1
|
Valkenburg AD, Teke GM, Pott RWM, van Rensburg E. The fed-batch production of mannosylerythritol lipids by Ustilago maydis DSM 4500 from hydrophilic carbon sources. Bioprocess Biosyst Eng 2024; 47:2043-2054. [PMID: 39305295 PMCID: PMC11470959 DOI: 10.1007/s00449-024-03084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/26/2024] [Indexed: 10/13/2024]
Abstract
Glycolipids are a class of widely studied biosurfactants with excellent applicability in cosmetic and pharmaceutical formulations. This class of biosurfactants includes mannosylerythritol lipids (MELs), which have gained particular interest due to their moisturizing and healing activity for dry and damaged human skin, arising from conditions such as eczema. Traditionally, MELs have been produced by growing certain basidiomycetous yeasts on vegetable oils. However, oils are a comparatively expensive substrate, which negatively affects the economic performance of MEL production. In addition to this, vegetable oils significantly complicate the downstream processing required to produce a product with the required purity for most applications. To address these challenges, this study investigated MEL-A production exclusively from hydrophilic carbon sources by Ustilago maydis DSM 4500. By implementing a fed-batch production strategy, maximum MEL-A concentration of 0.87 g/L was achieved from glucose exclusively. Also, adding micronutrients (such as MnSO4) to MEL-A production showed a 24.1% increase in the product titer, implying other metabolites are formed, favoring MEL production.
Collapse
Affiliation(s)
- André D Valkenburg
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - George M Teke
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Robert W M Pott
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Eugéne van Rensburg
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, 7602, South Africa.
| |
Collapse
|
2
|
Bagheri AM, Mirzahashemi M, Salarpour S, Dehghnnoudeh Y, Banat IM, Ohadi M, Dehghannoudeh G. Potential anti-aging applications of microbial-derived surfactantsin cosmetic formulations. Crit Rev Biotechnol 2024:1-22. [PMID: 39294002 DOI: 10.1080/07388551.2024.2393420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 09/20/2024]
Abstract
The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.
Collapse
Affiliation(s)
- Amir Mohammad Bagheri
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Mirzahashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasmin Dehghnnoudeh
- Departeman of Biology, Faculty of Science, York University, Toronto, Ontario, Canada
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Georgescu AM, Corbu VM, Csutak O. Molecular Basis of Yeasts Antimicrobial Activity-Developing Innovative Strategies for Biomedicine and Biocontrol. Curr Issues Mol Biol 2024; 46:4721-4750. [PMID: 38785553 PMCID: PMC11119588 DOI: 10.3390/cimb46050285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/28/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
In the context of the growing concern regarding the appearance and spread of emerging pathogens with high resistance to chemically synthetized biocides, the development of new agents for crops and human protection has become an emergency. In this context, the yeasts present a huge potential as eco-friendly agents due to their widespread nature in various habitats and to their wide range of antagonistic mechanisms. The present review focuses on some of the major yeast antimicrobial mechanisms, their molecular basis and practical applications in biocontrol and biomedicine. The synthesis of killer toxins, encoded by dsRNA virus-like particles, dsDNA plasmids or chromosomal genes, is encountered in a wide range of yeast species from nature and industry and can affect the development of phytopathogenic fungi and other yeast strains, as well as human pathogenic bacteria. The group of the "red yeasts" is gaining more interest over the last years, not only as natural producers of carotenoids and rhodotorulic acid with active role in cell protection against the oxidative stress, but also due to their ability to inhibit the growth of pathogenic yeasts, fungi and bacteria using these compounds and the mechanism of competition for nutritive substrate. Finally, the biosurfactants produced by yeasts characterized by high stability, specificity and biodegrability have proven abilities to inhibit phytopathogenic fungi growth and mycelia formation and to act as efficient antibacterial and antibiofilm formation agents for biomedicine. In conclusion, the antimicrobial activity of yeasts represents a direction of research with numerous possibilities of bioeconomic valorization as innovative strategies to combat pathogenic microorganisms.
Collapse
Affiliation(s)
- Ana-Maria Georgescu
- Department of Genetics, Faculty of Biology, University of Bucharest, Aleea Portocalelor 1-3, 060101 Bucharest, Romania; (A.-M.G.); (V.M.C.)
| | - Viorica Maria Corbu
- Department of Genetics, Faculty of Biology, University of Bucharest, Aleea Portocalelor 1-3, 060101 Bucharest, Romania; (A.-M.G.); (V.M.C.)
- Research Institute of University of Bucharest (ICUB), University of Bucharest, B.P. Hasdeu Street 7, 050568 Bucharest, Romania
| | - Ortansa Csutak
- Department of Genetics, Faculty of Biology, University of Bucharest, Aleea Portocalelor 1-3, 060101 Bucharest, Romania; (A.-M.G.); (V.M.C.)
- Research Institute of University of Bucharest (ICUB), University of Bucharest, B.P. Hasdeu Street 7, 050568 Bucharest, Romania
| |
Collapse
|
4
|
Liu D, Liu G, Liu S. Promising Application, Efficient Production, and Genetic Basis of Mannosylerythritol Lipids. Biomolecules 2024; 14:557. [PMID: 38785964 PMCID: PMC11117751 DOI: 10.3390/biom14050557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Mannosylerythritol lipids (MELs) are a class of glycolipids that have been receiving increasing attention in recent years due to their diverse biological activities. MELs are produced by certain fungi and display a range of bioactivities, making them attractive candidates for various applications in medicine, agriculture, and biotechnology. Despite their remarkable qualities, industrial-scale production of MELs remains a challenge for fungal strains. Excellent fungal strains and fermentation processes are essential for the efficient production of MELs, so efforts have been made to improve the fermentation yield by screening high-yielding strains, optimizing fermentation conditions, and improving product purification processes. The availability of the genome sequence is pivotal for elucidating the genetic basis of fungal MEL biosynthesis. This review aims to shed light on the applications of MELs and provide insights into the genetic basis for efficient MEL production. Additionally, this review offers new perspectives on optimizing MEL production, contributing to the advancement of sustainable biosurfactant technologies.
Collapse
Affiliation(s)
- Dun Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China;
| | - Guanglei Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, China;
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Beibei, Chongqing 400716, China
| |
Collapse
|
5
|
Valkenburg AD, Ncube MZ, Teke GM, van Rensburg E, Pott RWM. A review on the upstream production and downstream purification of mannosylerythritol lipids. Biotechnol Bioeng 2024; 121:853-876. [PMID: 38108218 DOI: 10.1002/bit.28625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Biosurfactants are natural compounds with remarkable surface-active properties that may offer an eco-friendly alternative to conventional surfactants. Among them, mannosylerythritol lipids (MELs) stand out as an intriguing example of a glycolipid biosurfactant. MELs have been used in a variety of sectors for various applications, and are currently commercially produced. Industrially, they are used in the pharmaceutical, cosmetic, food, and agricultural industries, based on their ability to reduce surface tension and enhance emulsification. However, despite their utility, their production is comparatively limited industrially. From a bioprocessing standpoint, two areas of interest to improve the production process are upstream production and downstream (separation and purification) product recovery. The former has seen a significant amount of research, with researchers investigating several production factors: the microbial species or strain employed, the producing media composition, and the production strategy implemented. Improvement and optimization of these are key to scale-up the production of MELs. On the other hand, the latter has seen comparatively limited work presented in the literature. For the most part traditional separation techniques have been employed. This systematic review presents the production and purification methodologies used by researchers by comprehensively analyzing the current state-of-the-art with regards the production, separation, and purification of MELs. By doing so, the review presents different possible approaches, and highlights some potential areas for future work by identifying opportunities for the commercialization of MELs.
Collapse
Affiliation(s)
- André D Valkenburg
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Mellisa Z Ncube
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - George M Teke
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Eugéne van Rensburg
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Robert W M Pott
- Department of Chemical Engineering, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
6
|
Nakamichi Y, Saika A, Watanabe M, Fujii T, Morita T. Structural identification of catalytic His158 of PtMAC2p from Pseudozyma tsukubaensis, an acyltransferase involved in mannosylerythritol lipids formation. Front Bioeng Biotechnol 2023; 11:1243595. [PMID: 37920243 PMCID: PMC10619693 DOI: 10.3389/fbioe.2023.1243595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Mannosylerythritol lipids (MELs) are extracellular glycolipids produced by the basidiomycetous yeast strains. MELs consist of the disaccharide mannosylerythritol, which is acylated with fatty acids and acetylated at the mannose moiety. In the MEL biosynthesis pathway, an acyltransferase from Pseudozyma tsukubaensis, PtMAC2p, a known excellent MEL producer, has been identified to catalyze the acyl-transfer of fatty acid to the C3'-hydroxyl group of mono-acylated MEL; however, its structure remains unclear. Here, we performed X-ray crystallography of recombinant PtMAC2p produced in Escherichia coli and homogeneously purified it with catalytic activity in vitro. The crystal structure of PtMAC2p was determined by single-wavelength anomalous dispersion using iodide ions. The crystal structure shows that PtMAC2p possesses a large putative catalytic tunnel at the center of the molecule. The structural comparison demonstrated that PtMAC2p is homologous to BAHD acyltransferases, although its amino acid-sequence identity was low (<15%). Interestingly, the HXXXD motif, which is a conserved catalytic motif in the BAHD acyltransferase superfamily, is partially conserved as His158-Thr159-Leu160-Asn161-Gly162 in PtMAC2p, i.e., D in the HXXXD motif is replaced by G in PtMAC2p. Site-directed mutagenesis of His158 to Ala resulted in more than 1,000-fold decrease in the catalytic activity of PtMAC2p. These findings suggested that His158 in PtMAC2p is the catalytic residue. Moreover, in the putative catalytic tunnel, hydrophobic amino acid residues are concentrated near His158, suggesting that this region is a binding site for the fatty acid side chain of MEL (acyl acceptor) and/or acyl-coenzyme A (acyl donor). To our knowledge, this is the first study to provide structural insight into the catalytic activity of an enzyme involved in MEL biosynthesis.
Collapse
Affiliation(s)
- Yusuke Nakamichi
- Bioconversion Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-Hiroshima, Japan
| | - Azusa Saika
- Biochemical Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Masahiro Watanabe
- Bioconversion Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-Hiroshima, Japan
| | - Tatsuya Fujii
- Bioconversion Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-Hiroshima, Japan
| | - Tomotake Morita
- Bioconversion Group, Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Higashi-Hiroshima, Japan
| |
Collapse
|
7
|
Mohy Eldin A, Hossam N. Microbial surfactants: characteristics, production and broader application prospects in environment and industry. Prep Biochem Biotechnol 2023; 53:1013-1042. [PMID: 37651735 DOI: 10.1080/10826068.2023.2175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Microbial surfactants are green molecules with high surface activities having the most promising advantages over chemical surfactants including their ability to efficiently reducing surface and interfacial tension, nontoxic emulsion-based formulations, biocompatibility, biodegradability, simplicity of preparation from low cost materials such as residual by-products and renewable resources at large scales, effectiveness and stabilization under extreme conditions and broad spectrum antagonism of pathogens to be part of the biocontrol strategy. Thus, biosurfactants are universal tools of great current interest. The present work describes the major types and microbial origin of surfactants and their production optimization from agro-industrial wastes in the batch shake-flasks and bioreactor systems through solid-state and submerged fermentation industries. Various downstream strategies that had been developed to extract and purify biosurfactants are discussed. Further, the physicochemical properties and functional characteristics of biosurfactants open new future prospects for the development of efficient and eco-friendly commercially successful biotechnological product compounds with diverse potential applications in environment, industry, biomedicine, nanotechnology and energy-saving technology as well.
Collapse
Affiliation(s)
- Ahmed Mohy Eldin
- Department of Microbiology, Soils, Water and Environmental Research Institute (SWERI), Agricultural Research Center (ARC), Giza, Egypt
| | | |
Collapse
|
8
|
Mierke F, Brink DP, Norbeck J, Siewers V, Andlid T. Functional genome annotation and transcriptome analysis of Pseudozyma hubeiensis BOT-O, an oleaginous yeast that utilizes glucose and xylose at equal rates. Fungal Genet Biol 2023; 166:103783. [PMID: 36870442 DOI: 10.1016/j.fgb.2023.103783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Pseudozyma hubeiensis is a basidiomycete yeast that has the highly desirable traits for lignocellulose valorisation of being equally efficient at utilization of glucose and xylose, and capable of their co-utilization. The species has previously mainly been studied for its capacity to produce secreted biosurfactants in the form of mannosylerythritol lipids, but it is also an oleaginous species capable of accumulating high levels of triacylglycerol storage lipids during nutrient starvation. In this study, we aimed to further characterize the oleaginous nature of P. hubeiensis by evaluating metabolism and gene expression responses during storage lipid formation conditions with glucose or xylose as a carbon source. The genome of the recently isolated P. hubeiensis BOT-O strain was sequenced using MinION long-read sequencing and resulted in the most contiguous P. hubeiensis assembly to date with 18.95 Mb in 31 contigs. Using transcriptome data as experimental support, we generated the first mRNA-supported P. hubeiensis genome annotation and identified 6540 genes. 80% of the predicted genes were assigned functional annotations based on protein homology to other yeasts. Based on the annotation, key metabolic pathways in BOT-O were reconstructed, including pathways for storage lipids, mannosylerythritol lipids and xylose assimilation. BOT-O was confirmed to consume glucose and xylose at equal rates, but during mixed glucose-xylose cultivation glucose was found to be taken up faster. Differential expression analysis revealed that only a total of 122 genes were significantly differentially expressed at a cut-off of |log2 fold change| ≥ 2 when comparing cultivation on xylose with glucose, during exponential growth and during nitrogen-starvation. Of these 122 genes, a core-set of 24 genes was identified that were differentially expressed at all time points. Nitrogen-starvation resulted in a larger transcriptional effect, with a total of 1179 genes with significant expression changes at the designated fold change cut-off compared with exponential growth on either glucose or xylose.
Collapse
Affiliation(s)
- Friederike Mierke
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden; Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Daniel P Brink
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden; Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Joakim Norbeck
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
| | - Thomas Andlid
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
9
|
Pardhi DS, Panchal RR, Raval VH, Joshi RG, Poczai P, Almalki WH, Rajput KN. Microbial surfactants: A journey from fundamentals to recent advances. Front Microbiol 2022; 13:982603. [PMID: 35992692 PMCID: PMC9386247 DOI: 10.3389/fmicb.2022.982603] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial surfactants are amphiphilic surface-active substances aid to reduce surface and interfacial tensions by accumulating between two fluid phases. They can be generically classified as low or high molecular weight biosurfactants based on their molecular weight, whilst overall chemical makeup determines whether they are neutral or anionic molecules. They demonstrate a variety of fundamental characteristics, including the lowering of surface tension, emulsification, adsorption, micelle formation, etc. Microbial genera like Bacillus spp., Pseudomonas spp., Candida spp., and Pseudozyma spp. are studied extensively for their production. The type of biosurfactant produced is reliant on the substrate utilized and the pathway pursued by the generating microorganisms. Some advantages of biosurfactants over synthetic surfactants comprise biodegradability, low toxicity, bioavailability, specificity of action, structural diversity, and effectiveness in harsh environments. Biosurfactants are physiologically crucial molecules for producing microorganisms which help the cells to grasp substrates in adverse conditions and also have antimicrobial, anti-adhesive, and antioxidant properties. Biosurfactants are in high demand as a potential product in industries like petroleum, cosmetics, detergents, agriculture, medicine, and food due to their beneficial properties. Biosurfactants are the significant natural biodegradable substances employed to replace the chemical surfactants on a global scale in order to make a cleaner and more sustainable environment.
Collapse
Affiliation(s)
- Dimple S. Pardhi
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakeshkumar R. Panchal
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Vikram H. Raval
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rushikesh G. Joshi
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Waleed H. Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Kiransinh N. Rajput
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
10
|
Kondo T, Yasui C, Miyajima I, Banno T, Asakura K, Fukuoka T, Ushimaru K, Koga M, Saika A, Morita T, Takahashi Y, Hayashi C, Igarashi M, Takahashi D, Toshima K. Synthesis of Mannosylerythritol Lipid Analogues and their Self‐Assembling Properties, Recovery Effects on Damaged Skin Cells, and Antibacterial Activity. Chemistry 2022; 28:e202201733. [DOI: 10.1002/chem.202201733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Takanori Kondo
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Chihiro Yasui
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Ikkei Miyajima
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Taisuke Banno
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kouichi Asakura
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Tokuma Fukuoka
- Research Institute for Sustainable Chemistry National Institute of Advanced Industrial Science and Technology (AIST) 5-2 Tsukuba Central 1-1 Higashi Tsukuba, Ibaraki 305-8565 Japan
| | - Kazunori Ushimaru
- Research Institute for Sustainable Chemistry National Institute of Advanced Industrial Science and Technology (AIST) 5-2 Tsukuba Central 1-1 Higashi Tsukuba, Ibaraki 305-8565 Japan
| | - Maito Koga
- Research Institute for Sustainable Chemistry National Institute of Advanced Industrial Science and Technology (AIST) 5-2 Tsukuba Central 1-1 Higashi Tsukuba, Ibaraki 305-8565 Japan
| | - Azusa Saika
- Research Institute for Sustainable Chemistry National Institute of Advanced Industrial Science and Technology (AIST) 5-2 Tsukuba Central 1-1 Higashi Tsukuba, Ibaraki 305-8565 Japan
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry National Institute of Advanced Industrial Science and Technology (AIST) 5-2 Tsukuba Central 1-1 Higashi Tsukuba, Ibaraki 305-8565 Japan
| | - Yoshiaki Takahashi
- Institute of Microbial Chemistry (BIKAKEN) 3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| | - Chigusa Hayashi
- Institute of Microbial Chemistry (BIKAKEN) 3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| | - Masayuki Igarashi
- Institute of Microbial Chemistry (BIKAKEN) 3-14-23 Kamiosaki, Shinagawa-ku Tokyo 141-0021 Japan
| | - Daisuke Takahashi
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kazunobu Toshima
- Department of Applied Chemistry Faculty of Science and Technology Keio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
11
|
Yu G, Wang X, Zhang C, Chi Z, Chi Z, Liu G. Efficient production of mannosylerythritol lipids by a marine yeast Moesziomyces aphidis XM01 and their application as self-assembly nanomicelles. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:373-383. [PMID: 37073164 PMCID: PMC10077156 DOI: 10.1007/s42995-022-00135-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/11/2022] [Indexed: 05/03/2023]
Abstract
Mannosylerythritol lipids (MELs) are one of the most promising biosurfactants because of their excellent physicochemical properties, high environmental compatibility, and various biological functions. In this study, a mangrove yeast strain Moesziomyces aphidis XM01 was identified and used for efficient extracellular MEL production. The MEL titer reached 64.5 ± 0.7 g/L at flask level within 7 days with the optimized nitrogen and carbon source of 2.0 g/L NaNO3 and 70 g/L soybean oil. Furthermore, during a 10-L two-stage fed-batch fermentation, the final MEL titer reached 113.6 ± 3.1 g/L within 8 days, with prominent productivity and yield of 14.2 g·L-1·day-1 and 94.6 g/g(glucose and soybean oil). Structural analysis indicated that the produced MELs were mainly MEL-A and its fatty acid profile was composed of only medium-chain fatty acids (C8-C12), especially C10 acids (77.81%). Further applications of this compound were evaluated as one-step self-assembly nanomicelles. The obtained MEL nanomicelles showed good physicochemical stability and antibacterial activity. In addition, using clarithromycin as a model hydrophobic drug, the MEL nanomicelles exhibited high loading capacity and could be used for the controlled and sustained drug release in low-pH environments. Therefore, M. aphidis XM01 is an excellent candidate for efficient MEL production, and the prepared MEL nanomicelles have broad application prospects in the pharmaceutical and cosmetic fields. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00135-0.
Collapse
Affiliation(s)
- Guanshuo Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Xiaoxiang Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Chao Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Zhenming Chi
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Guanglei Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
12
|
Jing C, Guo J, Li Z, Xu X, Wang J, Zhai L, Liu J, Sun G, Wang F, Xu Y, Li Z, Zhao D, Jiang R, Sun L. Screening and Research on Skin Barrier Damage Protective Efficacy of Different Mannosylerythritol Lipids. Molecules 2022; 27:molecules27144648. [PMID: 35889520 PMCID: PMC9320248 DOI: 10.3390/molecules27144648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
Mannosylerythritol lipids (MELs) may prevent skin barrier damage, although their protective mechanisms and active monomeric constituents remain unclear. Here, three MELs were extracted from Candida antarctica cultures containing fermented olive oil then purified using silica gel-based column chromatography and semipreparative HPLC. All three compounds (MEL-A, MEL-B, MEL-C) were well separated and stable, and reliable materials were used for NMR and HRESIMS chemical structure determinations and for assessing MELs’ protective effects against skin damage. Notably, MEL-B and MEL-C effectively protected HaCaT cells from UVB-induced damage by upregulating the contents of filaggrin (FLG) and transglutaminase-1 (TGM1), as determined via ELISA. Moreover, MEL-B treatment (20 μg/mL) of UVB-irradiated HaCaT cells led to the upregulation of both the expression of mRNA genes and the key proteins FLG, LOR, and TGM1, which are known to be decreased in damaged skin cells. Additionally, histopathological analysis results revealed a markedly reduced intracellular vacuolation and cell damage, reflecting improved skin function after MEL-B treatment. Furthermore, immunofluorescence results revealed that MEL-B protected EpiKutis® three-dimensional cultured human skin cells from sodium dodecyl sulfate-induced damage by up-regulating FLG, LOR, and TGM1 expression. Accordingly, MELs’ protection against skin barrier damage depended on MEL-B monomeric constituent activities, thus highlighting their promise as beneficial ingredients for use in skin-care products.
Collapse
Affiliation(s)
- Chenxu Jing
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; (C.J.); (Z.L.); (X.X.); (J.W.); (L.Z.); (G.S.); (F.W.)
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (J.G.); (J.L.); (D.Z.)
| | - Jiling Guo
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (J.G.); (J.L.); (D.Z.)
| | - Zhenzhuo Li
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; (C.J.); (Z.L.); (X.X.); (J.W.); (L.Z.); (G.S.); (F.W.)
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; (C.J.); (Z.L.); (X.X.); (J.W.); (L.Z.); (G.S.); (F.W.)
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (J.G.); (J.L.); (D.Z.)
| | - Jing Wang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; (C.J.); (Z.L.); (X.X.); (J.W.); (L.Z.); (G.S.); (F.W.)
| | - Lu Zhai
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; (C.J.); (Z.L.); (X.X.); (J.W.); (L.Z.); (G.S.); (F.W.)
| | - Jianzeng Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (J.G.); (J.L.); (D.Z.)
| | - Guang Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; (C.J.); (Z.L.); (X.X.); (J.W.); (L.Z.); (G.S.); (F.W.)
| | - Fei Wang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; (C.J.); (Z.L.); (X.X.); (J.W.); (L.Z.); (G.S.); (F.W.)
| | - Yangfen Xu
- Modern Hanfang Technology Company Limited, Guangzhou 510550, China; (Y.X.); (Z.L.)
| | - Zhaolian Li
- Modern Hanfang Technology Company Limited, Guangzhou 510550, China; (Y.X.); (Z.L.)
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (J.G.); (J.L.); (D.Z.)
| | - Rui Jiang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; (C.J.); (Z.L.); (X.X.); (J.W.); (L.Z.); (G.S.); (F.W.)
- Correspondence: (R.J.); (L.S.)
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China; (C.J.); (Z.L.); (X.X.); (J.W.); (L.Z.); (G.S.); (F.W.)
- Correspondence: (R.J.); (L.S.)
| |
Collapse
|
13
|
Ramdass AC, Rampersad SN. Detection and diversity of the mannosylerythritol lipid (MEL) gene cluster and lipase A and B genes of Moesziomyces antarcticus isolated from terrestrial sites chronically contaminated with crude oil in Trinidad. BMC Microbiol 2022; 22:43. [PMID: 35120442 PMCID: PMC8815271 DOI: 10.1186/s12866-021-02419-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mannosylerythritol lipids (MELs) belong to the class of glycolipid biosurfactants and are produced by members of the Ustilago and Moesziomyces genera. Production of MELs is regulated by a biosynthetic gene cluster (MEL BGC). Extracellular lipase activity is also associated with MEL production. Most microbial glycolipid-producers are isolated from oil-contaminated environments. MEL-producing yeast that are capable of metabolizing crude oil are understudied, and there is very limited data on indigenous strains from tropical climates. Analysis of the MEL BGC and lipase genes in Trinidad M. antarcticus strains, using a gene-targeted approach, revealed a correlation between their intrinsic capability to degrade crude oil and their adaptation to survive in a chronically polluted terrestrial environment. RESULTS M. antarcticus was isolated from naturally-occurring crude oil seeps and an asphaltic mud volcano in Trinidad; these are habitats that have not been previously reported for this species. Genus identification was confirmed by the large-subunit (LSU) and the small-subunit (SSU) sequence comparisons and species identification was confirmed by ITS sequence comparisons and phylogenetic inference. The essential genes (Emt1, Mac1, Mac2, Mmf1) of the MEL BGC were detected with gene-specific primers. Emt1p, Mac1p and Mmf1p sequence analyses confirmed that the Trinidad strains harboured novel synonymous amino acid (aa) substitutions and structural comparisons revealed different regions of disorder, specifically for the Emt1p sequence. Functionality of each protein sequence was confirmed through motif mining and mutation prediction. Phylogenetic relatedness was inferred for Emt1p, Mac1p and Mmf1p sequences. The Trinidad strains clustered with other M. antarcticus sequences, however, the representative Trinidad M. antarcticus sequences consistently formed a separate, highly supported branch for each protein. Similar phylogenetic placement was indicated for LipA and LipB nucleotide and protein sequences. The Trinidad strains also demonstrated lipolytic activity in culture, with an ability to utilize different carbon sources. Comparative evolution of MEL BGC and LipA gene suggested early and late duplication events, depending on the gene, followed by a number of speciation events within Ustilaginaceae. M. antarcticus and M. aphidis were separated from all other members of Ustilaginaceae and two gene homologues were detected, one for each species. CONCLUSIONS Sequence analyses was based on a novel gene-targeted approach to analyze the essential genes of the MEL BGC and LipA and LipB genes of M. antarcticus strains from Trinidad. The findings indicated that these strains accumulated nucleotide mutations to a threshold level that did not affect the function of specific proteins encoded by the MEL BGC and LipA and LipB genes. The biosurfactant and lipase enzymes secreted by these Trinidad M. antarcticus strains facilitated their survival in oil-contaminated terrestrial environments. These findings suggest that the Trinidad strains should be explored as promising candidates for the commercial production of MEL biosurfactants and lipase enzymes.
Collapse
Affiliation(s)
- Amanda C. Ramdass
- Biochemistry Research Laboratory (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, West Indies Trinidad and Tobago
| | - Sephra N. Rampersad
- Biochemistry Research Laboratory (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, West Indies Trinidad and Tobago
| |
Collapse
|
14
|
Basu D, Chavda VP, Mehta AA. Therapeutics for COVID-19 and post COVID-19 complications: An update. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100086. [PMID: 35136858 PMCID: PMC8813675 DOI: 10.1016/j.crphar.2022.100086] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/25/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Since its inception in late December 2020 in China, novel coronavirus has affected the global socio-economic aspect. Currently, the world is seeking safe and effective treatment measures against COVID-19 to eradicate it. Many established drug molecules are tested against SARS-CoV-2 as a part of drug repurposing where some are proved effective for symptomatic relief while some are ineffective. Drug repurposing is a practical strategy for rapidly developing antiviral agents. Many drugs are presently being repurposed utilizing basic understanding of disease pathogenesis and drug pharmacodynamics, as well as computational methods. In the present situation, drug repurposing could be viewed as a new treatment option for COVID-19. Several new drug molecules and biologics are engineered against SARS-CoV-2 and are under different stages of clinical development. A few biologics drug products are approved by USFDA for emergency use in the covid management. Due to continuous mutation, many of the approved vaccines are not much efficacious to render the individual immune against opportunistic infection of SARS-CoV-2 mutants. Hence, there is a strong need for the cogent therapeutic agent for covid management. In this review, a consolidated summary of the therapeutic developments against SARS-CoV-2 are depicted along with an overview of effective management of post COVID-19 complications.
Collapse
Affiliation(s)
- Debdoot Basu
- Department of Pharmacology, L.M. College of Pharmacy, Gujarat Technological University, Ahmedabad, 380009, Gujarat, India
| | - Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Gujarat Technological University, Ahmedabad, 380009, Gujarat, India
| | - Anita A. Mehta
- Department of Pharmacology, L.M. College of Pharmacy, Gujarat Technological University, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
15
|
Overview on Glycosylated Lipids Produced by Bacteria and Fungi: Rhamno-, Sophoro-, Mannosylerythritol and Cellobiose Lipids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 181:73-122. [DOI: 10.1007/10_2021_200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Solano-González S, Solano-Campos F. Production of mannosylerythritol lipids: biosynthesis, multi-omics approaches, and commercial exploitation. Mol Omics 2022; 18:699-715. [DOI: 10.1039/d2mo00150k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compilation of resources regarding MEL biosynthesis, key production parameters; available omics resources and current commercial applications, for smut fungi known to produce MELs.
Collapse
Affiliation(s)
- Stefany Solano-González
- Universidad Nacional, Escuela de Ciencias Biológicas, Laboratorio de Bioinformática Aplicada, Heredia, Costa Rica
| | - Frank Solano-Campos
- Universidad Nacional, Escuela de Ciencias Biológicas, Laboratorio de Biotecnología de Plantas, Heredia, Costa Rica
| |
Collapse
|
17
|
Kondo T, Yasui C, Banno T, Asakura K, Fukuoka T, Ushimaru K, Koga M, Minamikawa H, Saika A, Morita T, Takahashi D, Toshima K. Self-Assembling Properties and Recovery Effects on Damaged Skin Cells of Chemically Synthesized Mannosylerythritol Lipids. Chembiochem 2021; 23:e202100631. [PMID: 34783433 DOI: 10.1002/cbic.202100631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 01/06/2023]
Abstract
Mannosylerythritol lipids (MELs), which are one of the representative sugar-based biosurfactants (BSs) produced by microorganisms, have attracted much attention in various fields in the sustainable development goals (SDGs) era. However, they are inseparable mixtures with respect to the chain length of the fatty acids. In this study, self-assembling properties and structure-activity relationship (SAR) studies of recovery effects on damaged skin cells using chemically synthesized MELs were investigated. It was revealed, for the first time, that synthetic and homogeneous MELs exhibited significant self-assembling properties to form droplets or giant vesicles. In addition, a small difference in the length of the fatty acid chains of the MELs significantly affected their recovery effects on the damaged skin cells. MELs with medium or longer length alkyl chains exhibited much higher recovery effects than that of C18-ceramide NP.
Collapse
Affiliation(s)
- Takanori Kondo
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Chihiro Yasui
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Taisuke Banno
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kouichi Asakura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Tokuma Fukuoka
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 5-2 Tsukuba Central, 1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazunori Ushimaru
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 5-2 Tsukuba Central, 1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Maito Koga
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 5-2 Tsukuba Central, 1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hiroyuki Minamikawa
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 5-2 Tsukuba Central, 1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Azusa Saika
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 5-2 Tsukuba Central, 1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 5-2 Tsukuba Central, 1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Daisuke Takahashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kazunobu Toshima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
18
|
Mishra S, Lin Z, Pang S, Zhang Y, Bhatt P, Chen S. Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126253. [PMID: 34119972 DOI: 10.1016/j.jhazmat.2021.126253] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 05/05/2023]
Abstract
Heavy metal toxicity has become a pressing ecological problem that affects the ecosystems through bioaccumulation, representing a serious public health hazard. Many conventional strategies have been developed and applied to decontaminate and restore metal-contaminated areas. However, these conventional approaches are not very suitable and environmentally safe for heavy metal remediation because of their high operational costs, high energy requirements, post-waste disposal problems, and secondary pollutant generation. Thus, biosurfactant-based bioremediation of heavy metals is a sustainable and promising approach because of its biodegradation capability, economic effectiveness, and ecofriendly nature. Pseudomonas sp., Bacillus sp., Citrobacter freundii, and Candida tropicalis have been isolated as potential sources of biosurfactants and produce compounds such as surfactin, rhamnolipids, and sophorolipids. Owing to the severity of heavy metal pollution in certain parts of the environment, biosurfactants have garnered great interest and attention as an emerging multi-functional technology of the new century for successful removal of heavy metal pollutants. The present study describes the role of biosurfactants in the bioremediation of heavy metals from contaminated environments. Moreover, the interaction mechanism underlying biosurfactant-metal complexation and metal remediation are discussed. Based on the review of the literature, further research is warranted to elucidate the mechanistic roles and explore the structural characterization and gene regulation of biosurfactants to improve their productivity and expand their applicability in bioremediation.
Collapse
Affiliation(s)
- Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
19
|
Fermentative Production of Mannosylerythritol Lipids using Sweetwater as Waste Substrate by Pseudozyma antarctica (MTCC 2706). TENSIDE SURFACT DET 2021. [DOI: 10.1515/tsd-2020-2272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Mannosylerythritol lipids are glycolipid biosurfactants with promising industrial applications. However, their commercial production is hindered due to its high production cost. The current study investigates the use of sweetwater, a by-product of the fat-splitting industry in combination with soybean oil for the production of mannosylerythritol lipids using Pseudozyma antarctica (MTCC 2706). The optimum sweetwater and soybean oil concentration of 22% and 7% (w/v) yielded 7.52 g L–1and 21.5 g L–1 mannosylerythritol lipids at shake flask and fermenter level respectively. The structure and functional groups of mannosylerythritol lipids were confirmed by fourier transform infrared (FTIR) spectroscopy, liquid chromatography-mass spectrometry (LC/MS) and 1H- and 13C-nuclear magnetic resonance (NMR) analysis. Surfactant properties, such as surface tension, critical micelle concentration, foaming and emulsification of mannosylerythritol lipids were also explored.
Collapse
|
20
|
The role of transport proteins in the production of microbial glycolipid biosurfactants. Appl Microbiol Biotechnol 2021; 105:1779-1793. [PMID: 33576882 DOI: 10.1007/s00253-021-11156-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/20/2023]
Abstract
Several microorganisms are currently being used as production platform for glycolipid biosurfactants, providing a greener alternative to chemical biosurfactants. One of the reasons why these processes are commercially competitive is the fact that microbial producers can efficiently export their product to the extracellular environment, reaching high product titers. Glycolipid biosynthetic genes are often found in a dedicated cluster, amidst which genes encoding a dedicated transporter committed to shuttle the glycolipid to the extracellular environment are often found, as is the case for many other secondary metabolites. Knowing this, one can rely on gene clustering features to screen for novel putative transporters, as described and performed in this review. The above strategy proves to be very powerful to identify glycolipid transporters in fungi but is less valid for bacterial systems. Indeed, the genetics of these export systems are currently largely unknown, but some hints are given. Apart from the direct export of the glycolipid, several other transport systems have an indirect effect on glycolipid production. Specific importers dictate which hydrophilic and hydrophobic substrates can be used for production and influence the final yields. In eukaryotes, cellular compartmentalization allows the assembly of glycolipid building blocks in a highly specialized and efficient way. Yet, this requires controlled transport across intracellular membranes. Next to the direct export of glycolipids, the current state of the art regarding this indirect involvement of transporter systems in microbial glycolipid synthesis is summarized in this review. KEY POINTS: • Transporters are directly and indirectly involved in microbial glycolipid synthesis. • Yeast glycolipid transporters are found in their biosynthetic gene cluster. • Hydrophilic and hydrophobic substrate uptake influence microbial glycolipid synthesis.
Collapse
|
21
|
Development and Genetic Engineering of Hyper-Producing Microbial Strains for Improved Synthesis of Biosurfactants. Mol Biotechnol 2021; 63:267-288. [PMID: 33523418 DOI: 10.1007/s12033-021-00302-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
Current research energies are fixated on the synthesis of environmentally friendly and non-hazardous products, which include finding and recognizing biosurfactants that can substitute synthetic surfactants. Microbial biosurfactants are surface-active compounds synthesized intracellularly or extracellularly. To use biosurfactants in various industries, it is essential to understand scientific engagements that demonstrate its potentials as real advancement in the 21st century. Other than applying a substantial effect on the world economic market, engineered hyper-producing microbial strains in combination with optimized cultivation parameters have made it probable for many industrial companies to receive the profits of 'green' biosurfactant innovation. There needs to be an emphasis on the worldwide state of biosurfactant synthesis, expression of biosurfactant genes in expressive host systems, the recent developments, and prospects in this line of research. Thus, molecular dynamics with respect to genetic engineering of biosynthetic genes are proposed as new biotechnological tools for development, improved synthesis, and applications of biosurfactants. For example, mutant and hyper-producing recombinants have been designed efficaciously to advance the nature, quantity, and quality of biosurfactants. The fastidious and deliberate investigation will prompt a comprehension of the molecular dynamics and phenomena in new microorganisms. Throughout the decade, valuable data on the molecular genetics of biosurfactant have been produced, and this solid foundation would encourage application-oriented yields of the biosurfactant production industry and expand its utilization in diverse fields. Therefore, the conversations among different interdisciplinary experts from various scientific interests such as microbiology, biochemistry, molecular biology, and genetics are indispensable and significant to accomplish these objectives.
Collapse
|
22
|
Moutinho LF, Moura FR, Silvestre RC, Romão-Dumaresq AS. Microbial biosurfactants: A broad analysis of properties, applications, biosynthesis, and techno-economical assessment of rhamnolipid production. Biotechnol Prog 2020; 37:e3093. [PMID: 33067929 DOI: 10.1002/btpr.3093] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
Biosurfactants are surface-active molecules originated from renewable resources, which are produced by microbial fermentation or chemical/enzymatic catalysis. These molecules present important advantages as compared to petrochemical surfactants, given their resistance to extreme conditions, biodegradability, specificity, and environmental compatibility. Besides that, the high production costs hinder its commercialization. In this way, this article aimed to analyze microbial biosurfactants production, focusing on the optimization of metabolic pathways and production processes, to identify key aspects and provide alternatives to allow a cost-effective production at industrial scale. This was achieved by a broad analysis of biosurfactants properties, applications, and biosynthetic pathways (in terms of yield, cofactors, and energy), in addition to an assessment of production-associated costs. As a result of the present extensive data survey and analysis, key production aspects are disclosed. The metabolic pathway yield analysis demonstrated that production of biosurfactants can be significantly improved (highest theoretical yield was 0.47 gbiosurfactant /gsubstrate ) by the use of biomolecular engineering techniques to generate optimized synthetic pathways. With an alternative proposed pathway for surfactin, yield was improved and imbalance in cofactors and ATP was reduced. Analysis of productive costs indicated that to make rhamnolipids commercial production feasible, the main efforts should focus on lowering substrate costs as well as the identification of energy-efficient unit operations to lower electricity cost, since these parameters accounted for 19.36 and 78.22%, respectively, of the production costs. The data generated by this analysis highlight the need for multidisciplinary collaboration to make rhamnolipids economically feasible, including biomolecular engineering and process intensification.
Collapse
Affiliation(s)
- Liza Fernandes Moutinho
- SENAI Innovation Institute for Biosynthetics and Fibers, SENAI CETIQT, Rio de Janeiro, Brazil
| | - Felipe Ramalho Moura
- SENAI Innovation Institute for Biosynthetics and Fibers, SENAI CETIQT, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
23
|
A putative transporter gene PtMMF1-deleted strain produces mono-acylated mannosylerythritol lipids in Pseudozyma tsukubaensis. Appl Microbiol Biotechnol 2020; 104:10105-10117. [DOI: 10.1007/s00253-020-10961-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023]
|
24
|
Leu JY, Yee J, Tu CS, Sayson S, Jou YS, Geraldino PJ. Microstructure and molecular vibration of mannosylerythritol lipids from Pseudozyma yeast strains. Chem Phys Lipids 2020; 232:104969. [PMID: 32888916 DOI: 10.1016/j.chemphyslip.2020.104969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/11/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
This work highlights microstructure and molecular vibration of mannosylerythritol lipids (MELs) from Pseudozyma aphidis B1 and Pseudozyma hubeiensis TS18 strains collected from brown algae and mangrove sediments. The scanning electron microscopy (SEM) shows the elongated structures with polar budding in the cells of B1 and TS18 yeast strains. The high-resolution transmission electron microscopy (HRTEM) identifies large lipid bodies that contain MELs confirmed by the anthrone test and thin layer chromatography. The HRTEM also reveals unknown electron dense inclusions. The surface-enhanced Raman scattering (SERS) was used to analysis molecular vibrations of cells, MEL mixtures, and purified MELs (A, B, and C) extracted from the B1 and TS18 cells. The peak analysis of Raman spectra suggests a higher level of saturation per fatty acid chain in MEL-B in both B1 and TS18 cells. This work demonstrates that the out-of-plane bending vibrations of the CH bonds in the range of 840-940 cm-1 can serve an efficient indicator for detecting MEL-A, -B, and -C.
Collapse
Affiliation(s)
- Jyh-Yih Leu
- Department of Life Science, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Jonie Yee
- Department of Biology, University of San Carlos, Cebu City, 6000, Philippines
| | - Chi-Shun Tu
- Department of Physics, Fu Jen Catholic University, New Taipei City, 24205, Taiwan; Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Stephanie Sayson
- Department of Life Science, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Yi-Shin Jou
- Department of Physics, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Paul John Geraldino
- Department of Biology, University of San Carlos, Cebu City, 6000, Philippines.
| |
Collapse
|
25
|
Coelho ALS, Feuser PE, Carciofi BAM, de Oliveira D, de Andrade CJ. Biological activity of mannosylerythritol lipids on the mammalian cells. Appl Microbiol Biotechnol 2020; 104:8595-8605. [PMID: 32875366 DOI: 10.1007/s00253-020-10857-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/13/2020] [Accepted: 08/23/2020] [Indexed: 12/19/2022]
Abstract
Mannosylerythritol lipids (MEL) are glycolipids mainly produced by pseudo-yeasts. These molecules present remarkable biological activities widely explored in many fields, including medicine, pharmaceuticals, and cosmetics. This review presents the main biological activity of MEL on the HL60, K562, B16, PC12, and skin cells. There is strong evidence that MEL changes the levels of glycosphingolipids of HL-60 lineage, which induce differentiation into granulocytic cells. Regarding B16 cells, MEL can trigger both apoptosis (10 μM) and cell differentiation (5 μM), in which the MEL concentration is related to each metabolic pathway. MEL can also trigger differentiation in PC12 cells due to the increase in the GalCer content. In this specific case, the effects are transient, and the differentiated cells are unstable and tend to apoptosis. MEL-B can particularly maintain skin hydration and moisture due to their self-assembled structures that resemble the tissue cells. Moreover, MEL-B repair aquaporin expression in the HaCaT keratinocytes damaged with UVA irradiation, whereas MEL-C suppresses the expression of COX-2 protein in fibroblasts, indicating that these glycolipids activate the cellular antioxidant mechanism. Recent findings denoted the anti-melanogenic activity of MEL since they suppress tyrosinase enzyme at mRNA levels in B16 and NHMs cells. MEL act effectively on mammalian cells; however, there is no clear pattern of their metabolic effects. Also, gene expression levels seem to be related to two main factors: chemical structure and concentration. However, the specific signaling cascades that are induced by MEL remain inconclusive. Thus, further investigations are vital to understanding these mechanisms clearly. KEY POINTS: • The four MEL homologs promote different biological responses in mammalian cells. • MEL modifies the pattern of glycosphingolipids in the plasma membrane of tumor cells. • Activation/deactivation of phosphorylation of serine/threonine kinase proteins.
Collapse
Affiliation(s)
- Ana Letícia Silva Coelho
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil
| | - Paulo Emilio Feuser
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil
| | - Bruno Augusto Mattar Carciofi
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil
| | - Cristiano José de Andrade
- Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
26
|
Trudgeon B, Dieser M, Balasubramanian N, Messmer M, Foreman CM. Low-Temperature Biosurfactants from Polar Microbes. Microorganisms 2020; 8:E1183. [PMID: 32756528 PMCID: PMC7466143 DOI: 10.3390/microorganisms8081183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
Surfactants, both synthetic and natural, are used in a wide range of industrial applications, including the degradation of petroleum hydrocarbons. Organisms from extreme environments are well-adapted to the harsh conditions and represent an exciting avenue of discovery of naturally occurring biosurfactants, yet microorganisms from cold environments have been largely overlooked for their biotechnological potential as biosurfactant producers. In this study, four cold-adapted bacterial isolates from Antarctica are investigated for their ability to produce biosurfactants. Here we report on the physical properties and chemical structure of biosurfactants from the genera Janthinobacterium, Psychrobacter, and Serratia. These organisms were able to grow on diesel, motor oil, and crude oil at 4 °C. Putative identification showed the presence of sophorolipids and rhamnolipids. Emulsion index test (E24) activity ranged from 36.4-66.7%. Oil displacement tests were comparable to 0.1-1.0% sodium dodecyl sulfate (SDS) solutions. Data presented herein are the first report of organisms of the genus Janthinobacterium to produce biosurfactants and their metabolic capabilities to degrade diverse petroleum hydrocarbons. The organisms' ability to produce biosurfactants and grow on different hydrocarbons as their sole carbon and energy source at low temperatures (4 °C) makes them suitable candidates for the exploration of hydrocarbon bioremediation in low-temperature environments.
Collapse
Affiliation(s)
- Benjamin Trudgeon
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; (B.T.); (M.M.); (C.M.F.)
- Department of Civil & Environmental Engineering, Montana State University, Bozeman, MT 59715, USA
| | - Markus Dieser
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; (B.T.); (M.M.); (C.M.F.)
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, MT 59715, USA
| | | | - Mitch Messmer
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; (B.T.); (M.M.); (C.M.F.)
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA;
| | - Christine M. Foreman
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA; (B.T.); (M.M.); (C.M.F.)
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, MT 59715, USA
| |
Collapse
|
27
|
Akkermans V, Verstraete R, Braem C, D'aes J, Dries J. Mannosylerythritol Lipid Production from Oleaginous Yeast Cell Lysate byMoesziomyces aphidis. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2019.0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Veerle Akkermans
- Faculty of Applied Engineering, University of Antwerp, Antwerpen, Belgium
| | - Ruben Verstraete
- Faculty of Applied Engineering, University of Antwerp, Antwerpen, Belgium
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Caroline Braem
- Department of Industrial Sciences and Technology, Karel de Grote University College, Hoboken, Belgium
| | - Jolien D'aes
- Faculty of Applied Engineering, University of Antwerp, Antwerpen, Belgium
| | - Jan Dries
- Faculty of Applied Engineering, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
28
|
Abstract
A polar head and an apolar tail chemically characterize surfactants, they show different properties and are categorized by different factors such as head charge and molecular weight. They work by reducing the surface tension between oil and water phases to facilitate the formation of one homogeneous mixture. In this respect, they represent unavoidable ingredients, their main application is in the production of detergents, one of if not the most important categories of cosmetics. Their role is very important, it should be remembered that it was precisely soaps and hygiene that defeated the main infectious diseases at the beginning of the last century. Due to their positive environmental impact, the potential uses of microbial sourced surfactants are actively investigated. These compounds are produced with different mechanisms by microorganisms in the aims to defend themselves from external threats, to improve the mobility in the environment, etc. In the cosmetic field, biosurfactants, restricted in the present work to those described above, can carry high advantages, in comparison to traditional surfactants, especially in the field of sustainable and safer approaches. Besiede this, costs still remain an obsatcle to their diffusion; in this regard, exploration of possible multifunctional actions could help to contain application costs. To highlight their features and possible multifunctional role, on the light of specific biological profiles yet underestimated, we have approached the present review work.
Collapse
|
29
|
Sato S, Fukuoka T, Saika A, Koshiyama T, Morita T. A New Screening Approach for Glycolipid-type Biosurfactant Producers Using MALDI-TOF/MS. J Oleo Sci 2020; 68:1287-1294. [PMID: 31787677 DOI: 10.5650/jos.ess19177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We applied matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) to screen for glycolipid-type biosurfactant (BS) producers. A crude extract of Pseudozyma antarctica, a well-known mannosylerythritol lipid (MEL) producer, was initially subjected to MALDI-TOF/MS. The spectrum of the extract showed the accumulation of diacylated MELs in culture. We then screened 80 environmental samples for BS-producing yeasts, and extracts from broth cultures of the selected five strains were examined using MALDI-TOF/MS. The results showed that all five strains produced MELs, whereas four strains also produced cellobiose lipids (CLs). By D1/D2 region sequence analysis, the MEL-producing strain was assigned to P. antarctica while the four MEL- and CL-producing strains were assigned to P. hubeiensis. These results demonstrate that MALDI-TOF/MS is a rapid and reliable tool to detect BS molecules in crude extracts of broth cultures to screen for glycolipid-type BS producers.
Collapse
Affiliation(s)
- Shun Sato
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Tokuma Fukuoka
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Azusa Saika
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Tatsuyuki Koshiyama
- Agrochemical Research Department, Organic Synthesis Research Laboratories, Kureha Corporation
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|
30
|
Saika A, Koike H, Yarimizu T, Watanabe T, Kitamoto H, Morita T. Deficiency of biodegradable plastic-degrading enzyme production in a gene-deletion mutant of phyllosphere yeast, Pseudozyma antarctica defective in mannosylerythritol lipid biosynthesis. AMB Express 2019; 9:100. [PMID: 31280392 PMCID: PMC6612326 DOI: 10.1186/s13568-019-0825-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 06/26/2019] [Indexed: 11/10/2022] Open
Abstract
The basidiomycetous yeast Pseudozyma antarctica (currently designated Moesziomyces antarcticus) produces extracellular enzymes and glycolipids, including mannosylerythritol lipids (MELs), which are biosurfactants. Strain GB-4(0) of this species was previously isolated from rice husks and produces biodegradable plastic-degrading enzyme (Pseudozyma antarctica esterase; PaE). In this study, we generated a MEL biosynthesis-deficient strain (∆PaEMT1) by deleting the gene PaEMT1, which is essential to MEL biosynthesis in strain GB-4(0). The resulting ∆PaEMT1 strain showed deficient PaE activity, and the corresponding signal was hardly detected in its culture supernatant through western blotting analysis using rabbit anti-PaE serum. On the other hand, the relative expression of the gene PaCLE1, encoding PaE, was identical between GB-4(0) and ∆PaEMT1 based on quantitative real-time PCR. When strain ∆PaEMT1 was grown in culture media supplemented with various surfactants, i.e., Tween20, BRIJ35 and TritonX-100, and MELs, PaE activity and secretion recovered. We also attempted to detect intracellular PaE using cell-free extract, but observed no signal in the soluble or insoluble fractions of ∆PaEMT1. This result suggested that the PaCLE1 gene was not translated to PaE, or that expressed PaE was degraded immediately in ∆PaEMT1. Based on these results, MEL biosynthesis is an important contributor to PaE production.
Collapse
|
31
|
Deinzer HT, Linne U, Xie X, Bölker M, Sandrock B. Elucidation of substrate specificities of decorating enzymes involved in mannosylerythritol lipid production by cross-species complementation. Fungal Genet Biol 2019; 130:91-97. [PMID: 31103599 DOI: 10.1016/j.fgb.2019.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/11/2019] [Accepted: 05/14/2019] [Indexed: 12/29/2022]
Abstract
Mannosylerythritol lipids (MELs) are surface active molecules produced by many basidiomycetous fungi. MELs consist of a mannosylerythritol disaccharide, which is acylated with short and medium chain fatty acids at the mannosyl moiety. A gene cluster composed of five genes is required for MEL biosynthesis. Here we show that the plant pathogenic fungus Ustilago hordei secretes these glycolipids under nitrogen starvation conditions. In contrast to MELs produced by the closely related fungus Ustilago maydis those secreted by U. hordei are mostly mono-acetylated and contain a different mixture of acyl groups. Cross-species complementation between these fungi revealed that these differences result from different catalytic activities of the acetyltransferase Mat1 and the acyltransferases Mac1 and Mac2. U. maydis mat1 mutants expressing the homologous mat1 gene from U. hordei produced mostly mono-acetylated variants and lack di-acetylated MELs normally produced by U. maydis. Furthermore, we determined that the acyltransferase Mac1 acylates the mannosylerythritol moiety at position C2 while Mac2 acylates C3. The identification of decorating enzymes with different substrate specificities will allow the tailor-made production of novel subsets of MELs.
Collapse
Affiliation(s)
- Hans-Tobias Deinzer
- Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Uwe Linne
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35032 Marburg, Germany
| | - Xiulan Xie
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Str. 2, 35032 Marburg, Germany
| | - Michael Bölker
- Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Björn Sandrock
- Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany.
| |
Collapse
|
32
|
Bakur A, Niu Y, Kuang H, Chen Q. Synthesis of gold nanoparticles derived from mannosylerythritol lipid and evaluation of their bioactivities. AMB Express 2019; 9:62. [PMID: 31065818 PMCID: PMC6505018 DOI: 10.1186/s13568-019-0785-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/25/2019] [Indexed: 02/07/2023] Open
Abstract
In this study, we introduce a simple and green method for synthesis of gold nanoparticles (AuNPs) using microbial glycolipid mannosylerythritol lipid (MEL) produced from Ustilago maydis CGMCC 5.203 and to evaluate their biomedical activities. MEL was found 10.3 g/L using sunflower oil. The formation of MEL-AuNPs was verified using UV–visible spectrum, XRD, TEM, FTIR, SEM, and EDX. In the biomedical examinations, MEL-AuNPs demonstrated potential cytotoxicity against HepG2 cells, and IC50 values were found to be 100 and 75 µg/mL for 24 h and 48 h of exposure, respectively, which indicates its good performance against cancer cells. The IC50 value of MEL-AuNPs was found to be 115 and 124 µg/mL for DPPH and ABTS scavenging activities, respectively. The biosynthesized MEL-AuNPs significantly inhibited cell growth of pathogenic Gram-positive and Gram-negative bacteria. These findings indicated that MEL plays a crucial role in the rapid biofabrication method of metallic NPs possessed the potential of biomedical activities.
Collapse
|
33
|
Wu J, Niu Y, Jiao Y, Chen Q. Fungal chitosan from Agaricus bisporus (Lange) Sing. Chaidam increased the stability and antioxidant activity of liposomes modified with biosurfactants and loading betulinic acid. Int J Biol Macromol 2018; 123:291-299. [PMID: 30439434 DOI: 10.1016/j.ijbiomac.2018.11.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/11/2018] [Accepted: 11/12/2018] [Indexed: 12/23/2022]
Abstract
Agaricus bisporus (Lange) Sing. Chaidam, a special brown mushroom with thick body indigenous in Chaidam basin, was used for fungal chitosan extraction. FTIR, XRD and DSC spectra showed that fungal chitosan was similar to commercial chitosan from aquatic sources. Fungal chitosan and commercial chitosan were used to coat on betulinic acid-loaded liposomes modified with biosurfactants mannosylerythritol lipid A (MEL-A), respectively. After chitosan coating, the mean size, zeta potential and encapsulation efficiency of both liposomes increased. The liposomes coated with fungal chitosan were discovered to have smaller size and higher zeta potential. Furthermore, the wall material MEL-A and coating material chitosan endue liposomes with increased antioxidant capacity. Fungal chitosan coated liposomes also have stronger antioxidant effects than commercial chitosan. The findings implied that the fungal chitosan coated liposomes modified with MEL-A can be considered as a promising delivery system with enhanced antioxidant effects for bioactive compounds.
Collapse
Affiliation(s)
- Jianan Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yongwu Niu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yingchun Jiao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China.
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Tanaka E, Koitabashi M, Kitamoto H. A teleomorph of the ustilaginalean yeast Moesziomyces antarcticus on barnyardgrass in Japan provides bioresources that degrade biodegradable plastics. Antonie van Leeuwenhoek 2018; 112:599-614. [DOI: 10.1007/s10482-018-1190-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/19/2018] [Indexed: 11/28/2022]
|
35
|
Silva ACSD, Santos PND, Silva TALE, Andrade RFS, Campos-Takaki GM. Biosurfactant production by fungi as a sustainable alternative. ARQUIVOS DO INSTITUTO BIOLÓGICO 2018. [DOI: 10.1590/1808-1657000502017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT: A wide variety of bacteria is far more exploited than fungi as biosurfactants (BS) or bioemulsifiers (BE), using renewable sources. BS are considered to be environmentally safe and offer advantages over synthetic surfactants. However, the BS yield depends largely on the metabolic pathways of the microorganisms and the nutritional medium. The production of BS or BE uses several cultural conditions, in which a small change in carbon and nitrogen sources affects the quantity of BS or BE produced. The type and quantity of microbial BS or BE produced depend mainly on the producer organism, and factors such as carbon and nitrogen sources, trace elements, temperature and aeration. The diversity of BS or BE makes it interesting to apply them in the pharmaceutical and cosmetics industries, agriculture, public health, food processes, detergents, when treating oily residues, environmental pollution control and bioremediation. Thus, this paper reviews and addresses the biotechnological potential of yeasts and filamentous fungi for producing, characterizing and applying BS or BE.
Collapse
|
36
|
Tailor-made mannosylerythritol lipids: current state and perspectives. Appl Microbiol Biotechnol 2018; 102:6877-6884. [PMID: 29926140 DOI: 10.1007/s00253-018-9160-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 10/28/2022]
Abstract
Mannosylerythritol lipids (MELs) are a type of glycolipid biosurfactant produced by basidiomycetous yeasts, most notably those belonging to the genera Pseudozyma and Ustilago. Mannosylerythritol lipids are environmentally friendly and possess many unique functions, such as gene delivery, bio-activation, and human skin repair, and thus have potential applications in cosmetic, pharmaceutical, agriculture, food, and environmental industries. However, MELs will require overcoming same issues related to the commercialization, e.g., expansion of the structure and function variety and cost reduction. In the past decade, various studies have attempted to tailor production of targeted MELs in order to expand the utility of these biosurfactants. Moreover, the rapid development of genomic sequencing techniques will enhance our ability to modify MEL producers. In this review, we focus on current research into the tailored production of MELs, including conventional and advanced approaches.
Collapse
|
37
|
Alimadadi N, Soudi MR, Talebpour Z. Efficient production of tri-acetylated mono-acylated mannosylerythritol lipids by Sporisorium sp. aff. sorghi SAM20. J Appl Microbiol 2018; 124:457-468. [PMID: 29154479 DOI: 10.1111/jam.13642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/20/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022]
Abstract
AIMS The aim of this study was to isolate a novel yeast strain, evaluate biosurfactant production by the strain and characterize the major product. METHODS AND RESULTS The strain SAM20, isolated from grass, identified as Sporisorium sp. aff. sorghi based on phylogenetic analyses. The strain produced approximately 32 g l-1 glycolipid biosurfactants from 40 g l-1 soybean oil after 7 days at 28°C. The glycolipids showed a unique pattern of mannosylerythritol lipids (MELs) on thin layer chromatography plate compared to those hitherto reported. Structural characterization of the major product, called GL-A, revealed that it was mainly tri-acetylated mono-acylated MELs (MEL-A2) with C14:0, C16:0, C12:0 or C14:1 as the hydrophobic chain. The critical micelle concentration (CMC), the surface tension at CMC and hydrophilic-lipophilic balance value for GL-A were estimated to be 20 mg l-1 , 30·0 mN m-1 and 8·7, respectively. CONCLUSIONS A MEL-A2 with novel composition and surface activities was efficiently produced from a novel MEL producer. This is the first report on production of MEL-A2 as the major product and from soybean oil. The biosurfactant has potential application as a wetting agent and oil-in-water emulsifier. SIGNIFICANCE AND IMPACT OF THE STUDY Discovery of novel structures and novel strains is valuable for further commercial development and application of MELs. Sporisorium sp. aff. sorghi SAM20 can be considered as a potential candidate for commercial production of biosurfactants.
Collapse
Affiliation(s)
- N Alimadadi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - M R Soudi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Z Talebpour
- Department of Chemistry, Faculty of Physics & Chemistry, Alzahra University, Tehran, Iran
| |
Collapse
|
38
|
Khunnamwong P, Jindamorakot S, Limtong S. Endophytic yeast diversity in leaf tissue of rice, corn and sugarcane cultivated in Thailand assessed by a culture-dependent approach. Fungal Biol 2018; 122:785-799. [PMID: 30007429 DOI: 10.1016/j.funbio.2018.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 01/07/2023]
Abstract
Endophytic yeasts are yeast that can colonize healthy plant tissues without causing any damage to the host plant. This work aimed to explore the diversity of endophytic yeasts in leaf tissue of main agricultural crops (rice, corn and sugarcane) in Thailand, by a culture-dependent approach. A total of 311 leaf samples, consisting of rice (n = 100), corn (n = 109) and sugarcane (n = 102). From the tissue of rice (n = 92), corn (n = 76) and sugarcane (n = 78) leaf samples, 117, 118 and 123 yeast strains were respectively isolated and identified based on the D1/D2 region of the large subunit (LSU) rRNA gene sequence analysis to be yeast species in both the phyla Basidiomycota and Ascomycota. Higher numbers of basidiomycetous yeast than ascomycetous yeast were detected in the leaf tissue of the three crops. Pseudozyma (Dirkmeia) churashimaensis (Ustilaginales) was the most prevalent yeast species in the rice and corn leaves with relative frequencies (RF) of 35.9 % and 17.8 %, respectively. Whereas the predominant species in the sugarcane leaves was Meyerozyma caribbica (Saccharomycetales) with an RF of 14.6 %. In addition, six new yeast species and one new yeast genus were proposed. Our findings suggest that these plant species are good sources from which new yeast species may be isolated.
Collapse
Affiliation(s)
- Pannida Khunnamwong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Sasitorn Jindamorakot
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology, Development Agency (NSTDA), Pathum Thani, Thailand
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Academy of Science, The Royal Society of Thailand, Bangkok, 10300, Thailand.
| |
Collapse
|
39
|
Teixeira Souza KS, Gudiña EJ, Schwan RF, Rodrigues LR, Dias DR, Teixeira JA. Improvement of biosurfactant production by Wickerhamomyces anomalus CCMA 0358 and its potential application in bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2018; 346:152-158. [PMID: 29268161 DOI: 10.1016/j.jhazmat.2017.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/12/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
In this work, biosurfactant production by Wickerhamomyces anomalus CCMA 0358 was increased through the development of an optimized culture medium using response surface methodology. The optimized culture medium contained yeast extract (4.64 g/L), ammonium sulfate (4.22 g/L), glucose (1.39 g/L) and olive oil (10 g/L). Biosurfactant production using this medium was validated both in flasks and bioreactor, and the surface tension was reduced from 49.0 mN/m up to 31.4 mN/m and 29.3 mN/m, respectively. In both cases, the highest biosurfactant production was achieved after 24 h of growth. W. anomalus CCMA 0358 demonstrated to be a fast biosurfactant producer (24 h) as compared to other yeast strains previously reported (144-240 h). The produced biosurfactant remained stable at high temperature (121 °C), NaCl concentrations as high as 300 g/L, and pH values between 6 and 12. The crude biosurfactant allowed the recovery of 20% of crude oil from contaminated sand, being a promising candidate for application in bioremediation or in the petroleum industry.
Collapse
Affiliation(s)
- Karla S Teixeira Souza
- Department of Biology, Federal University of Lavras (UFLA), Campus Universitário, 37.200-000 Lavras, MG, Brazil
| | - Eduardo J Gudiña
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Rosane F Schwan
- Department of Biology, Federal University of Lavras (UFLA), Campus Universitário, 37.200-000 Lavras, MG, Brazil
| | - Lígia R Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Disney R Dias
- Department of Food Science, Federal University of Lavras (UFLA), Campus Universitário, 37.200-000 Lavras, MG, Brazil
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
40
|
Nashida J, Nishi N, Takahashi Y, Hayashi C, Igarashi M, Takahashi D, Toshima K. Systematic and Stereoselective Total Synthesis of Mannosylerythritol Lipids and Evaluation of Their Antibacterial Activity. J Org Chem 2018; 83:7281-7289. [PMID: 29498851 DOI: 10.1021/acs.joc.8b00032] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The total synthesis of the 20 homogeneous members of mannosylerythritol lipids (MELs) with different alkyl chain lengths was effectively and systematically accomplished from a strategically designed common key intermediate that was stereoselectively constructed by the borinic acid catalyzed β-mannosylation reaction. In addition, their antibacterial activities against Gram-positive bacteria were evaluated. Our results demonstrated that not only the length of the alkyl chains but also the pattern of Ac groups on the mannose moiety were important factors for antibacterial activity.
Collapse
Affiliation(s)
- Junki Nashida
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| | - Nobuya Nishi
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| | - Yoshiaki Takahashi
- Institute of Microbial Chemistry (BIKAKEN) , 3-14-23 Kamiosaki , Shinagawa-ku, Tokyo 141-0021 , Japan
| | - Chigusa Hayashi
- Institute of Microbial Chemistry (BIKAKEN) , 3-14-23 Kamiosaki , Shinagawa-ku, Tokyo 141-0021 , Japan
| | - Masayuki Igarashi
- Institute of Microbial Chemistry (BIKAKEN) , 3-14-23 Kamiosaki , Shinagawa-ku, Tokyo 141-0021 , Japan
| | - Daisuke Takahashi
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| | - Kazunobu Toshima
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama 223-8522 , Japan
| |
Collapse
|
41
|
Saika A, Utashima Y, Koike H, Yamamoto S, Kishimoto T, Fukuoka T, Morita T. Biosynthesis of mono-acylated mannosylerythritol lipid in an acyltransferase gene-disrupted mutant of Pseudozyma tsukubaensis. Appl Microbiol Biotechnol 2017; 102:1759-1767. [PMID: 29274060 DOI: 10.1007/s00253-017-8698-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/09/2017] [Accepted: 12/12/2017] [Indexed: 11/27/2022]
Abstract
The basidiomycetous yeast genus Pseudozyma produce large amounts of mannosylerythritol lipids (MELs), which are biosurfactants. A few Pseudozyma strains produce mono-acylated MEL as a minor compound using excess glucose as the sole carbon source. Mono-acylated MEL shows higher hydrophilicity than di-acylated MEL and has great potential for aqueous applications. Recently, the gene cluster involved in the MEL biosynthesis pathway was identified in yeast. Here, we generated an acyltransferase (PtMAC2) deletion strain of P. tsukubaensis 1E5 with uracil auxotrophy as a selectable marker. A PtURA5-mutant with a frameshift mutation in PtURA5 was generated as a uracil auxotroph of strain 1E5 by ultraviolet irradiation on plate medium containing 5-fluoro-orotic acid (5-FOA). In the mutant, PtMAC2 was replaced with a PtURA5 cassette containing the 5' untranslated region (UTR) (2000 bp) and 3' UTR (2000 bp) of PtMAC2 by homologous recombination, yielding strain ΔPtMAC2. Based on TLC and NMR analysis, we found that ΔPtMAC2 accumulates MEL acylated at the C-2' position of the mannose moiety. These results indicate that PtMAC2p catalyzes acylation at the C-3' position of the mannose of MEL.
Collapse
Affiliation(s)
- Azusa Saika
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yu Utashima
- Toyobo Co., Ltd. Tsuruga Institute of Biotechnology, 10-24, Toyo-cho, Tsuruga, Fukui, 914-8550, Japan
| | - Hideaki Koike
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6-9, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Shuhei Yamamoto
- Toyobo Co., Ltd. Tsuruga Institute of Biotechnology, 10-24, Toyo-cho, Tsuruga, Fukui, 914-8550, Japan
| | - Takahide Kishimoto
- Toyobo Co., Ltd. Tsuruga Institute of Biotechnology, 10-24, Toyo-cho, Tsuruga, Fukui, 914-8550, Japan
| | - Tokuma Fukuoka
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
42
|
Jezierska S, Claus S, Van Bogaert I. Yeast glycolipid biosurfactants. FEBS Lett 2017; 592:1312-1329. [DOI: 10.1002/1873-3468.12888] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Sylwia Jezierska
- Faculty of Bioscience Engineering Centre for Synthetic Biology Gent Belgium
| | - Silke Claus
- Faculty of Bioscience Engineering Centre for Synthetic Biology Gent Belgium
| | - Inge Van Bogaert
- Faculty of Bioscience Engineering Centre for Synthetic Biology Gent Belgium
| |
Collapse
|
43
|
Tanaka E, Honda Y. Teleomorph–anamorph connection of Macalpinomyces spermophorus with Pseudozyma tsukubaensis and corresponding erythritol production. MYCOSCIENCE 2017. [DOI: 10.1016/j.myc.2017.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Saika A, Koike H, Yamamoto S, Kishimoto T, Morita T. Enhanced production of a diastereomer type of mannosylerythritol lipid-B by the basidiomycetous yeast Pseudozyma tsukubaensis expressing lipase genes from Pseudozyma antarctica. Appl Microbiol Biotechnol 2017; 101:8345-8352. [PMID: 29075829 DOI: 10.1007/s00253-017-8589-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 11/29/2022]
Abstract
Basidiomycetous yeasts in the genus Pseudozyma are known to produce extracellular glycolipids called mannosylerythritol lipids (MELs). Pseudozyma tsukubaensis produces a large amount of MEL-B using olive oil as the sole carbon source (> 70 g/L production). The MEL-B produced by P. tsukubaensis is a diastereomer type of MEL-B, which consists of 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol as a sugar moiety, in contrast to the conventional type of MELs produced by P. antarctica, which contain 4-O-β-D mannopyranosyl-(2S,3R)-erythritol. In this study, we attempted to increase the production of the diastereomer type of MEL-B in P. tsukubaensis 1E5 by introducing the genes encoding two lipases, PaLIPAp (PaLIPA) and PaLIPBp (PaLIPB) from P. antarctica T-34. Strain 1E5 expressing PaLIPA exhibited higher lipase activity than the strain possessing an empty vector, which was used as a negative control. Strains of 1E5 expressing PaLIPA or PaLIPB showed 1.9- and 1.6-fold higher MEL-B production than the negative control strain, respectively, and oil consumption was also accelerated by the introduction of these lipase genes. MEL-B production was estimated using time course analysis in the recombinant strains. Strain 1E5 expressing PaLIPA produced 37.0 ± 1.2 g/L of MEL-B within 4 days of cultivation, whereas the strain expressing an empty vector produced 22.1 ± 7.5 g/L in this time. Overexpression of PaLIPA increased MEL-B production by P. tsukubaensis strain 1E5 from olive oil as carbon source by more than 1.7-fold.
Collapse
Affiliation(s)
- Azusa Saika
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Hideaki Koike
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 6-9, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Shuhei Yamamoto
- Toyobo Co., Ltd. Tsuruga Institute of Biotechnology, 10-24, Toyo-cho, Tsuruga, Fukui, 914-8550, Japan
| | - Takahide Kishimoto
- Toyobo Co., Ltd. Tsuruga Institute of Biotechnology, 10-24, Toyo-cho, Tsuruga, Fukui, 914-8550, Japan
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| |
Collapse
|
45
|
Production of microbial biosurfactants: Status quo of rhamnolipid and surfactin towards large-scale production. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600561] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/10/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022]
|
46
|
Niu Y, Fan L, Gu D, Wu J, Chen Q. Characterization, enhancement and modelling of mannosylerythritol lipid production by fungal endophyte Ceriporia lacerate CHZJU. Food Chem 2017; 228:610-617. [PMID: 28317770 DOI: 10.1016/j.foodchem.2017.02.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/04/2017] [Accepted: 02/09/2017] [Indexed: 11/16/2022]
Abstract
The glycolipid biosurfactants mannosylerythritol lipids (MELs) attract great attention for their biodegradability, super emulsifying properties and versatile bioactivities. In this study, the MEL deriving from Ceriporia lacerate CHZJU was identified as MEL-A, and its critical micelle concentration and emulsifying activities were assessed. To examine the production of MELs from Ceriporia lacerate, a Plackett-Burman design and response surface methodology were used to optimize the culture nutrients. The optimal medium contains 1g/L yeast extract, 1.5g/L (NH4)2SO4, 0.5g/L KH2PO4, 0.04g/L CaCl2, 119.6mL/L soybean oil and 0.297g/L MnSO4. Subsequent verification revealed that the yield of MELs was 129.64±5.67g/L. Furthermore, an unstructured kinetic model was developed for mycelial growth, MEL production and substrate utilization. This work provides insight into Ceriporia lacerate CHZJU, a predominant fungus producing MEL-A. Optimization using response surface methodology enhanced the mannosylerythritol lipid recovery. Importantly, we developed fermentation kinetic modelling for mannosylerythritol lipid production.
Collapse
Affiliation(s)
- Yongwu Niu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Linlin Fan
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Di Gu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jianan Wu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
47
|
Nasanit R, Jaibangyang S, Tantirungkij M, Limtong S. Yeast diversity and novel yeast D1/D2 sequences from corn phylloplane obtained by a culture-independent approach. Antonie van Leeuwenhoek 2016; 109:1615-1634. [PMID: 27578202 DOI: 10.1007/s10482-016-0762-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/23/2016] [Indexed: 02/07/2023]
Abstract
Culture-independent techniques have recently been used for evaluation of microbial diversity in the environment since it addresses the problem of unculturable microorganisms. In this study, the diversity of epiphytic yeasts from corn (Zea mays Linn.) phylloplanes in Thailand was investigated using this technique and sequence-based analysis of the D1/D2 domains of the large subunit ribosomal DNA sequences. Thirty-seven samples of corn leaf were collected randomly from 10 provinces. The DNA was extracted from leaf washing samples and the D1/D2 domains were amplified. The PCR products were cloned and then screened by colony PCR. A total of 1049 clones were obtained from 37 clone libraries. From this total, 329 clones (213 sequences) were closely related to yeast strains in the GenBank database, and they were clustered into 77 operational taxonomic units (OTUs) with a similarity threshold of 99 %. The majority of sequences (98.5 %) were classified into the phylum Basidiomycota. Sixteen known yeast species were identified. Interestingly, more than 65 % of the D1/D2 sequences obtained by this technique were suggested to be sequences from new yeast taxa. The predominant yeast sequences detected belonged to the order Ustilaginales with relative frequency of 68.0 %. The most common known yeast species detected on the leaf samples were Pseudozyma hubeiensis pro tem. and Moesziomyces antarcticus with frequency of occurrence of 24.3 and 21.6 %, respectively.
Collapse
Affiliation(s)
- Rujikan Nasanit
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Sanamchandra Palace Campus, Amphoe Muang, Nakhon Pathom, 73000, Thailand
| | - Sopin Jaibangyang
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Sanamchandra Palace Campus, Amphoe Muang, Nakhon Pathom, 73000, Thailand
| | - Manee Tantirungkij
- Central Laboratory and Greenhouse Complex, Faculty of Agriculture at Kamphaeng Sean, Kasetsart University, Kamphaeng Sean Campus, Kamphaeng Saen, Nakhon Pathom, 73140, Thailand
| | - Savitree Limtong
- Department of Microbiology, Faculty of Science, Kasetsart University, Jatujak, Bangkok, 10900, Thailand. .,Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
48
|
Saika A, Koike H, Fukuoka T, Yamamoto S, Kishimoto T, Morita T. A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-β-D-Mannopyranosyl-(2R,3S)-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis. PLoS One 2016; 11:e0157858. [PMID: 27327162 PMCID: PMC4915680 DOI: 10.1371/journal.pone.0157858] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/06/2016] [Indexed: 11/18/2022] Open
Abstract
Mannosylerythritol lipids (MELs) belong to the glycolipid biosurfactants and are produced by various fungi. The basidiomycetous yeast Pseudozyma tsukubaensis produces diastereomer type of MEL-B, which contains 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) as the sugar moiety. In this respect it differs from conventional type of MELs, which contain 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) as the sugar moiety. While the biosynthetic gene cluster for conventional type of MELs has been previously identified in Ustilago maydis and Pseudozyma antarctica, the genetic basis for MEL biosynthesis in P. tsukubaensis is unknown. Here, we identified a gene cluster involved in MEL biosynthesis in P. tsukubaensis. Among these genes, PtEMT1, which encodes erythritol/mannose transferase, had greater than 69% identity with homologs from strains in the genera Ustilago, Melanopsichium, Sporisorium and Pseudozyma. However, phylogenetic analysis placed PtEMT1p in a separate clade from the other proteins. To investigate the function of PtEMT1, we introduced the gene into a P. antarctica mutant strain, ΔPaEMT1, which lacks MEL biosynthesis ability owing to the deletion of PaEMT1. Using NMR spectroscopy, we identified the biosynthetic product as MEL-A with altered sugar conformation. These results indicate that PtEMT1p catalyzes the sugar conformation of MELs. This is the first report of a gene cluster for the biosynthesis of diastereomer type of MEL.
Collapse
Affiliation(s)
- Azusa Saika
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Hideaki Koike
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Tokuma Fukuoka
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Shuhei Yamamoto
- Toyobo Co., Ltd., Tsuruga Institute of Biotechnology, Tsuruga, Fukui, Japan
| | - Takahide Kishimoto
- Toyobo Co., Ltd., Tsuruga Institute of Biotechnology, Tsuruga, Fukui, Japan
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
49
|
Cavalcante Fai AE, Resende Simiqueli AP, de Andrade CJ, Ghiselli G, Pastore GM. Optimized production of biosurfactant from Pseudozyma tsukubaensis using cassava wastewater and consecutive production of galactooligosaccharides: An integrated process. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Selective formation of mannosyl-l-arabitol lipid by Pseudozyma tsukubaensis JCM16987. Appl Microbiol Biotechnol 2015; 99:5833-41. [DOI: 10.1007/s00253-015-6575-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 10/23/2022]
|