1
|
Li T, Zhang RS, True JR. Genetic variation for sexual dimorphism in developmental traits in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae010. [PMID: 38427952 PMCID: PMC10989870 DOI: 10.1093/g3journal/jkae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 03/03/2024]
Abstract
Sexual dimorphism in traits of insects during the developmental stages could potentially be the direct or indirect result of sex-specific selection provided that genetic variation for sexual dimorphism is present. We investigated genetic variation in sexual dimorphism in a set of Drosophila melanogaster inbred lines for 2 traits: egg to adult development time and pupation site preference. We observed considerable genetic variation in sexual dimorphism among lines in both traits. The sexual dimorphic patterns remained relatively consistent across multiple trials, despite both traits being sensitive to environmental conditions. Additionally, we measured 2 sexually dimorphic adult morphological traits in 6 sampled lines and investigated correlations in the sexual dimorphism patterns with the 2 developmental traits. The abundance of genetic variation in sexual dimorphism for D. melanogaster developmental traits demonstrated in this study provides evidence for a high degree of evolvability of sex differences in preadult traits in natural populations.
Collapse
Affiliation(s)
- Tianyu Li
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Rebecca S Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - John R True
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Guilhot R, Xuéreb A, Lagmairi A, Olazcuaga L, Fellous S. Microbiota acquisition and transmission in Drosophila flies. iScience 2023; 26:107656. [PMID: 37670792 PMCID: PMC10475513 DOI: 10.1016/j.isci.2023.107656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023] Open
Abstract
Understanding the ecological and evolutionary dynamics of host-microbiota associations notably involves exploring how members of the microbiota assemble and whether they are transmitted along host generations. Here, we investigate the larval acquisition of facultative bacterial and yeast symbionts of Drosophila melanogaster and Drosophila suzukii in ecologically realistic setups. Fly mothers and fruit were major sources of symbionts. Microorganisms associated with adult males also contributed to larval microbiota, mostly in D. melanogaster. Yeasts acquired at the larval stage maintained through metamorphosis, adult life, and were transmitted to offspring. All these observations varied widely among microbial strains, suggesting they have different transmission strategies among fruits and insects. Our approach shows microbiota members of insects can be acquired from a diversity of sources and highlights the compound nature of microbiotas. Such microbial transmission events along generations should favor the evolution of mutualistic interactions and enable microbiota-mediated local adaptation of the insect host.
Collapse
Affiliation(s)
- Robin Guilhot
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
| | - Anne Xuéreb
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
| | - Auxane Lagmairi
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
| | - Laure Olazcuaga
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Simon Fellous
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, 34000 Montpellier, France
| |
Collapse
|
3
|
Reyes-Ramírez A, Belgaidi Z, Gibert P, Pommier T, Siberchicot A, Mouton L, Desouhant E. Larval density in the invasive Drosophila suzukii: Immediate and delayed effects on life-history traits. Ecol Evol 2023; 13:e10433. [PMID: 37636864 PMCID: PMC10450837 DOI: 10.1002/ece3.10433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
The effects of density are key in determining population dynamics, since they can positively or negatively affect the fitness of individuals. These effects have great relevance for polyphagous insects for which immature stages develop within a single site of finite feeding resources. Drosophila suzukii is a crop pest that induces severe economic losses for agricultural production; however, little is known about the effects of density on its life-history traits. In the present study, we (i) investigated the egg distribution resulting from females' egg-laying strategy and (ii) tested the immediate (on immatures) and delayed (on adults) effects of larval density on emergence rate, development time, potential fecundity, and adult size. The density used varied in a range between 1 and 50 larvae. We showed that 44.27% of the blueberries used for the oviposition assay contained between 1 and 11 eggs in aggregates. The high experimental density (50 larvae) has no immediate effect in the emergence rate but has effect on larval developmental time. This trait was involved in a trade-off with adult life-history traits: The time of larval development was reduced as larval density increased, but smaller and less fertile females were produced. Our results clearly highlight the consequences of larval crowding on the juveniles and adults of this fly.
Collapse
Affiliation(s)
- Alicia Reyes-Ramírez
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Zaïnab Belgaidi
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Patricia Gibert
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Thomas Pommier
- UMR 1418, Laboratoire d'Ecologie Microbienne, INRAE, CNRS, VetAgro Sup Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Aurélie Siberchicot
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Laurence Mouton
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Emmanuel Desouhant
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| |
Collapse
|
4
|
Pupal size as a proxy for fat content in laboratory-reared and field-collected Drosophila species. Sci Rep 2022; 12:12855. [PMID: 35896578 PMCID: PMC9329298 DOI: 10.1038/s41598-022-15325-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
In arthropods, larger individuals tend to have more fat reserves, but data for many taxa are still missing. For the vinegar fly Drosophila melanogaster, only few studies have provided experimental data linking body size to fat content. This is rather surprising considering the widespread use of D. melanogaster as a model system in biology. Here, we hypothesized that fat content in D. melanogaster is positively correlated with body size. To test this, we manipulated the developmental environment of D. melanogaster by decreasing food availability. We then measured pupal size and quantified fat content of laboratory-reared D. melanogaster. We subsequently measured pupal size and fat content of several field-caught Drosophila species. Starvation, crowding, and reduced nutrient content led to smaller laboratory-reared pupae that contained less fat. Pupal size was indeed found to be positively correlated with fat content. The same correlation was found for field-caught Drosophila pupae belonging to different species. As fat reserves are often strongly linked to fitness in insects, further knowledge on the relationship between body size and fat content can provide important information for studies on insect ecology and physiology.
Collapse
|
5
|
Mital A, Sarangi M, Nandy B, Pandey N, Joshi A. Shorter effective lifespan in laboratory populations of D. melanogaster might reduce sexual selection. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03158-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
The role of sexual selection in mediating levels of sexual conflict has been demonstrated in many experimental evolution studies on Drosophila spp. where competition among males for mating was the target of selection. Sexual selection has also been shown to affect the evolution of life-histories. However, the influence of divergent life-histories on reproductive strategies and, therefore, sexual selection and possibly sexual conflict has been less well studied. We examined D. melanogaster populations selected for a short development time and early age at reproduction for changes in reproductive behavior and traits that are proxies of sexual selection. We report a large reduction in reproductive competition experienced by the males of these populations, compared to ancestral populations that are not consciously selected for rapid development or early reproduction, potentially leading to reduced sexual selection. We show that rapidly developing and early reproducing populations have very low levels of mating in their lifetime (females are more or less monandrous), low courtship levels, shorter copulation duration, and longer time from eclosion to first mating, compared to the controls. These results are discussed in the context of the previously demonstrated reduction of inter-locus sexual conflict in these populations. We show that life-history strategies might have a large and significant impact on sexual selection, with each influencing the other and contributing to the complexities of adaptation.
Significance statement
Sexual conflict, often manifested as an arms-race between males and females trying to enhance their own reproductive success at some cost to the other, is of great evolutionary interest because it can maintain genetic variation in populations, prevent the independent optimization of male and female traits, and also promote speciation. Sexual selection, or variation in mating success, is well known to affect levels of sexual conflict. However, it is not so clear whether, and how, the regular evolution of life-histories also affects sexual selection. Here, we show that life-history evolution in fruit fly populations selected for traits not directly related to sexual conflict might, nevertheless, mediate the possible evolution of altered sexual conflict levels through effects on sexual selection. Populations that evolved to develop to adulthood fast, and reproduce relatively early in life, are shown to potentially experience less sexual selection, which can explain the low sexual conflict levels earlier observed in them.
Collapse
|
6
|
Fitness consequences of biochemical adaptation in Drosophila melanogaster populations under simultaneous selection for faster pre-adult development and extended lifespan. Sci Rep 2021; 11:16434. [PMID: 34385533 PMCID: PMC8361192 DOI: 10.1038/s41598-021-95951-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
In holometabolous insects like Drosophila melanogaster, critical size is an important time point during larval life, for irreversible commitment to metamorphosis. Here, we studied the impact of restricted growth duration in terms of selection for faster pre-adult development in Drosophila melanogaster populations which resulted in the evolution of reduced critical size on adult life history traits. Selection for faster pre-adult development resulted in biochemical adaptation in larval physiology with no compromise in major biomolecules at critical size time point. The flies from the selected populations seem to not only commit to metamorphosis on the attainment of critical size but also seem to channelize resources to reproduction as indicated by similar life-time fecundity of CS and NS flies from selected populations, while the Control CS flies significantly lower life-time fecundity compared to Control NS flies. The flies from selected populations seem to achieve longevity comparable to control flies despite being significantly smaller in size-thus resource constrained due to faster pre-adult development.
Collapse
|
7
|
Singh D, Ramniwas S, Kumar G. Response to laboratory selection for darker and lighter body color phenotypes in Drosophila melanogaster: correlated changes for larval behavioral traits. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2020.1845808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Divya Singh
- University Center for Research and Development, Chandigarh University, Mohali 140413, India
| | - Seema Ramniwas
- University Center for Research and Development, Chandigarh University, Mohali 140413, India
| | - Girish Kumar
- Genomics and Bioinformatics Cluster, Department of Biology University of Central Florida, Orlando FL 32816, USA
| |
Collapse
|
8
|
Manat Y, Lund-Hansen KK, Katsianis G, Abbott JK. Female-limited X-chromosome evolution effects on male pre- and post-copulatory success. Biol Lett 2021; 17:20200915. [PMID: 33653095 DOI: 10.1098/rsbl.2020.0915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Intralocus sexual conflict arises when the expression of shared alleles at a single locus generates opposite fitness effects in each sex (i.e. sexually antagonistic alleles), preventing each sex from reaching its sex-specific optimum. Despite its importance to reproductive success, the relative contribution of intralocus sexual conflict to male pre- and post-copulatory success is not well-understood. Here, we used a female-limited X-chromosome (FLX) evolution experiment in Drosophila melanogaster to limit the inheritance of the X-chromosome to the matriline, eliminating possible counter-selection in males and allowing the X-chromosome to accumulate female-benefit alleles. After more than 100 generations of FLX evolution, we studied the effect of the evolved X-chromosome on male attractiveness and sperm competitiveness. We found a non-significant increase in attractiveness and decrease in sperm offence ability in males expressing the evolved X-chromosomes, but a significant increase in their ability to avoid displacement by other males' sperm. This is consistent with a trade-off between these traits, perhaps mediated by differences in body size, causing a small net reduction in overall male fitness in the FLX lines. These results indicate that the X-chromosome in D. melanogaster is subject to selection via intralocus sexual conflict in males.
Collapse
Affiliation(s)
- Yesbol Manat
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund 223 62, Sweden.,The Biomedical Research Center, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Katrine K Lund-Hansen
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund 223 62, Sweden
| | - Georgios Katsianis
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund 223 62, Sweden
| | - Jessica K Abbott
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund 223 62, Sweden
| |
Collapse
|
9
|
Environmental specificity in Drosophila-bacteria symbiosis affects host developmental plasticity. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Chauhan N, Shrivastava NK, Agrawal N, Shakarad MN. Wing patterning in faster developing Drosophila is associated with high ecdysone titer and wingless expression. Mech Dev 2020; 163:103626. [PMID: 32526278 DOI: 10.1016/j.mod.2020.103626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 10/24/2022]
Abstract
'Developmental robustness' is the ability of biological systems to maintain a stable phenotype despite genetic, environmental or physiological perturbations. In holometabolous insects, accurate patterning and development is guaranteed by alignment of final gene expression patterns in tissues at specific developmental stage such as molting and pupariation, irrespective of individual rate of development. In the present study, we used faster developing Drosophila melanogaster populations that show reduction of ~22% in egg to adult development time. Flies from the faster developing population exhibit phenotype constancy, although significantly small in size. The reduction in development time in faster developing flies is possibly due to coordination between higher ecdysteroid release and higher expression of developmental genes. The two together might be ensuring appropriate pattern formation and early exit at each development stage in the populations selected for faster pre-adult development compared to their ancestral controls. We report that apart from plasticity in the rate of pattern progression, alteration in the level of gene expression may be responsible for pattern integrity even under reduced development time.
Collapse
Affiliation(s)
- Namita Chauhan
- Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India
| | | | - Namita Agrawal
- Fly Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Mallikarjun N Shakarad
- Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
11
|
Lund-Hansen KK, Abbott JK, Morrow EH. Feminization of complex traits in Drosophila melanogaster via female-limited X chromosome evolution. Evolution 2020; 74:2703-2713. [PMID: 32438467 DOI: 10.1111/evo.14021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
A handful of studies have investigated sexually antagonistic constraints on achieving sex-specific fitness optima, although exclusively through male-genome-limited evolution experiments. In this article, we established a female-limited X chromosome evolution experiment, where we used an X chromosome balancer to enforce the inheritance of the X through the matriline, thus removing exposure to male selective constraints. This approach eliminates the effects of sexually antagonistic selection on the X chromosome, permitting evolution toward a single sex-specific optimum. After multiple generations of selection, we found strong evidence that body size and development time had moved toward a female-specific optimum, whereas reproductive fitness and locomotion activity remained unchanged. The changes in body size and development time are consistent with previous results, and suggest that the X chromosome is enriched for sexually antagonistic genetic variation controlling these particular traits. The lack of change in reproductive fitness and locomotion activity could be due to a number of mutually nonexclusive explanations, including a lack of sexually antagonistic variance on the X chromosome for those traits or confounding effects of the use of the balancer chromosome. This study is the first to employ female-genome-limited selection and adds to the understanding of the complexity of sexually antagonistic genetic variation.
Collapse
Affiliation(s)
- Katrine K Lund-Hansen
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, 223 62, Sweden.,School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom
| | - Jessica K Abbott
- Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, 223 62, Sweden
| | - Edward H Morrow
- Department of Environmental and Life Sciences, Karlstad University, Karlstad, 651 88, Sweden
| |
Collapse
|
12
|
Sharma K, Mishra N, Shakarad MN. Evolution of reduced minimum critical size as a response to selection for rapid pre-adult development in Drosophila melanogaster. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191910. [PMID: 32742680 PMCID: PMC7353974 DOI: 10.1098/rsos.191910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Adult body size in holometabolus insects is directly proportional to the time spent during the larval period. The larval duration can be divided into two parts: (i) pre-critical duration-time required to attain a critical size/critical weight that would result in successful completion of development and metamorphosis even under non-availability of nutrition beyond the time of attainment of critical size, and (ii) post-critical duration-the time duration from the attainment of critical size till pupation. It is of interest to decipher the relative contribution of the two larval growth phases (from the hatching of the egg to the attainment of critical size, and from the attainment of critical size to pupation) to the final adult size. Many studies using Drosophila melanogaster have shown that selecting populations for faster development results in the emergence of small adults. Some of these studies have indirectly reported the evolution of smaller critical size. Using two kinds of D. melanogaster populations, one of which is selected for faster/accelerated pre-adult development and the other their ancestral control, we demonstrate that the final adult size is determined by the time spent as larvae post the attainment of critical size despite having increased growth rate during the second larval instar. Our populations under selection for faster pre-adult development are exhibiting adaptive bailout due to intrinsic food limitation as against extrinsic food limitation in the yellow dung fly.
Collapse
Affiliation(s)
| | | | - Mallikarjun N. Shakarad
- Evolutionary Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, Delhi 110007, India
| |
Collapse
|
13
|
Acevedo CR, Riecke TV, Leach AG, Lohman MG, Williams PJ, Sedinger JS. Long-term research and hierarchical models reveal consistent fitness costs of being the last egg in a clutch. J Anim Ecol 2020; 89:1978-1987. [PMID: 32248534 PMCID: PMC7497156 DOI: 10.1111/1365-2656.13232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 02/03/2023]
Abstract
Maintenance of phenotypic heterogeneity in the face of strong selection is an important component of evolutionary ecology, as are the consequences of such heterogeneity. Organisms may experience diminishing returns of increased reproductive allocation as clutch or litter size increases, affecting current and residual reproductive success. Given existing uncertainty regarding trade‐offs between the quantity and quality of offspring, we sought to examine the potential for diminishing returns on increased reproductive allocation in a long‐lived species of goose, with a particular emphasis on the effect of position in the laying sequence on offspring quality. To better understand the effects of maternal allocation on offspring survival and growth, we estimated the effects of egg size, timing of breeding, inter‐ and intra‐annual variation, and position in the laying sequence on gosling survival and growth rates of black brant Branta bernicla nigricans breeding in western Alaska from 1987 to 2007. We found that gosling growth rates and survival decreased with position in the laying sequence, regardless of clutch size. Mean egg volume of the clutch a gosling originated from had a positive effect on gosling survival (β = 0.095, 95% CRI: 0.024, 0.165) and gosling growth rates (β = 0.626, 95% CRI: 0.469, 0.738). Gosling survival (β = −0.146, 95% CRI: −0.214, −0.079) and growth rates (β = −1.286, 95% CRI: −1.435, −1.132) were negatively related to hatching date. These findings indicate substantial heterogeneity in offspring quality associated with their position in the laying sequence. They also potentially suggest a trade‐off mechanism for females whose total reproductive investment is governed by pre‐breeding state.
Collapse
Affiliation(s)
- Cheyenne R Acevedo
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, USA
| | - Thomas V Riecke
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, USA.,Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, USA
| | - Alan G Leach
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, USA.,Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, USA
| | - Madeleine G Lohman
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, USA
| | - Perry J Williams
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, USA
| | - James S Sedinger
- Department of Natural Resources and Environmental Science, University of Nevada, Reno, NV, USA
| |
Collapse
|
14
|
Common LK, O'Connor JA, Dudaniec RY, Peters KJ, Kleindorfer S. Evidence for rapid downward fecundity selection in an ectoparasite (Philornis downsi) with earlier host mortality in Darwin's finches. J Evol Biol 2020; 33:524-533. [PMID: 31961983 PMCID: PMC7217188 DOI: 10.1111/jeb.13588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 01/05/2023]
Abstract
Fecundity selection is a critical component of fitness and a major driver of adaptive evolution. Trade‐offs between parasite mortality and host resources are likely to impose a selection pressure on parasite fecundity, but this is little studied in natural systems. The ‘fecundity advantage hypothesis’ predicts female‐biased sexual size dimorphism whereby larger females produce more offspring. Parasitic insects are useful for exploring the interplay between host resource availability and parasite fecundity, because female body size is a reliable proxy for fecundity in insects. Here we explore temporal changes in body size in the myiasis‐causing parasite Philornis downsi (Diptera: Muscidae) on the Galápagos Islands under conditions of earlier in‐nest host mortality. We aim to investigate the effects of decreasing host resources on parasite body size and fecundity. Across a 12‐year period, we observed a mean of c. 17% P. downsi mortality in host nests with 55 ± 6.2% host mortality and a trend of c. 66% higher host mortality throughout the study period. Using specimens from 116 Darwin's finch nests (Passeriformes: Thraupidae) and 114 traps, we found that over time, P. downsi pupae mass decreased by c. 32%, and male (c. 6%) and female adult size (c. 11%) decreased. Notably, females had c. 26% smaller abdomens in later years, and female abdomen size was correlated with number of eggs. Our findings imply natural selection for faster P. downsi pupation and consequently smaller body size and lower parasite fecundity in this newly evolving host–parasite system.
Collapse
Affiliation(s)
- Lauren K Common
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Jody A O'Connor
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia.,Department for Environment and Water, Government of South Australia, Adelaide, SA, Australia
| | - Rachael Y Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Katharina J Peters
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Sonia Kleindorfer
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia.,Konrad Lorenz Research Center for Behaviour and Cognition and Department of Behavioural and Cognitive Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Kauranen H, Kinnunen J, Hopkins D, Hoikkala A. Direct and correlated responses to bi-directional selection on pre-adult development time in Drosophila montana. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:77-89. [PMID: 31004669 DOI: 10.1016/j.jinsphys.2019.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Selection experiments offer an efficient way to study the evolvability of traits that play an important role in insects' reproduction and/or survival and to trace correlations and trade-offs between them. We have exercised bi-directional selection on Drosophila montana flies' pre-adult development time under constant light and temperature conditions for 10 generations and traced the indirect effects of this selection on females' diapause induction under different day lengths, as well as on the body weight and cold tolerance of both sexes. Overall, selection was successful towards slow, but not towards fast development. However, all fast selection line replicates showed at the end of selection increased variance in females' photoperiodic diapause response and about one hour increase in the critical day (CDL), where more than 50% of emerging females enter diapause. Indirect effects of selection on flies' body weight and cold-tolerance were less clear, as the flies of the slow selection line were significantly heavier and less cold-tolerant than the control line flies after five generations of selection, but lighter and more cold-tolerant at the end of selection. Changes in females' diapause induction resulting from selection for fast development could be due to common metabolic pathways underlying these traits, collaboration of circadian clock and photoperiodic timer and/or by the interaction between the endocrine and circadian systems.
Collapse
Affiliation(s)
- Hannele Kauranen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| | - Johanna Kinnunen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - David Hopkins
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
16
|
Gurule-Small GA, Tinghitella RM. Life history consequences of developing in anthropogenic noise. GLOBAL CHANGE BIOLOGY 2019; 25:1957-1966. [PMID: 30825350 DOI: 10.1111/gcb.14610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/18/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
When environments change rapidly, adaptive phenotypic plasticity can ameliorate negative effects of environmental change on survival and reproduction. Recent evidence suggests, however, that plastic responses to human-induced environmental change are often maladaptive or insufficient to overcome novel selection pressures. Anthropogenic noise is a ubiquitous and expanding disturbance with demonstrated effects on fitness-related traits of animals like stress responses, foraging, vigilance, and pairing success. Elucidating the lifetime fitness effects of noise has been challenging because longer-lived vertebrate systems are typically studied in this context. Here, we follow noise-stressed invertebrates throughout their lives, assessing a comprehensive suite of life history traits, and ultimately, lifetime number of surviving offspring. We reared field crickets, Teleogryllus oceanicus, in masking traffic noise, traffic noise from which we removed frequencies that spectrally overlap with the crickets' mate location song and peak hearing (nonmasking), or silence. We found that exposure to masking noise delayed maturity and reduced adult lifespan; crickets exposed to masking noise spent 23% more time in juvenile stages and 13% less time as reproductive adults than those exposed to no traffic noise. Chronic lifetime exposure to noise, however, did not affect lifetime reproductive output (number of eggs or surviving offspring), perhaps because mating provided females a substantial longevity benefit. Nevertheless, these results are concerning as they highlight multiple ways in which traffic noise may reduce invertebrate fitness. We encourage researchers to consider effects of anthropogenic disturbance on growth, survival, and reproductive traits simultaneously because changes in these traits may amplify or nullify one another.
Collapse
|
17
|
Affiliation(s)
- Sudhakar Krittika
- Fly Laboratory, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Pankaj Yadav
- Fly Laboratory, School of Chemical & Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
18
|
Schedwill P, Geiler AM, Nehring V. Rapid adaptation in phoretic mite development time. Sci Rep 2018; 8:16460. [PMID: 30405194 PMCID: PMC6220314 DOI: 10.1038/s41598-018-34798-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/26/2018] [Indexed: 11/09/2022] Open
Abstract
Strong ecological selection can erode genetic variation and render populations unable to deal with changes in ecological conditions. In the adaptation of the phoretic mite Poecilochirus carabi to its host, the burying beetle Nicrophorus vespilloides, the timing of reproduction is crucial. Safe mite development is only possible during the beetles' brood care; mites that develop too slowly will have virtually zero fitness. If the strong specialisation in development time leaves no room for standing genetic variation to remain, changes in beetle brood care are disastrous. Beetle brood care depends on temperature and is thus vulnerable to changing climate. Accidental host switches to another beetle species with shorter brood care would also have negative effects on the mites. Only sufficient standing genetic variation could allow mismatched mite lines to survive and adapt. To test whether such rapid adaptation is possible in principle, we artificially selected on mite generation time. We were able to speed up, but not to slow down, mite development. We conclude that there is enough standing genetic variation in development time to allow P. carabi to quickly adapt to new host species or climate conditions, which could potentially lead to the evolution of new mite species.
Collapse
Affiliation(s)
- Petra Schedwill
- Evolutionary Biology & Ecology, Institute of Biology I, University of Freiburg, Hauptstraße 1, 79104, Freiburg, Germany
| | - Adrian M Geiler
- Evolutionary Biology & Ecology, Institute of Biology I, University of Freiburg, Hauptstraße 1, 79104, Freiburg, Germany
| | - Volker Nehring
- Evolutionary Biology & Ecology, Institute of Biology I, University of Freiburg, Hauptstraße 1, 79104, Freiburg, Germany.
| |
Collapse
|
19
|
Study of Natural Genetic Variation in Early Fitness Traits Reveals Decoupling Between Larval and Pupal Developmental Time in Drosophila melanogaster. Evol Biol 2018. [DOI: 10.1007/s11692-018-9461-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Heys C, Lizé A, Blow F, White L, Darby A, Lewis ZJ. The effect of gut microbiota elimination in Drosophila melanogaster: A how-to guide for host-microbiota studies. Ecol Evol 2018; 8:4150-4161. [PMID: 29721287 PMCID: PMC5916298 DOI: 10.1002/ece3.3991] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
In recent years, there has been a surge in interest in the effects of the microbiota on the host. Increasingly, we are coming to understand the importance of the gut microbiota in modulating host physiology, ecology, behavior, and evolution. One method utilized to evaluate the effect of the microbiota is to suppress or eliminate it, and compare the effect on the host with that of untreated individuals. In this study, we evaluate some of these commonly used methods in the model organism, Drosophila melanogaster. We test the efficacy of a low‐dose streptomycin diet, egg dechorionation, and an axenic or sterile diet, in the removal of gut bacteria within this species in a fully factorial design. We further determine potential side effects of these methods on host physiology by performing a series of standard physiological assays. Our results showed that individuals from all treatments took significantly longer to develop, and weighed less, compared to normal flies. Males and females that had undergone egg dechorionation weighed significantly less than streptomycin reared individuals. Similarly, axenic female flies, but not males, were much less active when analyzed in a locomotion assay. All methods decreased the egg to adult survival, with egg dechorionation inducing significantly higher mortality. We conclude that low‐dose streptomycin added to the dietary media is more effective at removing the gut bacteria than egg dechorionation and has somewhat less detrimental effects to host physiology. More importantly, this method is the most practical and reliable for use in behavioral research. Our study raises the important issue that the efficacy of and impacts on the host of these methods require investigation in a case‐by‐case manner, rather than assuming homogeneity across species and laboratories.
Collapse
Affiliation(s)
- Chloe Heys
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Anne Lizé
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK.,UMR 6553 ECOBIO University of Rennes Rennes France
| | - Frances Blow
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Lewis White
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Alistair Darby
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Zenobia J Lewis
- School of Life Sciences/Institute of Integrative Biology University of Liverpool Liverpool UK
| |
Collapse
|
21
|
Schou MF, Loeschcke V, Bechsgaard J, Schlötterer C, Kristensen TN. Unexpected high genetic diversity in small populations suggests maintenance by associative overdominance. Mol Ecol 2017; 26:6510-6523. [PMID: 28746770 DOI: 10.1111/mec.14262] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022]
Abstract
The effective population size (Ne ) is a central factor in determining maintenance of genetic variation. The neutral theory predicts that loss of variation depends on Ne , with less genetic drift in larger populations. We monitored genetic drift in 42 Drosophila melanogaster populations of different adult census population sizes (10, 50 or 500) using pooled RAD sequencing. In small populations, variation was lost at a substantially lower rate than expected. This observation was consistent across two ecological relevant thermal regimes, one stable and one with a stressful increase in temperature across generations. Estimated ratios between Ne and adult census size were consistently higher in small than in larger populations. The finding provides evidence for a slower than expected loss of genetic diversity and consequently a higher than expected long-term evolutionary potential in small fragmented populations. More genetic diversity was retained in areas of low recombination, suggesting that associative overdominance, driven by disfavoured homozygosity of recessive deleterious alleles, is responsible for the maintenance of genetic diversity in smaller populations. Consistent with this hypothesis, the X-chromosome, which is largely free of recessive deleterious alleles due to hemizygosity in males, fits neutral expectations even in small populations. Our experiments provide experimental answers to a range of unexpected patterns in natural populations, ranging from variable diversity on X-chromosomes and autosomes to surprisingly high levels of nucleotide diversity in small populations.
Collapse
Affiliation(s)
- Mads F Schou
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | | | | | | | - Torsten N Kristensen
- Department of Bioscience, Aarhus University, Aarhus C, Denmark.,Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
22
|
Quesada-Calderón S, Bacigalupe LD, Toro-Vélez AF, Madera-Parra CA, Peña-Varón MR, Cárdenas-Henao H. The multigenerational effects of water contamination and endocrine disrupting chemicals on the fitness of Drosophila melanogaster. Ecol Evol 2017; 7:6519-6526. [PMID: 28861253 PMCID: PMC5574807 DOI: 10.1002/ece3.3172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 05/09/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022] Open
Abstract
Water pollution due to human activities produces sedimentation, excessive nutrients, and toxic chemicals, and this, in turn, has an effect on the normal endocrine functioning of living beings. Overall, water pollution may affect some components of the fitness of organisms (e.g., developmental time and fertility). Some toxic compounds found in polluted waters are known as endocrine disruptors (ED), and among these are nonhalogenated phenolic chemicals such as bisphenol A and nonylphenol. To evaluate the effect of nonhalogenated phenolic chemicals on the endocrine system, we subjected two generations (F0 and F1) of Drosophila melanogaster to different concentrations of ED. Specifically, treatments involved wastewater, which had the highest level of ED (bisphenol A and nonylphenol) and treated wastewater from a constructed Heliconia psittacorum wetland with horizontal subsurface water flow (He); the treated wastewater was the treatment with the lowest level of ED. We evaluated the development time from egg to pupa and from pupa to adult as well as fertility. The results show that for individuals exposed to treated wastewater, the developmental time from egg to pupae was shorter in individuals of the F1 generation than in the F0 generation. Additionally, the time from pupae to adult was longer for flies growing in the H. psittacorum treated wastewater. Furthermore, fertility was lower in the F1 generation than in the F0 generation. Although different concentrations of bisphenol A and nonylphenol had no significant effect on the components of fitness of D. melanogaster (developmental time and fertility), there was a trend across generations, likely as a result of selection imposed on the flies. It is possible that the flies developed different strategies to avoid the effects of the various environmental stressors.
Collapse
Affiliation(s)
- Suany Quesada-Calderón
- Instituto de Ciencias Ambientales y Evolutivas Facultad de Ciencias Universidad Austral de Chile Valdivia Chile.,Doctorado en ciencias, mención Ecología y Evolución Universidad Austral de Chile Valdivia Chile
| | - Leonardo Daniel Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas Facultad de Ciencias Universidad Austral de Chile Valdivia Chile
| | | | | | | | | |
Collapse
|
23
|
Nunney L, Cheung W. THE EFFECT OF TEMPERATURE ON BODY SIZE AND FECUNDITY IN FEMALE DROSOPHILA MELANOGASTER
: EVIDENCE FOR ADAPTIVE PLASTICITY. Evolution 2017; 51:1529-1535. [DOI: 10.1111/j.1558-5646.1997.tb01476.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/1996] [Accepted: 05/07/1997] [Indexed: 11/30/2022]
Affiliation(s)
- Leonard Nunney
- Department of Biology; University of California; Riverside California 92521
| | - Warren Cheung
- Department of Biology; University of California; Riverside California 92521
| |
Collapse
|
24
|
Krebs RA, Feder ME, Lee J. HERITABILITY OF EXPRESSION OF THE 70KD HEAT-SHOCK PROTEIN IN DROSOPHILA MELANOGASTER AND ITS RELEVANCE TO THE EVOLUTION OF THERMOTOLERANCE. Evolution 2017; 52:841-847. [PMID: 28565246 DOI: 10.1111/j.1558-5646.1998.tb03708.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/1997] [Accepted: 03/06/1998] [Indexed: 11/30/2022]
Abstract
The principle inducible heat-shock protein of Drosophila melanogaster, Hsp70, contributes to thermotolerance throughout the entire life cycle of the species but may also reduce fitness in some life stages. In principle, selection might maximize the benefits of Hsp70 expression relative to its costs by adjusting the magnitude of Hsp70 expression for each life-cycle stage independently. Therefore we examined whether the magnitude of Hsp70 expression varied during the life cycle and the relationship of this variation to several life-history traits. For 28 isofemale lines derived from a single natural population, estimates of heritable variation in Hsp70 expression ranged between 0.25 and 0.49, and the association among variation in first- and third-instar larvae and in adults correlated highly. Thus, Hsp70 expression is genetically coupled at these developmental stages. A line engineered with extra copies of the hsp70 gene produced more Hsp70 and survived heat shock much better than did a control strain. Among natural lines, Hsp70 expression was only weakly related to tolerance of heat shock and to larva-to-adult survival and developmental time at permissive temperatures. Additionally, lines with high adult survival developed slowly as larvae, which is a possible trade-off. These and other findings suggest that trade-offs may maintain quantitative variation both in heat-shock protein expression and in life-history traits that associate with thermotolerance.
Collapse
Affiliation(s)
- Robert A Krebs
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, Illinois, 60637
| | - Martin E Feder
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, Illinois, 60637.,Committee on Evolutionary Biology, University of Chicago, 1027 East 57th Street, Chicago, Illinois, 60637
| | - Jeehyun Lee
- Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, Illinois, 60637
| |
Collapse
|
25
|
Chippindale AK, Gibbs AG, Sheik M, Yee KJ, Djawdan M, Bradley TJ, Rose MR. RESOURCE ACQUISITION AND THE EVOLUTION OF STRESS RESISTANCE IN
DROSOPHILA MELANOGASTER. Evolution 2017; 52:1342-1352. [DOI: 10.1111/j.1558-5646.1998.tb02016.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/1997] [Accepted: 06/02/1998] [Indexed: 11/30/2022]
Affiliation(s)
- Adam K. Chippindale
- Department of Ecology and Evolutionary Biology University of California Irvine California 92697‐2525
| | - Allen G. Gibbs
- Department of Ecology and Evolutionary Biology University of California Irvine California 92697‐2525
| | - Mani Sheik
- Department of Ecology and Evolutionary Biology University of California Irvine California 92697‐2525
| | - Kandice J. Yee
- Department of Ecology and Evolutionary Biology University of California Irvine California 92697‐2525
| | - Minou Djawdan
- Department of Ecology and Evolutionary Biology University of California Irvine California 92697‐2525
| | - Timothy J. Bradley
- Department of Ecology and Evolutionary Biology University of California Irvine California 92697‐2525
| | - Michael R. Rose
- Department of Ecology and Evolutionary Biology University of California Irvine California 92697‐2525
| |
Collapse
|
26
|
Betrán E, Santos M, Ruiz A. ANTAGONISTIC PLEIOTROPIC EFFECT OF SECOND-CHROMOSOME INVERSIONS ON BODY SIZE AND EARLY LIFE-HISTORY TRAITS IN DROSOPHILA BUZZATII. Evolution 2017; 52:144-154. [PMID: 28568158 DOI: 10.1111/j.1558-5646.1998.tb05147.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/1997] [Accepted: 09/29/1997] [Indexed: 11/29/2022]
Abstract
A simple way to think of evolutionary trade-offs is to suppose genetic effects of opposed direction that give rise to antagonistic pleiotropy. Maintenance of additive genetic variability for fitness related characters, in association with negative correlations between these characters, may result. In the cactophilic species Drosophila buzzatii, there is evidence that second-chromosome polymorphic inversions affect size-related traits. Because a trade-off between body size and larval developmental time has been reported in Drosophila, we study here whether or not these inversions also affect larva-adult viability and developmental time. In particular, we expect that polymorphic inversions make a statistically significant contribution to the genetic correlation between body size (as measured by thorax length) and larval developmental time. This contribution is expected to be in the direction predicted by the trade-off, namely, those flies whose karyotypes cause them to be genetically larger should also have a longer developmental time than flies with other karyotypes. Using two different experimental approaches, a statistically significant contribution of the second-chromosome inversions to the phenotypic variances of body size and developmental time in D. buzzatii was found. Further, these inversions make a positive contribution to the total genetic correlation between the traits, as expected by the suggested trade-off. The data do not provide evidence as to whether the genetic correlation is due to antagonistic pleiotropic gene action or to gametic disequilibrium of linked genes that affect one or both traits. The results do suggest, however, a possible explanation for the maintenance of inversion polymorphism in this species.
Collapse
Affiliation(s)
- Esther Betrán
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Mauro Santos
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Alfredo Ruiz
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
27
|
Tucrć N, Gliksman I, Šešlija D, Stojković O, Milanović D. LABORATORY EVOLUTION OF LIFE-HISTORY TRAITS IN THE BEAN WEEVIL (ACANTHOSCELIDES OBTECTUS): THE EFFECTS OF SELECTION ON DEVELOPMENTAL TIME IN POPULATIONS WITH DIFFERENT PREVIOUS HISTORY. Evolution 2017; 52:1713-1725. [PMID: 28565311 DOI: 10.1111/j.1558-5646.1998.tb02251.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/1997] [Accepted: 06/25/1998] [Indexed: 11/27/2022]
Abstract
In this study we examined the direct and correlated responses for fast and slow preadult development time in three laboratory populations of the bean weevil (Acanthoscelides obtectus). The first population ("base," B) has experienced laboratory conditions for more than 10 years; the second ("young," Y) and the third ("old," O) populations were selected for early and late reproduction, respectively, before the onset of the present experiments. All three populations are successfully selected for both fast and slow preadult development. The realized heritabilities are very similar in all populations, suggesting a similar level of the additive genetic variance for preadult development. We studied the correlated responses on the following life-history traits: egg-to-adult viability, wet body weight, early fecundity, late fecundity, total realized female fecundity, and adult longevity. All life-history traits examined here, except for the egg-to-adult viability, are affected by selection for preadult development in at least in one of the studied populations. In all three populations, beetles selected for slow preadult development are heavier and live longer than those from the fast-selected lines. The findings with respect to adult longevity are unexpected, because the control Y and O populations, selected for short- and long-lived beetles, respectively, do not show significant differences in preadult development. Thus, our results indicate that some kind of asymmetrical correlated responses occur for preadult development and adult longevity each time that direct selection has been imposed on one or the other of these two traits. In contrast to studies with Drosophila, it appears that for insect species that are aphagous as adults, selection for preadult development entails selection for alleles that also change the adult longevity, but that age-specific selection (applied in the Y and O populations) mostly affects the alleles that have no significant influence on the preadult development. Implications of these findings on the developmental and evolutionary theories of aging are also discussed.
Collapse
Affiliation(s)
- N Tucrć
- Department of Evolutionary Biology, Institute for Biological Research, 29. Novembra 142, 11000, Belgrade, Serbia, Yugoslavia.,Institute of Zoology, Faculty of Science, University of Belgrade, Serbia, Yugoslavia
| | - I Gliksman
- Department of Evolutionary Biology, Institute for Biological Research, 29. Novembra 142, 11000, Belgrade, Serbia, Yugoslavia
| | - D Šešlija
- Department of Evolutionary Biology, Institute for Biological Research, 29. Novembra 142, 11000, Belgrade, Serbia, Yugoslavia
| | - O Stojković
- Department of Evolutionary Biology, Institute for Biological Research, 29. Novembra 142, 11000, Belgrade, Serbia, Yugoslavia
| | - D Milanović
- Department of Evolutionary Biology, Institute for Biological Research, 29. Novembra 142, 11000, Belgrade, Serbia, Yugoslavia
| |
Collapse
|
28
|
Santos M, Borash DJ, Joshi A, Bounlutay N, Mueller LD. DENSITY-DEPENDENT NATURAL SELECTION IN DROSOPHILA: EVOLUTION OF GROWTH RATE AND BODY SIZE. Evolution 2017; 51:420-432. [PMID: 28565346 DOI: 10.1111/j.1558-5646.1997.tb02429.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/1996] [Accepted: 10/07/1996] [Indexed: 11/29/2022]
Abstract
Drosophila melanogaster populations subjected to extreme larval crowding (CU lines) in our laboratory have evolved higher larval feeding rates than their corresponding controls (UU lines). It has been suggested that this genetically based behavior may involve an energetic cost, which precludes natural selection in a density-regulated population to simultaneously maximize food acquisition and food conversion into biomass. If true, this stands against some basic predictions of the general theory of density-dependent natural selection. Here we investigate the evolutionary consequences of density-dependent natural selection on growth rate and body size in D. melanogaster. The CU populations showed a higher growth rate during the postcritical period of larval life than UU populations, but the sustained differences in weight did not translate into the adult stage. The simplest explanation for these findings (that natural selection in a crowded larval environment favors a faster food acquisition for the individual to attain the same final body size in a shorter period of time) was tested and rejected by looking at the larva-to-adult development times. Larvae of CU populations starved for different periods of time develop into comparatively smaller adults, suggesting that food seeking behavior in a food depleted environment carries a higher cost to these larvae than to their UU counterparts. The results have important implications for understanding the evolution of body size in natural populations of Drosophila, and stand against some widespread beliefs that body size may represent a compromise between the conflicting effects of genetic variation in larval and adult performance.
Collapse
Affiliation(s)
- Mauro Santos
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Daniel J Borash
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, 92697
| | | | - Nira Bounlutay
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, 92697
| | - Laurence D Mueller
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, 92697
| |
Collapse
|
29
|
Blanckenhorn WU. ADAPTIVE PHENOTYPIC PLASTICITY IN GROWTH, DEVELOPMENT, AND BODY SIZE IN THE YELLOW DUNG FLY. Evolution 2017; 52:1394-1407. [DOI: 10.1111/j.1558-5646.1998.tb02021.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1997] [Accepted: 06/08/1998] [Indexed: 11/28/2022]
Affiliation(s)
- Wolf U. Blanckenhorn
- Zoologisches Museum; Universität Zürich-Irchel; Winterthurerstrasse 190, CH-8057 Zürich Switzerland
| |
Collapse
|
30
|
Chippindale AK, Alipaz JA, Chen HW, Rose MR. EXPERIMENTAL EVOLUTION OF ACCELERATED DEVELOPMENT IN DROSOPHILA.
1. DEVELOPMENTAL SPEED AND LARVAL SURVIVAL. Evolution 2017; 51:1536-1551. [DOI: 10.1111/j.1558-5646.1997.tb01477.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/1996] [Accepted: 05/07/1997] [Indexed: 11/27/2022]
Affiliation(s)
- Adam K. Chippindale
- Department of Ecology and Evolutionary Biology; University of California; Irvine California 92717-2525
| | - Julie A. Alipaz
- Department of Ecology and Evolutionary Biology; University of California; Irvine California 92717-2525
| | - Hsiao-Wei Chen
- Department of Ecology and Evolutionary Biology; University of California; Irvine California 92717-2525
| | - Michael R. Rose
- Department of Ecology and Evolutionary Biology; University of California; Irvine California 92717-2525
| |
Collapse
|
31
|
Van Petegem KHP, Boeye J, Stoks R, Bonte D. Spatial Selection and Local Adaptation Jointly Shape Life-History Evolution during Range Expansion. Am Nat 2016; 188:485-498. [DOI: 10.1086/688666] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Horváth B, Kalinka AT. Effects of larval crowding on quantitative variation for development time and viability in Drosophila melanogaster. Ecol Evol 2016; 6:8460-8473. [PMID: 28031798 PMCID: PMC5167028 DOI: 10.1002/ece3.2552] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 11/06/2022] Open
Abstract
Competition between individuals belonging to the same species is a universal feature of natural populations and is the process underpinning organismal adaptation. Despite its importance, still comparatively little is known about the genetic variation responsible for competitive traits. Here, we measured the phenotypic variation and quantitative genetics parameters for two fitness-related traits-egg-to-adult viability and development time-across a panel of Drosophila strains under varying larval densities. Both traits exhibited substantial genetic variation at all larval densities, as well as significant genotype-by-environment interactions (GEIs). GEI was attributable to changes in the rank order of reaction norms for both traits, and additionally to differences in the between-line variance for development time. The coefficient of genetic variation increased under stress conditions for development time, while it was higher at both high and low densities for viability. While development time also correlated negatively with fitness at high larval densities-meaning that fast developers have high fitness-there was no correlation with fitness at low density. This result suggests that GEI may be a common feature of fitness-related genetic variation and, further, that trait values under noncompetitive conditions could be poor indicators of individual fitness. The latter point could have significant implications for animal and plant breeding programs, as well as for conservation genetics.
Collapse
Affiliation(s)
- Barbara Horváth
- Institut für Populationsgenetik Veterinärmedizinische Universität Wien A-1210 Vienna Austria; Vienna Graduate School of Population Genetics, Veterinärmedizinische Universität Wien A-1210, Vienna Austria
| | - Alex T Kalinka
- Institut für Populationsgenetik Veterinärmedizinische Universität Wien A-1210 Vienna Austria
| |
Collapse
|
33
|
Horváth B, Betancourt AJ, Kalinka AT. A novel method for quantifying the rate of embryogenesis uncovers considerable genetic variation for the duration of embryonic development in Drosophila melanogaster. BMC Evol Biol 2016; 16:200. [PMID: 27717305 PMCID: PMC5054588 DOI: 10.1186/s12862-016-0776-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/29/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Embryogenesis is a highly conserved, canalized process, and variation in the duration of embryogenesis (DOE), i.e., time from egg lay to hatching, has a potentially profound effect on the outcome of within- and between-species competition. There is both intra- and inter-specific variation in this trait, which may provide important fuel for evolutionary processes, particularly adaptation. However, while genetic variation underlying simpler morphological traits, or with large phenotypic effects is well described in the literature, less is known about the underlying genetics of traits, such as DOE, partly due to a lack of tools with which to study them. RESULTS Here, we establish a novel microscope-based assay to survey genetic variation for the duration of embryogenesis (DOE). First, to establish the potential importance of DOE in competitive fitness, we performed a set of experiments where we experimentally manipulated the time until hatching, and show that short hatching times result in priority effect in the form of improved larval competitive ability. We then use our assay to measure DOE for 43 strains from the Drosophila Genetic Reference Panel (DGRP). Our assay greatly simplifies the measurement of DOE, making it possible to precisely quantify this trait for 59,295 individual embryos (mean ± S.D. of 1103 ± 293 per DGRP strain, and 1002 ± 203 per control). We find extensive genetic variation in DOE, with a 15 % difference in rate between the slowest and fastest strains measured, and 89 % of phenotypic variation due to DGRP strain. Using sequence information from the DGRP, we perform a genome-wide association study, which suggests that some well-known developmental genes affect the speed of embryonic development. CONCLUSIONS We showed that the duration of embryogenesis (DOE) can be efficiently and precisely measured in Drosophila, and that the DGRP strains show remarkable variation in DOE. A genome-wide analysis suggests that some well-known developmental genes are potentially associated with DOE. Further functional assays, or transcriptomic analysis of embryos from the DGRP, can validate the role of our candidates in early developmental processes.
Collapse
Affiliation(s)
- Barbara Horváth
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210, Vienna, Austria. .,Vienna Graduate School of Population Genetics, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Vienna, A-1210, Austria.
| | - Andrea J Betancourt
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Alex T Kalinka
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210, Vienna, Austria
| |
Collapse
|
34
|
Dey P, Mendiratta K, Bose J, Joshi A. Enhancement of larval immune system traits as a correlated response to selection for rapid development in Drosophila melanogaster. J Genet 2016; 95:719-23. [PMID: 27659343 DOI: 10.1007/s12041-016-0659-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Punyatirtha Dey
- Evolutionary Biology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560 064,
| | | | | | | |
Collapse
|
35
|
Lack JB, Yassin A, Sprengelmeyer QD, Johanning EJ, David JR, Pool JE. Life history evolution and cellular mechanisms associated with increased size in high-altitude Drosophila. Ecol Evol 2016; 6:5893-906. [PMID: 27547363 PMCID: PMC4983600 DOI: 10.1002/ece3.2327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 06/17/2016] [Accepted: 06/21/2016] [Indexed: 01/29/2023] Open
Abstract
Understanding the physiological and genetic basis of growth and body size variation has wide-ranging implications, from cancer and metabolic disease to the genetics of complex traits. We examined the evolution of body and wing size in high-altitude Drosophila melanogaster from Ethiopia, flies with larger size than any previously known population. Specifically, we sought to identify life history characteristics and cellular mechanisms that may have facilitated size evolution. We found that the large-bodied Ethiopian flies laid significantly fewer but larger eggs relative to lowland, smaller-bodied Zambian flies. The highland flies were found to achieve larger size in a similar developmental period, potentially aided by a reproductive strategy favoring greater provisioning of fewer offspring. At the cellular level, cell proliferation was a strong contributor to wing size evolution, but both thorax and wing size increases involved important changes in cell size. Nuclear size measurements were consistent with elevated somatic ploidy as an important mechanism of body size evolution. We discuss the significance of these results for the genetic basis of evolutionary changes in body and wing size in Ethiopian D. melanogaster.
Collapse
Affiliation(s)
- Justin B. Lack
- Laboratory of GeneticsUniversity of Wisconsin‐Madison425‐G Henry MallMadisonWisconsin53706
- Present address: Center for Cancer Research National Cancer InstituteNIH BethesdaMaryland20892‐1201
| | - Amir Yassin
- Laboratory of GeneticsUniversity of Wisconsin‐Madison425‐G Henry MallMadisonWisconsin53706
| | | | - Evan J. Johanning
- Laboratory of GeneticsUniversity of Wisconsin‐Madison425‐G Henry MallMadisonWisconsin53706
| | - Jean R. David
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE)CNRS, Univ. Paris‐Sud, IRDUniversité Paris‐Saclay1 av. de la Terrasse91198Gif‐sur‐YvetteFrance
| | - John E. Pool
- Laboratory of GeneticsUniversity of Wisconsin‐Madison425‐G Henry MallMadisonWisconsin53706
| |
Collapse
|
36
|
Takahashi KH, Blanckenhorn WU. Effect of genomic deficiencies on sexual size dimorphism through modification of developmental time in Drosophila melanogaster. Heredity (Edinb) 2015; 115:140-5. [PMID: 25899012 DOI: 10.1038/hdy.2015.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 09/03/2014] [Accepted: 12/23/2014] [Indexed: 11/09/2022] Open
Abstract
Sexual size dimorphism (SSD), a difference in body size between sexes, is common in many taxa. In insects, females are larger than males in >70% of all taxa in most orders. The fruit fly, Drosophila melanogaster is one prominent model organism to investigate SSD since its clear and representative female-biased SSD and its growth regulation are well studied. Elucidating the number and nature of genetic elements that can potentially influence SSD would be helpful in understanding the evolutionary potential of SSD. Here, we investigated the SSD pattern caused by artificially introduced genetic variation in D. melanogaster, and examined whether variation in SSD was mediated by the sex-specific modification of developmental time. To map the genomic regions that had effects on sexual wing size and/or developmental time differences (SDtD), we reanalyzed previously published genome-wide deficiency mapping data to evaluate the effects of 376 isogenic deficiencies covering a total of ~67% of the genomic regions of the second and third chromosomes of D. melanogaster. We found genetic variation in SSD and SDtD generated by genomic deficiencies, and a negative genetic correlation between size and development time. We also found SSD and SDtD allometries that are not qualitatively congruent, which however overall at best only partly help in explaining the patterns found. We identified several genomic deficiencies with the tendency to either exaggerate or suppress SSD, in agreement with quantitative genetic null expectations of many loci with small effects. These novel findings contribute to a better understanding of the evolutionary potential of sexual dimorphism.
Collapse
Affiliation(s)
- K H Takahashi
- Graduate School of Environmental Science, Okayama University, Kita-ku, Okayama, Japan
| | - W U Blanckenhorn
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| |
Collapse
|
37
|
Handa J, Chandrashekara KT, Kashyap K, Sageena G, Shakarad MN. Gender based disruptive selection maintains body size polymorphism in Drosophila melanogaster. J Biosci 2015; 39:609-20. [PMID: 25116616 DOI: 10.1007/s12038-014-9452-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Darwinian fitness in holometabolous insects like the fruit fly Drosophila melanogaster is reported to be positively correlated with body size. If large individuals in a population have higher fitness, then one would expect directional selection to operate leading to uniformly large individuals. However, size polymorphism persists in nature and needs further probing. We assessed the effect of body size on some of the fitness and fitness-related traits in replicate populations of genotypically large, genotypically small and phenotypically small D. melanogaster flies. In this study, the time taken to attain reproductive maturity and copulation duration were independent of fly size. Fecundity and longevity of large females were significantly higher when they partnered genotypically small males than when they were with genotypically larger or phenotypically small males. The increased female longevity when in association with genotypically small males was not due to selective early death of males that would release the female partner from presumed cost of persistent courtship. On the contrary, the genotypically as well as phenotypically small males had significantly higher longevity than large males. The virility of the genotypically small males was not significantly different from that of genotypically large males. Our results clearly show that selection on body size operates in the opposite direction (disruptive selection) for the two genders, thus explaining the persistence of size polymorphisms in the holometabolous insect, Drosophila melanogaster.
Collapse
Affiliation(s)
- Jaya Handa
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | | | | | | | | |
Collapse
|
38
|
Bhan V, Parkash R, Aggarwal DD. Effects of body-size variation on flight-related traits in latitudinal populations of Drosophila melanogaster. J Genet 2015; 93:103-12. [PMID: 24840827 DOI: 10.1007/s12041-014-0344-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, we tested the hypothesis whether flight-related traits such as wing area, flight-muscle ratio, wing loading and dispersal yield evidence of geographical variation in nine wild-collected as well as laboratory-reared (at 21°C) latitudinal populations of Drosophila melanogaster from the Indian subcontinent. We observed positive clinal variation in the wing-thorax ratio, wing aspect ratio and wing area, along a latitudinal gradient for both the sexes. In contrast, geographical changes in three parameters of flight ability, i.e. flight-muscle ratio, wing loading and dispersal, showed negative correlation with latitude. On the basis of isofemale line variability, we observed positive correlation of wing loading with flight-muscle ratio as well as dispersal behaviour in both the sexes. We also found positive correlation between duration of development and wing area. Interestingly, southern populations of D. melanogaster from warm and humid habitats exhibited higher flight-muscle ratio as well as the higher wing loading than northern populations which occur in cooler and drier climatic conditions. Laboratory tests for dispersal-related walking behaviour showed significantly higher values for southern populations compared with northern populations of D. melanogaster. Multiple regression analysis of geographical changes in flight-muscle ratio, wing loading as well as walking behaviour as a function of average temperature and relative humidity of the origin of populations in wild-collected flies have suggested adaptive changes in flight-related traits in response to steeper gradients of climatic factors in the Indian subcontinent. Finally, adaptive latitudinal variations in flight-related traits in D. melanogaster are consistent with results of other studies from different continents despite differences due to specific climatic conditions in the Indian subcontinent.
Collapse
Affiliation(s)
- Veer Bhan
- Department of Biotechnology, University Institute of Engineering and Technology, Maharashi Dayanand University, Rohtak 124 001, India.
| | | | | |
Collapse
|
39
|
Schou MF, Loeschcke V, Kristensen TN. Inbreeding depression across a nutritional stress continuum. Heredity (Edinb) 2015; 115:56-62. [PMID: 26059969 DOI: 10.1038/hdy.2015.16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/05/2015] [Indexed: 11/09/2022] Open
Abstract
Many natural populations experience inbreeding and genetic drift as a consequence of nonrandom mating or low population size. Furthermore, they face environmental challenges that may interact synergistically with deleterious consequences of increased homozygosity and further decrease fitness. Most studies on inbreeding-environment (I-E) interactions use one or two stress levels, whereby the resolution of the possible stress and inbreeding depression interaction is low. Here we produced Drosophila melanogaster replicate populations, maintained at three different population sizes (10, 50 and a control size of 500) for 25 generations. A nutritional stress gradient was imposed on the replicate populations by exposing them to 11 different concentrations of yeast in the developmental medium. We assessed the consequences of nutritional stress by scoring egg-to-adult viability and body mass of emerged flies. We found: (1) unequivocal evidence for I-E interactions in egg-to-adult viability and to a lesser extent in dry body mass, with inbreeding depression being more severe under higher levels of nutritional stress; (2) a steeper increase in inbreeding depression for replicate populations of size 10 with increasing nutritional stress than for replicate populations of size 50; (3) a nonlinear norm of reaction between inbreeding depression and nutritional stress; and (4) a faster increase in number of lethal equivalents in replicate populations of size 10 compared with replicate populations of size 50 with increasing nutritional stress levels. Our data provide novel and strong evidence that deleterious fitness consequences of I-E interactions are more pronounced at higher nutritional stress and at higher inbreeding levels.
Collapse
Affiliation(s)
- M F Schou
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - V Loeschcke
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - T N Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
40
|
Genes belonging to the insulin and ecdysone signaling pathways can contribute to developmental time, lifespan and abdominal size variation in Drosophila americana. PLoS One 2014; 9:e86690. [PMID: 24489769 PMCID: PMC3904916 DOI: 10.1371/journal.pone.0086690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 12/13/2013] [Indexed: 11/25/2022] Open
Abstract
Even within a single genus, such as Drosophila, cases of lineage-specific adaptive evolution have been found. Therefore, the molecular basis of phenotypic variation must be addressed in more than one species group, in order to infer general patterns. In this work, we used D. americana, a species distantly-related to D. melanogaster, to perform an F2 association study for developmental time (DT), chill-coma recovery time (CRT), abdominal size (AS) and lifespan (LS) involving the two strains (H5 and W11) whose genomes have been previously sequenced. Significant associations were found between the 43 large indel markers developed here and DT, AS and LS but not with CRT. Significant correlations are also found between DT and LS, and between AS and LS, that might be explained by variation at genes belonging to the insulin and ecdysone signaling pathways. Since, in this F2 association study a single marker, located close to the Ecdysone receptor (EcR) gene, explained as much as 32.6% of the total variation in DT, we performed a second F2 association study, to determine whether large differences in DT are always due to variation in this genome region. No overlapping signal was observed between the two F2 association studies. Overall, these results illustrate that, in D. americana, pleiotropic genes involved in the highly-conserved insulin and ecdysone signaling pathways are likely responsible for variation observed in ecologically relevant phenotypic traits, although other genes are also involved.
Collapse
|
41
|
Irwin KK, Carter PA. Constraints on the evolution of function-valued traits: a study of growth in Tribolium castaneum. J Evol Biol 2013; 26:2633-43. [PMID: 24118320 DOI: 10.1111/jeb.12257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/01/2013] [Accepted: 09/02/2013] [Indexed: 11/30/2022]
Abstract
Growth trajectories often impact individual fitness. They are continuous by nature and so are amenable to analysis using a function-valued (FV) trait framework to reveal their underlying genetic architecture. Previous studies have found high levels of standing additive genetic (co)variance for growth trajectories despite the expectation that growth should be responding to frequent strong directional selection. In this study, the FV framework is used to estimate the additive genetic covariance function for growth trajectories in larval Tribolium castaneum to address questions about standing additive genetic (co)variance and possible evolutionary constraints on growth and to predict responses to four plausible selection regimes. Results show that additive genetic (co)variance is high at the early ages, but decreases towards later ages in the larval period. A selection gradient function of the same size and in the same direction of the first eigenfunction of the G-function should give the maximal response. However, evolutionary constraints may be acting to keep this maximal response from being realized, through either conflicting effects on survivability and fecundity of larger body size, few evolutionary directions having sufficient additive variance for a response, genetic trade-offs with other traits or physiological regulatory mechanisms. More light may be shed on these constraints through the development of more sophisticated statistical approaches and implementation of additional empirical studies to explicitly test for specific types of constraints.
Collapse
Affiliation(s)
- K K Irwin
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | | |
Collapse
|
42
|
Ramniwas S, Kajla B, Dev K, Parkash R. Direct and correlated responses to laboratory selection for body melanisation in Drosophila melanogaster: support for the melanisation-desiccation resistance hypothesis. ACTA ACUST UNITED AC 2012; 216:1244-54. [PMID: 23239892 DOI: 10.1242/jeb.076166] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
For Drosophila melanogaster, cuticular melanisation is a quantitative trait, varying from no melanin to completely dark. Variation in melanisation has been linked with stress resistance, especially desiccation, in D. melanogaster and other species. As melanism has a genetic component, we selected melanic and non-melanic phenotypes of D. melanogaster in order to confirm the association of desiccation resistance and rate of water loss with cuticular melanisation previously reported for this species. A bidirectional selection experiment for dark (D1-D4) and light (L1-L4) body colour in D. melanogaster was conducted for 60 generations. We observed a 1.6-fold increase in abdominal melanisation in selected dark strains and a 14-fold decrease in selected light strains compared with control populations. Desiccation resistance increased significantly in the dark-selected morphs as compared with controls. The observed increase in desiccation resistance appeared as a consequence of a decrease in cuticular permeability. Our results show that traits related to water balance were significantly correlated with abdominal melanisation and were simultaneously selected bidirectionally along with melanisation.
Collapse
Affiliation(s)
- Seema Ramniwas
- Lab No. 13, Drosophila Genetics Laboratory, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| | | | | | | |
Collapse
|
43
|
M Ghosh S, Joshi A. Evolution of reproductive isolation as a by-product of divergent life-history evolution in laboratory populations of Drosophila melanogaster. Ecol Evol 2012; 2:3214-26. [PMID: 23301185 PMCID: PMC3539013 DOI: 10.1002/ece3.413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/30/2012] [Accepted: 10/03/2012] [Indexed: 11/08/2022] Open
Abstract
We show that two complementary asymmetric isolating mechanisms, likely mediated by divergence in body size, underlie the evolution of incipient reproductive isolation between a set of Drosophila melanogaster populations selected for rapid development and their ancestral controls. Selection has led to great reduction in body size in the fast developing lines. Small males belonging to fast developing lines obtain few matings with large control females, both in presence and absence of large control line males, giving rise to unidirectional, premating isolation caused by sexual selection. Conversely, small selected line females suffer greatly increased mortality following mating with large control males, causing unidirectional postcopulatory prezygotic isolation. We discuss preliminary evidence for evolution of reduced male harm caused to females upon mating in the fast developing lines, and speculate that the females from these lines have coevolved reduced resistance to male harm such that they can no longer resist the harm caused by males from control lines. This potentially implicates differing levels of sexual conflict in creating reproductive barrier between the selected line females and the control males. We also show that a large difference in development time is not sufficient to cause postzygotic incompatibilities in the two sets of populations reaffirming the belief that prezygotic isolation can evolve much earlier than postzygotic isolation.
Collapse
Affiliation(s)
- Shampa M Ghosh
- Department of Zoology, Michigan State University East Lansing, MI, 48824, USA ; Evolutionary Biology Laboratory, Evolutionary and Organismal Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Jakkur PO, Bangalore, 560064, India
| | | |
Collapse
|
44
|
Correlated changes in circadian clocks in response to selection for faster pre-adult development in fruit flies Drosophila melanogaster. J Comp Physiol B 2012; 183:333-43. [PMID: 23135746 DOI: 10.1007/s00360-012-0716-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 10/23/2012] [Accepted: 10/23/2012] [Indexed: 10/27/2022]
Abstract
Although, circadian clocks are believed to be involved in the regulation of life-history traits such as pre-adult development time and lifespan in fruit flies Drosophila melanogaster, there is very little unequivocal evidence either to support or refute this. Here we report the results of a long-term study aimed at examining the role of circadian clocks in the temporal regulation of pre-adult development in D. melanogaster. We employed laboratory selection protocol for faster pre-adult development on four large, outbred, random mating populations of Drosophila. We assayed pre-adult development time and circadian period of locomotor activity rhythm of these flies at regular intervals of 5-10 generations. After 50 generations of selection, the overall egg-to-adult duration in the selected stocks was reduced by ~29 h (~12.5%) relative to controls, with the selected populations showing a concurrent reduction in time taken to hatching, pupation and wing pigmentation, by ~2, ~16, and ~25.2 h, respectively. Furthermore, selected populations showed a concomitant reduction in the circadian period of locomotor activity rhythm, implying that circadian clocks and development time are correlated. Thus, our study provides the first ever unequivocal evidence for the evolution of circadian clocks as a correlated response to selection for faster pre-adult development, suggesting that circadian clocks and development are linked in fruit flies D. melanogaster.
Collapse
|
45
|
The Effect of Sexual Selection on Offspring Fitness Depends on the Nature of Genetic Variation. Curr Biol 2012; 22:204-8. [DOI: 10.1016/j.cub.2011.12.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/28/2011] [Accepted: 12/01/2011] [Indexed: 11/22/2022]
|
46
|
Zuo W, Moses ME, West GB, Hou C, Brown JH. A general model for effects of temperature on ectotherm ontogenetic growth and development. Proc Biol Sci 2011; 279:1840-6. [PMID: 22130604 DOI: 10.1098/rspb.2011.2000] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The temperature size rule (TSR) is the tendency for ectotherms to develop faster but mature at smaller body sizes at higher temperatures. It can be explained by a simple model in which the rate of growth or biomass accumulation and the rate of development have different temperature dependence. The model accounts for both TSR and the less frequently observed reverse-TSR, predicts the fraction of energy allocated to maintenance and synthesis over the course of development, and also predicts that less total energy is expended when developing at warmer temperatures for TSR and vice versa for reverse-TSR. It has important implications for effects of climate change on ectothermic animals.
Collapse
Affiliation(s)
- Wenyun Zuo
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | |
Collapse
|
47
|
Richter-Boix A, Tejedo M, Rezende EL. Evolution and plasticity of anuran larval development in response to desiccation. A comparative analysis. Ecol Evol 2011; 1:15-25. [PMID: 22393479 PMCID: PMC3287374 DOI: 10.1002/ece3.2] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 02/02/2023] Open
Abstract
Anurans breed in a variety of aquatic habitats with contrasting levels of desiccation risk, which may result in selection for faster development during larval stages. Previous studies suggest that species in ephemeral ponds reduce their developmental times to minimize desiccation risks, although it is not clear how variation in desiccation risk affects developmental strategies in different species. Employing a comparative phylogenetic approach including data from published and unpublished studies encompassing 62 observations across 30 species, we tested if species breeding in ephemeral ponds (High risk) develop faster than those from permanent ponds (Low risk) and/or show increased developmental plasticity in response to drying conditions. Our analyses support shorter developmental times in High risk, primarily by decreasing body mass at metamorphosis. Plasticity in developmental times was small and did not differ between groups. However, accelerated development in High risk species generally resulted in reduced sizes at metamorphosis, while some Low risk species were able compensate this effect by increasing mean growth rates. Taken together, our results suggest that plastic responses in species breeding in ephemeral ponds are constrained by a general trade-off between development and growth rates.
Collapse
Affiliation(s)
- Alex Richter-Boix
- Department of Population Biology and Conservation Biology, Evolutionary Biology Centre (EBC), Uppsala UniversityNorbyvägen 18 D, SE-752 36 Uppsala, Sweden
| | - Miguel Tejedo
- Department of Evolutionary Ecology, Estación Biológica de Doñana-CSICAvda. Américo Vespucio s/n, E-41092 Sevilla, Spain
| | - Enrico L Rezende
- Departament de Genètica i de Microbiologia, Grup de Biologia Evolutiva, Universitat Autònoma de Barcelona08193 Bellaterra (Barcelona), Spain
| |
Collapse
|
48
|
Ben’kovskaya GV, Sokolyanskaya MP. The adaptive role of resistance to stressors of different types formed in laboratory housefly populations. RUSS J ECOL+ 2010. [DOI: 10.1134/s1067413610030112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Johnson TK, Carrington LB, Hallas RJ, McKechnie SW. Protein synthesis rates in Drosophila associate with levels of the hsr-omega nuclear transcript. Cell Stress Chaperones 2009; 14:569-77. [PMID: 19280368 PMCID: PMC2866946 DOI: 10.1007/s12192-009-0108-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/06/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022] Open
Abstract
Transcripts of the Drosophila hsr-omega gene are known to interact with RNA processing factors and ribosomes and are postulated to aid in co-ordinating nuclear and cytoplasmic activities particularly in stressed cells. However, the significance of these interactions for physiological processes and in turn for whole-organism fitness remains an open question. Because hsr-omega's cellular expression characteristics suggest it may influence protein synthesis, and because both genotypic and expression variation of hsr-omega have been associated with thermotolerance, we characterised 30 lines for variation in the rates of protein synthesis, measured in ovarian tissues, both before and after a mild heat shock, and for basal levels of the two main hsr-omega transcripts, omega-n and omega-c. As expected, the mild heat shock reduced protein synthesis rates. Large variation occurred among lines in levels of omega-n which was negatively associated with rates of basal protein synthesis--a result that supports the model for the cellular function of omega-n. Furthermore, omega-n levels were associated with hsr-omega genotype of the line parents. Little variation occurred among lines for omega-c levels and no associations were detected with protein synthesis or genotype. Since protein synthesis is a fundamental process for growth and development, we characterised the lines for several life-history traits; however, no associations with protein synthesis, omega-n or omega-c levels were detected. Our results are consistent with the idea that natural variation in hsr-omega expression influence rates of protein synthesis in this species.
Collapse
Affiliation(s)
- Travis K. Johnson
- Centre for Environmental Stress and Adaptation Research (CESAR), School of Biological Sciences, Monash University, Melbourne, VIC 3800 Australia
| | - Lauren B. Carrington
- Centre for Environmental Stress and Adaptation Research (CESAR), School of Biological Sciences, Monash University, Melbourne, VIC 3800 Australia
| | - Rebecca J. Hallas
- Centre for Environmental Stress and Adaptation Research (CESAR), School of Biological Sciences, Monash University, Melbourne, VIC 3800 Australia
| | - Stephen W. McKechnie
- Centre for Environmental Stress and Adaptation Research (CESAR), School of Biological Sciences, Monash University, Melbourne, VIC 3800 Australia
| |
Collapse
|
50
|
Sexual conflict and environmental change: trade-offs within and between the sexes during the evolution of desiccation resistance. J Genet 2009; 87:383-94. [PMID: 19147928 DOI: 10.1007/s12041-008-0061-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Intralocus sexual conflict occurs when males and females experience sex-specific selection on a shared genome. With several notable exceptions, intralocus sexual conflict has been investigated in constant environments to which the study organisms have had an opportunity to adapt. However, a change in the environment can result in differential or even opposing selection pressures on males and females, creating sexual conflict. We used experimental evolution to explore the interaction between intralocus sexual conflict, sexual dimorphism and environmental variation in Drosophila melanogaster. Six populations were selected for adult desiccation resistance (D), with six matched control populations maintained in parallel (C). After 46 generations, the D populations had increased in survival time under arid conditions by 68% and in body weight by 20% compared to the C populations. The increase in size was the result of both extended development and faster growth rate of D juveniles. Adaptation to the stress came at a cost in terms of preadult viability and female fecundity. Because males are innately less tolerant of desiccation stress, very few D males survived desiccation-selection; while potentially a windfall for survivors, these conditions mean that most males' fitness was determined posthumously. We conjectured that selection for early maturation and mating in males was in conflict with selection for survival and later reproduction in females. Consistent with this prediction, the sexes showed different patterns of age-specific desiccation resistance and resource acquisition, and there was a trend towards increasingly female-biased sexual size dimorphism. However, levels of desiccation resistance were unaffected, with D males and females increasing in parallel. Either there is a strong positive genetic correlation between the sexes that limits independent evolution of desiccation resistance, or fitness pay-offs from the strategy of riding out the stress bout are great enough to sustain concordant selection on the two sexes. We discuss the forces that mould fitness in males under a regimen where trade-offs between survival and reproduction may be considerable.
Collapse
|