniques into the clinical setting will require close attention to statistical validation methods, standardization and reproducibility of technique, and scanning protocol design.
Collapse
Affiliation(s)
- Richard G Abramson
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA ; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA ; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Naismith SL, Norrie LM, Mowszowski L, Hickie IB. The neurobiology of depression in later-life: Clinical, neuropsychological, neuroimaging and pathophysiological features. Prog Neurobiol 2012; 98:99-143. [DOI: 10.1016/j.pneurobio.2012.05.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 05/03/2012] [Accepted: 05/09/2012] [Indexed: 02/07/2023]
|
32
|
Riley C, Azevedo C, Bailey M, Pelletier D. Clinical applications of imaging disease burden in multiple sclerosis: MRI and advanced imaging techniques. Expert Rev Neurother 2012; 12:323-33. [PMID: 22364331 DOI: 10.1586/ern.11.196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review will address the critical role of radiographic techniques in monitoring multiple sclerosis disease course and response to therapeutic interventions using conventional imaging. We propose an algorithm of obtaining a contrast-enhanced brain MRI 6 months after starting a disease-modifying therapy, and considering a gadolinium-enhancing lesion on that scan to indicate suboptimal response to therapy. New or enlarging T2 lesions should be followed on scans at 6-month intervals to assess for change, and the presence of one or more enhancing lesions on a 6- or 12-month scan, or two or more new or enlarging T2 lesions on a 12-month scan should prompt consideration of therapy change. New techniques such as PET imaging, magnetic resonance spectroscopy, magnetic resonance relaxometry, iron-sensitive imaging and perfusion MRI will also be overviewed, with their potential roles in monitoring disease course and activity.
Collapse
Affiliation(s)
- Claire Riley
- Yale University School of Medicine, Yale Multiple Sclerosis Center, 40 Temple St LL, New Haven, CT 06510, USA.
| | | | | | | |
Collapse
|
33
|
Calamante F, Tournier JD, Smith RE, Connelly A. A generalised framework for super-resolution track-weighted imaging. Neuroimage 2012; 59:2494-503. [PMID: 21925280 DOI: 10.1016/j.neuroimage.2011.08.099] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/02/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022] Open
|
34
|
Kitzler HH, Su J, Zeineh M, Harper-Little C, Leung A, Kremenchutzky M, Deoni SC, Rutt BK. Deficient MWF mapping in multiple sclerosis using 3D whole-brain multi-component relaxation MRI. Neuroimage 2011; 59:2670-7. [PMID: 21920444 DOI: 10.1016/j.neuroimage.2011.08.052] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 12/14/2022] Open
Abstract
Recent multiple sclerosis (MS) MRI research has highlighted the need to move beyond the lesion-centric view and to develop and validate new MR imaging strategies that quantify the invisible burden of disease in the brain and establish much more sensitive and specific surrogate markers of clinical disability. One of the most promising of such measures is myelin-selective MRI that allows the acquisition of myelin water fraction (MWF) maps, a parameter that is correlated to brain white matter (WM) myelination. The aim of our study was to apply the newest myelin-selective MRI method, multi-component Driven Equilibrium Single Pulse Observation of T1 and T2 (mcDESPOT) in a controlled clinical MS pilot trial. This study was designed to assess the capabilities of this new method to explain differences in disease course and degree of disability in subjects spanning a broad spectrum of MS disease severity. The whole-brain isotropically-resolved 3D acquisition capability of mcDESPOT allowed for the first time the registration of 3D MWF maps to standard space, and consequently a formalized voxel-based analysis of the data. This approach combined with image segmentation further allowed the derivation of new measures of MWF deficiency: total deficient MWF volume (DV) in WM, in WM lesions, in diffusely abnormal white matter and in normal appearing white matter (NAWM). Deficient MWF volume fraction (DVF) was derived from each of these by dividing by the corresponding region volume. Our results confirm that lesion burden does not correlate well with clinical disease activity measured with the extended disability status scale (EDSS) in MS patients. In contrast, our measurements of DVF in NAWM correlated significantly with the EDSS score (R2=0.37; p<0.001). The same quantity discriminated clinically isolated syndrome patients from a normal control population (p<0.001) and discriminated relapsing-remitting from secondary-progressive patients (p<0.05); hence this new technique may sense early disease-related myelin loss and transitions to progressive disease. Multivariate analysis revealed that global atrophy, mean whole-brain myelin water fraction and white matter atrophy were the three most important image-derived parameters for predicting clinical disability (EDSS). Overall, our results demonstrate that mcDESPOT-defined measurements in NAWM show great promise as imaging markers of global clinical disease activity in MS. Further investigation will determine if this measure can serve as a risk factor for the conversion into definite MS and for the secondary transition into irreversible disease progression.
Collapse
Affiliation(s)
- Hagen H Kitzler
- Department of Neuroadiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hayton T, Furby J, Smith KJ, Altmann DR, Brenner R, Chataway J, Hunter K, Tozer DJ, Miller DH, Kapoor R. Clinical and imaging correlates of the multiple sclerosis impact scale in secondary progressive multiple sclerosis. J Neurol 2011; 259:237-45. [DOI: 10.1007/s00415-011-6151-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 06/15/2011] [Indexed: 10/17/2022]
|
36
|
Abstract
Owing to its ability to depict the pathologic features of multiple sclerosis (MS) in exquisite detail, conventional magnetic resonance (MR) imaging has become an established tool in the diagnosis of this disease and in monitoring its evolution. MR imaging has been formally included in the diagnostic work-up of patients who present with a clinically isolated syndrome suggestive of MS, and ad hoc diagnostic criteria have been proposed and are updated on a regular basis. In patients with established MS and in those participating in treatment trials, examinations performed with conventional MR pulse sequences provide objective measures to monitor disease activity and progression; however, they have a limited prognostic role. This has driven the application of newer MR imaging technologies, including higher-field-strength MR units, to estimate overall MS burden and mechanisms of recovery in patients at different stages of the disease. These techniques have allowed in vivo assessment of the heterogeneity of MS pathologic features in focal lesions and in normal-appearing tissues. More recently, some of the finer details of MS, including macrophage infiltration and abnormal iron deposition, have become quantifiable with MR imaging. The utility of these modern MR techniques in clinical trial monitoring and in the assessment of the individual patient's response to treatment still need to be evaluated.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, Scientific Institute and University Hospital San Raffaele, Via Olgettina 60, 20132 Milan, Italy.
| | | |
Collapse
|
37
|
Inglese M, Oesingmann N, Casaccia P, Fleysher L. Progressive multiple sclerosis and gray matter pathology: an MRI perspective. ACTA ACUST UNITED AC 2011; 78:258-67. [PMID: 21425269 DOI: 10.1002/msj.20247] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The evidence suggesting a role of extensive cortical demyelization and atrophy in progressive multiple sclerosis is rapidly increasing. Although conventional magnetic resonance imaging has had a huge impact on multiple sclerosis by enabling an earlier diagnosis, and by providing surrogate markers for monitoring disease response to anti-inflammatory/immunomodulatory treatments, it is limited by the low pathological specificity and the low sensitivity to both diffuse damage in normal-appearing white matter and focal and diffuse damage in gray matter. Advanced magnetic resonance imaging techniques can partially overcome these limitations by providing markers more specific to the underlying pathologic substrates and more sensitive to the structural and functional "occult" brain tissue damage in patients with multiple sclerosis. This review describes brain and spinal cord imaging studies of multiple sclerosis with particular emphasis on gray matter imaging in both secondary progressive and primary progressive multiple sclerosis, discusses the clinical implications of gray matter damage, and outlines current magnetic resonance imaging developments at high and ultrahigh magnetic field strength.
Collapse
Affiliation(s)
- Matilde Inglese
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA.
| | | | | | | |
Collapse
|
38
|
Mistry N, Tallantyre EC, Dixon JE, Galazis N, Jaspan T, Morgan PS, Morris P, Evangelou N. Focal multiple sclerosis lesions abound in ‘normal appearing white matter’. Mult Scler 2011; 17:1313-23. [DOI: 10.1177/1352458511415305] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: The ‘normal appearing white matter’ (NAWM) in multiple sclerosis (MS) is known to be abnormal using quantitative magnetic resonance (MR) techniques. The aetiology of the changes in NAWM remains debatable. Objective: To investigate whether high-field and ultra high-field T1-weighted magnetization prepared rapid acquisition gradient echo (MPRAGE) MRI enables detection of MS white matter lesions in areas defined as NAWM using high-field T2-weighted fluid attenuation inversion recovery (FLAIR) MRI; that is, to ascertain whether undetected lesions are likely contributors to the burden of abnormality in similarly defined NAWM. Methods: Fourteen MS patients underwent MRI scans using 3T FLAIR and MPRAGE and 7 Tesla (7T) MPRAGE sequences. Independent observers identified lesions on 3T FLAIR and (7T and 3T) MPRAGE images. The detection of every individual lesion was then compared for each image type. Results: We identified a total of 812 white matter lesions on 3T FLAIR. Using 3T MPRAGE, 186 additional lesions were detected that were not detected using 3T FLAIR. Using 7T MPRAGE, 231 additional lesions were detected that were not detected using 3T FLAIR. Conclusions: MRI with 3T and 7T MPRAGE enables detection of MS lesions in areas defined as NAWM using 3T FLAIR. Focal MS lesions contribute to the abnormalities known to exist in the NAWM.
Collapse
Affiliation(s)
- Niraj Mistry
- Division of Clinical Neurology, University of Nottingham, Queen’s Medical Centre, UK
| | - Emma C Tallantyre
- Clinical Neurology Department, Nottingham University Hospitals NHS Trust, UK
| | - Jennifer E Dixon
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, UK
| | - Nicolas Galazis
- Division of Clinical Neurology, University of Nottingham, Queen’s Medical Centre, UK
| | - Tim Jaspan
- Department of Neuroradiology, Nottingham University Hospitals NHS Trust, UK
| | - Paul S Morgan
- Department of Medical Physics, Nottingham University Hospitals NHS Trust, UK
| | - Peter Morris
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, University of Nottingham, UK
| | - Nikos Evangelou
- Division of Clinical Neurology, University of Nottingham, Queen’s Medical Centre, UK
| |
Collapse
|
39
|
Racke MK. Immunopathogenesis of multiple sclerosis. Ann Indian Acad Neurol 2011; 12:215-20. [PMID: 20182567 PMCID: PMC2824947 DOI: 10.4103/0972-2327.58274] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/10/2009] [Accepted: 07/06/2009] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a suspected autoimmune disease in which myelin-specific CD4+ and CD8+ T cells enter the central nervous system (CNS) and initiate an inflammatory response directed against myelin and other components of the CNS. Acute MS exacerbations are believed be the result of active inflammation, and progression of disability is generally believed to reflect accumulation of damage to the CNS, particularly axonal damage. Over the last several years, the pathophysiology of MS is being appreciated to be much more complex, and it appears that the development of the MS plaque involves a large number of cell populations, including CD8+ T lymphocytes, B cells, and Th17 cells (a population of helper T cells that secrete the inflammatory cytokine IL-17). The axonal transection and degeneration that is thought to represent the basis for progressive MS is now recognized to begin early in the disease process and to continue in the progressive forms of the disease. Molecules important for limiting aberrant neural connections in the CNS have been identified, which suppress axonal sprouting and regeneration of transected axons within the CNS. Pathways have also been identified that prevent remyelination of the MS lesion by oligodendrocyte precursors. Novel neuroimaging methodologies and potential biomarkers are being developed to monitor various aspects of the disease process in MS. As we identify the pathways responsible for the clinical phenomena of MS, we will be able to develop new therapeutic strategies for this disabling illness of young adults.
Collapse
Affiliation(s)
- Michael K Racke
- The Helen C. Kurtz Chair of Neurology, The Ohio State University Medical Center, 395 West 12 Avenue, Columbus, OH 43210 USA
| |
Collapse
|
40
|
|
41
|
Influence of neurosteroids on the pathogenesis of multiple sclerosis. Med Hypotheses 2010; 75:229-34. [PMID: 20227191 DOI: 10.1016/j.mehy.2010.02.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/21/2010] [Indexed: 11/22/2022]
Abstract
This paper summarizes neuroendocrine effects on myelination and their possible relevance for the pathogenesis of multiple sclerosis (MS). Steroid hormones known as neurosteroids are synthesized in the human central nervous system (CNS) and exert local effects on glial and neuronal tissue. Progesterone derivatives seem to act as promyelinating factors in the slow but continuous process of myelin maintenance in the adult human brain. Diminished production of these myelin-promoting factors may lead to the formation of structurally altered and less stable myelin, resulting in the observed pathology of the normal-appearing white matter (NAWM) in MS. Dysmyelination, characterized by an altered myelin protein composition, reduced myelin content and increased vulnerability of the myelin sheath, precedes the formation of inflammatory lesions and the clinical onset of disease. Defects in the myelin sheath first occur in mechanically strained areas of the brain, where myelin turnover is physiologically increased. The continuous exposure of myelin proteins, normally sheltered from immunosurveillance, will lead to microglia activation and phagocytosis of myelin. Phagocytic cells from the brain and myelin material may drain to cervical lymph nodes with subsequent priming of T-cells. Finally, heterogenous focal auto-inflammatory reactions contribute to the clinical symptoms of the disease. Neurosteroids influence the biochemical composition of myelin proteins and promote myelin renewal. These promyelinating neurosteroidal functions seem to be impaired in the MS brain. Contrary to the view of auto-inflammatory demyelination being a causative factor in MS pathogenesis, it is argued here that widespread dysmyelination in the adult human brain precedes and induces a focal immune response to various myelin compounds.
Collapse
|
42
|
Mesaros S, Rocca M, Sormani M, Valsasina P, Markowitz C, De Stefano N, Montalban X, Barkhof F, Ranjeva J, Sailer M, Kappos L, Comi G, Filippi M. Bimonthly assessment of magnetization transfer magnetic resonance imaging parameters in multiple sclerosis: a 14-month, multicentre, follow-up study. Mult Scler 2010; 16:325-31. [PMID: 20086023 DOI: 10.1177/1352458509358713] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study was performed to assess the temporal evolution of damage within lesions and the normal-appearing white matter, measured using frequent magnetization transfer (MT) MRI, in relapsing-remitting multiple sclerosis (RRMS). The relationship of MT ratio (MTR) changes with measures of lesion burden, and the sample sizes needed to demonstrate a treatment effect on MTR metrics in placebo-controlled MS trials were also investigated. Bimonthly brain conventional and MT MRI scans were acquired from 42 patients with RRMS enrolled in the placebo arm of a 14-month, double-blind trial. Longitudinal MRI changes were evaluated using a random effect linear model accounting for repeated measures, and adjusted for centre effects. The Expanded Disability Status Scale (EDSS) score remained stable over the study period. A weak, but not statistically significant, decrease over time was detected for normal-appearing brain tissue (NABT) average MTR (-0.02% per visit; p = 0.14), and MTR peak height (-0.15 per visit; p = 0.17), while average lesion MTR showed a significant decrease over the study period (-0.07% per visit; p = 0.03). At each visit, all MTR variables were significantly correlated with T2 lesion volume (LV) (average coefficients of correlation ranging from -0.54 to -0.28, and p-values from <0.001 to 0.02). At each visit, NABT average MTR was also significantly correlated with T1-hypointense LV (average coefficient of correlation = -0.57, p < 0.001). The estimation of the sample sizes required to demonstrate a reduction of average lesion MTR (the only parameter with a significant decrease over the follow-up) ranged from 101 to 154 patients to detect a treatment effect of 50% in a 1-year trial with a power of 90%. The steady correlation observed between conventional and MT MRI measures over time supports the hypothesis of axonal degeneration of fibres passing through focal lesions as one of the factors contributing to the overall MS burden.
Collapse
Affiliation(s)
- S Mesaros
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, 20132 Milan Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Filippi M, Rocca MA. MR imaging of gray matter involvement in multiple sclerosis: implications for understanding disease pathophysiology and monitoring treatment efficacy. AJNR Am J Neuroradiol 2009; 31:1171-7. [PMID: 20044503 DOI: 10.3174/ajnr.a1944] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Recent pathologic and MR imaging studies have challenged the classic view of MS as a chronic inflammatory-demyelinating condition affecting solely the WM of the central nervous system. Indeed, an involvement of the GM has been shown to occur from the early stages of the disease, to progress with time, and to be only moderately correlated with the extent of WM injury. In this review, we summarize how advances in MR imaging technology and methods of analysis are contributing to ameliorating the detection of focal lesions and to quantifying the extent of "occult" pathology and atrophy, as well as to defining the topographic distribution of such changes in the GM of patients with MS. These advances, combined with the imaging of brain reorganization occurring after tissue injury, should ultimately result in an improved understanding and monitoring of MS clinical manifestations and evolution, either natural or modified by treatment.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, Scientific Institute and University Hospital San Raffaele, Milan, Italy.
| | | |
Collapse
|
44
|
Magnetization transfer imaging in 'premanifest' Huntington's disease. J Neurol 2009; 257:426-32. [PMID: 19823894 PMCID: PMC2837878 DOI: 10.1007/s00415-009-5339-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 09/07/2009] [Accepted: 09/22/2009] [Indexed: 11/06/2022]
Abstract
To investigate whether magnetization transfer imaging (MTI) is a useful detector of diffuse brain abnormalities in ‘premanifest’ carriers of the Huntington’s disease (HD) gene mutation. Furthermore we examined the relations between MTI, clinical measures and CAG repeat length. Sixteen premanifest carriers of the HD gene without motor manifestation and 14 non-carriers underwent a clinical evaluation and a MRI scan. MTI analysis of whole brain, grey matter and white matter was performed producing magnetization transfer ratio (MTR) histograms. A lower peak height of the grey matter MTR histogram in carriers was significantly associated with more UHDRS motor abnormalities. Furthermore, a lower peak height of the whole brain, grey and white matter was strongly associated with a longer CAG repeat length. MTI measures themselves did not differ significantly between carriers and non-carriers. In premanifest HD mutation carriers, a lower MTR peak height, reflecting worse histological brain composition, was related to subtle motor abnormalities and higher CAG repeat length. Although we could not detect altered MTI characteristics in carriers of the HD gene mutation without clinical manifestations, we did provide evidence that the MTR peak height might reflect genetic and subclinical disease burden and may be of value in monitoring further disease progression and provide insight in clinical heterogeneity.
Collapse
|
45
|
Zhang TJ, Wu QZ, Huang XQ, Sun XL, Zou K, Lui S, Liu F, Hu JM, Kuang WH, Li DM, Li F, Chen HF, Chan RCK, Mechelli A, Gong QY. Magnetization transfer imaging reveals the brain deficit in patients with treatment-refractory depression. J Affect Disord 2009; 117:157-61. [PMID: 19211150 DOI: 10.1016/j.jad.2009.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/04/2009] [Accepted: 01/05/2009] [Indexed: 02/05/2023]
Abstract
BACKGROUND Studies on treatment resistant depression (TRD) using advanced magnetic resonance imaging techniques are very limited. METHODS A group of 15 patients with clinically defined TRD and 15 matched healthy controls underwent magnetization transfer imaging (MTI) and T1-weighted (T1W) imaging. MTI data were processed and analyzed voxel-wised in SPM2. A voxel based morphometric (VBM) analysis was performed using T1W images. RESULTS Reduced magnetization transfer ratio was observed in the TRD group relative to normal controls in the anterior cingulate, insula, caudate tail and amygdala-parahippocampal areas. All these regions were identified within the right hemisphere. VBM revealed no morphological abnormalities in the TRD group compared to the control group. Negative correlations were found between MRI and clinical measures in the inferior temporal gyrus. LIMITATIONS The cross-sectional design and small sample size. CONCLUSIONS The findings suggest that MTI is capable of identifying subtle brain abnormalities which underlie TRD and in general more sensitive than morphological measures.
Collapse
Affiliation(s)
- Ti-Jiang Zhang
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Glisson CC, Galetta SL. Nonconventional Optic Nerve Imaging in Multiple Sclerosis. Neuroimaging Clin N Am 2009; 19:71-9. [DOI: 10.1016/j.nic.2008.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Abstract
Proton magnetic resonance spectroscopy ((1)H-MRS) provides tissue metabolic information in vivo. This article reviews the role of MRS-determined metabolic alterations in lesions, normal-appearing white matter, gray matter, and spinal cord in advancing our knowledge of pathologic changes in multiple sclerosis (MS). In addition, the role of MRS in objectively evaluating therapeutic efficacy is reviewed. This potential metabolic information makes MRS a unique tool to follow MS disease evolution, understand its pathogenesis, evaluate the disease severity, establish a prognosis, and objectively evaluate the efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Balasrinivasa R. Sajja
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE 68198-1045, (402) 559-3861, (402) 559-4829 (fax), (email)
| | - Jerry S. Wolinsky
- Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, (713) 500-7048, (713) 500-7041 (fax), (email)
| | - Ponnada A. Narayana
- Department of Diagnostic and Interventional Imaging, University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX 77030, (713) 500-7677, (713) 500-7684 (fax), (email)
| |
Collapse
|
48
|
Filippi M, Agosta F. Closing the Clinical-Imaging Gap in Multiple Sclerosis? Imaging Iron Deposition in Deep Gray Matter. J Neuroimaging 2009; 19:1-2. [DOI: 10.1111/j.1552-6569.2008.00349.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
49
|
Magnetic resonance techniques to quantify tissue damage, tissue repair, and functional cortical reorganization in multiple sclerosis. PROGRESS IN BRAIN RESEARCH 2009; 175:465-82. [PMID: 19660674 DOI: 10.1016/s0079-6123(09)17531-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A dramatic paradigm shift is taking place in our understanding of the pathophysiology of multiple sclerosis (MS). An important contribution to such a shift has been made possible by the advances in magnetic resonance imaging (MRI) technology, which allows structural damage to be quantified in the brains of patients with MS and to be followed over the course of the disease. Modern quantitative MR techniques have reshaped the picture of MS, leading to the definition of the so- called "axonal hypothesis" (i.e., changes in axonal metabolism, morphology, or density are important determinants of functional impairment in MS). Metrics derived from magnetization transfer and diffusion-weighted MRI enable us to quantify the extent of structural changes occurring within T2-visible lesions and normal-appearing tissues (including gray matter), with increased pathological specificity over conventional MRI to irreversible tissue damage; proton MR spectroscopy adds valuable pieces of information on the biochemical nature of such changes. Finally, functional MRI can provide new insights into the role of cortical adaptive changes in limiting the clinical consequences of MS-related irreversible structural damage. Our current understanding of the pathophysiology of MS is that this is not only a disease of the white matter, characterized by focal inflammatory lesions, but also a disease involving more subtle and diffuse damage throughout the white and gray matter. The inflammatory and neurodegenerative components of the disease process are present from the earliest observable phases of the disease, but appear to be, at least partially, dissociated. In addition, recovery and repair play an important role in the genesis of the clinical manifestations of the disease, involving both structural changes and plastic reorganization of the cortex. This new picture of MS has important implications in the context of treatment options, since it suggests that agents that protect against neurodegeneration or promote tissue repair may have an important role to play alongside agents acting on the inflammatory component of the disease.
Collapse
|
50
|
Tuor UI, Meng S, Qiao M, Webster NB, Crowley SM, Dyck RH, Tomanek B. Differential progression of magnetization transfer imaging changes depending on severity of cerebral hypoxic-ischemic injury. J Cereb Blood Flow Metab 2008; 28:1613-23. [PMID: 18506197 DOI: 10.1038/jcbfm.2008.49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We hypothesized that magnetic resonance magnetization transfer (MT) imaging would be sensitive for detecting cerebral ischemic injury in white matter of neonatal brain. We compared the progression of changes in T(2) and the MT ratio (MTR) after cerebral hypoxic-ischemic insults of differing severity in neonatal rats. Magnetization transfer imaging parameters were first optimized, and then MTR and T(2) maps were acquired at various times after a mild (rather selective white matter) or substantial insult produced by unilateral cerebral hypoxia-ischemia. Depending on insult severity, time after insult, and region (e.g., subcortical white matter or cortex), cerebral hypoxia-ischemia produced reductions in MTR and an increase in T(2). The exception was acutely at 1 to 5 h at which time points MTR was reduced ipsilaterally in white matter, whereas T(2) was not affected significantly. Progression of imaging changes differed in rats grouped according to whether gross damage was present after chronic recovery. Behavioral changes were generally associated with chronic reductions in MTR and gross brain damage. Magnetization transfer imaging was capable of early detection of hypoxic-ischemic injury and particularly sensitive for identifying the progression of cerebral injury in white matter. Magnetization transfer ratio has potential for assisting with early diagnosis and treatment assessment for infants affected by perinatal hypoxia-ischemia.
Collapse
Affiliation(s)
- Ursula I Tuor
- MR Technology, Institute for Biodiagnostics (West), Calgary, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|