1
|
Yin X, Chen Z, Li T, Liu Q, Jiang X, Han X, Wang C, Wei Y, Yuan L. The Arrestin-like Protein palF Contributes to Growth, Sporulation, Spore Germination, Osmolarity, and Pathogenicity of Coniella vitis. J Fungi (Basel) 2024; 10:508. [PMID: 39057393 PMCID: PMC11277687 DOI: 10.3390/jof10070508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Coniella vitis is a dominant phytopathogen of grape white rot in China, significantly impacting grape yield and quality. Previous studies showed that the growth and pathogenicity of C. vitis were affected by the environmental pH. Arrestin-like protein PalF plays a key role in mediating the activation of an intracellular-signaling cascade in response to alkaline ambient. However, it remains unclear whether palF affects the growth, development, and virulence of C. vitis during the sensing of environmental pH changes. In this study, we identified a homologous gene of PalF/Rim8 in C. vitis and constructed CvpalF-silenced strains via RNA interference. CvpalF-silenced strains exhibited impaired fungal growth at neutral/alkaline pH, accompanied by reduced pathogenicity compared to the wild-type (WT) and empty vector control (CK) strains. The distance between the hyphal branches was significantly increased in the CvpalF-silenced strains. Additionally, CvpalF-silenced strains showed increased sensitivity to NaCl, H2O2, and Congo red, and decreased sensitive to CaSO4. RT-qPCR analysis demonstrated that the expression level of genes related to pectinase and cellulase were significantly down-regulated in CvpalF-silenced strains compared to WT and CK strains. Moreover, the expression of PacC, PalA/B/C/F/H/I was directly or indirectly affected by silencing CvpalF. Additionally, the expression of genes related to plant cell wall-degrading enzymes, which are key virulence factors for plant pathogenic fungi, was regulated by CvpalF. Our results indicate the important roles of CvpalF in growth, osmotolerance, and pathogenicity in C. vitis.
Collapse
Affiliation(s)
- Xiangtian Yin
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Zihe Chen
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China;
| | - Tinggang Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Qibao Liu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Xilong Jiang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Xing Han
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Chundong Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Yanfeng Wei
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| | - Lifang Yuan
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (X.Y.); (T.L.); (Q.L.); (X.J.); (X.H.); (C.W.); (Y.W.)
| |
Collapse
|
2
|
Martínez-Soto D, García-Ortega LF, Guzmán-Rincón A, Ortiz-Castellanos L, León-Ramírez CG. Conservation of the Pal/Rim Pathway in Ustilaginomycetes. Curr Microbiol 2024; 81:173. [PMID: 38750329 DOI: 10.1007/s00284-024-03696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 06/29/2024]
Abstract
The ability of fungi to effectively sense and internalize signals related to extracellular changing environments is essential for survival. This adaptability is particularly important for fungal pathogens of humans and plants that must sense and respond to drastic environmental changes when colonizing their hosts. One of the most important physicochemical factors affecting fungal growth and development is the pH. Ascomycota fungal species possess mechanisms such as the Pal/Rim pathway for external pH sensing and adaptation. However, the conservation of this mechanism in other fungi, such as Ustilaginomycetes is still little studied. To overcome this knowledge gap, we used a comparative genomic approach to explore the conservation of the Pal/Rim pathway in the 13 best sequenced and annotated Ustilaginomycetes. Our findings reveal that the Rim proteins and the Endosomal Sorting Complex Required for Transport (ESCRT) proteins are conserved in Ustilaginomycetes. They conserve the canonical domains present in Pal/Rim and ESCRT proteins of Ascomycota. This study sheds light on the molecular mechanisms used by these fungi for responding to extracellular stresses such as the pH, and open the door to further experimentations for understanding the molecular bases of the signaling in Ustilaginomycetes.
Collapse
Affiliation(s)
- Domingo Martínez-Soto
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana-Ensenada 3918, Zona Playitas, 22860, Ensenada, BC, Mexico.
| | - Luis F García-Ortega
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Andrés Guzmán-Rincón
- Bioingenieria, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, Zona Playitas, 22860, Ensenada, BC, Mexico
| | - Lucila Ortiz-Castellanos
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Claudia G León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6, Libramiento Norte, Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| |
Collapse
|
3
|
Weiland P, Altegoer F. Identification and Characterization of Two Transmembrane Proteins Required for Virulence of Ustilago maydis. FRONTIERS IN PLANT SCIENCE 2021; 12:669835. [PMID: 34093627 PMCID: PMC8176221 DOI: 10.3389/fpls.2021.669835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Smut fungi comprise a large group of biotrophic phytopathogens infecting important crops such as wheat and corn. Through the secretion of effector proteins, the fungus actively suppresses plant immune reactions and modulates its host's metabolism. Consequently, how soluble effector proteins contribute to virulence is already characterized in a range of phytopathogens. However, membrane-associated virulence factors have been much less studied to date. Here, we investigated six transmembrane (TM) proteins that show elevated gene expression during biotrophic development of the maize pathogen Ustilago maydis. We show that two of the six proteins, named Vmp1 and Vmp2 (virulence-associated membrane protein), are essential for the full virulence of U. maydis. The deletion of the corresponding genes leads to a substantial attenuation in the virulence of U. maydis. Furthermore, both are conserved in various related smuts and contain no domains of known function. Our biochemical analysis clearly shows that Vmp1 and Vmp2 are membrane-associated proteins, potentially localizing to the U. maydis plasma membrane. Mass photometry and light scattering suggest that Vmp1 mainly occurs as a monomer, while Vmp2 is dimeric. Notably, the large and partially unstructured C-terminal domain of Vmp2 is crucial for virulence while not contributing to dimerization. Taken together, we here provide an initial characterization of two membrane proteins as virulence factors of U. maydis.
Collapse
Affiliation(s)
- Paul Weiland
- Center for Synthetic Microbiology (SYNMIKRO), Faculty of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Florian Altegoer
- Center for Synthetic Microbiology (SYNMIKRO), Faculty of Chemistry, Philipps-University Marburg, Marburg, Germany
- Department of Organismic Interactions, Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
4
|
Moniliophthora perniciosa development: key genes involved in stress-mediated cell wall organization and autophagy. Int J Biol Macromol 2020; 154:1022-1035. [PMID: 32194118 DOI: 10.1016/j.ijbiomac.2020.03.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/29/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Moniliophthora perniciosa is a basidiomycete responsible for the witches' broom disease in cacao (Theobroma cacao L.). Chitin synthase (CHS), chitinase (CHIT) and autophagy (ATG) genes have been associated to stress response preceding the formation of basidiocarp. An analysis of literature mining, interactomics and gene expression was developed to identify the main proteins related to development, cell wall organization and autophagy in M. perniciosa. TORC2 complex elements were identified and were involved in the response to the nutrient starvation during the fungus development stages preceding the basidiocarp formation. This complex interacted with target proteins related to cell wall synthesis and to polarization and cell division (FKS1, CHS, CDC42, ROM2). Autolysis and autophagy processes were associated to CHIT2, ATG8 and to the TORC1 complex (TOR1 and KOG1), which is central in the upstream signalization of the stress response due to nutrient starvation and growth regulation. Other important elements that participate to steps preceding basidiocarp formation were also identified (KOG1, SSZ1, GDI1, FKS1, CCD10, CKS1, CDC42, RHO1, AVO1, BAG7). Similar gene expression patterns during fungus reproductive structure formation and when treated by rapamycin (a nutritional related-autophagy stress agent) were observed: cell division related-genes were repressed while those related to autolysis/autophagy were overexpressed.
Collapse
|
5
|
Cervantes-Montelongo JA, Silva-Martínez GA, Pliego-Arreaga R, Guevara-Olvera L, Ruiz-Herrera J. The UMAG_00031 gene from Ustilago maydis encodes a putative membrane protein involved in pH control and morphogenesis. Arch Microbiol 2020; 202:2221-2232. [PMID: 32529509 DOI: 10.1007/s00203-020-01936-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/18/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
We report the characterization of the gene UMAG_00031 from Ustilago maydis, previously identified as upregulated at alkaline pH. This gene is located on chromosome 1 and contains an ORF of 1539 bp that encodes a putative protein of 512 amino acids with an MW of 54.8 kDa. The protein is predicted to contain seven transmembrane domains (TMDs) and a signal peptide suggesting that is located in the cell membrane. Null ΔUMAG_00031 mutants were constructed, and their phenotype was analyzed. The mutant displayed a pleiotropic phenotype suggesting its participation in processes of alkaline pH adaptation independent of the Pal/Rim pathway. Also, it was involved in the dimorphic process induced by fatty acids. These results indicate that the protein encoded by the UMAG_00031 gene possibly functions as a receptor of different signals in the cell membrane of the fungus.
Collapse
Affiliation(s)
- Juan Antonio Cervantes-Montelongo
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México en Celaya, Ave. Tecnológico y Antonio García Cubas S/N, col. FOVISSSTE, 38010, Celaya, Gto, Mexico
| | | | - Raquel Pliego-Arreaga
- Escuela de Medicina de La Universidad de Celaya, Carretera Panamericana, Rancho Pinto km 269, 38080, Celaya, Gto, Mexico
| | - Lorenzo Guevara-Olvera
- Laboratorio de Biología Molecular, Departamento de Ingeniería Bioquímica, Tecnológico Nacional de México en Celaya, Ave. Tecnológico y Antonio García Cubas S/N, col. FOVISSSTE, 38010, Celaya, Gto, Mexico
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 629, 36500, Irapuato, Gto, Mexico.
| |
Collapse
|
6
|
Cervantes-Montelongo JA, Ruiz-Herrera J. Identification of a novel member of the pH responsive pathway Pal/Rim in Ustilago maydis. J Basic Microbiol 2018; 59:14-23. [PMID: 30357888 DOI: 10.1002/jobm.201800180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 11/05/2022]
Abstract
The most important signal transduction mechanism related to environmental pH responses in fungi is the Pal/Rim pathway. Our knowledge of this pathway came initially from studies on Ascomycota species where it is made by seven members divided into two complexes, one located at the plasma membrane, and other at the endosomal membrane. In Basidiomycota sepecies only the homologs of the endosomal membrane complex (genes PalA/Rim20, PalB/ Rim13, and PalC/ Rim23), plus the transcription factor PacC/Rim101 have been identified. In this study, we describe the identification in Ustilago maydis of a gene encoding a Rho-like protein (tentatively named RHO4) as a novel member of this pathway. The RHO4 gene possibly plays, among other functions, a role in the second proteolytic cleavage that leads to the activation of the transcription factor PacC/Rim101. Mutants in this gene showed a pleiotropic phenotype, displaying similar characteristics to the Pal/Rim mutants, such as a lower growth rate at alkaline pH, high sensitivity to ionic and osmotic stresses, and impairment in protease secretion, but no alteration of the yeast-to-mycelium dimorphic transition induced by acid pH whereas it has a function in the dimorphic transition induced by fatty acids.
Collapse
Affiliation(s)
- Juan A Cervantes-Montelongo
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato Gto., México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato Gto., México
| |
Collapse
|
7
|
Hartmann SK, Stockdreher Y, Wandrey G, Hosseinpour Tehrani H, Zambanini T, Meyer AJ, Büchs J, Blank LM, Schwarzländer M, Wierckx N. Online in vivo monitoring of cytosolic NAD redox dynamics in Ustilago maydis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1015-1024. [DOI: 10.1016/j.bbabio.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/06/2018] [Accepted: 05/20/2018] [Indexed: 12/20/2022]
|
8
|
Martínez-Soto D, Ruiz-Herrera J. Functional analysis of the MAPK pathways in fungi. Rev Iberoam Micol 2017; 34:192-202. [PMID: 28732778 DOI: 10.1016/j.riam.2017.02.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/27/2017] [Accepted: 02/17/2017] [Indexed: 01/19/2023] Open
Abstract
The Mitogen-Activated Protein Kinase (MAPK) signaling pathways constitute one of the most important and evolutionarily conserved mechanisms for the perception of extracellular information in all the eukaryotic organisms. The MAPK pathways are involved in the transfer to the cell of the information perceived from extracellular stimuli, with the final outcome of activation of different transcription factors that regulate gene expression in response to them. In all species of fungi, the MAPK pathways have important roles in their physiology and development; e.g. cell cycle control, mating, morphogenesis, response to different stresses, resistance to UV radiation and to temperature changes, cell wall assembly and integrity, degradation of cellular organelles, virulence, cell-cell signaling, fungus-plant interaction, and response to damage-associated molecular patterns (DAMPs). Considering the importance of the phylogenetically conserved MAPK pathways in fungi, an updated review of the knowledge on them is discussed in this article. This information reveals their importance, their distribution in fungal species evolutionarily distant and with different lifestyles, their organization and function, and the interactions occurring between different MAPK pathways, and with other signaling pathways, for the regulation of the most complex cellular processes.
Collapse
Affiliation(s)
- Domingo Martínez-Soto
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Gto., Mexico
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Gto., Mexico.
| |
Collapse
|
9
|
Cervantes-Montelongo JA, Aréchiga-Carvajal ET, Ruiz-Herrera J. Adaptation ofUstilago maydisto extreme pH values: A transcriptomic analysis. J Basic Microbiol 2016; 56:1222-1233. [DOI: 10.1002/jobm.201600130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/06/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Juan Antonio Cervantes-Montelongo
- Departamento de Ingeniería Genética, Unidad Irapuato; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Irapuato Gto. México
| | - Elva Teresa Aréchiga-Carvajal
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Biológicas, Laboratorio de Micología y Fitopatología; Unidad de Manipulación Genética, San Nicolás de los Garza; Nuevo León México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato; Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional; Irapuato Gto. México
| |
Collapse
|
10
|
Zhu J, Ying SH, Feng MG. The Pal pathway required for ambient pH adaptation regulates growth, conidiation, and osmotolerance of Beauveria bassiana in a pH-dependent manner. Appl Microbiol Biotechnol 2016; 100:4423-33. [DOI: 10.1007/s00253-016-7282-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/27/2015] [Accepted: 12/29/2015] [Indexed: 12/23/2022]
|
11
|
Martínez-Soto D, González-Prieto JM, Ruiz-Herrera J. Transcriptomic analysis of the GCN5 gene reveals mechanisms of the epigenetic regulation of virulence and morphogenesis in Ustilago maydis. FEMS Yeast Res 2015; 15:fov055. [PMID: 26126523 DOI: 10.1093/femsyr/fov055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2015] [Indexed: 12/21/2022] Open
Abstract
Chromatin in the eukaryotic nucleus is highly organized in the form of nucleosomes where histones wrap DNA. This structure may be altered by some chemical modifications of histones, one of them, acetylation by histone acetyltransferases (HATs) that originates relaxation of the nucleosome structure, providing access to different transcription factors and other effectors. In this way, HATs regulate cellular processes including DNA replication, and gene transcription. Previously, we isolated Ustilago maydis mutants deficient in the GCN5 HAT that are avirulent, and grow constitutively as mycelium. In this work, we proceeded to identify the genes differentially regulated by GCN5, comparing the transcriptomes of the mutant and the wild type using microarrays, to analyse the epigenetic control of virulence and morphogenesis. We identified 1203 genes, 574 positively and 629 negatively regulated in the wild type. We found that genes belonging to different categories involved in pathogenesis were downregulated in the mutant, and that genes involved in mycelial growth were negatively regulated in the wild type, offering a working hypothesis on the epigenetic control of virulence and morphogenesis of U. maydis. Interestingly, several differentially regulated genes appeared in clusters, suggesting a common regulation. Some of these belonged to pathogenesis or secondary metabolism.
Collapse
Affiliation(s)
- Domingo Martínez-Soto
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36500 Irapuato, Gto., México
| | - Juan Manuel González-Prieto
- Biotecnología Vegetal, Centro de Biotecnologia Genómica, Instituto Politécnico Nacional, 88710 Reynosa, Tam., México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36500 Irapuato, Gto., México
| |
Collapse
|
12
|
Martínez-Soto D, Ruiz-Herrera J. Regulation of the expression of the whole genome of Ustilago maydis by a MAPK pathway. Arch Microbiol 2015; 197:575-88. [PMID: 25666931 DOI: 10.1007/s00203-015-1087-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/07/2014] [Accepted: 01/20/2015] [Indexed: 01/12/2023]
Abstract
The operation of mitogen-activated protein kinase (MAPK) signal transduction pathways is one of the most important mechanisms for the transfer of extracellular information into the cell. These pathways are highly conserved in eukaryotic organisms. In fungi, MAPK pathways are involved in the regulation of a number of cellular processes such as metabolism, homeostasis, pathogenesis and cell differentiation and morphogenesis. Considering the importance of pathways, in the present work we proceeded to identify all the genes that are regulated by the signal transduction pathway involved in mating, pathogenesis and morphogenesis of Ustilago maydis. Accordingly we made a comparison between the transcriptomes from a wild-type strain and an Ubc2 mutant affected in the interacting protein of this pathway by use of microarrays. By this methodology, we identified 939 genes regulated directly or indirectly by the MAPK pathway. Of them, 432 were positively, and 507 were negatively found regulated. By functional grouping, genes encoding cyclin-dependent kinases, transcription factors, proteins involved in signal transduction, in synthesis of wall and cell membrane, and involved in dimorphism were identified as differentially regulated. These data reveal the importance of these global studies, and the large (and unsuspected) number of functions of the fungus under the control of this MAPK, providing clues to the possible mechanisms involved.
Collapse
Affiliation(s)
- Domingo Martínez-Soto
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Gto., Mexico
| | | |
Collapse
|
13
|
Transcriptomic analysis of the role of Rim101/PacC in the adaptation of Ustilago maydis to an alkaline environment. Microbiology (Reading) 2014; 160:1985-1998. [DOI: 10.1099/mic.0.076216-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alkaline pH triggers an adaptation mechanism in fungi that is mediated by Rim101/PacCp, a zinc finger transcription factor. To identify the genes under its control in Ustilago maydis, we performed microarray analyses, comparing gene expression in a wild-type strain versus a rim101/pacC mutation strain of the fungus. In this study we obtained evidence of the large number of genes regulated mostly directly, but also indirectly (probably through regulation of other transcription factors), by Rim101/PacCp, including proteins involved in a large number of physiological activities of the fungus. Our analyses suggest that the response to alkaline conditions under the control of the Pal/Rim pathway involves changes in the cell wall and plasma membrane through alterations in their lipid, protein and polysaccharide composition, changes in cell polarity, actin cytoskeleton organization, and budding patterns. Also as expected, adaptation involves regulation by Rim101/PacC of genes involved in meiotic functions, such as recombination and segregation, and expression of genes involved in ion and nutrient transport, as well as general vacuole functions.
Collapse
|
14
|
Abstract
SIGNIFICANCE Postharvest pathogens can start its attack process immediately after spores land on wounded tissue, whereas other pathogens can forcibly breach the unripe fruit cuticle and then remain quiescent for months until fruit ripens and then cause major losses. RECENT ADVANCES Postharvest fungal pathogens activate their development by secreting organic acids or ammonia that acidify or alkalinize the host ambient surroundings. CRITICAL ISSUES These fungal pH modulations of host environment regulate an arsenal of enzymes to increase fungal pathogenicity. This arsenal includes genes and processes that compromise host defenses, contribute to intracellular signaling, produce cell wall-degrading enzymes, regulate specific transporters, induce redox protectant systems, and generate factors needed by the pathogen to effectively cope with the hostile environment found within the host. Further, evidence is accumulating that the secreted molecules (organic acids and ammonia) are multifunctional and together with effect of the ambient pH, they activate virulence factors and simultaneously hijack the plant defense response and induce program cell death to further enhance their necrotrophic attack. FUTURE DIRECTIONS Global studies of the effect of secreted molecules on fruit pathogen interaction, will determine the importance of these molecules on quiescence release and the initiation of fungal colonization leading to fruit and vegetable losses.
Collapse
Affiliation(s)
- Noam Alkan
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
15
|
Prusky D, Alkan N, Mengiste T, Fluhr R. Quiescent and necrotrophic lifestyle choice during postharvest disease development. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:155-76. [PMID: 23682917 DOI: 10.1146/annurev-phyto-082712-102349] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Insidious fungal infections by postharvest pathogens remain quiescent during fruit growth until, at a particular phase during fruit ripening and senescence, the pathogens switch to the necrotrophic lifestyle and cause decay. During ripening, fruits undergo physiological processes, such as activation of ethylene biosynthesis, cuticular changes, and cell-wall loosening-changes that are accompanied by a decline of antifungal compounds, both those that are preformed and those that are inducible secondary metabolites. Pathogen infection of the unripe host fruit initiates defensive signal-transduction cascades, culminating in accumulation of antifungal proteins that limit fungal growth and development. In contrast, development of the same pathogens during fruit ripening and storage activates a substantially different signaling network, one that facilitates aggressive fungal colonization. This review focuses on responses induced by the quiescent pathogens of postharvest diseases in unripe host fruits. New genome-scale experimental approaches have begun to delineate the complex and multiple networks of host and pathogen responses activated to maintain or to facilitate the transition from the quiescent to the necrotrophic lifestyle.
Collapse
Affiliation(s)
- Dov Prusky
- Department of Postharvest Science of Fresh Produce, ARO, Volcani Center, Bet Dagan, 50250 Israel.
| | | | | | | |
Collapse
|