1
|
Georis I, Ronsmans A, Vierendeels F, Dubois E. Differing SAGA module requirements for NCR-sensitive gene transcription in yeast. Yeast 2024; 41:207-221. [PMID: 37357465 DOI: 10.1002/yea.3885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 06/27/2023] Open
Abstract
Nitrogen catabolite repression (NCR) is a means for yeast to adapt its transcriptome to changing nitrogen sources in its environment. In conditions of derepression (under poor nitrogen conditions, upon rapamycin treatment, or when glutamine production is inhibited), two transcriptional activators of the GATA family are recruited to NCR-sensitive promoters and activate transcription of NCR-sensitive genes. Earlier observations have involved the Spt-Ada-Gcn5 acetyltransferase (SAGA) chromatin remodeling complex in these transcriptional regulations. In this report, we provide an illustration of the varying NCR-sensitive responses and question whether differing SAGA recruitment could explain this diversity of responses.
Collapse
Affiliation(s)
| | | | | | - Evelyne Dubois
- Labiris, Brussels, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
2
|
Pan C, Yin J, Ma B, Wen J, Luo P. Whole-genome sequence and characterization of a marine red yeast, Rhodosporidium sphaerocarpum GDMCC 60679, featuring the assimilation of ammonia nitrogen. J Biosci Bioeng 2024; 137:85-93. [PMID: 38155026 DOI: 10.1016/j.jbiosc.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
A marine red yeast, Rhodosporidium sphaerocarpum, is generally used for the production of lipids and carotenoids. In a previous study, we demonstrated that a marine-derived R. sphaerocarpum GDMCC 60679 can efficiently remove ammonia nitrogen and exhibit multiple probiotic functions for shrimp, Litopenaeus vannamei. Here, we performed a genome assembly of the strain GDMCC 60679 using a combination of the data from Illumina PE and PacBio CLR reads. The genome has a size of 18.03 Mb and consists of 32 contigs with an N50 length of 1,074,774 bp and GC content of 63 %. The genome was predicted to contain 6092 protein-coding genes, 5962 of which were functionally annotated. Metabolic pathways responsible for the ammonia assimilation and the synthesis of lipids and carotenoids were particularly examined to explore and characterize genes contributing to these functions. Whole-genome sequence and annotation of the strain lays a foundation to reveal the molecular mechanism of its prominent biological functions and will facilitate us to further expand new applications of yeasts in Rhodosporidium.
Collapse
Affiliation(s)
- Chuanhao Pan
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiayue Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wen
- Department of Biology, Lingnan Normal University, Zhanjiang 524048, China
| | - Peng Luo
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
3
|
Berg HY, Arju G, Becerra-Rodríguez C, Galeote V, Nisamedtinov I. Unlocking the secrets of peptide transport in wine yeast: insights into oligopeptide transporter functions and nitrogen source preferences. Appl Environ Microbiol 2023; 89:e0114123. [PMID: 37843270 PMCID: PMC10686055 DOI: 10.1128/aem.01141-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023] Open
Abstract
IMPORTANCE Limited nitrogen supply can prevent the completion of alcoholic fermentation. Supplementation through peptides as an alternative, natural source of nitrogen for yeast offers an interesting solution for this issue. In this work, the S. cerevisiae peptide transporters of the Opt and Fot families were studied. We demonstrated that Fot and Opt2 have a broader peptide length preference than previously reported, enabling yeasts to acquire sufficient nitrogen from peptides without requiring additional ammonia or amino acids to complete fermentation. On the contrary, Opt1 was unable to consume any peptide in the given conditions, whereas it has been described elsewhere as the main peptide transporter for peptides longer than three amino acid residues in experiments in laboratory conditions. This controversy signifies the need in applied sciences for approaching experimental conditions to those prevalent in the industry for its more accurate characterization. Altogether, this work provides further evidence of the importance of peptides as a nitrogen source for yeast and their consequent positive impact on fermentation kinetics.
Collapse
Affiliation(s)
- Hidde Yaël Berg
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
- Center of Food and Fermentation Technologies, Tallinn, Estonia
| | - Georg Arju
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | - Virginie Galeote
- SPO, Univ. Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Ildar Nisamedtinov
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
- Lallemand, Inc., Montreal, Canada
| |
Collapse
|
4
|
Zekhnini A, Albacar M, Casamayor A, Ariño J. The ENA1 Na+-ATPase Gene Is Regulated by the SPS Sensing Pathway and the Stp1/Stp2 Transcription Factors. Int J Mol Sci 2023; 24:ijms24065548. [PMID: 36982620 PMCID: PMC10055992 DOI: 10.3390/ijms24065548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
The Saccharomyces cerevisiae ENA1 gene, encoding a Na+-ATPase, responds transcriptionally to the alkalinization of the medium by means of a network of signals that involves the Rim101, the Snf1 and PKA kinases, and the calcineurin/Crz1 pathways. We show here that the ENA1 promoter also contains a consensus sequence, located at nt −553/−544, for the Stp1/2 transcription factors, the downstream components of the amino acid sensing SPS pathway. Mutation of this sequence or deletion of either STP1 or STP2 decreases the activity of a reporter containing this region in response to alkalinization as well as to changes in the amino acid composition in the medium. Expression driven from the entire ENA1 promoter was affected with similar potency by the deletion of PTR3, SSY5, or simultaneous deletion of STP1 and STP2 when cells were exposed to alkaline pH or moderate salt stress. However, it was not altered by the deletion of SSY1, encoding the amino acid sensor. In fact, functional mapping of the ENA1 promoter reveals a region spanning from nt −742 to −577 that enhances transcription, specifically in the absence of Ssy1. We also found that the basal and alkaline pH-induced expression from the HXT2, TRX2, and, particularly, SIT1 promoters was notably decreased in an stp1 stp2 deletion mutant, whereas the PHO84 and PHO89 gene reporters were unaffected. Our findings add a further layer of complexity to the regulation of ENA1 and suggest that the SPS pathway might participate in the regulation of a subset of alkali-inducible genes.
Collapse
|
5
|
Kamrad S, Correia-Melo C, Szyrwiel L, Aulakh SK, Bähler J, Demichev V, Mülleder M, Ralser M. Metabolic heterogeneity and cross-feeding within isogenic yeast populations captured by DILAC. Nat Microbiol 2023; 8:441-454. [PMID: 36797484 PMCID: PMC9981460 DOI: 10.1038/s41564-022-01304-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/13/2022] [Indexed: 02/18/2023]
Abstract
Genetically identical cells are known to differ in many physiological parameters such as growth rate and drug tolerance. Metabolic specialization is believed to be a cause of such phenotypic heterogeneity, but detection of metabolically divergent subpopulations remains technically challenging. We developed a proteomics-based technology, termed differential isotope labelling by amino acids (DILAC), that can detect producer and consumer subpopulations of a particular amino acid within an isogenic cell population by monitoring peptides with multiple occurrences of the amino acid. We reveal that young, morphologically undifferentiated yeast colonies contain subpopulations of lysine producers and consumers that emerge due to nutrient gradients. Deconvoluting their proteomes using DILAC, we find evidence for in situ cross-feeding where rapidly growing cells ferment and provide the more slowly growing, respiring cells with ethanol. Finally, by combining DILAC with fluorescence-activated cell sorting, we show that the metabolic subpopulations diverge phenotypically, as exemplified by a different tolerance to the antifungal drug amphotericin B. Overall, DILAC captures previously unnoticed metabolic heterogeneity and provides experimental evidence for the role of metabolic specialization and cross-feeding interactions as a source of phenotypic heterogeneity in isogenic cell populations.
Collapse
Affiliation(s)
- Stephan Kamrad
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Clara Correia-Melo
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Lukasz Szyrwiel
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Simran Kaur Aulakh
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Vadim Demichev
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Michael Mülleder
- Core Facility-High-Throughput Mass Spectrometry, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin Berlin, Berlin, Germany.
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK.
- The Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
6
|
Volatile Aroma Compound Production Is Affected by Growth Rate in S. cerevisiae. Appl Environ Microbiol 2022; 88:e0150922. [PMID: 36377958 PMCID: PMC9746289 DOI: 10.1128/aem.01509-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The initial growth rate of a yeast strain is a key parameter in the production of fermented beverages. Fast growth is linked with higher fermentative capacity and results in less slow and stuck fermentations unable to reach the expected final gravity. As concentrations of metabolites are in a constant state of flux, quantitative data on how growth rate affects the production of aromatic compounds becomes an important factor for brewers. Chemostats allow to set and keep a specific dilution rate throughout the fermentation and are ideal system to study the effect of growth on aroma production. In this study, we ran chemostats alongside batch and fed-batch cultures, compared volatile profiles detected at different growth rates, and identified those affected by the different feeding profiles. Specifically, we quantified six abundant aroma compounds produced in anaerobic glucose-limited continuous cultivations of S. cerevisiae at different dilution rates. We found that volatile production was affected by the growth rate in four out of six compounds assayed, with higher alcohols and esters following opposite trends. Batch and fed-batch fermentations were devised to study the extent by which the final concentration of volatile compounds is influenced by glucose availability. Compared with the batch system, fed-batch fermentations, where the yeast growth was artificially limited by a slow constant release of nutrients in the media, resulted in a significant increase in concentration of higher alcohols, mirroring the results obtained in continuous fermentations. This study paves the way to further process development optimization for the production of fermented beverages. IMPORTANCE The production of fermentation beverages will need to quickly adapt to changes in both the climate and customer demands, requiring the development of new strains and processes. Breakthroughs in the field are hindered by the limited knowledge on the interplay between physiology and aroma compound production in yeast. No quantitative data on how growth rate affects aroma profile is available in the literature to guide optimization of the complex flavors in fermented beverages. In this study, we exploited the chemostat system, alongside with batch and fed-batch cultures, to compare volatile profiles at different growth rates. We identified the aromatic compounds affected by the different feeding profiles and nutrient limitations. Moreover, we uncovered the correlation between yeast growth, esters, and higher alcohols production. This study showcases the potential of the application of feeding profiles for the manipulation of aroma in the craft beverage industry.
Collapse
|
7
|
Coral-Medina A, Morrissey JP, Camarasa C. The growth and metabolome of Saccharomyces uvarum in wine fermentations are strongly influenced by the route of nitrogen assimilation. J Ind Microbiol Biotechnol 2022; 49:6825455. [PMID: 36370452 PMCID: PMC9923386 DOI: 10.1093/jimb/kuac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022]
Abstract
Nitrogen is a critical nutrient in beverage fermentations, influencing fermentation performance and formation of compounds that affect organoleptic properties of the product. Traditionally, most commercial wine fermentations rely on Saccharomyces cerevisiae but the potential of alternative yeasts is increasingly recognised because of the possibility to deliver innovative products and process improvements. In this regard, Saccharomyces uvarum is an attractive non-traditional yeast that, while quite closely related to S. cerevisiae, displays a different fermentative and aromatic profile. Although S. uvarum is used in cider-making and in some winemaking, better knowledge of its physiology and metabolism is required if its full potential is to be realised. To address this gap, we performed a comparative analysis of the response of S. uvarum and S. cerevisiae to 13 different sources of nitrogen, assessing key parameters such as growth, fermentation performance, the production of central carbon metabolites and aroma volatile compounds. We observed that the two species differ in the production of acetate, succinate, medium-chain fatty acids, phenylethanol, phenylethyl acetate, and fusel/branched acids in ways that reflect different distribution of fluxes in the metabolic network. The integrated analysis revealed different patterns of yeast performance and activity linked to whether growth was on amino acids metabolised via the Ehrlich pathway or on amino acids and compounds assimilated through the central nitrogen core. This study highlights differences between the two yeasts and the importance that nitrogen metabolism can play in modulating the sensory profile of wine when using S. uvarum as the fermentative yeast.
Collapse
Affiliation(s)
- Angela Coral-Medina
- SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France,School of Microbiology, University College Cork, T12 K8AF, Cork, Ireland
| | - John P Morrissey
- School of Microbiology, University College Cork, T12 K8AF, Cork, Ireland,Environmental Research Institute and SUSFERM Fermentation Science Centre, University College Cork, T12 K8AF, Cork, Ireland
| | | |
Collapse
|
8
|
Isabelle G, Mohammad FK, Evi Z, Fabienne V, Martine R, Evelyne D. Glutamine transport as a possible regulator of nitrogen catabolite repression in Saccharomyces cerevisiae. Yeast 2022; 39:493-507. [PMID: 35942513 DOI: 10.1002/yea.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Nitrogen Catabolite Repression (NCR) is a major transcriptional control pathway governing nitrogen use in yeast, with several hundred of target genes identified to date. Early and extensive studies on NCR led to the identification of the 4 GATA zinc finger transcription factors, but the primary mechanism initiating NCR is still unclear up till now. To identify novel players of NCR, we have undertaken a genetic screen in an NCR-relieved gdh1Δ mutant, which led to the identification of four genes directly linked to protein ubiquitylation. Ubiquitylation is an important way of regulating amino acid transporters and our observations being specifically observed in glutamine-containing media, we hypothesized that glutamine transport could be involved in establishing NCR. Stabilization of Gap1 at the plasma membrane restored NCR in gdh1Δ cells and AGP1 (but not GAP1) deletion could relieve repression in the ubiquitylation mutants isolated during the screen. Altogether, our results suggest that deregulated glutamine transporter function in all three weak nitrogen derepressed (wnd) mutants restores the repression of NCR-sensitive genes consecutive to GDH1 deletion. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Fayyad-Kazan Mohammad
- Université Libre de Bruxelles, Belgium.,Biotechnology Department, American International University (AIU), Saad Al Abdullah, Al Jahra, Kuwait
| | - Zaremba Evi
- Labiris, Brussels, Belgium.,Université Libre de Bruxelles, Belgium
| | | | | | - Dubois Evelyne
- Labiris, Brussels, Belgium.,Université Libre de Bruxelles, Belgium
| |
Collapse
|
9
|
Lin CL, Petersen MA, Mauch A, Gottlieb A. Towards lager beer aroma improvement via selective amino acid release by proteases during mashing. JOURNAL OF THE INSTITUTE OF BREWING 2022. [DOI: 10.1002/jib.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Claire L. Lin
- Brewing AR 345 Novozymes A/S Biologiens Vej 2 Kongens Lyngby 2800 Denmark
- Department of Food Science University of Copenhagen Rolighedsvej 26 Frederiksberg 1958 Denmark
| | - Mikael A. Petersen
- Department of Food Science University of Copenhagen Rolighedsvej 26 Frederiksberg 1958 Denmark
| | - Alexander Mauch
- Brewing AR 345 Novozymes A/S Biologiens Vej 2 Kongens Lyngby 2800 Denmark
| | - Andrea Gottlieb
- Brewing AR 345 Novozymes A/S Biologiens Vej 2 Kongens Lyngby 2800 Denmark
| |
Collapse
|
10
|
Yang L, Kong W, Yang W, Li D, Zhao S, Wu Y, Zheng S. High D-arabitol production with osmotic pressure control fed-batch fermentation by Yarrowia lipolytica and proteomic analysis under nitrogen source perturbation. Enzyme Microb Technol 2021; 152:109936. [PMID: 34715526 DOI: 10.1016/j.enzmictec.2021.109936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/25/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023]
Abstract
D-arabitol, a five-carbon sugar alcohol, is widely used in food and pharmacy industry as a lower calorie sweetener or intermediate. Appropriate osmotic pressure was confirmed to facilitate polyol production by an osmophilic yeast strain of Yarrowia lipolytica with glycerol. In this study, an osmotic pressure control fed-batch fermentation strategy was used for high D-arabitol producing by Y. lipolytica ARA9 with crude glycerol. Glycerol was added to the broth quantitatively not only as a substrate but also as an osmotic agent. Meanwhile, NH3·H2O was fed as a nitrogen source and pH regulator. The maximum D-arabitol production reached 118.5 g/L at 108 h with the yield of 0.49 g/g and productivity of 1.10 g/L/h, respectively. Furthermore, a comparative proteomic analysis was used to study the cellular responses under excess and deficient nitrogen sources. Thirty-one differentially expressed protein spots belonging to seven different biological processes were identified. Excess nitrogen source enhanced gluconeogenesis and pentose phosphate pathways, both of which were involved in arabitol synthesis. In addition, cell growth was facilitated by increased expression of nucleotide and structural proteins. Enhanced energy and NADPH biosynthesis were employed to create a reductive environment and quell reactive oxygen species, improving D-arabitol production. Nitrogen deficiency resulted in cell rescue and stress response mechanisms such as reactive oxygen species elimination and heat shock protein response. The identified differentially expressed proteins provide information to reveal the mechanisms of the cellular responses under nitrogen source perturbation, and also provide guidance to improve D-arabitol production in metabolic engineering or process optimization methodologies.
Collapse
Affiliation(s)
- LiBo Yang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056038, China
| | - Wei Kong
- The First Department of General Surgery, Handan Central Hospital, 59 Congtai North Road, Handan, Hebei 056002, China
| | - Weina Yang
- Handan Blood Center, 18 Dongliu West Road, Handan, Hebei 056001, China
| | - Danpeng Li
- College of Landscape and Ecological Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056038, China
| | - Shuang Zhao
- College of Landscape and Ecological Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056038, China
| | - Yucui Wu
- College of Landscape and Ecological Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056038, China
| | - Suyue Zheng
- College of Landscape and Ecological Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056038, China.
| |
Collapse
|
11
|
Zhu L, Xu S, Li Y, Shi G. Improvement of 2-phenylethanol production in Saccharomyces cerevisiae by evolutionary and rational metabolic engineering. PLoS One 2021; 16:e0258180. [PMID: 34665833 PMCID: PMC8525735 DOI: 10.1371/journal.pone.0258180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
2-Phenylethanol (2-PE) is a valuable aromatic compound with favorable flavors and good properties, resulting in its widespread application in the cosmetic, food and medical industries. In this study, a mutant strain, AD032, was first obtained by adaptive evolution under 2-PE stress. Then, a fusion protein from the Ehrlich pathway, composed of tyrB from Escherichia coli, kdcA from Lactococcus lactis and ADH2 from Saccharomyces cerevisiae, was constructed and expressed. As a result, 3.14 g/L 2-PE was achieved using L-phenylalanine as a precursor. To further increase 2-PE production, L-glutamate oxidase from Streptomyces overexpression was applied for the first time in our research to improve the supply of α-ketoglutarate in the transamination of 2-PE synthesis. Furthermore, we found that the disruption of the pyruvate decarboxylase encoding gene PDC5 caused an increase in 2-PE production, which has not yet been reported. Finally, assembly of the efficient metabolic modules and process optimization resulted in the strain RM27, which reached 4.02 g/L 2-PE production from 6.7 g/L L-phenylalanine without in situ product recovery. The strain RM27 produced 2-PE (0.8 mol/mol) with L-phenylalanine as a precursor, which was considerably high, and displayed manufacturing potential regarding food safety and process simplification aspects. This study suggests that innovative strategies regarding metabolic modularization provide improved prospects for 2-PE production in food exploitation.
Collapse
Affiliation(s)
- Linghuan Zhu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, the Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, the Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, the Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, the Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
- * E-mail:
| |
Collapse
|
12
|
Dai J, Xia H, Yang C, Chen X. Sensing, Uptake and Catabolism of L-Phenylalanine During 2-Phenylethanol Biosynthesis via the Ehrlich Pathway in Saccharomyces cerevisiae. Front Microbiol 2021; 12:601963. [PMID: 33717002 PMCID: PMC7947893 DOI: 10.3389/fmicb.2021.601963] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/29/2021] [Indexed: 01/15/2023] Open
Abstract
2-Phenylethanol (2-PE) is an important flavouring ingredient with a persistent rose-like odour, and it has been widely utilized in food, perfume, beverages, and medicine. Due to the potential existence of toxic byproducts in 2-PE resulting from chemical synthesis, the demand for “natural” 2-PE through biotransformation is increasing. L-Phenylalanine (L-Phe) is used as the precursor for the biosynthesis of 2-PE through the Ehrlich pathway by Saccharomyces cerevisiae. The regulation of L-Phe metabolism in S. cerevisiae is complicated and elaborate. We reviewed current progress on the signal transduction pathways of L-Phe sensing, uptake of extracellular L-Phe and 2-PE synthesis from L-Phe through the Ehrlich pathway. Moreover, the anticipated bottlenecks and future research directions for S. cerevisiae biosynthesis of 2-PE are discussed.
Collapse
Affiliation(s)
- Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China.,ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Huili Xia
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Chunlei Yang
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| |
Collapse
|
13
|
Labuschagne P, Divol B. Thiamine: a key nutrient for yeasts during wine alcoholic fermentation. Appl Microbiol Biotechnol 2021; 105:953-973. [PMID: 33404836 DOI: 10.1007/s00253-020-11080-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/27/2020] [Indexed: 12/27/2022]
Abstract
Alcoholic fermentation is a crucial step of winemaking, during which yeasts convert sugars to alcohol and also produce or biotransform numerous flavour compounds. In this context, nutrients are essential compounds to support yeast growth and ultimately ensure complete fermentation, as well as optimized production of flavour compounds over that of off-flavour compounds. In particular, the vitamin thiamine not only plays an essential cofactor role for several enzymes involved in various metabolic pathways, including those leading to the production of wine-relevant flavour compounds, but also aids yeast survival via thiamine-dependent stress protection functions. Most yeast species are able to both assimilate exogenous thiamine into the cell and synthesize thiamine de novo. However, the mechanism and level of thiamine accumulation depend on several factors. This review provides an in-depth overview of thiamine utilization and metabolism in the model yeast species Saccharomyces cerevisiae, as well as the current knowledge on (1) the intracellular functions of thiamine, (2) the balance between and regulation of uptake and synthesis of thiamine and (3) the multitude of factors influencing thiamine availability and utilization. For the latter, a particular emphasis is placed on conditions occurring during wine fermentation. The adequacy of thiamine concentration in grape must to ensure successful fermentation is discussed together with the effect of thiamine concentration on fermentation kinetics and on wine sensory properties. This knowledge may serve as a resource to optimise thiamine concentrations for optimal industrial application of yeasts. KEY POINTS: • Thiamine uptake is preferred over biosynthesis and is transcriptionally repressed. • Multiple factors affect thiamine synthesis, availability and uptake for wine yeast. • Thiamine availability impacts fermentation kinetics and wine's sensory properties.
Collapse
Affiliation(s)
- Pwj Labuschagne
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland, 7602, South Africa
| | - B Divol
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Private Bag X1, Matieland, 7602, South Africa.
| |
Collapse
|
14
|
Becerra-Rodríguez C, Marsit S, Galeote V. Diversity of Oligopeptide Transport in Yeast and Its Impact on Adaptation to Winemaking Conditions. Front Genet 2020; 11:602. [PMID: 32587604 PMCID: PMC7298112 DOI: 10.3389/fgene.2020.00602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Nitrogen is an essential nutrient for yeasts and its relative abundance is an important modulator of fermentation kinetics. The main sources of nitrogen in food are ammonium and free amino acids, however, secondary sources such as oligopeptides are also important contributors to the nitrogen supply. In yeast, oligopeptide uptake is driven by different families of proton–coupled transporters whose specificity depends on peptide length. Proton-dependent Oligopeptide Transporters (POT) are specific to di- and tri-peptides, whereas the Oligopeptide Transport (OPT) family members import tetra- and pentapeptides. Recently, the novel family of Fungal Oligopeptide Transporters (FOT) has been identified in Saccharomyces cerevisiae wine strains as a result of a horizontal gene transfer from Torulaspora microellipsoides. In natural grape must fermentations with S. cerevisiae, Fots have a broader range of oligopeptide utilization in comparison with non-Fot strains, leading to higher biomass production and better fermentation efficiency. In this review we present the current knowledge on the diversity of oligopeptide transporters in yeast, also discussing how the consumption of oligopeptides provides an adaptive advantage to yeasts within the wine environment.
Collapse
Affiliation(s)
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes, Regroupement Québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines, (PROTEO), Département de Biologie, Université Laval, Québec City, QC, Canada
| | - Virginie Galeote
- SPO, INRAE, Université de Montpellier, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
15
|
Connecting central carbon and aromatic amino acid metabolisms to improve de novo 2-phenylethanol production in Saccharomyces cerevisiae. Metab Eng 2019; 56:165-180. [DOI: 10.1016/j.ymben.2019.09.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 11/19/2022]
|
16
|
Seguinot P, Bloem A, Brial P, Meudec E, Ortiz-Julien A, Camarasa C. Analysing the impact of the nature of the nitrogen source on the formation of volatile compounds to unravel the aroma metabolism of two non-Saccharomyces strains. Int J Food Microbiol 2019; 316:108441. [PMID: 31778839 DOI: 10.1016/j.ijfoodmicro.2019.108441] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/06/2019] [Accepted: 11/09/2019] [Indexed: 11/26/2022]
Abstract
Even though non-Saccharomyces yeasts were regarded as spoilage microorganisms for a long time, their abilities to improve and diversify the aromatic profile of wines are now well recognized. Consequently, their use in combination with S. cerevisiae strains during winemaking has attracted substantial attention over the last decade. However, our limited understanding of the metabolism and physiology of these species remains a barrier to promoting efficient exploitation of their full potential. In this study, we further explored the metabolism involved in the production of fermentative volatile compounds of two commercial non-Saccharomyces strains, T. delbrueckii Biodiva™ and M. pulcherrima Flavia®, in comparison with the reference wine yeast S. cerevisiae Lalvin EC1118®. After growing these strains in the presence of 24 different N-compounds, particular attention was paid to the influence of the nitrogen source on the profile of aroma compounds synthesized by these yeasts (higher alcohols and acids, medium-chain fatty acids and their acetate or ethyl esters derivatives). A comprehensive analysis of the dataset showed that these three species were able to produce all the fermentative aromas, regardless of the nitrogen source, demonstrating the key contribution of the central carbon metabolism to the formation of volatile molecules. Nevertheless, we also observed some specific phenotypic traits for each of the strains in their assimilation capacities for the various nitrogen nutrients as well as in their response to the nature of the nitrogen source in terms of the production of volatile molecules. These observations revealed the intricacy and interconnection between the networks involved in nitrogen consumption and aroma production. These differences are likely related to the genetic backgrounds of the strains. Overall, this study expands our understanding of the metabolic processes responsible for the formation of volatile compounds during wine fermentation and their variations according to species and the nature of the nitrogen source. This knowledge provides a new platform for the more efficient exploitation of non-Saccharomyces strains during winemaking, improving the management of the fermentation.
Collapse
Affiliation(s)
- Pauline Seguinot
- UMR SPO, Université Montpellier, INRA, Montpellier SupAgro, 34060 Montpellier, France; Lallemand SAS, 31700 Blagnac, France
| | - Audrey Bloem
- UMR SPO, Université Montpellier, INRA, Montpellier SupAgro, 34060 Montpellier, France
| | - Pascale Brial
- UMR SPO, Université Montpellier, INRA, Montpellier SupAgro, 34060 Montpellier, France
| | - Emmanuelle Meudec
- UMR SPO, Université Montpellier, INRA, Montpellier SupAgro, 34060 Montpellier, France
| | | | - Carole Camarasa
- UMR SPO, Université Montpellier, INRA, Montpellier SupAgro, 34060 Montpellier, France.
| |
Collapse
|
17
|
Gobert A, Tourdot-Maréchal R, Sparrow C, Morge C, Alexandre H. Influence of nitrogen status in wine alcoholic fermentation. Food Microbiol 2019; 83:71-85. [PMID: 31202421 DOI: 10.1016/j.fm.2019.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022]
Abstract
Nitrogen is an essential nutrient for yeast during alcoholic fermentation. Nitrogen is involved in the biosynthesis of protein, amino acids, nucleotides, and other metabolites, including volatile compounds. However, recent studies have called several mechanisms that regulate its role in biosynthesis into question. An initial focus on S. cerevisiae has highlighted that the concept of "preferred" versus "non-preferred" nitrogen sources is extremely variable and strain-dependent. Then, the direct involvement of amino acids consumed in the formation of proteins and volatile compounds has recently been reevaluated. Indeed, studies have highlighted the key role of lipids in nitrogen regulation in S. cerevisiae and their involvement in the mechanism of cell death. New winemaking strategies using non-Saccharomyces yeast strains in co- or sequential fermentation improve nitrogen management. Indeed, recent studies show that non-Saccharomyces yeasts have significant and specific needs for nitrogen. Moreover, sluggish fermentation can occur when they are associated with S. cerevisiae, necessitating nitrogen addition. In this context, we will present the consequences of nitrogen addition, discussing the sources, time of addition, transcriptome changes, and effect on volatile compound composition.
Collapse
Affiliation(s)
- Antoine Gobert
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/ AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France.
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/ AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| | - Céline Sparrow
- SAS Sofralab, 79, Av. A.A. Thévenet, BP 1031, Magenta, France
| | | | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté/ AgroSup Dijon - Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, Dijon, France
| |
Collapse
|
18
|
Transcription-dependent spreading of the Dal80 yeast GATA factor across the body of highly expressed genes. PLoS Genet 2019; 15:e1007999. [PMID: 30818362 PMCID: PMC6413948 DOI: 10.1371/journal.pgen.1007999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 03/12/2019] [Accepted: 01/31/2019] [Indexed: 12/30/2022] Open
Abstract
GATA transcription factors are highly conserved among eukaryotes and play roles in transcription of genes implicated in cancer progression and hematopoiesis. However, although their consensus binding sites have been well defined in vitro, the in vivo selectivity for recognition by GATA factors remains poorly characterized. Using ChIP-Seq, we identified the Dal80 GATA factor targets in yeast. Our data reveal Dal80 binding to a large set of promoters, sometimes independently of GATA sites, correlating with nitrogen- and/or Dal80-sensitive gene expression. Strikingly, Dal80 was also detected across the body of promoter-bound genes, correlating with high expression. Mechanistic single-gene experiments showed that Dal80 spreading across gene bodies requires active transcription. Consistently, Dal80 co-immunoprecipitated with the initiating and post-initiation forms of RNA Polymerase II. Our work suggests that GATA factors could play dual, synergistic roles during transcription initiation and post-initiation steps, promoting efficient remodeling of the gene expression program in response to environmental changes. GATA transcription factors are highly conserved among eukaryotes and play key roles in cancer progression and hematopoiesis. In budding yeast, four GATA transcription factors are involved in the response to the quality of nitrogen supply. Here, we have determined the whole genome binding profile of the Dal80 GATA factor, and revealed that it also associates with the body of promoter-bound genes. The observation that intragenic spreading correlates with high expression levels and exquisite Dal80 sensitivity suggests that GATA factors could play other, unexpected roles at post-initiation stages in eukaryotes.
Collapse
|
19
|
Qian X, Yan W, Zhang W, Dong W, Ma J, Ochsenreither K, Jiang M, Xin F. Current status and perspectives of 2-phenylethanol production through biological processes. Crit Rev Biotechnol 2018; 39:235-248. [DOI: 10.1080/07388551.2018.1530634] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Xiujuan Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| |
Collapse
|
20
|
The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen. ISME JOURNAL 2018; 13:977-988. [PMID: 30538275 PMCID: PMC6461840 DOI: 10.1038/s41396-018-0331-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/27/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023]
Abstract
Many trees form ectomycorrhizal symbiosis with fungi. During symbiosis, the tree roots supply sugar to the fungi in exchange for nitrogen, and this process is critical for the nitrogen and carbon cycles in forest ecosystems. However, the extents to which ectomycorrhizal fungi can liberate nitrogen and modify the soil organic matter and the mechanisms by which they do so remain unclear since they have lost many enzymes for litter decomposition that were present in their free-living, saprotrophic ancestors. Using time-series spectroscopy and transcriptomics, we examined the ability of two ectomycorrhizal fungi from two independently evolved ectomycorrhizal lineages to mobilize soil organic nitrogen. Both species oxidized the organic matter and accessed the organic nitrogen. The expression of those events was controlled by the availability of glucose and inorganic nitrogen. Despite those similarities, the decomposition mechanisms, including the type of genes involved as well as the patterns of their expression, differed markedly between the two species. Our results suggest that in agreement with their diverse evolutionary origins, ectomycorrhizal fungi use different decomposition mechanisms to access organic nitrogen entrapped in soil organic matter. The timing and magnitude of the expression of the decomposition activity can be controlled by the below-ground nitrogen quality and the above-ground carbon supply.
Collapse
|
21
|
Zhang P, Li B, Wen P, Wang P, Yang Y, Chen Q, Chang Y, Hu X. Metabolic Engineering of Four GATA Factors to Reduce Urea and Ethyl Carbamate Formation in a Model Rice Wine System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10881-10889. [PMID: 30246534 DOI: 10.1021/acs.jafc.8b04370] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Urea is the most important precursor of ethyl carbamate (EC), a harmful carcinogenic product, in fermented wines. In this study, the effects of four GATA transcriptional factors (Gln3p, Gat1p, Dal80p ,and Gzf3p) on extracellular urea and EC formation and transcriptional changes in urea degradation related genes ( DUR1,2 and DUR3) were examined. Compared to the WT strain, the Δ gzf3 mutant showed 18.7% urea reduction and exhibited synergistic effects with overexpressed Gln3p1-653 and Gat1p1-375 on extracellular urea reduction. Moreover, Δ gzf3+Gln3p1-653 and Δ gzf3+Gat1p1-375 showed significant 38.7% and 43.7% decreases in urea concentration and 41.7% and 48.5% decreases in EC concentration, respectively, in a model rice wine system. These results provide a promising way to reduce urea and EC formation during wine fermentation and raise some cues for the regulations of the four GATA transcriptional factors on the expression of individual nitrogen catabolite repression sensitive genes and their related metabolism pathway.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Bang Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Peng Wen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Peilin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Yu Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Qian Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Yuxin Chang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology , Nanchang University , Nanchang 330047 , China
| |
Collapse
|
22
|
Querol A, Pérez-Torrado R, Alonso-Del-Real J, Minebois R, Stribny J, Oliveira BM, Barrio E. New Trends in the Uses of Yeasts in Oenology. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 85:177-210. [PMID: 29860974 DOI: 10.1016/bs.afnr.2018.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The most important factor in winemaking is the quality of the final product and the new trends in oenology are dictated by wine consumers and producers. Traditionally the red wine is the most consumed and more popular; however, in the last times, the wine companies try to attract other groups of populations, especially young people and women that prefer sweet, whites or rosé wines, very fruity and with low alcohol content. Besides the new trends in consumer preferences, there are also increased concerns on the effects of alcohol consumption on health and the effects of global climate change on grape ripening and wine composition producing wines with high alcohol content. Although S. cerevisiae is the most frequent species in wines, and the subject of most studies, S. uvarum and hybrids between Saccharomyces species such as S. cerevisiae×S. kudriavzevii and S. cerevisiae×S. uvarum are also involved in wine fermentations and can be preponderant in certain wine regions. New yeast starters of non-cerevisiae strains (S. uvarum) or hybrids (S. cerevisiae×S. uvarum and S. cerevisiae×S. kudriavzevii) can contribute to solve some problems of the wineries. They exhibit good fermentative capabilities at low temperatures, producing wines with lower alcohol and higher glycerol amounts, while fulfilling the requirements of the commercial yeasts, such as a good fermentative performance and aromatic profiles that are of great interest for the wine industry. In this review, we will analyze different applications of nonconventional yeasts to solve the current winemaking demands.
Collapse
Affiliation(s)
- Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain.
| | - Roberto Pérez-Torrado
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Romain Minebois
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Jiri Stribny
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Bruno M Oliveira
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain; Departament de Genètica, Universitat de València, Valencia, Spain
| |
Collapse
|
23
|
Jin D, Gu B, Xiong D, Huang G, Huang X, Liu L, Xiao J. A Transcriptomic Analysis of Saccharomyces cerevisiae Under the Stress of 2-Phenylethanol. Curr Microbiol 2018; 75:1068-1076. [PMID: 29666939 DOI: 10.1007/s00284-018-1488-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
2-Phenylethanol (2-PE) is a kind of advanced aromatic alcohol with rose fragrance, which is wildly used for the deployment of flavors and fragrances. Microbial transformation is the most feasible method for the production of natural 2-PE. But a bottleneck problem is the toxicity of 2-PE on the cells. The molecular mechanisms of the toxic effect of 2-PE to Saccharomyces cerevisiae are not well studied. In this study, we analyzed the transcriptomes of S. cerevisiae in the media with and without 2-PE, respectively, using Illumina RNA-Seq technology. We identified 580 differentially expressed genes between S. cerevisiae in two different treatments. GO and KEGG enrichment analyses of these genes suggested that most genes encoding mitochondrial proteins, cytoplasmic, and plasma membrane proteins were significantly up-regulated, whereas the enzymes related to amino acid metabolism were down-regulated. These results indicated that 2-PE suppressed the synthesis of plasma membrane proteins, which suppressed the transport of nutrients required for growth. The findings in this study will provide insight into the inhibitory mechanism of 2-PE to yeast and other microbes.
Collapse
Affiliation(s)
- Danfeng Jin
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China.
| | - Bintao Gu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Dawei Xiong
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Guochang Huang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Xiaoping Huang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Lan Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, People's Republic of China
| | - Jun Xiao
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
24
|
Wang Z, Jiang M, Guo X, Liu Z, He X. Reconstruction of metabolic module with improved promoter strength increases the productivity of 2-phenylethanol in Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:60. [PMID: 29642888 PMCID: PMC5896102 DOI: 10.1186/s12934-018-0907-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/03/2018] [Indexed: 11/12/2022] Open
Abstract
Background 2-phenylethanol (2-PE) is an important aromatic compound with a lovely rose-like scent. Saccharomyces cerevisiae is a desirable microbe for 2-PE production but its natural yield is not high, and one or two crucial genes’ over-expression in S. cerevisiae did not improve 2-PE greatly. Results A new metabolic module was established here, in which, permease Gap1p for l-phenylalanine transportation, catalytic enzymes Aro8p, Aro10p and Adh2p in Ehrlich pathway respectively responsible for transamination, decarboxylation and reduction were assembled, besides, glutamate dehydrogenase Gdh2p was harbored for re-supplying another substrate 2-oxoglutarate, relieving product glutamate repression and regenerating cofactor NADH. Due to different promoter strengths, GAP1, ARO8, ARO9, ARO10, ADH2 and GDH2 in the new modularized YS58(G1-A8-A10-A2)-GDH strain enhanced 11.6-, 15.4-, 3.6-, 17.7-, 12.4- and 7.5-folds respectively, and crucial enzyme activities of aromatic aminotransferases and phenylpyruvate decarboxylase were 4.8- and 7-folds respectively higher than that of the control. Conclusions Under the optimum medium and cell density, YS58(G1-A8-A10-A2)-GDH presented efficient 2-PE synthesis ability with ~ 6.3 g L−1 of 2-PE titer in 5-L fermenter reaching 95% of conversation ratio. Under fed-batch fermentation, 2-PE productivity at 24 h increased 29% than that of single-batch fermentation. Metabolic modularization with promoter strategy provides a new prospective for efficient 2-PE production.
Collapse
Affiliation(s)
- Zhaoyue Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Mingyue Jiang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuena Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | - Xiuping He
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Zhang P, Hu X. Metabolic engineering of arginine permeases to reduce the formation of urea in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2018. [DOI: 10.1007/s11274-018-2430-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Dal81 Regulates Expression of Arginine Metabolism Genes in Candida parapsilosis. mSphere 2018; 3:3/2/e00028-18. [PMID: 29564399 PMCID: PMC5853489 DOI: 10.1128/msphere.00028-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/08/2018] [Indexed: 01/26/2023] Open
Abstract
Fungi can use a wide variety of nitrogen sources. In the absence of preferred sources such as ammonium, glutamate, and glutamine, secondary sources, including most other amino acids, are used. Expression of the nitrogen utilization pathways is very strongly controlled at the transcriptional level. Here, we investigated the regulation of nitrogen utilization in the pathogenic yeast Candida parapsilosis. We found that the functions of many regulators are conserved with respect to Saccharomyces cerevisiae and other fungi. For example, the core GATA activators GAT1 and GLN3 have a conserved role in nitrogen catabolite repression (NCR). There is one ortholog of GZF3 and DAL80, which represses expression of genes in preferred nitrogen sources. The regulators PUT3 and UGA3 are required for metabolism of proline and γ-aminobutyric acid (GABA), respectively. However, the role of the Dal81 transcription factor is distinctly different. In S. cerevisiae, Dal81 is a positive regulator of acquisition of nitrogen from GABA, allantoin, urea, and leucine, and it is required for maximal induction of expression of the relevant pathway genes. In C. parapsilosis, induction of GABA genes is independent of Dal81, and deleting DAL81 has no effect on acquisition of nitrogen from GABA or allantoin. Instead, Dal81 represses arginine synthesis during growth under preferred nitrogen conditions. IMPORTANCE Utilization of nitrogen by fungi is controlled by nitrogen catabolite repression (NCR). Expression of many genes is switched off during growth on nonpreferred nitrogen sources. Gene expression is regulated through a combination of activation and repression. Nitrogen regulation has been studied best in the model yeast Saccharomyces cerevisiae. We found that although many nitrogen regulators have a conserved function in Saccharomyces species, some do not. The Dal81 transcriptional regulator has distinctly different functions in S. cerevisiae and C. parapsilosis. In the former, it regulates utilization of nitrogen from GABA and allantoin, whereas in the latter, it regulates expression of arginine synthesis genes. Our findings make an important contribution to our understanding of nitrogen regulation in a human-pathogenic fungus.
Collapse
|
27
|
Parente DC, Cajueiro DBB, Moreno ICP, Leite FCB, De Barros Pita W, De Morais MA. On the catabolism of amino acids in the yeast Dekkera bruxellensis
and the implications for industrial fermentation processes. Yeast 2017; 35:299-309. [DOI: 10.1002/yea.3290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/04/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | | | - Fernanda Cristina Bezerra Leite
- Interdepartmental Research Group in Metabolic Engineering; PE 50760-901 Brazil
- Department of Biology; Federal Rural University of Pernambuco; Recife PE 52171-900 Brazil
| | - Will De Barros Pita
- Interdepartmental Research Group in Metabolic Engineering; PE 50760-901 Brazil
- Department of Antibiotics; PE 50760-901 Brazil
| | - Marcos Antonio De Morais
- Interdepartmental Research Group in Metabolic Engineering; PE 50760-901 Brazil
- Department of Genetics; Federal University of Pernambuco; Recife PE 50760-901 Brazil
| |
Collapse
|
28
|
Ji QQ, Fang ZP, Ye Q, Chi CW, Wang ED. Self-protective responses to norvaline-induced stress in a leucyl-tRNA synthetase editing-deficient yeast strain. Nucleic Acids Res 2017; 45:7367-7381. [PMID: 28575390 PMCID: PMC5499588 DOI: 10.1093/nar/gkx487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/24/2017] [Indexed: 12/23/2022] Open
Abstract
The editing function of aminoacyl-tRNA synthetases (aaRSs) is indispensible for formation of the correct aminoacyl-tRNAs. Editing deficiency may lead to growth inhibition and the pathogenesis of various diseases. Herein, we confirmed that norvaline (Nva) but not isoleucine or valine is the major threat to the editing function of Saccharomyces cerevisiae leucyl-tRNA synthetase (ScLeuRS), both in vitro and in vivo. Nva could be misincorporated into the proteome of the LeuRS editing-deficient yeast strain (D419A/ScΔleuS), potentially resulting in dysfunctional protein folding and growth delay. Furthermore, the exploration of the Nva-induced intracellular stress response mechanism in D419A/ScΔleuS revealed that Hsp70 chaperones were markedly upregulated in response to the potential protein misfolding. Additionally, proline (Pro), glutamate (Glu) and glutamine (Gln), which may accumulate due to the conversion of Nva, collectively contributed to the reduction of reactive oxygen species (ROS) levels in Nva-treated D419A/ScΔleuS cells. In conclusion, our study highlights the significance of the editing function of LeuRS and provides clues for understanding the intracellular stress protective mechanisms that are triggered in aaRS editing-deficient organisms.
Collapse
Affiliation(s)
- Quan-Quan Ji
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | - Zhi-Peng Fang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | - Qing Ye
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | - Cheng-Wu Chi
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.,School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, P. R. China
| |
Collapse
|
29
|
Villers J, Savocco J, Szopinska A, Degand H, Nootens S, Morsomme P. Study of the Plasma Membrane Proteome Dynamics Reveals Novel Targets of the Nitrogen Regulation in Yeast. Mol Cell Proteomics 2017; 16:1652-1668. [PMID: 28679684 PMCID: PMC5587864 DOI: 10.1074/mcp.m116.064923] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Yeast cells, to be able to grow on a wide variety of nitrogen sources, regulate the set of nitrogen transporters present at their plasma membrane. Such regulation relies on both transcriptional and post-translational events. Although microarray studies have identified most nitrogen-sensitive genes, nitrogen-induced post-translational regulation has only been studied for very few proteins among which the general amino acid permease Gap1. Adding a preferred nitrogen source to proline-grown cells triggers Gap1 endocytosis and vacuolar degradation in an Rsp5-Bul1/2-dependent manner. Here, we used a proteomic approach to follow the dynamics of the plasma membrane proteome after addition of a preferred nitrogen source. We identified new targets of the nitrogen regulation and four transporters of poor nitrogen sources-Put4, Opt2, Dal5, and Ptr2-that rapidly decrease in abundance. Although the kinetics is different for each transporter, we found that three of them-Put4, Dal5, and Ptr2-are endocytosed, like Gap1, in an Rsp5-dependent manner and degraded in the vacuole. Finally, we showed that Gap1 stabilization at the plasma membrane, through deletion of Bul proteins, regulates the abundance of Put4, Dal5 and Ptr2.
Collapse
Affiliation(s)
- Jennifer Villers
- From the ‡Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, B-1348 Louvain-la-Neuve
| | - Jérôme Savocco
- From the ‡Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, B-1348 Louvain-la-Neuve
| | - Aleksandra Szopinska
- From the ‡Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, B-1348 Louvain-la-Neuve
| | - Hervé Degand
- From the ‡Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, B-1348 Louvain-la-Neuve
| | - Sylvain Nootens
- From the ‡Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, B-1348 Louvain-la-Neuve
| | - Pierre Morsomme
- From the ‡Université catholique de Louvain, Institut des Sciences de la Vie, Croix du Sud 4-5, B-1348 Louvain-la-Neuve
| |
Collapse
|
30
|
Stewart CJ, McClean MN. Design and Implementation of an Automated Illuminating, Culturing, and Sampling System for Microbial Optogenetic Applications. J Vis Exp 2017. [PMID: 28287505 DOI: 10.3791/54894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Optogenetic systems utilize genetically-encoded proteins that change conformation in response to specific wavelengths of light to alter cellular processes. There is a need for culturing and measuring systems that incorporate programmed illumination and stimulation of optogenetic systems. We present a protocol for building and using a continuous culturing apparatus to illuminate microbial cells with programmed doses of light, and automatically acquire and analyze images of cells in the effluent. The operation of this apparatus as a chemostat allows the growth rate and the cellular environment to be tightly controlled. The effluent of the continuous cell culture is regularly sampled and the cells are imaged by multi-channel microscopy. The culturing, sampling, imaging, and image analysis are fully automated so that dynamic responses in the fluorescence intensity and cellular morphology of cells sampled from the culture effluent are measured over multiple days without user input. We demonstrate the utility of this culturing apparatus by dynamically inducing protein production in a strain of Saccharomyces cerevisiae engineered with an optogenetic system that activates transcription.
Collapse
Affiliation(s)
- Cameron J Stewart
- Department of Biomedical Engineering, University of Wisconsin-Madison
| | - Megan N McClean
- Department of Biomedical Engineering, University of Wisconsin-Madison;
| |
Collapse
|
31
|
Chen X, Wang Z, Guo X, Liu S, He X. Regulation of general amino acid permeases Gap1p, GATA transcription factors Gln3p and Gat1p on 2-phenylethanol biosynthesis via Ehrlich pathway. J Biotechnol 2017; 242:83-91. [DOI: 10.1016/j.jbiotec.2016.11.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022]
|
32
|
Zhang P, Du G, Zou H, Xie G, Chen J, Shi Z, Zhou J. Genome-wide mapping of nucleosome positions in Saccharomyces cerevisiae in response to different nitrogen conditions. Sci Rep 2016; 6:33970. [PMID: 27659668 PMCID: PMC5034280 DOI: 10.1038/srep33970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022] Open
Abstract
Well-organized chromatin is involved in a number of various transcriptional regulation and gene expression. We used genome-wide mapping of nucleosomes in response to different nitrogen conditions to determine both nucleosome profiles and gene expression events in Saccharomyces cerevisiae. Nitrogen conditions influence general nucleosome profiles and the expression of nitrogen catabolite repression (NCR) sensitive genes. The nucleosome occupancy of TATA-containing genes was higher compared to TATA-less genes. TATA-less genes in high or low nucleosome occupancy, showed a significant change in gene coding regions when shifting cells from glutamine to proline as the sole nitrogen resource. Furthermore, a correlation between the expression of nucleosome occupancy induced NCR sensitive genes or TATA containing genes in NCR sensitive genes, and nucleosome prediction were found when cells were cultured in proline or shifting from glutamine to proline as the sole nitrogen source compared to glutamine. These results also showed that variation of nucleosome occupancy accompany with chromatin-dependent transcription factor could influence the expression of a series of genes involved in the specific regulation of nitrogen utilization.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huijun Zou
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang, China
| | - Guangfa Xie
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Zhongping Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
33
|
Usage of different aerobic non-Saccharomyces yeasts and experimental conditions as a tool for reducing the potential ethanol content in wines. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2703-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Stribny J, Romagnoli G, Pérez-Torrado R, Daran JM, Querol A. Characterisation of the broad substrate specificity 2-keto acid decarboxylase Aro10p of Saccharomyces kudriavzevii and its implication in aroma development. Microb Cell Fact 2016; 15:51. [PMID: 26971319 PMCID: PMC4789280 DOI: 10.1186/s12934-016-0449-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 03/01/2016] [Indexed: 12/02/2022] Open
Abstract
Background The yeast amino acid catabolism plays an important role in flavour generation since higher alcohols and acetate esters, amino acid catabolism end products, are key components of overall flavour and aroma in fermented products. Comparative studies have shown that other Saccharomyces species, such as S. kudriavzevii, differ during the production of aroma-active higher alcohols and their esters compared to S. cerevisiae. Results In this study, we performed a comparative analysis of the enzymes involved in the amino acid catabolism of S. kudriavzevii with their potential to improve the flavour production capacity of S. cerevisiae. In silico screening, based on the severity of amino acid substitutions evaluated by Grantham matrix, revealed four candidates, of which S. kudriavzevii Aro10p (SkAro10p) had the highest score. The analysis of higher alcohols and esters produced by S. cerevisiae then revealed enhanced formation of isobutanol, isoamyl alcohol and their esters when endogenous ARO10 was replaced with ARO10 from S. kudriavzevii. Also, significant differences in the aroma profile were found in fermentations of synthetic wine must. Substrate specificities of SkAro10p were compared with those of S. cerevisiae Aro10p (ScAro10p) by their expression in a 2-keto acid decarboxylase-null S. cerevisiae strain. Unlike the cell extracts with expressed ScAro10p which showed greater activity for phenylpyruvate, which suggests this phenylalanine-derivative to be the preferred substrate, the decarboxylation activities measured in the cell extracts with SkAro10p ranged with all the tested substrates at the same level. The activities of SkAro10p towards substrates (except phenylpyruvate) were higher than of those for ScAro10p. Conclusions The results indicate that the amino acid variations observed between the orthologues decarboxylases encoded by SkARO10 and ScARO10 could be the reason for the distinct enzyme properties, which possibly lead to the enhanced production of several flavour compounds. The knowledge on the important enzyme involved in higher alcohols biosynthesis by S. kudriavzevii could be of scientific as well as of applied interest. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0449-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiri Stribny
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology, (IATA-CSIC) Avda, Agustín Escardino, 7, Paterna, 46980, Valencia, Spain
| | - Gabriele Romagnoli
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | - Roberto Pérez-Torrado
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology, (IATA-CSIC) Avda, Agustín Escardino, 7, Paterna, 46980, Valencia, Spain
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.,Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands.,Platform Green Synthetic Biology, Delft, The Netherlands
| | - Amparo Querol
- Food Biotechnology Department, Institute of Agrochemistry and Food Technology, (IATA-CSIC) Avda, Agustín Escardino, 7, Paterna, 46980, Valencia, Spain.
| |
Collapse
|
35
|
The modification of Gat1p in nitrogen catabolite repression to enhance non-preferred nitrogen utilization in Saccharomyces cerevisiae. Sci Rep 2016; 6:21603. [PMID: 26899143 PMCID: PMC4761935 DOI: 10.1038/srep21603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/27/2016] [Indexed: 11/08/2022] Open
Abstract
In Saccharomyces cerevisiae, when preferred nitrogen sources are present, the metabolism of non-preferred nitrogen is repressed. Previous work showed that this metabolic regulation is primarily controlled by nitrogen catabolite repression (NCR) related regulators. Among these regulators, two positive regulators (Gln3p and Gat1p) could be phosphorylated and sequestered in the cytoplasm leading to the transcription of non-preferred nitrogen metabolic genes being repressed. The nuclear localization signals (NLSs) and nuclear localization regulatory signals (NLRSs) in Gln3p and Gat1p play essential roles in the regulation of their localization in cells. However, compared with Gln3p, the information of NLS and NLRS for Gat1p remains unknown. In this study, residues 348-375 and 366-510 were identified as the NLS and NLRS of Gat1p firstly. In addition, the modifications of Gat1p (mutations on the NLS and truncation on the NLRS) were attempted to enhance the transcription of non-preferred nitrogen metabolic genes. Quantitative real-time PCR showed that the transcriptional levels of 15 non-preferred nitrogen metabolic genes increased. Furthermore, during the shaking-flask culture tests, the utilization of urea, proline and allantoine was significantly increased. Based on these results, the genetic engineering on Gat1p has a great potential in enhancing non-preferred nitrogen metabolism in S. cerevisiae.
Collapse
|
36
|
Zhang P, Du G, Zou H, Chen J, Xie G, Shi Z, Zhou J. Effects of three permeases on arginine utilization in Saccharomyces cerevisiae. Sci Rep 2016; 6:20910. [PMID: 26865023 PMCID: PMC4750040 DOI: 10.1038/srep20910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/13/2016] [Indexed: 11/09/2022] Open
Abstract
Arginine plays an important role in cellular function and metabolism. Arginine uptake mainly occurs through three amino acid permeases, Alp1p, Gap1p and Can1p, which act as both transporters and receptors for amino acid utilization. In this study, seven mutants were constructed with different combinations of permease deficiencies that inhibit arginine utilization. Their effects on arginine metabolism were measured. The three amino acid permeases were also individually overexpressed in wild-type (WT), Δalp1Δgap1Δcan1 and Δnpr1 strains. The growth and arginine utilization of Δcan1, Δgap1Δcan1 and Δalp1Δgap1Δcan1 mutants were suppressed in YNB medium when arginine was the sole nitrogen source. Meanwhile, overexpression of Alp1p and Can1p enhanced growth and arginine utilization in WT, Δalp1Δgap1Δcan1 and Δnpr1. Besides, overexpression of Can1p caused a 26.7% increase in OD600 and 29.3% increase in arginine utilization compared to that of Alp1p in Δalp1Δgap1Δcan1. Transcription analysis showed that the effects of three amino acid permeases on the arginine utilization and the regulation of related genes, were tightly related to their individual characteristics. However, their overall effects were different for different combinations of mutants. The results presented here suggest some possible synergistic effects of different amino acid permeases on regulation of amino acid utilization and metabolism.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huijun Zou
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guangfa Xie
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang, China
| | - Zhongping Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
37
|
Kevvai K, Kütt ML, Nisamedtinov I, Paalme T. Simultaneous utilization of ammonia, free amino acids and peptides during fermentative growth ofSaccharomyces cerevisiae. JOURNAL OF THE INSTITUTE OF BREWING 2016. [DOI: 10.1002/jib.298] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kaspar Kevvai
- Competence Centre of Food and Fermentation Technologies; Tallinn Estonia
- Tallinn University of Technology; Tallinn Estonia
| | - Mary-Liis Kütt
- Competence Centre of Food and Fermentation Technologies; Tallinn Estonia
- Tallinn University of Technology; Tallinn Estonia
| | - Ildar Nisamedtinov
- Competence Centre of Food and Fermentation Technologies; Tallinn Estonia
- Tallinn University of Technology; Tallinn Estonia
- Lallemand Inc.; Montréal QC Canada
| | | |
Collapse
|
38
|
Milne N, van Maris AJA, Pronk JT, Daran JM. Comparative assessment of native and heterologous 2-oxo acid decarboxylases for application in isobutanol production by Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:204. [PMID: 26628917 PMCID: PMC4665922 DOI: 10.1186/s13068-015-0374-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Decarboxylation of α-ketoisovalerate to isobutyraldehyde is a key reaction in metabolic engineering of Saccharomyces cerevisiae for isobutanol production with published studies relying on overexpression of either the native ARO10 gene or of the Lactococcus lactis kivD decarboxylase gene resulting in low enzymatic activities. Here, we compare relevant properties for isobutanol production of Aro10, KivD and an additional, less studied, L. lactis decarboxylase KdcA. RESULTS To eliminate interference by native decarboxylases, each 2-oxo acid decarboxylase was overexpressed in a 'decarboxylase-negative' (pdc1Δ pdc5Δ pdc6Δ aro10Δ) S. cerevisiae background. Kinetic analyses in cell extracts revealed a superior V max/K m ratio of KdcA for α-ketoisovalerate and a wide range of linear and branched-chain 2-oxo acids. However, KdcA also showed the highest activity with pyruvate which, in engineered strains, can contribute to formation of ethanol as a by-product. Removal of native decarboxylase genes eliminated growth on valine as sole nitrogen source and subsequent complementation of this growth impairment by expression of each decarboxylase indicated that based on the increased growth rate, the in vivo activity of KdcA with α-ketoisovalerate was higher than that of KivD and Aro10. Moreover, during oxygen-limited incubation in the presence of glucose, strains expressing kdcA or kivD showed a ca. twofold higher in vivo rate of conversion of α-ketoisovalerate into isobutanol than an ARO10-expressing strain. Finally, cell extracts from cultures grown on different nitrogen sources revealed increased activity of constitutively expressed KdcA after growth on both valine and phenylalanine, while KivD and Aro10 activity was only increased after growth on phenylalanine suggesting a difference in the regulation of these enzymes. CONCLUSIONS This study illustrates important differences in substrate specificity, enzyme kinetics and functional expression between different decarboxylases in the context of isobutanol production and identifies KdcA as a promising alternative decarboxylase not only for isobutanol production but also for other branched-chain and linear alcohols.
Collapse
Affiliation(s)
- N. Milne
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - A. J. A. van Maris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - J. T. Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - J. M. Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
39
|
Österlund T, Bordel S, Nielsen J. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors. Integr Biol (Camb) 2015; 7:560-8. [PMID: 25855217 DOI: 10.1039/c4ib00247d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transcriptional regulation is the most committed type of regulation in living cells where transcription factors (TFs) control the expression of their target genes and TF expression is controlled by other TFs forming complex transcriptional regulatory networks that can be highly interconnected. Here we analyze the topology and organization of nine transcriptional regulatory networks for E. coli, yeast, mouse and human, and we evaluate how the structure of these networks influences two of their key properties, namely controllability and stability. We calculate the controllability for each network as a measure of the organization and interconnectivity of the network. We find that the number of driver nodes nD needed to control the whole network is 64% of the TFs in the E. coli transcriptional regulatory network in contrast to only 17% for the yeast network, 4% for the mouse network and 8% for the human network. The high controllability (low number of drivers needed to control the system) in yeast, mouse and human is due to the presence of internal loops in their regulatory networks where the TFs regulate each other in a circular fashion. We refer to these internal loops as circular control motifs (CCM). The E. coli transcriptional regulatory network, which does not have any CCMs, shows a hierarchical structure of the transcriptional regulatory network in contrast to the eukaryal networks. The presence of CCMs also has influence on the stability of these networks, as the presence of cycles can be associated with potential unstable steady-states where even small changes in binding affinities can cause dramatic rearrangements of the state of the network.
Collapse
Affiliation(s)
- Tobias Österlund
- Novo Nordisk Foundation Center for Biosustainability, Department of Chemical and Biological Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden.
| | | | | |
Collapse
|
40
|
Yang S, Chen X, Xu N, Liu L, Chen J. Urea enhances cell growth and pyruvate production in Torulopsis glabrata. Biotechnol Prog 2014; 30:19-27. [PMID: 24124177 DOI: 10.1002/btpr.1817] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 12/13/2022]
Abstract
Torulopsis glabrata is a strain of yeast that is used for the industrial production of pyruvate. Determination of the optimal nutrient environment is vital for obtaining the most efficient production system. In this study, the fermentation parameters, gene transcription levels, activities of key enzymes and metabolites levels were analyzed when either urea or ammonium chloride was used as the sole source of nitrogen. Urea caused an increase in the dry cell weight (18%) and pyruvate productivity was significantly increased (14%). The transcription levels of CAGL0M05533g (DUR1,2), CAGL0J07612g (ZWF1), and CAGL0I02200g (SOL3) were upregulated, but CAGL0G05698g (GDH2) and CAGL0L01089g (GLT1) were down-regulated. The activities of urea amidolyase, NADPH dependent glutamate dehydrogenase and glucose-6-phosphate dehydrogenase were increased by 380, 430, and 140%, respectively. The activities of arginase and glutamate synthase were decreased by 40 and 35%, respectively. The NADPH content was increased by 33%, whilst ATP content was decreased by 37%. This changed the intracellular levels of organic acids and amino acids. The results expand the understanding of the physiological characteristics of yeast species grown with different sources of nitrogen.
Collapse
|
41
|
Romagnoli G, Verhoeven MD, Mans R, Fleury Rey Y, Bel-Rhlid R, van den Broek M, Seifar RM, Ten Pierick A, Thompson M, Müller V, Wahl SA, Pronk JT, Daran JM. An alternative, arginase-independent pathway for arginine metabolism in Kluyveromyces lactis involves guanidinobutyrase as a key enzyme. Mol Microbiol 2014; 93:369-89. [PMID: 24912400 PMCID: PMC4149782 DOI: 10.1111/mmi.12666] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2014] [Indexed: 11/26/2022]
Abstract
Most available knowledge on fungal arginine metabolism is derived from studies on Saccharomyces cerevisiae, in which arginine catabolism is initiated by releasing urea via the arginase reaction. Orthologues of the S. cerevisiae genes encoding the first three enzymes in the arginase pathway were cloned from Kluyveromyces lactis and shown to functionally complement the corresponding deletion in S. cerevisiae. Surprisingly, deletion of the single K. lactis arginase gene KlCAR1 did not completely abolish growth on arginine as nitrogen source. Growth rate of the deletion mutant strongly increased during serial transfer in shake-flask cultures. A combination of RNAseq-based transcriptome analysis and (13)C-(15)N-based flux analysis was used to elucidate the arginase-independent pathway. Isotopic (13)C(15)N-enrichment in γ-aminobutyrate revealed succinate as the entry point in the TCA cycle of the alternative pathway. Transcript analysis combined with enzyme activity measurements indicated increased expression in the Klcar1Δ mutant of a guanidinobutyrase (EC.3.5.3.7), a key enzyme in a new pathway for arginine degradation. Expression of the K. lactis KLLA0F27995g (renamed KlGBU1) encoding guanidinobutyrase enabled S. cerevisiae to use guanidinobutyrate as sole nitrogen source and its deletion in K. lactis almost completely abolish growth on this nitrogen source. Phylogenetic analysis suggests that this enzyme activity is widespread in fungi.
Collapse
Affiliation(s)
- G Romagnoli
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 4047, 2600 GA, Delft, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Romagnoli G, Knijnenburg TA, Liti G, Louis EJ, Pronk JT, Daran JM. Deletion of theSaccharomyces cerevisiae ARO8gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose. Yeast 2014; 32:29-45. [DOI: 10.1002/yea.3015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/18/2014] [Accepted: 04/04/2014] [Indexed: 11/11/2022] Open
Affiliation(s)
- Gabriele Romagnoli
- Department of Biotechnology; Delft University of Technology; Delft The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation; Delft The Netherlands
| | | | - Gianni Liti
- Centre for Genetics and Genomics, Queens Medical Centre; University of Nottingham; UK
- Institute for Research on Cancer and Ageing; CNRS UMR 7284-INSERM U 1081- UNS NICE; Nice France
| | - Edward J. Louis
- Centre for Genetics and Genomics, Queens Medical Centre; University of Nottingham; UK
- Centre for Genetic Architecture of Complex Traits, Department of Genetics; University of Leicester; UK
| | - Jack T. Pronk
- Department of Biotechnology; Delft University of Technology; Delft The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation; Delft The Netherlands
- Platform Green Synthetic Biology; Delft The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology; Delft University of Technology; Delft The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation; Delft The Netherlands
- Platform Green Synthetic Biology; Delft The Netherlands
| |
Collapse
|
43
|
Zhao S, Zhao X, Zou H, Fu J, Du G, Zhou J, Chen J. Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources. J Proteomics 2014; 101:102-12. [PMID: 24530623 DOI: 10.1016/j.jprot.2014.01.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/28/2013] [Accepted: 01/24/2014] [Indexed: 11/15/2022]
Abstract
In cultures containing multiple sources of nitrogen, Saccharomyces cerevisiae exhibits a sequential use of nitrogen sources through a mechanism known as nitrogen catabolite repression (NCR). To identify proteins differentially expressed due to NCR, proteomic analysis of S. cerevisiae S288C under different nitrogen source conditions was performed using two-dimensional gel electrophoresis (2-DE), revealing 169 candidate protein spots. Among these 169 protein spots, 121 were identified by matrix assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF). The identified proteins were closely associated with four main biological processes through Gene Ontology (GO) categorical analysis. The identification of the potential proteins and cellular processes related to NCR offer a global overview of changes elicited by different nitrogen sources, providing clues into how yeast adapt to different nutritional conditions. Moreover, by comparing our proteomic data with corresponding mRNA data, proteins regulated at the transcriptional and post-transcriptional level could be distinguished. Biological significance In S. cerevisiae, different nitrogen sources provide different growth characteristics and generate different metabolites. The nitrogen catabolite repression (NCR) process plays an important role for S. cerevisiae in the ordinal utilization of different nitrogen sources. NCR process can result in significant shift of global metabolic networks. Previous works on NCR primarily focused on transcriptomic level. The results obtained in this study provided a global atlas of the proteome changes triggered by different nitrogen sources and would facilitate the understanding of mechanisms for how yeast could adapt to different nutritional conditions.
Collapse
Affiliation(s)
- Shaohui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Huijun Zou
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang 312000, China
| | - Jianwei Fu
- Zhejiang Guyuelongshan Shaoxing Wine Company, 13 Yangjiang Road, Shaoxing, Zhejiang 312000, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
44
|
Pires EJ, Teixeira JA, Brányik T, Vicente AA. Yeast: the soul of beer's aroma--a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl Microbiol Biotechnol 2014; 98:1937-49. [PMID: 24384752 DOI: 10.1007/s00253-013-5470-0] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 11/26/2022]
Abstract
Among the most important factors influencing beer quality is the presence of well-adjusted amounts of higher alcohols and esters. Thus, a heavy body of literature focuses on these substances and on the parameters influencing their production by the brewing yeast. Additionally, the complex metabolic pathways involved in their synthesis require special attention. More than a century of data, mainly in genetic and proteomic fields, has built up enough information to describe in detail each step in the pathway for the synthesis of higher alcohols and their esters, but there is still place for more. Higher alcohols are formed either by anabolism or catabolism (Ehrlich pathway) of amino acids. Esters are formed by enzymatic condensation of organic acids and alcohols. The current paper reviews the up-to-date knowledge in the pathways involving the synthesis of higher alcohols and esters by brewing yeasts. Fermentation parameters affecting yeast response during biosynthesis of these aromatic substances are also fully reviewed.
Collapse
Affiliation(s)
- Eduardo J Pires
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal,
| | | | | | | |
Collapse
|
45
|
Zhao X, Zou H, Fu J, Chen J, Zhou J, Du G. Nitrogen regulation involved in the accumulation of urea in Saccharomyces cerevisiae. Yeast 2013; 30:437-47. [PMID: 23996237 DOI: 10.1002/yea.2980] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/19/2013] [Accepted: 08/23/2013] [Indexed: 11/07/2022] Open
Abstract
Rice wine is a popular traditional alcoholic drink with a long history in China. However, the presence of the potential carcinogen ethyl carbamate (EC) raises a series of food safety concerns. Although the metabolic pathway of urea (the major precusor of EC) has been characterized in Saccharomyces cerevisiae, the regulation of urea accumulation remains unclear, making the efficient elimination of urea difficult. To demonstrate the regulatory mechanisms governing urea accumulation, three key nitrogen sources that can inhibit urea utilization for a commercial S. cerevisiae strain were identified. In addition, regulators of nitrogen catabolite repression (NCR) and target of rapamycin (TOR) pathways were identified as being involved in urea accumulation by real-time quantitative PCR. Based on these results, preferred nitrogen sources were found to repress urea utilization by converting them to glutamine or glutamate. Moreover, the results indicated that the manner of urea metabolism regulation was different for two positive regulators involved in NCR; Gln3p can be retained in the cytoplasm by glutamine, while Gat1p can be retained by glutamine and glutamate. Furthermore, this was confirmed by fluorescence location detection. These new findings provide new targets for eliminating EC and other harmful nitrogen-containing compounds in fermented foods.
Collapse
Affiliation(s)
- Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
de Barros Pita W, Silva DC, Simões DA, Passoth V, de Morais MA. Physiology and gene expression profiles of Dekkera bruxellensis in response to carbon and nitrogen availability. Antonie van Leeuwenhoek 2013; 104:855-68. [DOI: 10.1007/s10482-013-9998-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/07/2013] [Indexed: 12/01/2022]
|
47
|
Pallotta ML. L-Proline uptake in Saccharomyces cerevisiae mitochondria can contribute to bioenergetics during nutrient stress as alternative mitochondrial fuel. World J Microbiol Biotechnol 2013; 30:19-31. [PMID: 23824663 DOI: 10.1007/s11274-013-1415-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/23/2013] [Indexed: 11/28/2022]
Abstract
L-Proline (pyrrolidine-2-carboxylic acid) is a distinctive metabolite both biochemically and biotechnologically and is currently recognized to have a cardinal role in gene expression and cellular signaling pathways in stress response. Proline-fueled mitochondrial metabolism involves the oxidative conversion of L-Proline to L-Glutamate in two enzymatic steps by means of Put1p and Put2p that help Saccharomyces cerevisiae to respond to changes in the nutritional environment by initiating the breakdown of L-Proline as a source for nitrogen, carbon, and energy. Compartmentalization of L-Proline catabolic pathway implies that extensive L-Proline transport must take place between the cytosol where its biogenesis via Pro1p, Pro2p, Pro3p occurs and mitochondria. L-Proline uptake in S. cerevisiae purified and active mitochondria was investigated by swelling experiments, oxygen uptake and fluorimetric measurement of a membrane potential generation (ΔΨ). Our results strongly suggest that L-Proline uptake occurs via a carried-mediated process as demonstrated by saturation kinetics and experiments with N-ethylmaleimide, a pharmacological compound that is a cysteine-modifying reagent in hydrophobic protein domains and that inhibited mitochondrial transport. Plasticity of S. cerevisiae cell biochemistry according to background fluctuations is an important factor of adaptation to stress. Thus L-Proline → Glutamate route feeds Krebs cycle providing energy and anaplerotic carbon for yeast survival.
Collapse
Affiliation(s)
- Maria Luigia Pallotta
- Department of Medicine and Health Sciences, University of Molise, 86100, Campobasso, Italy,
| |
Collapse
|
48
|
Bolat I, Romagnoli G, Zhu F, Pronk JT, Daran JM. Functional analysis and transcriptional regulation of two orthologs of ARO10, encoding broad-substrate-specificity 2-oxo-acid decarboxylases, in the brewing yeast Saccharomyces pastorianus CBS1483. FEMS Yeast Res 2013; 13:505-17. [PMID: 23692465 DOI: 10.1111/1567-1364.12051] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 01/26/2023] Open
Abstract
The hybrid genomes of Saccharomyces pastorianus consist of subgenomes similar to those of S. cerevisiae and S. eubayanus, and impact of the genome structure on flavour production and its regulation is poorly understood. This study focuses on ARO10, a 2-oxo-acid decarboxylase involved in production of higher alcohols. In S. pastorianus CBS1483, four ARO10 copies were identified, three resembled S. cerevisiae ARO10 and one S. eubayanus ARO10. Substrate specificities of lager strain (Lg)ScAro10 and LgSeubAro10 were compared by individually expressing them in a pdc1Δ-pdc5Δ-pdc6Δ-aro10Δ-thi3Δ S. cerevisiae strain. Both isoenzymes catalysed decarboxylation of the 2-oxo-acids derived from branched-chain, sulphur-containing amino acids and preferably phenylpyruvate. Expression of both alleles was induced by phenylalanine, however in contrast to the S. cerevisiae strain, the two genes were not induced by leucine. Additionally, LgSeubARO10 showed higher basal expression levels during growth with ammonia. ARO80, which encodes ARO10 transcriptional activator, is located on CHRIV and counts three Sc-like and one Seub-like copies. Deletion of LgSeubARO80 did not affect LgSeubARO10 phenylalanine induction, revealing 'trans' regulation across the subgenomes. ARO10 transcript levels showed a poor correlation with decarboxylase activities. These results provide insights into flavour formation in S. pastorianus and illustrate the complexity of functional characterization in aneuploid strains.
Collapse
Affiliation(s)
- Irina Bolat
- Industrial Microbiology Section, Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | | | | | | |
Collapse
|
49
|
Patten CL, Blakney AJC, Coulson TJD. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol 2012; 39:395-415. [PMID: 22978761 DOI: 10.3109/1040841x.2012.716819] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The capacity to produce the phytohormone indole-3-acetic acid (IAA) is widespread among bacteria that inhabit diverse environments such as soils, fresh and marine waters, and plant and animal hosts. Three major pathways for bacterial IAA synthesis have been characterized that remove the amino and carboxyl groups from the α-carbon of tryptophan via the intermediates indolepyruvate, indoleacetamide, or indoleacetonitrile; the oxidized end product IAA is typically secreted. The enzymes in these pathways often catabolize a broad range of substrates including aromatic amino acids and in some cases the branched chain amino acids. Moreover, expression of some of the genes encoding key IAA biosynthetic enzymes is induced by all three aromatic amino acids. The broad distribution and substrate specificity of the enzymes suggests a role for these pathways beyond plant-microbe interactions in which bacterial IAA has been best studied.
Collapse
Affiliation(s)
- Cheryl L Patten
- Department of Biology, University of New Brunswick , Fredericton, New Brunswick , Canada
| | | | | |
Collapse
|
50
|
Brat D, Weber C, Lorenzen W, Bode HB, Boles E. Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:65. [PMID: 22954227 PMCID: PMC3476451 DOI: 10.1186/1754-6834-5-65] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/30/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this microorganism is a promising host for the fermentative production of higher amounts of isobutanol. RESULTS Isobutanol production could be improved by re-locating the valine biosynthesis enzymes Ilv2, Ilv5 and Ilv3 from the mitochondrial matrix into the cytosol. To prevent the import of the three enzymes into yeast mitochondria, N-terminally shortened Ilv2, Ilv5 and Ilv3 versions were constructed lacking their mitochondrial targeting sequences. SDS-PAGE and immunofluorescence analyses confirmed expression and re-localization of the truncated enzymes. Growth tests or enzyme assays confirmed enzymatic activities. Isobutanol production was only increased in the absence of valine and the simultaneous blockage of the mitochondrial valine synthesis pathway. Isobutanol production could be even more enhanced after adapting the codon usage of the truncated valine biosynthesis genes to the codon usage of highly expressed glycolytic genes. Finally, a suitable ketoisovalerate decarboxylase, Aro10, and alcohol dehydrogenase, Adh2, were selected and overexpressed. The highest isobutanol titer was 0.63 g/L at a yield of nearly 15 mg per g glucose. CONCLUSION A cytosolic isobutanol production pathway was successfully established in yeast by re-localization and optimization of mitochondrial valine synthesis enzymes together with overexpression of Aro10 decarboxylase and Adh2 alcohol dehydrogenase. Driving forces were generated by blocking competition with the mitochondrial valine pathway and by omitting valine from the fermentation medium. Additional deletion of pyruvate decarboxylase genes and engineering of co-factor imbalances should lead to even higher isobutanol production.
Collapse
Affiliation(s)
- Dawid Brat
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Christian Weber
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Wolfram Lorenzen
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Helge B Bode
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Eckhard Boles
- Institute of Molecular Biosciences, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| |
Collapse
|