1
|
James C, Pemberton JM, Navarro P, Knott S. Investigating pedigree- and SNP-associated components of heritability in a wild population of Soay sheep. Heredity (Edinb) 2024; 132:202-210. [PMID: 38341521 PMCID: PMC10997785 DOI: 10.1038/s41437-024-00673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Estimates of narrow sense heritability derived from genomic data that contain related individuals may be biased due to the within-family effects such as dominance, epistasis and common environmental factors. However, for many wild populations, removal of related individuals from the data would result in small sample sizes. In 2013, Zaitlen et al. proposed a method to estimate heritability in populations that include close relatives by simultaneously fitting an identity-by-state (IBS) genomic relatedness matrix (GRM) and an identity-by-descent (IBD) GRM. The IBD GRM is identical to the IBS GRM, except relatedness estimates below a specified threshold are set to 0. We applied this method to a sample of 8557 wild Soay sheep from St. Kilda, with genotypic information for 419,281 single nucleotide polymorphisms. We aimed to see how this method would partition heritability into population-level (IBS) and family-associated (IBD) variance for a range of genetic architectures, and so we focused on a mixture of polygenic and monogenic traits. We also implemented a variant of the model in which the IBD GRM was replaced by a GRM constructed from SNPs with low minor allele frequency to examine whether any additive genetic variance is captured by rare alleles. Whilst the inclusion of the IBD GRM did not significantly improve the fit of the model for the monogenic traits, it improved the fit for some of the polygenic traits, suggesting that dominance, epistasis and/or common environment not already captured by the non-genetic random effects fitted in our models may influence these traits.
Collapse
Affiliation(s)
- Caelinn James
- Institute of Ecology and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK.
- Scotland's Rural College (SRUC), The Roslin Institute Building, Easter Bush, Midlothian, UK.
| | - Josephine M Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Pau Navarro
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Sara Knott
- Institute of Ecology and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
James C, Pemberton JM, Navarro P, Knott S. The impact of SNP density on quantitative genetic analyses of body size traits in a wild population of Soay sheep. Ecol Evol 2022; 12:e9639. [PMID: 36532132 PMCID: PMC9750819 DOI: 10.1002/ece3.9639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/01/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Understanding the genetic architecture underpinning quantitative traits in wild populations is pivotal to understanding the processes behind trait evolution. The 'animal model' is a popular method for estimating quantitative genetic parameters such as heritability and genetic correlation and involves fitting an estimate of relatedness between individuals in the study population. Genotypes at genome-wide markers can be used to estimate relatedness; however, relatedness estimates vary with marker density, potentially affecting results. Increasing density of markers is also expected to increase the power to detect quantitative trait loci (QTL). In order to understand how the density of genetic markers affects the results of quantitative genetic analyses, we estimated heritability and performed genome-wide association studies (GWAS) on five body size traits in an unmanaged population of Soay sheep using two different SNP densities: a dataset of 37,037 genotyped SNPs and an imputed dataset of 417,373 SNPs. Heritability estimates did not differ between the two SNP densities, but the high-density imputed SNP dataset revealed four new SNP-trait associations that were not found with the lower density dataset, as well as confirming all previously-found QTL. We also demonstrated that fitting fixed and random effects in the same step as performing GWAS is a more powerful approach than pre-correcting for covariates in a separate model.
Collapse
Affiliation(s)
- Caelinn James
- Institute of Ecology and EvolutionSchool of Biological SciencesThe University of EdinburghEdinburghScotland
| | - Josephine M. Pemberton
- Institute of Ecology and EvolutionSchool of Biological SciencesThe University of EdinburghEdinburghScotland
| | - Pau Navarro
- MRC Human Genetics UnitInstitute of Genetics and CancerThe University of EdinburghEdinburghScotland
| | - Sara Knott
- Institute of Ecology and EvolutionSchool of Biological SciencesThe University of EdinburghEdinburghScotland
| |
Collapse
|
3
|
Yilmaz O, Kizilaslan M, Arzik Y, Behrem S, Ata N, Karaca O, Elmaci C, Cemal I. Genome-wide association studies of preweaning growth and in vivo carcass composition traits in Esme sheep. J Anim Breed Genet 2021; 139:26-39. [PMID: 34331347 DOI: 10.1111/jbg.12640] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/06/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023]
Abstract
Sheep are considered as a major contributor of global food security. Moreover, sheep preweaning growth traits as well as in vivo carcass composition traits such as ultrasonic measurements of Longissimus dorsi muscle depth (UMD) and back-fat thickness (UFD) are crucially important indicators of meat yield and hot carcass composition. Despite their relative importance for productivity and profitability of a sheep production system, detected QTL for these traits are quite scarce. Therefore, we implemented GWAS for these traits using animal mixed model-based association approach provided by GenABEL in Esme sheep. Three genome-wide and 14 individual chromosome-wide associated SNPs were discovered. As a result, ESRP1, LOC105613082, ZNF641, DUSP5, TEAD1, SMOX, PTPRT, RALYL, POM121C, PHIP, LOC101106051, ZIM3, PEG3, TRPC7, FBXL4, LOC105610397, LOC105616489 and DNAAF2 were suggested as candidates. Some of the discovered genes and involved pathways were already annotated to contribute growth and development in various species including human, mice and cattle. All in all, the results of this study are expected to strongly contribute to shed a light on the underlying molecular mechanisms behind growth and carcass composition traits, with potential implications on studies aiming faster genetic improvement, targeted low-resolution SNP panel designs and genome-editing studies.
Collapse
Affiliation(s)
- Onur Yilmaz
- Department of Animal Science, Faculty of Agriculture, Aydin Adnan Menderes University, Aydin, Turkey
| | - Mehmet Kizilaslan
- Department of Animal Breeding and Genetics, International Center for Livestock Research and Training, Ankara, Turkey
| | - Yunus Arzik
- Department of Animal Breeding and Genetics, International Center for Livestock Research and Training, Ankara, Turkey
| | - Sedat Behrem
- Department of Animal Breeding and Genetics, International Center for Livestock Research and Training, Ankara, Turkey
| | - Nezih Ata
- Department of Animal Science, Faculty of Agriculture, Aydin Adnan Menderes University, Aydin, Turkey
| | - Orhan Karaca
- Department of Animal Science, Faculty of Agriculture, Aydin Adnan Menderes University, Aydin, Turkey
| | - Cengiz Elmaci
- Animal Science Department, Agriculture Faculty, Bursa Uludag University, Bursa, Turkey
| | - Ibrahim Cemal
- Department of Animal Science, Faculty of Agriculture, Aydin Adnan Menderes University, Aydin, Turkey
| |
Collapse
|
4
|
Identification of two novel SNPs affecting lambing traits in sheep by using a 50K SNP-Chip. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Gienapp P. Opinion: Is gene mapping in wild populations useful for understanding and predicting adaptation to global change? GLOBAL CHANGE BIOLOGY 2020; 26:2737-2749. [PMID: 32108978 DOI: 10.1111/gcb.15058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 05/22/2023]
Abstract
Changing environmental conditions will inevitably alter selection pressures. Over the long term, populations have to adapt to these altered conditions by evolutionary change to avoid extinction. Quantifying the 'evolutionary potential' of populations to predict whether they will be able to adapt fast enough to forecasted changes is crucial to fully assess the threat for biodiversity posed by climate change. Technological advances in sequencing and high-throughput genotyping have now made genomic studies possible in a wide range of species. Such studies, in theory, allow an unprecedented understanding of the genomics of ecologically relevant traits and thereby a detailed assessment of the population's evolutionary potential. Aimed at a wider audience than only evolutionary geneticists, this paper gives an overview of how gene-mapping studies have contributed to our understanding and prediction of evolutionary adaptations to climate change, identifies potential reasons why their contribution to understanding adaptation to climate change may remain limited, and highlights approaches to study and predict climate change adaptation that may be more promising, at least in the medium term.
Collapse
|
6
|
Palomar G, Vasemägi A, Ahmad F, Nicieza AG, Cano JM. Mapping of quantitative trait loci for life history traits segregating within common frog populations. Heredity (Edinb) 2019; 122:800-808. [PMID: 30631147 DOI: 10.1038/s41437-018-0175-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 02/01/2023] Open
Abstract
The evolution of complex traits is often shaped by adaptive divergence. However, very little is known about the number, effect size, and location of the genomic regions influencing the variation of these traits in natural populations. Based on a dense linkage map of the common frog, Rana temporaria, we have localized, for the first time in amphibians, three significant and nine suggestive quantitative trait loci (QTLs) for metabolic rate, growth rate, development time, and weight at metamorphosis, explaining 5.6-18.9% of the overall phenotypic variation in each trait. We also found a potential pleiotropic QTL between development time and size at metamorphosis that, if confirmed, might underlie the previously reported genetic correlation between these traits. Furthermore, we demonstrate that the genetic variation linked to fitness-related larval traits segregates within Rana temporaria populations. This study provides the first insight into the genomic regions that affect larval life history traits in anurans, providing a valuable resource to delve further into the genomic basis of evolutionary change in amphibians.
Collapse
Affiliation(s)
- Gemma Palomar
- Research Unit of Biodiversity (UO-CSIC-PA), 33600, Mieres, Asturias, Spain. .,Department of Biology of Organisms and Systems, University of Oviedo, 33006, Oviedo, Asturias, Spain. .,Molecular and Behavioral Ecology Group, Institute of Environmental Sciences, Jagiellonian University, 30-387, Krakow, Poland.
| | - Anti Vasemägi
- Department of Biology, University of Turku, 20014, Turku, Finland.,Department of Aquaculture, Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, 51006, Tartu, Estonia.,Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, 17893, Drottningholm, Sweden
| | - Freed Ahmad
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Alfredo G Nicieza
- Research Unit of Biodiversity (UO-CSIC-PA), 33600, Mieres, Asturias, Spain.,Department of Biology of Organisms and Systems, University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - José Manuel Cano
- Research Unit of Biodiversity (UO-CSIC-PA), 33600, Mieres, Asturias, Spain.,Department of Biology of Organisms and Systems, University of Oviedo, 33006, Oviedo, Asturias, Spain
| |
Collapse
|
7
|
Schielzeth H, Rios Villamil A, Burri R. Success and failure in replication of genotype-phenotype associations: How does replication help in understanding the genetic basis of phenotypic variation in outbred populations? Mol Ecol Resour 2018; 18:739-754. [PMID: 29575806 DOI: 10.1111/1755-0998.12780] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/29/2022]
Abstract
Recent developments in sequencing technologies have facilitated genomewide mapping of phenotypic variation in natural populations. Such mapping efforts face a number of challenges potentially leading to low reproducibility. However, reproducible research forms the basis of scientific progress. We here discuss the options for replication and the reasons for potential nonreproducibility. We then review the evidence for reproducible quantitative trait loci (QTL) with a focus on natural animal populations. Existing case studies of replication fall into three categories: (i) traits that have been mapped to major effect loci (including chromosomal inversion and supergenes) by independent research teams; (ii) QTL fine-mapped in discovery populations; and (iii) attempts to replicate QTL across multiple populations. Major effect loci, in particular those associated with inversions, have been successfully replicated in several cases within and across populations. Beyond such major effect variants, replication has been more successful within than across populations, suggesting that QTL discovered in natural populations may often be population-specific. This suggests that biological causes (differences in linkage patterns, allele frequencies or context-dependencies of QTL) contribute to nonreproducibility. Evidence from other fields, notably animal breeding and QTL mapping in humans, suggests that a significant fraction of QTL is indeed reproducible in direction and magnitude at least within populations. However, there is also a large number of QTL that cannot be easily reproduced. We put forward that more studies should explicitly address the causes and context-dependencies of QTL signals, in particular to disentangle linkage differences, allele frequency differences and gene-by-environment interactions as biological causes of nonreproducibility of QTL, especially between populations.
Collapse
Affiliation(s)
- Holger Schielzeth
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
| | - Alejandro Rios Villamil
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
| | - Reto Burri
- Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
8
|
Hohenlohe PA, Hand BK, Andrews KR, Luikart G. Population Genomics Provides Key Insights in Ecology and Evolution. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_20] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Inbreeding depression by environment interactions in a free-living mammal population. Heredity (Edinb) 2016; 118:64-77. [PMID: 27876804 PMCID: PMC5176111 DOI: 10.1038/hdy.2016.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/06/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
Experimental studies often find that inbreeding depression is more severe in harsh environments, but the few studies of in situ wild populations available to date rarely find strong support for this effect. We investigated evidence for inbreeding depression by environment interactions in nine traits in the individually monitored Soay sheep population of St Kilda, using genomic inbreeding coefficients based on 37 037 single-nucleotide polymorphism loci, and population density as an axis of environmental variation. All traits showed variation with population density and all traits showed some evidence for depression because of either an individual's own inbreeding or maternal inbreeding. However, only six traits showed evidence for an interaction in the expected direction, and only two interactions were statistically significant. We identify three possible reasons why wild population studies may generally fail to find strong support for interactions between inbreeding depression and environmental variation compared with experimental studies. First, for species with biparental inbreeding only, the amount of observed inbreeding in natural populations is generally low compared with that used in experimental studies. Second, it is possible that experimental studies sometimes actually impose higher levels of stress than organisms experience in the wild. Third, some purging of the deleterious recessive alleles that underpin interaction effects may occur in the wild.
Collapse
|
10
|
Regan CE, Pilkington JG, Bérénos C, Pemberton JM, Smiseth PT, Wilson AJ. Accounting for female space sharing in St. Kilda Soay sheep (Ovis aries) results in little change in heritability estimates. J Evol Biol 2016; 30:96-111. [PMID: 27747954 DOI: 10.1111/jeb.12990] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/06/2016] [Accepted: 10/06/2016] [Indexed: 02/05/2023]
Abstract
When estimating heritability in free-living populations, it is common practice to account for common environment effects, because of their potential to generate phenotypic covariance among relatives thereby biasing heritability estimates. In quantitative genetic studies of natural populations, however, philopatry, which results in relatives being clustered in space, is rarely accounted for. The two studies that have been carried out so far suggest absolute declines in heritability estimates of up to 43% when accounting for space sharing by relatives. However, due to methodological limitations these estimates may not be representative. We used data from the St. Kilda Soay sheep population to estimate heritabilities with and without accounting for space sharing for five traits for which there is evidence for additive genetic variance (birthweight, birth date, lamb August weight, and female post-mortem jaw and metacarpal length). We accounted for space sharing by related females by separately incorporating spatial autocorrelation, and a home range similarity matrix. Although these terms accounted for up to 18% of the variance in these traits, heritability estimates were only reduced by up to 7%. Our results suggest that the bias caused by not accounting for space sharing may be lower than previously thought. This suggests that philopatry does not inevitably lead to a large bias if space sharing by relatives is not accounted for. We hope our work stimulates researchers to model shared space when relatives in their study population share space, as doing so will enable us to better understand when bias may be of particular concern.
Collapse
Affiliation(s)
- C E Regan
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - J G Pilkington
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - C Bérénos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - J M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - P T Smiseth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - A J Wilson
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
| |
Collapse
|
11
|
Bérénos C, Ellis PA, Pilkington JG, Pemberton JM. Genomic analysis reveals depression due to both individual and maternal inbreeding in a free-living mammal population. Mol Ecol 2016; 25:3152-68. [PMID: 27135155 PMCID: PMC4950049 DOI: 10.1111/mec.13681] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/22/2016] [Indexed: 01/13/2023]
Abstract
There is ample evidence for inbreeding depression manifested as a reduction in fitness or fitness-related traits in the focal individual. In many organisms, fitness is not only affected by genes carried by the individual, but also by genes carried by their parents, for example if receiving parental care. While maternal effects have been described in many systems, the extent to which inbreeding affects fitness directly through the focal individual, or indirectly through the inbreeding coefficients of its parents, has rarely been examined jointly. The Soay sheep study population is an excellent system in which to test for both effects, as lambs receive extended maternal care. Here, we tested for both maternal and individual inbreeding depression in three fitness-related traits (birthweight and weight and hindleg length at 4 months of age) and three fitness components (first-year survival, adult annual survival and annual breeding success), using either pedigree-derived inbreeding or genomic estimators calculated using ~37 000 SNP markers. We found evidence for inbreeding depression in 4-month hindleg and weight, first-year survival in males, and annual survival and breeding success in adults. Maternal inbreeding was found to depress both birthweight and 4-month weight. We detected more instances of significant inbreeding depression using genomic estimators than the pedigree, which is partly explained through the increased sample sizes available. In conclusion, our results highlight that cross-generational inbreeding effects warrant further exploration in species with parental care and that modern genomic tools can be used successfully instead of, or alongside, pedigrees in natural populations.
Collapse
Affiliation(s)
- Camillo Bérénos
- Institute of Evolutionary Biology, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Philip A Ellis
- Institute of Evolutionary Biology, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Jill G Pilkington
- Institute of Evolutionary Biology, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Josephine M Pemberton
- Institute of Evolutionary Biology, Ashworth Laboratories, King's Buildings, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
12
|
Husby A, Kawakami T, Rönnegård L, Smeds L, Ellegren H, Qvarnström A. Genome-wide association mapping in a wild avian population identifies a link between genetic and phenotypic variation in a life-history trait. Proc Biol Sci 2016; 282:20150156. [PMID: 25833857 PMCID: PMC4426624 DOI: 10.1098/rspb.2015.0156] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Understanding the genetic basis of traits involved in adaptation is a major
challenge in evolutionary biology but remains poorly understood. Here, we use
genome-wide association mapping using a custom 50 k single nucleotide
polymorphism (SNP) array in a natural population of collared flycatchers to
examine the genetic basis of clutch size, an important life-history trait in
many animal species. We found evidence for an association on chromosome 18 where
one SNP significant at the genome-wide level explained 3.9% of the
phenotypic variance. We also detected two suggestive quantitative trait loci
(QTLs) on chromosomes 9 and 26. Fitness differences among genotypes were
generally weak and not significant, although there was some indication of a
sex-by-genotype interaction for lifetime reproductive success at the suggestive
QTL on chromosome 26. This implies that sexual antagonism may play a role in
maintaining genetic variation at this QTL. Our findings provide candidate
regions for a classic avian life-history trait that will be useful for future
studies examining the molecular and cellular function of, as well as
evolutionary mechanisms operating at, these loci.
Collapse
Affiliation(s)
- Arild Husby
- Department of Animal Ecology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway Department of Biosciences, University of Helsinki, PO Box 65, Helsinki 00014, Finland
| | - Takeshi Kawakami
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Lars Rönnegård
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Linnéa Smeds
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| | - Anna Qvarnström
- Department of Animal Ecology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyvägen 18D, Uppsala 75236, Sweden
| |
Collapse
|
13
|
Atlija M, Arranz JJ, Martinez-Valladares M, Gutiérrez-Gil B. Detection and replication of QTL underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50K SNP array. Genet Sel Evol 2016; 48:4. [PMID: 26791855 PMCID: PMC4719203 DOI: 10.1186/s12711-016-0182-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Persistence of gastrointestinal nematode (GIN) infection and the related control methods have major impacts on the sheep industry worldwide. Based on the information generated with the Illumina OvineSNP50 BeadChip (50 K chip), this study aims at confirming quantitative trait loci (QTL) that were previously identified by microsatellite-based genome scans and identifying new QTL and allelic variants that are associated with indicator traits of parasite resistance in adult sheep. We used a commercial half-sib population of 518 Spanish Churra ewes with available data for fecal egg counts (FEC) and serum levels of immunoglobulin A (IgA) to perform different genome scan QTL mapping analyses based on classical linkage analysis (LA), a combined linkage disequilibrium and linkage analysis (LDLA) and a genome-wide association study (GWAS). RESULTS For the FEC and IgA traits, we detected a total of three 5 % chromosome-wise significant QTL by LA and 63 significant regions by LDLA, of which 13 reached the 5 % genome-wise significance level. The GWAS also revealed 10 significant SNPs associated with IgAt, although no significant associations were found for LFEC. Some of the significant QTL for LFEC that were detected by LA and LDLA on OAR6 overlapped with a highly significant QTL that was previously detected in a different half-sib population of Churra sheep. In addition, several new QTL and SNP associations were identified, some of which show correspondence with effects that were reported for different populations of young sheep. Other significant associations that did not coincide with previously reported associations could be related to the specific immune response of adult animals. DISCUSSION Our results replicate a FEC-related QTL located on OAR6 that was previously reported in Churra sheep and provide support for future research on the identification of the allelic variant that underlies this QTL. The small proportion of genetic variance explained by the detected QTL and the large number of functional candidate genes identified here are consistent with the hypothesis that GIN resistance/susceptibility is a complex trait that is not determined by individual genes acting alone but rather by complex multi-gene interactions. Future studies that combine genomic variation analysis and functional genomic information may help elucidate the biology of GIN disease resistance in sheep.
Collapse
Affiliation(s)
- Marina Atlija
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain.
| | - Juan-Jose Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain.
| | - María Martinez-Valladares
- Instituto de Ganadería de Montaña, CSIC-ULE, Grulleros, León, 24346, Spain. .,Departamento de Sanidad Animal, Universidad de León, León, 24071, Spain.
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071, Spain.
| |
Collapse
|
14
|
Bérénos C, Ellis PA, Pilkington JG, Lee SH, Gratten J, Pemberton JM. Heterogeneity of genetic architecture of body size traits in a free-living population. Mol Ecol 2015; 24:1810-30. [PMID: 25753777 PMCID: PMC4405094 DOI: 10.1111/mec.13146] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 01/15/2023]
Abstract
Knowledge of the underlying genetic architecture of quantitative traits could aid in understanding how they evolve. In wild populations, it is still largely unknown whether complex traits are polygenic or influenced by few loci with major effect, due to often small sample sizes and low resolution of marker panels. Here, we examine the genetic architecture of five adult body size traits in a free-living population of Soay sheep on St Kilda using 37 037 polymorphic SNPs. Two traits (jaw and weight) show classical signs of a polygenic trait: the proportion of variance explained by a chromosome was proportional to its length, multiple chromosomes and genomic regions explained significant amounts of phenotypic variance, but no SNPs were associated with trait variance when using GWAS. In comparison, genetic variance for leg length traits (foreleg, hindleg and metacarpal) was disproportionately explained by two SNPs on chromosomes 16 (s23172.1) and 19 (s74894.1), which each explained >10% of the additive genetic variance. After controlling for environmental differences, females heterozygous for s74894.1 produced more lambs and recruits during their lifetime than females homozygous for the common allele conferring long legs. We also demonstrate that alleles conferring shorter legs have likely entered the population through a historic admixture event with the Dunface sheep. In summary, we show that different proxies for body size can have very different genetic architecture and that dense SNP helps in understanding both the mode of selection and the evolutionary history at loci underlying quantitative traits in natural populations.
Collapse
Affiliation(s)
| | | | | | - S. Hong Lee
- Queensland Brain InstituteThe University of QueenslandBrisbaneQld4072Australia
| | - Jake Gratten
- Queensland Brain InstituteThe University of QueenslandBrisbaneQld4072Australia
| | | |
Collapse
|
15
|
Pujol B. Genes and quantitative genetic variation involved with senescence in cells, organs, and the whole plant. Front Genet 2015; 6:57. [PMID: 25755664 PMCID: PMC4337380 DOI: 10.3389/fgene.2015.00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 02/06/2015] [Indexed: 11/22/2022] Open
Abstract
Senescence, the deterioration of morphological, physiological, and reproductive functions with age that ends with the death of the organism, was widely studied in plants. Genes were identified that are linked to the deterioration of cells, organs and the whole plant. It is, however, unclear whether those genes are the source of age dependent deterioration or get activated to regulate such deterioration. Furthermore, it is also unclear whether such genes are active as a direct consequence of age or because they are specifically involved in some developmental stages. At the individual level, it is the relationship between quantitative genetic variation, and age that can be used to detect the genetic signature of senescence. Surprisingly, the latter approach was only scarcely applied to plants. This may be the consequence of the demanding requirements for such approaches and/or the fact that most research interest was directed toward plants that avoid senescence. Here, I review those aspects in turn and call for an integrative genetic theory of senescence in plants. Such conceptual development would have implications for the management of plant genetic resources and generate progress on fundamental questions raised by aging research.
Collapse
Affiliation(s)
- Benoit Pujol
- CNRS, Université Paul Sabatier, ENFA, UMR5174 EDB (Laboratoire Évolution et Diversité Biologique) Toulouse, France ; Université Toulouse 3 Paul Sabatier, CNRS, UMR5174 EDB Toulouse, France
| |
Collapse
|
16
|
GHOLIZADEH MOHSEN, RAHIMI-MIANJI GHODRAT, NEJATI-JAVAREMI ARDESHIR. Genomewide association study of body weight traits in Baluchi sheep. J Genet 2015; 94:143-6. [DOI: 10.1007/s12041-015-0469-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
17
|
Pallares LF, Harr B, Turner LM, Tautz D. Use of a natural hybrid zone for genomewide association mapping of craniofacial traits in the house mouse. Mol Ecol 2014; 23:5756-70. [PMID: 25319559 DOI: 10.1111/mec.12968] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/23/2014] [Accepted: 10/03/2014] [Indexed: 02/03/2023]
Abstract
The identification of the genes involved in morphological variation in nature is still a major challenge. Here, we explore a new approach: we combine 178 samples from a natural hybrid zone between two subspecies of the house mouse (Mus musculus domesticus and Mus musculus musculus), and high coverage of the genome (~ 145K SNPs) to identify loci underlying craniofacial shape variation. Due to the long history of recombination in the hybrid zone, high mapping resolution is anticipated. The combination of genomes from subspecies allows the mapping of both, variation within subspecies and inter-subspecific differences, thereby increasing the overall amount of causal genetic variation that can be detected. Skull and mandible shape were measured using 3D landmarks and geometric morphometrics. Using principal component axes as phenotypes, and a linear mixed model accounting for genetic relatedness in the mapping populations, we identified nine genomic regions associated with skull shape and 10 with mandible shape. High mapping resolution (median size of significant regions = 148 kb) enabled identification of single or few candidate genes in most cases. Some of the genes act as regulators or modifiers of signalling pathways relevant for morphological development and bone formation, including several with known craniofacial phenotypes in mice and humans. The significant associations combined explain 13% and 7% of the skull and mandible shape variation, respectively. In addition, a positive correlation was found between chromosomal length and proportion of variation explained. Our results suggest a complex genetic architecture for shape traits and support a polygenic model.
Collapse
Affiliation(s)
- Luisa F Pallares
- Max-Planck Institute for Evolutionary Biology, Plön, 24306, Germany
| | | | | | | |
Collapse
|
18
|
Bérénos C, Ellis PA, Pilkington JG, Pemberton JM. Estimating quantitative genetic parameters in wild populations: a comparison of pedigree and genomic approaches. Mol Ecol 2014; 23:3434-51. [PMID: 24917482 PMCID: PMC4149785 DOI: 10.1111/mec.12827] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 01/11/2023]
Abstract
The estimation of quantitative genetic parameters in wild populations is generally limited by the accuracy and completeness of the available pedigree information. Using relatedness at genomewide markers can potentially remove this limitation and lead to less biased and more precise estimates. We estimated heritability, maternal genetic effects and genetic correlations for body size traits in an unmanaged long-term study population of Soay sheep on St Kilda using three increasingly complete and accurate estimates of relatedness: (i) Pedigree 1, using observation-derived maternal links and microsatellite-derived paternal links; (ii) Pedigree 2, using SNP-derived assignment of both maternity and paternity; and (iii) whole-genome relatedness at 37 037 autosomal SNPs. In initial analyses, heritability estimates were strikingly similar for all three methods, while standard errors were systematically lower in analyses based on Pedigree 2 and genomic relatedness. Genetic correlations were generally strong, differed little between the three estimates of relatedness and the standard errors declined only very slightly with improved relatedness information. When partitioning maternal effects into separate genetic and environmental components, maternal genetic effects found in juvenile traits increased substantially across the three relatedness estimates. Heritability declined compared to parallel models where only a maternal environment effect was fitted, suggesting that maternal genetic effects are confounded with direct genetic effects and that more accurate estimates of relatedness were better able to separate maternal genetic effects from direct genetic effects. We found that the heritability captured by SNP markers asymptoted at about half the SNPs available, suggesting that denser marker panels are not necessarily required for precise and unbiased heritability estimates. Finally, we present guidelines for the use of genomic relatedness in future quantitative genetics studies in natural populations.
Collapse
Affiliation(s)
- Camillo Bérénos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK
| | | | | | | |
Collapse
|
19
|
Schielzeth H, Husby A. Challenges and prospects in genome-wide quantitative trait loci mapping of standing genetic variation in natural populations. Ann N Y Acad Sci 2014; 1320:35-57. [PMID: 24689944 DOI: 10.1111/nyas.12397] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A considerable challenge in evolutionary genetics is to understand the genetic mechanisms that facilitate or impede evolutionary adaptation in natural populations. For this, we must understand the genetic loci contributing to trait variation and the selective forces acting on them. The decreased costs and increased feasibility of obtaining genotypic data on a large number of individuals have greatly facilitated gene mapping in natural populations, particularly because organisms whose genetics have been historically difficult to study are now within reach. Here we review the methods available to evolutionary ecologists interested in dissecting the genetic basis of traits in natural populations. Our focus lies on standing genetic variation in outbred populations. We present an overview of the current state of research in the field, covering studies on both plants and animals. We also draw attention to particular challenges associated with the discovery of quantitative trait loci and discuss parallels to studies on crops, livestock, and humans. Finally, we point to some likely future developments in genetic mapping studies.
Collapse
Affiliation(s)
- Holger Schielzeth
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
20
|
Danchin E, Pujol B, Wagner RH. The double pedigree: a method for studying culturally and genetically inherited behavior in tandem. PLoS One 2013; 8:e61254. [PMID: 23700404 PMCID: PMC3659024 DOI: 10.1371/journal.pone.0061254] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
Transgenerational sources of biological variation have been at the center of evolutionary studies ever since Darwin and Wallace identified natural selection. This is because evolution can only operate on traits whose variation is transmitted, i.e. traits that are heritable. The discovery of genetic inheritance has led to a semantic shift, resulting in the tendency to consider that only genes are inherited across generations. Today, however, concepts of heredity are being broadened again to integrate the accruing evidence of non-genetic inheritance, and many evolutionary biologists are calling for the inclusion of non-genetic inheritance into an inclusive evolutionary synthesis. Here, we focus on social heredity and its role in the inheritance of behavioral traits. We discuss quantitative genetics methods that might allow us to disentangle genetic and non-genetic transmission in natural populations with known pedigrees. We then propose an experimental design based on cross-fostering among animal cultures, environments and families that has the potential to partition inherited phenotypic variation into socially (i.e. culturally) and genetically inherited components. This approach builds towards a new conceptual framework based on the use of an extended version of the animal model of quantitative genetics to integrate genetic and cultural components of behavioral inheritance.
Collapse
Affiliation(s)
- Etienne Danchin
- CNRS, UPS, ENFA, EDB (Laboratoire Evolution et Diversité Biologique), UMR5174, Toulouse, France.
| | | | | |
Collapse
|
21
|
Slate J. FROM BEAVIS TO BEAK COLOR: A SIMULATION STUDY TO EXAMINE HOW MUCH QTL MAPPING CAN REVEAL ABOUT THE GENETIC ARCHITECTURE OF QUANTITATIVE TRAITS. Evolution 2013; 67:1251-62. [DOI: 10.1111/evo.12060] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/08/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Jon Slate
- Department of Animal and Plant Sciences; University of Sheffield; Western Bank; Sheffield; S10 2TN; United Kingdom
| |
Collapse
|
22
|
Poissant J, Réale D, Martin J, Festa-Bianchet M, Coltman D. A quantitative trait locus analysis of personality in wild bighorn sheep. Ecol Evol 2013; 3:474-81. [PMID: 23531519 PMCID: PMC3605838 DOI: 10.1002/ece3.468] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/04/2012] [Accepted: 12/11/2012] [Indexed: 11/13/2022] Open
Abstract
Personality, the presence of persistent behav105ioral differences among individuals over time or contexts, potentially has important ecological and evolutionary consequences. However, a lack of knowledge about its genetic architecture limits our ability to understand its origin, evolution, and maintenance. Here, we report on a genome-wide quantitative trait locus (QTL) analysis for two personality traits, docility and boldness, in free-living female bighorn sheep from Ram Mountain, Alberta, Canada. Our variance component linkage analysis based on 238 microsatellite loci genotyped in 310 pedigreed individuals identified suggestive docility and boldness QTL on sheep chromosome 2 and 6, respectively. A lack of QTL overlap indicated that genetic covariance between traits was not modulated by pleiotropic effects at a major locus and may instead result from linkage disequilibrium or pleiotropic effects at QTL of small effects. To our knowledge, this study represents the first attempt to dissect the genetic architecture of personality in a free-living wildlife population, an important step toward understanding the link between molecular genetic variation in personality and fitness and the evolutionary processes maintaining this variation.
Collapse
Affiliation(s)
- J Poissant
- Department of Animal and Plant Sciences, University of Sheffield Sheffield, S10 2TN, UK
| | | | | | | | | |
Collapse
|
23
|
García-Gámez E, Gutiérrez-Gil B, Sánchez JP, Arranz JJ. Replication and refinement of a quantitative trait locus influencing milk protein percentage on ovine chromosome 3. Anim Genet 2011; 43:636-41. [PMID: 22497507 DOI: 10.1111/j.1365-2052.2011.02294.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A previous genome scan that was conducted in Spanish Churra sheep identified a significant quantitative trait locus (QTL) for milk protein percentage (PP) on chromosome 3 (OAR3), between markers KD103 and OARVH34. The aim of this study was to replicate these results and to refine the mapped position of this QTL. To accomplish this goal, we analysed 14 new half-sib families of Spanish Churra sheep including 1661 ewes from 29 different flocks. These animals were genotyped for 21 microsatellite markers mapping to OAR3. In addition to a classical linkage analysis (LA), a combined linkage disequilibrium and linkage analysis (LDLA) was performed with the aim of enhancing the resolution of the QTL mapping. The LA that was performed in this sheep population identified the presence of a highly significant QTL for PP near marker KD103 (P(c) < 0.001; P(exp) < 0.001). The phenotypic variance that was owing to the QTL was 2.74%. Two segregating families for the target QTL were identified in this population with QTL effect estimates of 0.47 and 0.95 SD. The LDLA identified the same QTL as the previous analyses with a high level of statistical significance (P = 9.184 E-11) and narrowed the confidence interval (CI) to a 13 cM region. These results confirm the segregation of the previously identified OAR3 QTL that influences PP in Spanish Churra sheep. Future research will aim to increase the marker density across the refined CI and to analyse the corresponding candidate genes to identify the allelic variant or variants that underlie this genetic effect.
Collapse
Affiliation(s)
- E García-Gámez
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, 24071 León, Spain
| | | | | | | |
Collapse
|
24
|
Barrett RDH, Hoekstra HE. Molecular spandrels: tests of adaptation at the genetic level. Nat Rev Genet 2011; 12:767-80. [PMID: 22005986 DOI: 10.1038/nrg3015] [Citation(s) in RCA: 363] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although much progress has been made in identifying the genes (and, in rare cases, mutations) that contribute to phenotypic variation, less is known about the effects that these genes have on fitness. Nonetheless, genes are commonly labelled as 'adaptive' if an allele has been shown to affect a phenotype with known or suspected functional importance or if patterns of nucleotide variation at the locus are consistent with positive selection. In these cases, the 'adaptive' designation may be premature and may lead to incorrect conclusions about the relationships between gene function and fitness. Experiments to test targets and agents of natural selection within a genomic context are necessary for identifying the adaptive consequences of individual alleles.
Collapse
Affiliation(s)
- Rowan D H Barrett
- Department of Organismic and Evolutionary Biology, Department of Molecular and Cellular Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138, USA.
| | | |
Collapse
|
25
|
Schielzeth H, Kempenaers B, Ellegren H, Forstmeier W. QTL LINKAGE MAPPING OF ZEBRA FINCH BEAK COLOR SHOWS AN OLIGOGENIC CONTROL OF A SEXUALLY SELECTED TRAIT. Evolution 2011; 66:18-30. [DOI: 10.1111/j.1558-5646.2011.01431.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Poissant J, Davis CS, Malenfant RM, Hogg JT, Coltman DW. QTL mapping for sexually dimorphic fitness-related traits in wild bighorn sheep. Heredity (Edinb) 2011; 108:256-63. [PMID: 21847139 DOI: 10.1038/hdy.2011.69] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Dissecting the genetic architecture of fitness-related traits in wild populations is key to understanding evolution and the mechanisms maintaining adaptive genetic variation. We took advantage of a recently developed genetic linkage map and phenotypic information from wild pedigreed individuals from Ram Mountain, Alberta, Canada, to study the genetic architecture of ecologically important traits (horn volume, length, base circumference and body mass) in bighorn sheep. In addition to estimating sex-specific and cross-sex quantitative genetic parameters, we tested for the presence of quantitative trait loci (QTLs), colocalization of QTLs between bighorn sheep and domestic sheep, and sex × QTL interactions. All traits showed significant additive genetic variance and genetic correlations tended to be positive. Linkage analysis based on 241 microsatellite loci typed in 310 pedigreed animals resulted in no significant and five suggestive QTLs (four for horn dimension on chromosomes 1, 18 and 23, and one for body mass on chromosome 26) using genome-wide significance thresholds (Logarithm of odds (LOD) >3.31 and >1.88, respectively). We also confirmed the presence of a horn dimension QTL in bighorn sheep at the only position known to contain a similar QTL in domestic sheep (on chromosome 10 near the horns locus; nominal P<0.01) and highlighted a number of regions potentially containing weight-related QTLs in both species. As expected for sexually dimorphic traits involved in male-male combat, loci with sex-specific effects were detected. This study lays the foundation for future work on adaptive genetic variation and the evolutionary dynamics of sexually dimorphic traits in bighorn sheep.
Collapse
Affiliation(s)
- J Poissant
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
27
|
|
28
|
|
29
|
Pemberton JM, Beraldi D, Craig BH, Hopkins J. Digital gene expression analysis of gastrointestinal helminth resistance in Scottish blackface lambs. Mol Ecol 2011; 20:910-9. [PMID: 21324010 DOI: 10.1111/j.1365-294x.2010.04992.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Digital gene expression (DGE) analysis offers a route to gene discovery which by-passes the need to develop bespoke arrays for nonmodel species, and is therefore a potentially valuable tool for molecular ecologists. Scottish blackface sheep, which vary in resistance to the common abomasal parasitic nematode Teladorsagia circumcincta, were trickle-infected with L3 larvae over 3 months to mimic the natural progression of infection. DGE was performed on abomasal lymph node tissue after the resolution of infection in resistant animals. Susceptible (low resistance) animals showed a large number of differentially expressed genes associated with inflammation and cell activation, but generally few differentially regulated genes in either the susceptible or the resistant group were directly involved in the adaptive immune function. Our results are consistent with the hypothesis that both resistance and susceptibility are active responses to infection and that susceptibility is associated with dysfunction in T cell differentiation and regulation.
Collapse
Affiliation(s)
- J M Pemberton
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK.
| | | | | | | |
Collapse
|
30
|
Mapping quantitative trait loci in a wild population using linkage and linkage disequilibrium analyses. Genet Res (Camb) 2010; 92:273-81. [DOI: 10.1017/s0016672310000340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SummaryHistorical information can be used, in addition to pedigree, traits and genotypes, to map quantitative trait locus (QTL) in general populations via maximum likelihood estimation of variance components. This analysis is known as linkage disequilibrium (LD) and linkage mapping, because it exploits both linkage in families and LD at the population level. The search for QTL in the wild population of Soay sheep on St. Kilda is a proof of principle. We analysed the data from a previous study and confirmed some of the QTLs reported. The most striking result was the confirmation of a QTL affecting birth weight that had been reported using association tests but not when using linkage-based analyses.
Collapse
|
31
|
Poissant J, Hogg JT, Davis CS, Miller JM, Maddox JF, Coltman DW. Genetic linkage map of a wild genome: genomic structure, recombination and sexual dimorphism in bighorn sheep. BMC Genomics 2010; 11:524. [PMID: 20920197 PMCID: PMC3091677 DOI: 10.1186/1471-2164-11-524] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 09/28/2010] [Indexed: 12/23/2022] Open
Abstract
Background The construction of genetic linkage maps in free-living populations is a promising tool for the study of evolution. However, such maps are rare because it is difficult to develop both wild pedigrees and corresponding sets of molecular markers that are sufficiently large. We took advantage of two long-term field studies of pedigreed individuals and genomic resources originally developed for domestic sheep (Ovis aries) to construct a linkage map for bighorn sheep, Ovis canadensis. We then assessed variability in genomic structure and recombination rates between bighorn sheep populations and sheep species. Results Bighorn sheep population-specific maps differed slightly in contiguity but were otherwise very similar in terms of genomic structure and recombination rates. The joint analysis of the two pedigrees resulted in a highly contiguous map composed of 247 microsatellite markers distributed along all 26 autosomes and the X chromosome. The map is estimated to cover about 84% of the bighorn sheep genome and contains 240 unique positions spanning a sex-averaged distance of 3051 cM with an average inter-marker distance of 14.3 cM. Marker synteny, order, sex-averaged interval lengths and sex-averaged total map lengths were all very similar between sheep species. However, in contrast to domestic sheep, but consistent with the usual pattern for a placental mammal, recombination rates in bighorn sheep were significantly greater in females than in males (~12% difference), resulting in an autosomal female map of 3166 cM and an autosomal male map of 2831 cM. Despite differing genome-wide patterns of heterochiasmy between the sheep species, sexual dimorphism in recombination rates was correlated between orthologous intervals. Conclusions We have developed a first-generation bighorn sheep linkage map that will facilitate future studies of the genetic architecture of trait variation in this species. While domestication has been hypothesized to be responsible for the elevated mean recombination rate observed in domestic sheep, our results suggest that it is a characteristic of Ovis species. However, domestication may have played a role in altering patterns of heterochiasmy. Finally, we found that interval-specific patterns of sexual dimorphism were preserved among closely related Ovis species, possibly due to the conserved position of these intervals relative to the centromeres and telomeres. This study exemplifies how transferring genomic resources from domesticated species to close wild relative can benefit evolutionary ecologists while providing insights into the evolution of genomic structure and recombination rates of domesticated species.
Collapse
Affiliation(s)
- Jocelyn Poissant
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | |
Collapse
|
32
|
Genome mapping in intensively studied wild vertebrate populations. Trends Genet 2010; 26:275-84. [DOI: 10.1016/j.tig.2010.03.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 03/26/2010] [Accepted: 03/29/2010] [Indexed: 11/18/2022]
|
33
|
Künstner A, Wolf JBW, Backström N, Whitney O, Balakrishnan CN, Day L, Edwards SV, Janes DE, Schlinger BA, Wilson RK, Jarvis ED, Warren WC, Ellegren H. Comparative genomics based on massive parallel transcriptome sequencing reveals patterns of substitution and selection across 10 bird species. Mol Ecol 2010; 19 Suppl 1:266-76. [PMID: 20331785 DOI: 10.1111/j.1365-294x.2009.04487.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Next-generation sequencing technology provides an attractive means to obtain large-scale sequence data necessary for comparative genomic analysis. To analyse the patterns of mutation rate variation and selection intensity across the avian genome, we performed brain transcriptome sequencing using Roche 454 technology of 10 different non-model avian species. Contigs from de novo assemblies were aligned to the two available avian reference genomes, chicken and zebra finch. In total, we identified 6499 different genes across all 10 species, with approximately 1000 genes found in each full run per species. We found evidence for a higher mutation rate of the Z chromosome than of autosomes (male-biased mutation) and a negative correlation between the neutral substitution rate (d(S)) and chromosome size. Analyses of the mean d(N)/d(S) ratio (omega) of genes across chromosomes supported the Hill-Robertson effect (the effect of selection at linked loci) and point at stochastic problems with omega as an independent measure of selection. Overall, this study demonstrates the usefulness of next-generation sequencing for obtaining genomic resources for comparative genomic analysis of non-model organisms.
Collapse
Affiliation(s)
- Axel Künstner
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ball AD, Stapley J, Dawson DA, Birkhead TR, Burke T, Slate J. A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata). BMC Genomics 2010; 11:218. [PMID: 20359323 PMCID: PMC2864244 DOI: 10.1186/1471-2164-11-218] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 04/01/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Genetic linkage maps are essential tools when searching for quantitative trait loci (QTL). To maximize genome coverage and provide an evenly spaced marker distribution a combination of different types of genetic marker are sometimes used. In this study we created linkage maps of four zebra finch (Taeniopygia guttata) chromosomes (1, 1A, 2 and 9) using two types of marker, Single Nucleotide Polymorphisms (SNPs) and microsatellites. To assess the effectiveness and accuracy of each kind of marker we compared maps built with each marker type separately and with both types of marker combined. Linkage map marker order was validated by making comparisons to the assembled zebra finch genome sequence. RESULTS We showed that marker order was less reliable and linkage map lengths were inflated for microsatellite maps relative to SNP maps, apparently due to differing error rates between the two types of marker. Guidelines on how to minimise the effects of error are provided. In particular, we show that when combining both types of marker the conventional process of building linkage maps, whereby the most informative markers are added to the map first, has to be modified in order to improve map accuracy. CONCLUSIONS When using multiple types and large numbers of markers to create dense linkage maps, the least error prone loci (SNPs) rather than the most informative should be used to create framework maps before the addition of other potentially more error prone markers (microsatellites). This raises questions about the accuracy of marker order and predicted recombination rates in previous microsatellite linkage maps which were created using the conventional building process, however, provided suitable error detection strategies are followed microsatellite-based maps can continue to be regarded as reasonably reliable.
Collapse
Affiliation(s)
- Alexander D Ball
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jessica Stapley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Deborah A Dawson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Tim R Birkhead
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Terry Burke
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jon Slate
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
35
|
Tarka M, Akesson M, Beraldi D, Hernández-Sánchez J, Hasselquist D, Bensch S, Hansson B. A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warblers. Proc Biol Sci 2010; 277:2361-9. [PMID: 20335216 DOI: 10.1098/rspb.2010.0033] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Wing length is a key character for essential behaviours related to bird flight such as migration and foraging. In the present study, we initiate the search for the genes underlying wing length in birds by studying a long-distance migrant, the great reed warbler (Acrocephalus arundinaceus). In this species wing length is an evolutionary interesting trait with pronounced latitudinal gradient and sex-specific selection regimes in local populations. We performed a quantitative trait locus (QTL) scan for wing length in great reed warblers using phenotypic, genotypic, pedigree and linkage map data from our long-term study population in Sweden. We applied the linkage analysis mapping method implemented in GridQTL (a new web-based software) and detected a genome-wide significant QTL for wing length on chromosome 2, to our knowledge, the first detected QTL in wild birds. The QTL extended over 25 cM and accounted for a substantial part (37%) of the phenotypic variance of the trait. A genome scan for tarsus length (a body-size-related trait) did not show any signal, implying that the wing-length QTL on chromosome 2 was not associated with body size. Our results provide a first important step into understanding the genetic architecture of avian wing length, and give opportunities to study the evolutionary dynamics of wing length at the locus level.
Collapse
Affiliation(s)
- Maja Tarka
- Section for Animal Ecology, Department of Biology, Lund University, 223 62 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
36
|
Morrissey MB, Wilson AJ. pedantics: an r package for pedigree-based genetic simulation and pedigree manipulation, characterization and viewing. Mol Ecol Resour 2009; 10:711-9. [PMID: 21565076 DOI: 10.1111/j.1755-0998.2009.02817.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Analyses of pedigrees and pedigree-derived parameters (e.g. relatedness and fitness) provide some of the most informative types of studies in evolutionary biology. The r package pedantics implements tools to facilitate power and sensitivity analyses of pedigree-related studies of natural populations. Functions are available to permute pedigree data in various ways with the goal of mimicking patterns of pedigree errors and missingness that occur in studies of natural populations. Another set of functions simulates genetic and phenotypic data based on arbitrary pedigrees. Finally, functions are also available with which visual and numerical representations of pedigree structure can be generated.
Collapse
Affiliation(s)
- Michael B Morrissey
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, King's Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | | |
Collapse
|
37
|
Johnston SE, Beraldi D, McRae AF, Pemberton JM, Slate J. Horn type and horn length genes map to the same chromosomal region in Soay sheep. Heredity (Edinb) 2009; 104:196-205. [PMID: 19690581 DOI: 10.1038/hdy.2009.109] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The evolution of male weaponry in animals is driven by sexual selection, which is predicted to reduce the genetic variability underlying such traits. Soay sheep have an inherited polymorphism for horn type in both sexes, with males presenting with either large, normal horns or small, deformed horns (scurs). In addition, there is additive genetic variation in horn length among males with normal horns. Given that scurred males cannot win conflicts with normal-horned males, it is unusual that genes conferring scurs should persist in the population. Identifying the genetic basis of these traits should help us in understanding their evolution. We developed microsatellite markers in a targeted region of the Soay sheep genome and refined the location of the Horns locus (Ho) to a approximately 7.4 cM interval on chromosome 10 (LOD=8.78). We then located quantitative trait loci spanning a 34 cM interval with a peak centred close to Ho, which explained the majority of the genetic variation for horn length and base circumference in normal-horned males (LOD=2.51 and LOD=1.04, respectively). Therefore, the genetic variation in both horn type and horn length is attributable to the same chromosomal region. Understanding the maintenance of horn type and length variation will require an investigation of selection on genotypes that (co)determine both traits.
Collapse
Affiliation(s)
- S E Johnston
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| | | | | | | | | |
Collapse
|
38
|
Karasik D, Shimabuku NA, Zhou Y, Zhang Y, Cupples LA, Kiel DP, Demissie S. A genome wide linkage scan of metacarpal size and geometry in the Framingham Study. Am J Hum Biol 2009; 20:663-70. [PMID: 18449921 DOI: 10.1002/ajhb.20791] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Bone geometry is a significant component of bone strength, and has a clinical utility in predicting fractures and quantifying bone loss. Bone geometry is known to have a substantial genetic component. We performed linkage analysis to identify chromosomal regions governing metacarpal bone geometry. A genome-wide scan (with a set of 615 markers with spacing of approximately 5.7 cM) was performed on 1,702 individuals from 330 extended families of the Framingham Study. Midshaft width was measured and several indices calculated, namely Metacarpal Cortical Thickness (MCT), Cortical Index (MCI), and Section Modulus (MZ), using digitized X-rays of 1,380 participants (men, n = 666, mean age 55.2 yr, women, n = 714, 55.5 yr). Metacarpals 2, 3, and 4 were averaged. Heritability was significant for all indices, ranging from 0.51 to 0.72. Linkage analysis of indices adjusted for age, age(2), and estrogen status in women, identified chromosomal regions 6p21, 9p21, 11q21-q22, and Xq26-Xq27, with LOD scores >2.0. Additional adjustment for smoking, height, and BMI, generally reduced the LOD scores. Finally, bivariate linkage analysis confirmed that a QTL on chr. 6 (51 cM) was shared by midshaft width and MZ (LOD = 2.40, adjusted for all covariates). Neither MCT nor MCI shared linkage loci with width or MZ. In conclusion, we have identified chromosomal regions potentially linked to bone geometry. Genes in these regions may regulate bone geometry via effects on body size. Identification and subsequent characterization of loci for bone geometry can further elucidate the genetic contributions to bone's resistance to stress.
Collapse
Affiliation(s)
- David Karasik
- Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts 02131, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Kruuk LE, Slate J, Wilson AJ. New Answers for Old Questions: The Evolutionary Quantitative Genetics of Wild Animal Populations. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2008. [DOI: 10.1146/annurev.ecolsys.39.110707.173542] [Citation(s) in RCA: 258] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Loeske E.B. Kruuk
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK; ,
| | - Jon Slate
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK;
| | - Alastair J. Wilson
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK; ,
| |
Collapse
|
40
|
Slate J, Gratten J, Beraldi D, Stapley J, Hale M, Pemberton JM. Gene mapping in the wild with SNPs: guidelines and future directions. Genetica 2008; 136:97-107. [PMID: 18780148 DOI: 10.1007/s10709-008-9317-z] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
One of the biggest challenges facing evolutionary biologists is to identify and understand loci that explain fitness variation in natural populations. This review describes how genetic (linkage) mapping with single nucleotide polymorphism (SNP) markers can lead to great progress in this area. Strategies for SNP discovery and SNP genotyping are described and an overview of how to model SNP genotype information in mapping studies is presented. Finally, the opportunity afforded by new generation sequencing and typing technologies to map fitness genes by genome-wide association studies is discussed.
Collapse
Affiliation(s)
- Jon Slate
- Department of Animal & Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | | | | | | | |
Collapse
|
41
|
O’HARA RB, CANO JM, OVASKAINEN O, TEPLITSKY C, ALHO JS. Bayesian approaches in evolutionary quantitative genetics. J Evol Biol 2008; 21:949-57. [DOI: 10.1111/j.1420-9101.2008.01529.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
A gene-based genetic linkage map of the collared flycatcher (Ficedula albicollis) reveals extensive synteny and gene-order conservation during 100 million years of avian evolution. Genetics 2008; 179:1479-95. [PMID: 18562642 DOI: 10.1534/genetics.108.088195] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
By taking advantage of a recently developed reference marker set for avian genome analysis we have constructed a gene-based genetic map of the collared flycatcher, an important "ecological model" for studies of life-history evolution, sexual selection, speciation, and quantitative genetics. A pedigree of 322 birds from a natural population was genotyped for 384 single nucleotide polymorphisms (SNPs) from 170 protein-coding genes and 71 microsatellites. Altogether, 147 gene markers and 64 microsatellites form 33 linkage groups with a total genetic distance of 1787 cM. Male recombination rates are, on average, 22% higher than female rates (total distance 1982 vs. 1627 cM). The ability to anchor the collared flycatcher map with the chicken genome via the gene-based SNPs revealed an extraordinary degree of both synteny and gene-order conservation during avian evolution. The great majority of chicken chromosomes correspond to a single linkage group in collared flycatchers, with only a few cases of inter- and intrachromosomal rearrangements. The rate of chromosomal diversification, fissions/fusions, and inversions combined is thus considerably lower in birds (0.05/MY) than in mammals (0.6-2.0/MY). A dearth of repeat elements, known to promote chromosomal breakage, in avian genomes may contribute to their stability. The degree of genome stability is likely to have important consequences for general evolutionary patterns and may explain, for example, the comparatively slow rate by which genetic incompatibility among lineages of birds evolves.
Collapse
|
43
|
Slate J. Robustness of linkage maps in natural populations: a simulation study. Proc Biol Sci 2008; 275:695-702. [PMID: 18211883 PMCID: PMC2596837 DOI: 10.1098/rspb.2007.0948] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/04/2007] [Accepted: 09/05/2007] [Indexed: 01/21/2023] Open
Abstract
In a number of long-term individual-based studies of vertebrate populations, the genealogical relationships between individuals have been established with molecular markers. As a result, it is possible to construct genetic linkage maps of these study populations by examining the co-segregation of markers through the pedigree. There are now four free-living vertebrate study populations for whom linkage maps have been built. In this study, simulation was used to investigate whether these linkage maps are likely to be accurate. In all four populations, the probability of assigning markers to the correct chromosome is high and framework maps are generally inferred correctly. However, genotyping error can result in incorrect maps being built with very strong statistical support over the correct order. Future applications of linkage maps of natural populations are discussed.
Collapse
Affiliation(s)
- Jon Slate
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
44
|
Ellegren H, Sheldon BC. Genetic basis of fitness differences in natural populations. Nature 2008; 452:169-75. [DOI: 10.1038/nature06737] [Citation(s) in RCA: 272] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|