1
|
Garlovsky MD, Whittington E, Albrecht T, Arenas-Castro H, Castillo DM, Keais GL, Larson EL, Moyle LC, Plakke M, Reifová R, Snook RR, Ålund M, Weber AAT. Synthesis and Scope of the Role of Postmating Prezygotic Isolation in Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041429. [PMID: 38151330 PMCID: PMC11444258 DOI: 10.1101/cshperspect.a041429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
How barriers to gene flow arise and are maintained are key questions in evolutionary biology. Speciation research has mainly focused on barriers that occur either before mating or after zygote formation. In comparison, postmating prezygotic (PMPZ) isolation-a barrier that acts after gamete release but before zygote formation-is less frequently investigated but may hold a unique role in generating biodiversity. Here we discuss the distinctive features of PMPZ isolation, including the primary drivers and molecular mechanisms underpinning PMPZ isolation. We then present the first comprehensive survey of PMPZ isolation research, revealing that it is a widespread form of prezygotic isolation across eukaryotes. The survey also exposes obstacles in studying PMPZ isolation, in part attributable to the challenges involved in directly measuring PMPZ isolation and uncovering its causal mechanisms. Finally, we identify outstanding knowledge gaps and provide recommendations for improving future research on PMPZ isolation. This will allow us to better understand the nature of this often-neglected reproductive barrier and its contribution to speciation.
Collapse
Affiliation(s)
- Martin D Garlovsky
- Applied Zoology, Faculty of Biology, Technische Universität Dresden, Dresden 01062, Germany
| | | | - Tomas Albrecht
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno 60365, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Henry Arenas-Castro
- School of Biological Sciences, University of Queensland, St Lucia 4072, Queensland, Australia
| | - Dean M Castillo
- Department of Biological Sciences, Miami University, Hamilton, Ohio 45011, USA
| | - Graeme L Keais
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Erica L Larson
- Department of Biological Sciences, University of Denver, Denver, Colorado 80208, USA
| | - Leonie C Moyle
- Department of Biology, Indiana University Bloomington, Indiana 47405, USA
| | - Melissa Plakke
- Division of Science, Mathematics, and Technology, Governors State University, University Park, Illinois 60484, USA
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm 109 61, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala 75236, Sweden
| | - Alexandra A-T Weber
- Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf 8600, Zürich, Switzerland
| |
Collapse
|
2
|
Losch F, Liedtke S, Vautz W, Weigend M. Evaluation of floral volatile patterns in the genus Narcissus using gas chromatography-coupled ion mobility spectrometry. APPLICATIONS IN PLANT SCIENCES 2023; 11:e11506. [PMID: 36818782 PMCID: PMC9934524 DOI: 10.1002/aps3.11506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/18/2023]
Abstract
Premise Daffodils (Narcissus, Amaryllidaceae) are iconic ornamentals with a complex floral biology and many fragrant species; however, little is known about floral plant volatile organic compounds (pVOCs) across the genus and additional sampling is desirable. The present study investigates whether the floral scent of 20 species of Narcissus can be characterized using gas chromatography-coupled ion mobility spectrometry (GC-IMS), with the aim of building a comparative pVOC data set for ecological and evolutionary studies. Methods We used a commercial GC-IMS equipped with an integrated in-line enrichment system for a fast, sensitive, and automated pVOC analysis. This facilitates qualitative and (semi)-quantitative measurements without sample preparation. Results The GC-IMS provided detailed data on floral pVOCs in Narcissus with very short sampling times and without floral enclosure. A wide range of compounds was recorded and partially identified. The retrieved pVOC patterns showed a good agreement with published data, and five "chemotypes" were characterized as characteristic combinations of floral volatiles. Discussion The GC-IMS setup can be applied to rapidly generate large amounts of pVOC data with high sensitivity and selectivity. The preliminary data on Narcissus obtained here indicate both considerable pVOC variability and a good correspondence of the pVOC patterns with infrageneric classification, supporting the hypothesis that floral scent could represent a considerable phylogenetic signal.
Collapse
Affiliation(s)
- Florian Losch
- Nees‐Institut für Biodiversität der Pflanzen, Mathematisch‐Naturwissenschaftliche FakultätRheinische Friedrich‐Wilhelmsuniversität Bonn53115BonnGermany
| | - Sascha Liedtke
- ION‐GAS GmbHKonrad‐Adenauer‐Allee 1144263DortmundGermany
| | - Wolfgang Vautz
- ION‐GAS GmbHKonrad‐Adenauer‐Allee 1144263DortmundGermany
- Leibniz‐Institut für Analytische Wissenschaften – ISAS – e.V.Bunsen‐Kirchhoff‐Straße 1144139DortmundGermany
| | - Maximilian Weigend
- Nees‐Institut für Biodiversität der Pflanzen, Mathematisch‐Naturwissenschaftliche FakultätRheinische Friedrich‐Wilhelmsuniversität Bonn53115BonnGermany
| |
Collapse
|
3
|
Boukhebache NC, Amirouche N, Amirouche R. Cytotaxonomic investigations on species of genus Narcissus (Amaryllidaceae) from Algeria. COMPARATIVE CYTOGENETICS 2022; 16:55-76. [PMID: 35437461 PMCID: PMC9005460 DOI: 10.3897/compcytogen.v16.i1.78852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
This paper provides new cytotaxonomic data on the genus Narcissus Linnaeus, 1753, in Algeria. Populations of seven taxa, N.tazetta Linnaeus, 1753, N.pachybolbus Durieu, 1847, N.papyraceus Ker Gawler, 1806, N.elegans (Haworth) Spach, 1846, N.serotinus sensu lato Linnaeus, 1753, including N.obsoletus (Haworth) Steudel, 1841, and N.cantabricus De Candolle, 1815, were karyologically investigated through chromosome counting and karyotype parameters. N.tazetta and N.elegans have the same number of chromosomes 2n = 2x = 20 with different karyotype formulas. Karyological and morphological characteristics, confirm the specific status of N.pachybolbus and N.papyraceus, both are diploids with 2n = 22 but differing in asymmetry indices. The morphotypes corresponding to N.serotinus sensu lato show two ploidy levels 2n = 4x = 20 and 2n = 6x = 30 characterized by a yellow corona. Some hexaploid cytotypes have more asymmetric karyotype with predominance of subtelocentric chromosomes. They are distinguished by orange corona and may correspond to N.obsoletus. Other cytotype 2n = 28 of N.serotinus was observed in the North Western biogeographic sectors. N.cantabricus was found to be diploid with 2n = 2x = 14, which is a new diploid report in the southernmost geographic range of this polyploid complex.
Collapse
Affiliation(s)
- Naila Chahinez Boukhebache
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, Lab. LBPO, Team Biosystematics, Genetic and Evolution, USTHB, PO Box 32, El-Alia, Bab-Ezzouar, 16111 Algiers, AlgeriaUniversity of Sciences and Technology Houari BoumedieneAlgiersAlgeria
| | - Nabila Amirouche
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, Lab. LBPO, Team Biosystematics, Genetic and Evolution, USTHB, PO Box 32, El-Alia, Bab-Ezzouar, 16111 Algiers, AlgeriaUniversity of Sciences and Technology Houari BoumedieneAlgiersAlgeria
| | - Rachid Amirouche
- University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, Lab. LBPO, Team Biosystematics, Genetic and Evolution, USTHB, PO Box 32, El-Alia, Bab-Ezzouar, 16111 Algiers, AlgeriaUniversity of Sciences and Technology Houari BoumedieneAlgiersAlgeria
| |
Collapse
|
4
|
Abdelaziz M, Muñoz-Pajares AJ, Berbel M, García-Muñoz A, Gómez JM, Perfectti F. Asymmetric Reproductive Barriers and Gene Flow Promote the Rise of a Stable Hybrid Zone in the Mediterranean High Mountain. FRONTIERS IN PLANT SCIENCE 2021; 12:687094. [PMID: 34512685 PMCID: PMC8424041 DOI: 10.3389/fpls.2021.687094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/15/2021] [Indexed: 05/13/2023]
Abstract
Hybrid zones have the potential to shed light on evolutionary processes driving adaptation and speciation. Secondary contact hybrid zones are particularly powerful natural systems for studying the interaction between divergent genomes to understand the mode and rate at which reproductive isolation accumulates during speciation. We have studied a total of 720 plants belonging to five populations from two Erysimum (Brassicaceae) species presenting a contact zone in the Sierra Nevada mountains (SE Spain). The plants were phenotyped in 2007 and 2017, and most of them were genotyped the first year using 10 microsatellite markers. Plants coming from natural populations were grown in a common garden to evaluate the reproductive barriers between both species by means of controlled crosses. All the plants used for the field and greenhouse study were characterized by measuring traits related to plant size and flower size. We estimated the genetic molecular variances, the genetic differentiation, and the genetic structure by means of the F-statistic and Bayesian inference. We also estimated the amount of recent gene flow between populations. We found a narrow unimodal hybrid zone where the hybrid genotypes appear to have been maintained by significant levels of a unidirectional gene flow coming from parental populations and from weak reproductive isolation between them. Hybrid plants exhibited intermediate or vigorous phenotypes depending on the analyzed trait. The phenotypic differences between the hybrid and the parental plants were highly coherent between the field and controlled cross experiments and through time. The highly coherent results obtained by combining field, experimental, and genetic data demonstrate the existence of a stable and narrow unimodal hybrid zone between Erysimum mediohispanicum and Erysimum nevadense at the high elevation of the Sierra Nevada mountains.
Collapse
Affiliation(s)
- Mohamed Abdelaziz
- Departamento de Genética, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, Granada, Spain
- *Correspondence: Mohamed Abdelaziz
| | - A. Jesús Muñoz-Pajares
- Departamento de Genética, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, Granada, Spain
- Laboratório Associado, Plant Biology, Research Centre in Biodiversity and Genetic Resources, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade Do Porto, Campus Agrário de Vairão, Fornelo e Vairão, Portugal
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
| | - Modesto Berbel
- Departamento de Genética, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, Granada, Spain
| | - Ana García-Muñoz
- Departamento de Genética, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, Granada, Spain
| | - José M. Gómez
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Almeria, Spain
| | - Francisco Perfectti
- Departamento de Genética, Facultad de Ciencias, Campus Fuentenueva, Universidad de Granada, Granada, Spain
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
| |
Collapse
|
5
|
Marques I, Draper D, López-Herranz ML, Garnatje T, Segarra-Moragues JG, Catalán P. Past climate changes facilitated homoploid speciation in three mountain spiny fescues (Festuca, Poaceae). Sci Rep 2016; 6:36283. [PMID: 27808118 PMCID: PMC5093761 DOI: 10.1038/srep36283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/03/2016] [Indexed: 11/25/2022] Open
Abstract
Apart from the overwhelming cases of allopolyploidization, the impact of speciation through homoploid hybridization is becoming more relevant than previously thought. Much less is known, however, about the impact of climate changes as a driven factor of speciation. To investigate these issues, we selected Festuca picoeuropeana, an hypothetical natural hybrid between the diploid species F. eskia and F. gautieri that occurs in two different mountain ranges (Cantabrian Mountains and Pyrenees) separated by more than 400 km. To unravel the outcomes of this mode of speciation and the impact of climate during speciation we used a multidisciplinary approach combining genome size and chromosome counts, data from an extensive nuclear genotypic analysis, plastid sequences and ecological niche models (ENM). Our results show that the same homoploid hybrid was originated independently in the two mountain ranges, being currently isolated from both parents and producing viable seeds. Parental species had the opportunity to contact as early as 21000 years ago although niche divergence occurs nowadays as result of a climate-driven shift. A high degree of niche divergence was observed between the hybrid and its parents and no recent introgression or backcrossed hybrids were detected, supporting the current presence of reproductive isolation barriers between these species.
Collapse
Affiliation(s)
- I Marques
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, C/Carretera de Cuarte Km 1, E22071 Huesca, Spain
| | - D Draper
- Centro de Ecologia, Evolução e Alterações Ambientais (CE3C - Centre for Ecology, Evolution and Environmental Changes), C2, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M L López-Herranz
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, C/Carretera de Cuarte Km 1, E22071 Huesca, Spain
| | - T Garnatje
- Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, 08038 Barcelona, Spain
| | - J G Segarra-Moragues
- Departamento de Biología Vegetal, Facultad de Ciencias Biológicas, Universitat de València, Avda. Dr. Moliner, 50, E-46100, Burjassot, Spain
| | - P Catalán
- Departamento de Ciencias Agrarias y del Medio Natural, Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, C/Carretera de Cuarte Km 1, E22071 Huesca, Spain.,Department of Botany, Institute of Biology, Tomsk State University, Lenin Av. 36, 634050 Tomsk, Russia
| |
Collapse
|
6
|
Marques I, Jürgens A, Aguilar JF, Feliner GN. Convergent recruitment of new pollinators is triggered by independent hybridization events in Narcissus. THE NEW PHYTOLOGIST 2016; 210:731-742. [PMID: 26738752 DOI: 10.1111/nph.13805] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
Hybridization can generate new species if some degree of isolation prevents gene flow between the hybrids and their progenitors. The recruitment of novel pollinators by hybrids has been hypothesized to be one way in which such reproductive isolation can be achieved. We tested whether pollinators contributed to isolation between two natural Narcissus hybrids and their progenitors using pollination experiments, observations, plus morphological and floral-volatile measurements. These hybrids share the same maternal but different paternal progenitors. We found that only the hybrids were visited by and pollinated by ants. The two hybrids exceeded their progenitors in floral-tube aperture size and nectar production. The emission of floral volatiles by hybrid plants was not only equal to or higher than the progenitor species, but also contained some new compounds not produced by the progenitors. The recruitment of ants as novel pollinators in the hybrids involved the combination of increased nectar secretion and the production of novel floral scent compounds. A breakdown of chemical defence against ants may also be involved. This study provides support for the hypothesis that the recruitment of novel pollinators can contribute to reproductive isolation between hybrids and their progenitors.
Collapse
Affiliation(s)
- Isabel Marques
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, C/Carretera de Cuarte Km 1, Huesca, E22071, Spain
- UBC Botanical Garden & Centre for Plant Research and Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | - Andreas Jürgens
- School of Life Sciences, University of KwaZulu-Natal, Post Bag X01 Scottsville, Pietermaritzburg, 3209, South Africa
| | | | | |
Collapse
|
7
|
Marques I, Draper D, Riofrío L, Naranjo C. Multiple hybridization events, polyploidy and low postmating isolation entangle the evolution of neotropical species of Epidendrum (Orchidaceae). BMC Evol Biol 2014; 14:20. [PMID: 24495351 PMCID: PMC3927766 DOI: 10.1186/1471-2148-14-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 01/30/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hybridization and polyploidy are central processes in evolution and speciation. These mechanisms often lead to complex patterns of genetic variation and the creation of novel genotypes, which may establish if they become isolated from gene flow. However, in the absence of reproductive isolation, species boundaries might easily be disrupted. Here, we used a combination of AFLPs, chloroplast DNA markers and flow cytometry to investigate the evolutionary outcomes of hybridization between two endemic Ecuadorian species of Epidendrum (E. madsenii and E. rhopalostele) in three hybrid zones. Postmating isolation was also quantified to determine the role of this barrier in restraining gene flow between hybrids and the parental species. In addition, future ecological niche models were constructed to predict the outcomes of hybridization between these species. RESULTS Our results confirmed the presence of hybrids in all hybrid zones, but revealed that a third parental species (E. falcisepalum) has contributed to one of the hybrid zones studied. Backcross genotypes were frequent in all hybrid zones, which was in accordance with the absence of strong reproductive barriers. The process of hybridization was highly asymmetric and followed in some cases by polyploidy. The projection of future niche models predicted a severe reduction in the area suitable for the occurrence of these species, although favorable conditions will still occur for the existence of the current hybrid zones. CONCLUSIONS The recurrent process of hybridization has compromised the genetic integrity of the parental species. Most individuals of the parental species can no longer be considered as pure-bred individuals because most were classified as backcrossed hybrids. Novel genetic lineages occur in all hybrid zones implying that hybrids are fertile and can compete with the parental species. These results, together with the prediction of suitable conditions for the future occurrence of these hybrid zones, highlight the importance of conserving these geographic areas as sources of novel taxonomic entities.
Collapse
Affiliation(s)
- Isabel Marques
- Department of Agriculture (Botany), High Polytechnic School of Huesca, University of Zaragoza, C/ Carretera de Cuarte Km 1, Huesca E22071, Spain
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
- Current address: UBC Botanical Garden & Centre for Plant Research, and Department of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver BC V6T 1Z4, Canada
| | - David Draper
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
| | - Lorena Riofrío
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
| | - Carlos Naranjo
- Departamento de Ciencias Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
| |
Collapse
|
8
|
Moraes AP, Chinaglia M, Palma-Silva C, Pinheiro F. Interploidy hybridization in sympatric zones: the formation of Epidendrum fulgens × E. puniceoluteum hybrids (Epidendroideae, Orchidaceae). Ecol Evol 2013; 3:3824-37. [PMID: 24198942 PMCID: PMC3810877 DOI: 10.1002/ece3.752] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 07/25/2013] [Accepted: 08/12/2013] [Indexed: 11/11/2022] Open
Abstract
Interspecific hybridization is a primary cause of extensive morphological and chromosomal variation and plays an important role in plant species diversification. However, the role of interploidal hybridization in the formation of hybrid swarms is less clear. Epidendrum encompasses wide variation in chromosome number and lacks strong premating barriers, making the genus a good model for clarifying the role of chromosomes in postzygotic barriers in interploidal hybrids. In this sense, hybrids from the interploidal sympatric zone between E. fulgens (2n = 2x = 24) and E. puniceoluteum (2n = 4x = 56) were analyzed using cytogenetic techniques to elucidate the formation and establishment of interploidal hybrids. Hybrids were not a uniform group: two chromosome numbers were observed, with the variation being a consequence of severe hybrid meiotic abnormalities and backcrossing with E. puniceoluteum. The hybrids were triploids (2n = 3x = 38 and 40) and despite the occurrence of enormous meiotic problems associated with triploidy, the hybrids were able to backcross, producing successful hybrid individuals with broad ecological distributions. In spite of the nonpolyploidization of the hybrid, its formation is a long-term evolutionary process rather than a product of a recent disturbance, and considering other sympatric zones in Epidendrum, these events could be recurrent.
Collapse
Affiliation(s)
- Ana P Moraes
- Laboratório de Biossistemática e Evolução de Plantas, Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas/UNICAMP Campinas, São Paulo, Brasil ; Programa de Pós Graduação em Evolução e Diversidade, Universidade Federal do ABC/UFABC Santo André, São Paulo, Brasil
| | | | | | | |
Collapse
|