1
|
Lienhart PH, Rohra V, Clement C, Toppen LC, DeCola AC, Rizzo DM, Scarborough MJ. Landfill intermediate cover soil microbiomes and their potential for mitigating greenhouse gas emissions revealed through metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171697. [PMID: 38492594 DOI: 10.1016/j.scitotenv.2024.171697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Landfills are a major source of anthropogenic methane emissions and have been found to produce nitrous oxide, an even more potent greenhouse gas than methane. Intermediate cover soil (ICS) plays a key role in reducing methane emissions but may also result in nitrous oxide production. To assess the potential for microbial methane oxidation and nitrous oxide production, long sequencing reads were generated from ICS microbiome DNA and reads were functionally annotated for 24 samples across ICS at a large landfill in New York. Further, incubation experiments were performed to assess methane consumption and nitrous oxide production with varying amounts of ammonia supplemented. Methane was readily consumed by microbes in the composite ICS and all incubations with methane produced small amounts of nitrous oxide even when ammonia was not supplemented. Incubations without methane produced significantly less nitrous oxide than those incubated with methane. In incubations with methane added, the observed specific rate of methane consumption was 0.776 +/- 0.055 μg CH4 g dry weight (DW) soil-1 h-1 and the specific rate of nitrous oxide production was 3.64 × 10-5 +/- 1.30 × 10-5 μg N2O g DW soil-1 h-1. The methanotrophs Methylobacter and an unclassified genus within the family Methlyococcaceae were present in the original ICS samples and the incubation samples, and their abundance increased during incubations with methane. Genes encoding particulate methane monooxygenase/ ammonia monooxygenase (pMMO) were much more abundant than genes encoding soluble methane monooxygenase (sMMO) across the landfill ICS. Genes encoding proteins that convert hydroxylamine to nitrous oxide were not highly abundant in the ICS or incubation metagenomes. In total, these results suggest that although ammonia oxidation via methanotrophs may result in low levels of nitrous oxide production, ICS microbial communities have the potential to greatly reduce the overall global warming potential of landfill emissions.
Collapse
Affiliation(s)
- Peyton H Lienhart
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Venus Rohra
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Courtney Clement
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Lucinda C Toppen
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States.
| | - Amy C DeCola
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Donna M Rizzo
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States; Gund Institute for Environment, University of Vermont, Burlington, VT, United States.
| | - Matthew J Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States; Gund Institute for Environment, University of Vermont, Burlington, VT, United States.
| |
Collapse
|
2
|
Shangjie C, Yongqiong W, Fuqing X, Zhilin X, Xiaoping Z, Xia S, Juan L, Tiantao Z, Shibin W. Synergistic effects of vegetation and microorganisms on enhancing of biodegradation of landfill gas. ENVIRONMENTAL RESEARCH 2023; 227:115804. [PMID: 37003556 DOI: 10.1016/j.envres.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/08/2023]
Abstract
The uncontrolled release of landfill gas represents a significant hazard to both human health and ecological well-being. However, the synergistic interactions of vegetation and microorganisms can effectively mitigate this threat by removing pollutants. This study provides a comprehensive review of the current status of controlling landfill gas pollution through the process of revegetation in landfill cover. Our survey has identified several common indicator plants such as Setaria faberi, Sarcandra glabra, and Fraxinus chinensis that grow in covered landfill soil. Local herbaceous plants possess stronger tolerance, making them ideal for the establishment of closed landfills. Moreover, numerous studies have demonstrated that cover plants significantly promote methane oxidation, with an average oxidation capacity twice that of bare soil. Furthermore, we have conducted an analysis of the interrelationships among vegetation, landfill gas, landfill cover soil, and microorganisms, thereby providing a detailed understanding of the potential for vegetation restoration in landfill cover. Additionally, we have summarized studies on the rhizosphere effect and have deduced the mechanisms through which plants biodegrade methane and typical non-methane pollutants. Finally, we have suggested future research directions to better control landfill gas using vegetation and microorganisms.
Collapse
Affiliation(s)
- Chen Shangjie
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Wang Yongqiong
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xu Fuqing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xing Zhilin
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Zhang Xiaoping
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Su Xia
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Li Juan
- Chongqing Academy of Chinese Materia Medica, Chongqing, 400060, China
| | - Zhao Tiantao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Wan Shibin
- School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, 400054, China
| |
Collapse
|
3
|
Dang Q, Zhao X, Li Y, Xi B. Revisiting the biological pathway for methanogenesis in landfill from metagenomic perspective-A case study of county-level sanitary landfill of domestic waste in North China plain. ENVIRONMENTAL RESEARCH 2023; 222:115185. [PMID: 36586711 DOI: 10.1016/j.envres.2022.115185] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Landfill is the third highest contributor to anthropogenic methane (CH4) emissions, produced primarily by the anaerobic decomposition of organic matter by microbes. However, how various microbial metabolic processes contribute to CH4 production in domestic waste landfill remains elusive. We addressed this problem by investigating the methanogenic communities, methanogenic functional genes, KEGG modules and KEGG pathways in a county-level MSW sanitary landfill in North China Plain, China. Results showed that Methanomicrobiales, Methanobacteriales, Methanosarcinales, Micrococcales, Corynebacteriales and Bacillales were the dominant methanogens. M00357, M00346, M00567 and M00563 were the four major methane metabolic modules. The most abundant genes were ACSS, ackA and fwd with the relative abundance of 19.26-54.54%, 6.14-25.78% and 6.76-16.51%, respectively. The two essential genes of methanogenesis were detected with the relative abundance of 2.66-9.58% (mtr) and 1.63-9.14% (mcr). These findings indicated that acetotrophic and hydrogenotrophic methanogenesis were the major pathways. Methanomicrobiales, Methanosarcinales and Clostridiales were the key microbes to these pathways identified by co-occurrence network. Analysis of relative contribution of species to function further showed that Micrococcales, Corynebacteriales and Bacillales were special contributors to acetotrophic methanogenesis pathway. Redundancy analysis revealed that above functional genes and microbes were mainly controlled by NH4+ and pH. Our results can help to provide develop the fine management strategies for methane utilization and emission reduction in landfill.
Collapse
Affiliation(s)
- Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yanping Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Hazardous Waste Identification and Risk Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
4
|
Randazzo A, Zorzi F, Venturi S, Bicocchi G, Viti G, Tatàno F, Tassi F. Degradation of biogas in a simulated landfill cover soil at laboratory scale: Compositional changes of main components and volatile organic compounds. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:229-241. [PMID: 36577274 DOI: 10.1016/j.wasman.2022.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
A laboratory experiment lasting 28 days was run to simulate a typical landfill system and to investigate the compositional changes affecting the main components (CH4, CO2, and H2) and nonmethane volatile organic compounds from biogas generated by anaerobic digestion of food waste and passing through a soil column. Gas samples were periodically collected from both the digester headspace and the soil column at increasing distances from the biogas source. CH4 and H2 were efficiently degraded along the soil column. The isotopic values of δ13C measured in CH4 and CO2 from the soil column were relatively enriched in 13C compared to the biogas. Aromatics and alkanes were the most abundant groups in the biogas samples. Among these compounds, alkylated benzenes and long-chain C3+ alkanes were significantly degraded within the soil column, whereas benzene and short-chain alkanes were recalcitrant. Terpene and O-substituted compounds were relatively stable under oxidising conditions. Cyclic, alkene, S-substituted, and halogenated compounds, which exhibited minor amounts in the digester headspace, were virtually absent in the soil column. These results pointed out how many recalcitrant potentially toxic and polluting compounds tend to be relatively enriched along the soil column, claiming action to minimise diffuse landfill gas (LFG) emissions. The proposed experimental approach represents a reliable tool for investigating the attenuation capacities of landfill cover soils for LFG components and developing optimised covers by adopting proper soil treatments and operating conditions to improve their degradation efficiencies.
Collapse
Affiliation(s)
- Antonio Randazzo
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy.
| | - Francesca Zorzi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Stefania Venturi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy
| | - Gabriele Bicocchi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Gregorio Viti
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy
| | - Fabio Tatàno
- DiSPeA - Department of Pure and Applied Sciences, Section ChEM - Chemistry, Environment, and Materials, University of Urbino "Carlo Bo", Campus Scientifico "E. Mattei", 61029 Urbino, Italy
| | - Franco Tassi
- Department of Earth Sciences, University of Florence, Via G. La Pira 4, 50121 Firenze, Italy; IGG - Institute of Geosciences and Earth Resources, CNR - National Research Council of Italy, Via G. La Pira 4, 50121 Firenze, Italy
| |
Collapse
|
5
|
Guo K, Hakobyan A, Glatter T, Paczia N, Liesack W. Methylocystis sp. Strain SC2 Acclimatizes to Increasing NH 4+ Levels by a Precise Rebalancing of Enzymes and Osmolyte Composition. mSystems 2022; 7:e0040322. [PMID: 36154142 PMCID: PMC9600857 DOI: 10.1128/msystems.00403-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
A high NH4+ load is known to inhibit bacterial methane oxidation. This is due to a competition between CH4 and NH3 for the active site of particulate methane monooxygenase (pMMO), which converts CH4 to CH3OH. Here, we combined global proteomics with amino acid profiling and nitrogen oxides measurements to elucidate the cellular acclimatization response of Methylocystis sp. strain SC2 to high NH4+ levels. Relative to 1 mM NH4+, a high (50 mM and 75 mM) NH4+ load under CH4-replete conditions significantly increased the lag phase duration required for proteome adjustment. The number of differentially regulated proteins was highly significantly correlated with an increasing NH4+ load. The cellular responses to increasing ionic and osmotic stress involved a significant upregulation of stress-responsive proteins, the K+ "salt-in" strategy, the synthesis of compatible solutes (glutamate and proline), and the induction of the glutathione metabolism pathway. A significant increase in the apparent Km value for CH4 oxidation during the growth phase was indicative of increased pMMO-based oxidation of NH3 to toxic hydroxylamine. The detoxifying activity of hydroxlyamine oxidoreductase (HAO) led to a significant accumulation of NO2- and, upon decreasing O2 tension, N2O. Nitric oxide reductase and hybrid cluster proteins (Hcps) were the candidate enzymes for the production of N2O. In summary, strain SC2 has the capacity to precisely rebalance enzymes and osmolyte composition in response to increasing NH4+ exposure, but the need to simultaneously combat both ionic-osmotic stress and the toxic effects of hydroxylamine may be the reason why its acclimatization capacity is limited to 75 mM NH4+. IMPORTANCE In addition to reducing CH4 emissions from wetlands and landfills, the activity of alphaproteobacterial methane oxidizers of the genus Methylocystis contributes to the sink capacity of forest and grassland soils for atmospheric methane. The methane-oxidizing activity of Methylocystis spp. is, however, sensitive to high NH4+ concentrations. This is due to the competition of CH4 and NH3 for the active site of particulate methane monooxygenase, thereby resulting in the production of toxic hydroxylamine with an increasing NH4+ load. An understanding of the physiological and molecular response mechanisms of Methylocystis spp. is therefore of great importance. Here, we combined global proteomics with amino acid profiling and NOx measurements to disentangle the cellular mechanisms underlying the acclimatization of Methylocystis sp. strain SC2 to an increasing NH4+ load.
Collapse
Affiliation(s)
- Kangli Guo
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anna Hakobyan
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Werner Liesack
- Methanotrophic Bacteria and Environmental Genomics/Transcriptomics Research Group, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
6
|
Chetri JK, Reddy KR, Green SJ. Use of methanotrophically activated biochar in novel biogeochemical cover system for carbon sequestration: Microbial characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153429. [PMID: 35101512 DOI: 10.1016/j.scitotenv.2022.153429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/05/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Biochar-amended soils have been explored to enhance microbial methane (CH4) oxidation in landfill cover systems. Recently, research priorities have expanded to include the mitigation of other components of landfill gas such as carbon dioxide (CO2) and hydrogen sulfide (H2S) along with CH4. In this study, column tests were performed to simulate the newly proposed biogeochemical cover systems, which incorporate biochar-amended soil for CH4 oxidation and basic oxygen furnace (BOF) slag for CO2 and H2S mitigation, to evaluate the effect of cover configuration on microbial CH4 oxidation and community composition. Biogeochemical covers included a biochar-amended soil (10% w/w), and methanotroph-enriched activated biochar amended soil (5% or 10% w/w) as a biocover layer or CH4 oxidation layer. The primary outcome measures of interest were CH4 oxidation rates and the structure and abundance of methane-oxidation bacteria in the covers. All column reactors were active in CH4 oxidation, but columns containing activated biochar-amended soils had higher CH4 oxidation rates (133 to 143 μg CH4 g-1 day-1) than those containing non-activated biochar-amended soil (50 μg CH4 g-1 day-1) and no-biochar soil or control soil (43 μg CH4 g-1 day-1). All treatments showed significant increases in the relative abundance of methanotrophs from an average relative abundance of 5.6% before incubation to a maximum of 45% following incubation. In activated biochar, the abundance of Type II methanotrophs, primarily Methylocystis and Methylosinus, was greater than that of Type I methanotrophs (Methylobacter) due to which activated biochar-amended soils also showed higher abundance of Type II methanotrophs. Overall, biogeochemical cover profiles showed promising potential for CH4 oxidation without any adverse effect on microbial community composition and methane oxidation. Biochar activation led to an alteration of the dominant methanotrophic communities and increased CH4 oxidation.
Collapse
Affiliation(s)
- Jyoti K Chetri
- University of Illinois at Chicago, Department of Civil, Materials, and Environmental Engineering, 842 West Taylor Street, Chicago, IL 60607, USA.
| | - Krishna R Reddy
- University of Illinois at Chicago, Department of Civil, Materials, and Environmental Engineering, 842 West Taylor Street, Chicago, IL 60607, USA.
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University Medical Center, 1653 W. Congress Parkway, Jelke Building, Room 444, Chicago, IL 60612, USA.
| |
Collapse
|
7
|
Oshkin IY, Danilova OV, Suleimanov RZ, Tikhonova EN, Malakhova TV, Murashova IA, Pimenov NV, Dedysh SN. Thermotolerant Methanotrophic Bacteria from Sediments of the River Chernaya, Crimea, and Assessment of Their Growth Characteristics. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721050131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
8
|
Wang Y, Lai CY, Wu M, Song Y, Hu S, Yuan Z, Guo J. Roles of Oxygen in Methane-dependent Selenate Reduction in a Membrane Biofilm Reactor: Stimulation or Suppression. WATER RESEARCH 2021; 198:117150. [PMID: 33910142 DOI: 10.1016/j.watres.2021.117150] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/03/2021] [Accepted: 04/10/2021] [Indexed: 05/22/2023]
Abstract
Although methane (CH4) has been proven to be able to serve as an electron donor for bio-reducing various oxidized contaminants (e.g., selenate (SeO42-)), little is known regarding the roles of oxygen in methane-based reduction processes. Here, a methane-based membrane biofilm reactor (MBfR) was established for evaluating the effects of oxygen supply rates on selenate reduction performance and microbial communities. The oxygen supply rate played a dual role (stimulatory or suppressive effect) in selenate reduction rates, depending on the presence or absence of dissolved oxygen (DO). Specifically, selenate reduction rate was substantially enhanced when an appropriate oxygen rate (e.g., 12 to 184 mg/L.d in this study) was supplied but with negligible DO. The highest selenate reduction rate (up to 34 mg-Se/L.d) was obtained under an oxygen supply rate of 184 mg/L.d. In contrast, excessive oxygen supply rate (626 mg/L.d) would significantly suppress selenate reduction rate under DO level of 3 mg/L. Accordingly, though the high oxygen supply rate (626 mg/L.d) would promote the expression of pmoA (5.9 × 109 copies g-1), the expression level of narG (a recognized gene to mediate selenate reduction) would be significantly downregulated (6.1 × 109 copies g-1), thus suppressing selenate reduction. In contrast, the expression of narG gene significantly increased to 2.8 × 1010 copies g-1, and the expression of pmoA gene could still maintain at 1.1 × 109 copies g-1 under an oxygen supply rate of 184 mg/L.d. High-throughput sequencing targeting 16S rRNA gene, pmoA, and narG collectively suggested Methylocystis acts as the major aerobic methanotroph, in synergy with Arthrobacter and Variovorax which likely jointly reduce selenate to selenite (SeO32-), and further to elemental selenium (Se0). Methylocystis was predominant in the biofilm regardless of variations of oxygen supply rates, while Arthrobacter and Variovorax were sensitive to oxygen fluctuation. These findings provide insights into the effects of oxygen on methane-dependent selenate reduction and suggest that it is feasible to achieve a higher selenate removal by regulating oxygen supply rates.
Collapse
Affiliation(s)
- Yulu Wang
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mengxiong Wu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Yarong Song
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Shihu Hu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
9
|
do Carmo Linhares D, Saia FT, Duarte RTD, Nakayama CR, de Melo IS, Pellizari VH. Methanotrophic Community Detected by DNA-SIP at Bertioga's Mangrove Area, Southeast Brazil. MICROBIAL ECOLOGY 2021; 81:954-964. [PMID: 33392629 DOI: 10.1007/s00248-020-01659-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Methanotrophic bacteria can use methane as sole carbon and energy source. Its importance in the environment is related to the mitigation of methane emissions from soil and water to the atmosphere. Brazilian mangroves are highly productive, have potential to methane production, and it is inferred that methanotrophic community is of great importance for this ecosystem. The scope of this study was to investigate the functional and taxonomic diversity of methanotrophic bacteria present in the anthropogenic impacted sediments from Bertioga´s mangrove (SP, Brazil). Sediment sample was cultivated with methane and the microbiota actively involved in methane oxidation was identified by DNA-based stable isotope probing (DNA-SIP) using methane as a labeled substrate. After 4 days (96 h) of incubation and consumption of 0.7 mmol of methane, the most active microorganisms were related to methanotrophs Methylomonas and Methylobacter as well as to methylotrophic Methylotenera, indicating a possible association of these bacterial groups within a methane-derived food chain in the Bertioga mangrove. The abundance of genera Methylomonas, able to couple methane oxidation to nitrate reduction, may indicate that under low dissolved oxygen tensions, some aerobic methanotrophs could shift to intraerobic methane oxidation to avoid oxygen starvation.
Collapse
Affiliation(s)
- Débora do Carmo Linhares
- Laboratory of Industrial Biotechnology, Institute for Technological Research of São Paulo, 05508-901, São Paulo, SP, Brazil.
- Department of Biological Oceanography, Oceanographic Institute, University of Sao Paulo, Praça do Oceanográfico, 191, 05508-120, Butantã, São Paulo-SP, Brazil.
| | - Flávia Talarico Saia
- Institute of Marine Sciences, Federal University of São Paulo, Av. Dr. Carvalho de Mendonça, 144, Encruzilhada, Santos, SP, 11070-102, Brazil
| | - Rubens Tadeu Delgado Duarte
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Cristina Rossi Nakayama
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Rua São Nicolau, 210, Diadema, SP, 09913-030, Brazil
| | | | - Vivian Helena Pellizari
- Department of Biological Oceanography, Oceanographic Institute, University of Sao Paulo, Praça do Oceanográfico, 191, 05508-120, Butantã, São Paulo-SP, Brazil
| |
Collapse
|
10
|
Ho A, Mendes LW, Lee HJ, Kaupper T, Mo Y, Poehlein A, Bodelier PLE, Jia Z, Horn MA. Response of a methane-driven interaction network to stressor intensification. FEMS Microbiol Ecol 2021; 96:5898668. [PMID: 32857837 DOI: 10.1093/femsec/fiaa180] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/25/2020] [Indexed: 01/04/2023] Open
Abstract
Microorganisms may reciprocally select for specific interacting partners, forming a network with interdependent relationships. The methanotrophic interaction network, comprising methanotrophs and non-methanotrophs, is thought to modulate methane oxidation and give rise to emergent properties beneficial for the methanotrophs. Therefore, microbial interaction may become relevant for community functioning under stress. However, empirical validation of the role and stressor-induced response of the interaction network remains scarce. Here, we determined the response of a complex methane-driven interaction network to a stepwise increase in NH4Cl-induced stress (0.5-4.75 g L-1, in 0.25-0.5 g L-1 increments) using enrichment of a naturally occurring complex community derived from a paddy soil in laboratory-scale incubations. Although ammonium and intermediates of ammonium oxidation are known to inhibit methane oxidation, methanotrophic activity was unexpectedly detected even in incubations with high ammonium levels, albeit rates were significantly reduced. Sequencing analysis of the 16S rRNA and pmoA genes consistently revealed divergent communities in the reference and stressed incubations. The 16S rRNA-based co-occurrence network analysis revealed that NH4Cl-induced stress intensification resulted in a less complex and modular network, likely driven by less stable interaction. Interestingly, the non-methanotrophs formed the key nodes, and appear to be relevant members of the community. Overall, stressor intensification unravels the interaction network, with adverse consequences for community functioning.
Collapse
Affiliation(s)
- Adrian Ho
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Lucas W Mendes
- Center of Nuclear Energy in Agriculture, University of São Paulo (CENA-USP), Avenida Centenario 303, 13416-000, Piracicaba-SP, Brazil
| | - Hyo Jung Lee
- Department of Biology, Kunsan National University, 558 Daehak-ro, Gunsan-si 54150, Republic of Korea
| | - Thomas Kaupper
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Yongliang Mo
- Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Xuan-Wu District, Nanjing 210008, China
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | - Zhongjun Jia
- Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Xuan-Wu District, Nanjing 210008, China
| | - Marcus A Horn
- Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
11
|
Kroeger ME, Meredith LK, Meyer KM, Webster KD, de Camargo PB, de Souza LF, Tsai SM, van Haren J, Saleska S, Bohannan BJM, Rodrigues JLM, Berenguer E, Barlow J, Nüsslein K. Rainforest-to-pasture conversion stimulates soil methanogenesis across the Brazilian Amazon. THE ISME JOURNAL 2021; 15:658-672. [PMID: 33082572 PMCID: PMC8027882 DOI: 10.1038/s41396-020-00804-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 01/30/2023]
Abstract
The Amazon rainforest is a biodiversity hotspot and large terrestrial carbon sink threatened by agricultural conversion. Rainforest-to-pasture conversion stimulates the release of methane, a potent greenhouse gas. The biotic methane cycle is driven by microorganisms; therefore, this study focused on active methane-cycling microorganisms and their functions across land-use types. We collected intact soil cores from three land use types (primary rainforest, pasture, and secondary rainforest) of two geographically distinct areas of the Brazilian Amazon (Santarém, Pará and Ariquemes, Rondônia) and performed DNA stable-isotope probing coupled with metagenomics to identify the active methanotrophs and methanogens. At both locations, we observed a significant change in the composition of the isotope-labeled methane-cycling microbial community across land use types, specifically an increase in the abundance and diversity of active methanogens in pastures. We conclude that a significant increase in the abundance and activity of methanogens in pasture soils could drive increased soil methane emissions. Furthermore, we found that secondary rainforests had decreased methanogenic activity similar to primary rainforests, and thus a potential to recover as methane sinks, making it conceivable for forest restoration to offset greenhouse gas emissions in the tropics. These findings are critical for informing land management practices and global tropical rainforest conservation.
Collapse
Affiliation(s)
- Marie E. Kroeger
- grid.266683.f0000 0001 2184 9220Department of Microbiology, University of Massachusetts Amherst, Amherst, MA USA ,grid.148313.c0000 0004 0428 3079Present Address: Bioenergy and Biome Sciences, Los Alamos National Laboratory, Los Alamos, NM USA
| | - Laura K. Meredith
- grid.134563.60000 0001 2168 186XSchool of Natural Resources and the Environment, University of Arizona, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XBiosphere 2, University of Arizona, Tucson, AZ USA
| | - Kyle M. Meyer
- grid.170202.60000 0004 1936 8008Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA ,grid.47840.3f0000 0001 2181 7878Department of Integrative Biology, University of California–Berkeley, Berkeley, CA USA
| | - Kevin D. Webster
- grid.423138.f0000 0004 0637 3991Planetary Science Institute, Tucson, AZ USA
| | - Plinio Barbosa de Camargo
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Leandro Fonseca de Souza
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Siu Mui Tsai
- grid.11899.380000 0004 1937 0722Center for Nuclear Energy in Agriculture, University of São Paulo, São Paulo, SP Brazil
| | - Joost van Haren
- grid.134563.60000 0001 2168 186XBiosphere 2, University of Arizona, Tucson, AZ USA ,grid.134563.60000 0001 2168 186XHonors College, University of Arizona, Tucson, AZ USA
| | - Scott Saleska
- grid.134563.60000 0001 2168 186XDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ USA
| | - Brendan J. M. Bohannan
- grid.170202.60000 0004 1936 8008Institute of Ecology and Evolution, University of Oregon, Eugene, OR USA
| | - Jorge L. Mazza Rodrigues
- grid.27860.3b0000 0004 1936 9684Department of Land, Air and Water Resources, University of California, Davis, CA USA
| | - Erika Berenguer
- grid.9835.70000 0000 8190 6402Lancaster Environment Centre, Lancaster University, Lancaster, UK ,grid.4991.50000 0004 1936 8948Environmental Change Institute, University of Oxford, Oxford, UK
| | - Jos Barlow
- grid.9835.70000 0000 8190 6402Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Klaus Nüsslein
- grid.266683.f0000 0001 2184 9220Department of Microbiology, University of Massachusetts Amherst, Amherst, MA USA
| |
Collapse
|
12
|
Farhan Ul Haque M, Xu HJ, Murrell JC, Crombie A. Facultative methanotrophs - diversity, genetics, molecular ecology and biotechnological potential: a mini-review. MICROBIOLOGY (READING, ENGLAND) 2020; 166:894-908. [PMID: 33085587 PMCID: PMC7660913 DOI: 10.1099/mic.0.000977] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
Methane-oxidizing bacteria (methanotrophs) play a vital role in reducing atmospheric methane emissions, and hence mitigating their potent global warming effects. A significant proportion of the methane released is thermogenic natural gas, containing associated short-chain alkanes as well as methane. It was one hundred years following the description of methanotrophs that facultative strains were discovered and validly described. These can use some multi-carbon compounds in addition to methane, often small organic acids, such as acetate, or ethanol, although Methylocella strains can also use short-chain alkanes, presumably deriving a competitive advantage from this metabolic versatility. Here, we review the diversity and molecular ecology of facultative methanotrophs. We discuss the genetic potential of the known strains and outline the consequent benefits they may obtain. Finally, we review the biotechnological promise of these fascinating microbes.
Collapse
Affiliation(s)
| | - Hui-Juan Xu
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- Present address: Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Andrew Crombie
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- Present address: School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
13
|
Meyer-Dombard DR, Bogner JE, Malas J. A Review of Landfill Microbiology and Ecology: A Call for Modernization With 'Next Generation' Technology. Front Microbiol 2020; 11:1127. [PMID: 32582086 PMCID: PMC7283466 DOI: 10.3389/fmicb.2020.01127] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022] Open
Abstract
Engineered and monitored sanitary landfills have been widespread in the United States since the passage of the Clean Water Act (1972) with additional controls under RCRA Subtitle D (1991) and the Clean Air Act Amendments (1996). Concurrently, many common perceptions regarding landfill biogeochemical and microbiological processes and estimated rates of gas production also date from 2 to 4 decades ago. Herein, we summarize the recent application of modern microbiological tools as well as recent metadata analysis using California, USEPA and international data to outline an evolving view of landfill biogeochemical/microbiological processes and rates. We focus on United States landfills because these are uniformly subject to stringent national and state requirements for design, operations, monitoring, and reporting. From a microbiological perspective, because anoxic conditions and methanogenesis are rapidly established after daily burial of waste and application of cover soil, the >1000 United States landfills with thicknesses up to >100 m form a large ubiquitous group of dispersed 'dark' ecosystems dominated by anaerobic microbial decomposition pathways for food, garden waste, and paper substrates. We review past findings of landfill ecosystem processes, and reflect on the potential impact that application of modern sequencing technologies (e.g., high throughput platforms) could have on this area of research. Moreover, due to the ever evolving composition of landfilled waste reflecting transient societal practices, we also consider unusual microbial processes known or suspected to occur in landfill settings, and posit areas of research that will be needed in coming decades. With growing concerns about greenhouse gas emissions and controls, the increase of chemicals of emerging concern in the waste stream, and the potential resource that waste streams represent, application of modernized molecular and microbiological methods to landfill ecosystem research is of paramount importance.
Collapse
Affiliation(s)
- D’Arcy R. Meyer-Dombard
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | | | | |
Collapse
|
14
|
Diversity of active root-associated methanotrophs of three emergent plants in a eutrophic wetland in northern China. AMB Express 2020; 10:48. [PMID: 32170424 PMCID: PMC7070141 DOI: 10.1186/s13568-020-00984-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/03/2020] [Indexed: 02/02/2023] Open
Abstract
Root-associated aerobic methanotrophs play an important role in regulating methane emissions from the wetlands. However, the influences of the plant genotype on root-associated methanotrophic structures, especially on active flora, remain poorly understood. Transcription of the pmoA gene, encoding particulate methane monooxygenase in methanotrophs, was analyzed by reverse transcription PCR (RT-PCR) of mRNA isolated from root samples of three emergent macrophytes, including Phragmites australis, Typha angustifolia, and Schoenoplectus triqueter (syn. Scirpus triqueter L.) from a eutrophic wetland. High-throughput sequencing of pmoA based on DNA and cDNA was used to analyze the methanotrophic community. Sequencing of cDNA pmoA amplicons confirmed that the structure of active methanotrophic was not always consistent with DNA. A type I methanotroph, Methylomonas, was the most active group in P. australis, whereas Methylocystis, a type II methanotroph, was the dominant group in S. triqueter. In T. angustifolia, these two types of methanotroph existed in similar proportions. However, at the DNA level, Methylomonas was predominant in the roots of all three plants. In addition, vegetation type could have a profound impact on root-associated methanotrophic community at both DNA and cDNA levels. These results indicate that members of the genera Methylomonas (type I) and Methylocystis (type II) can significantly contribute to aerobic methane oxidation in a eutrophic wetland.
Collapse
|
15
|
Reddy KR, Rai RK, Green SJ, Chetri JK. Effect of temperature on methane oxidation and community composition in landfill cover soil. J Ind Microbiol Biotechnol 2019; 46:1283-1295. [PMID: 31317292 DOI: 10.1061/(asce)ee.1943-7870.0001712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/11/2019] [Indexed: 05/26/2023]
Abstract
Municipal solid waste (MSW) landfills are the third largest anthropogenic source of methane (CH4) emissions in the United States. The majority of CH4 generated in landfills is converted to carbon dioxide (CO2) by CH4-oxidizing bacteria (MOB) present in the landfill cover soil, whose activity is controlled by various environmental factors including temperature. As landfill temperature can fluctuate substantially seasonally, rates of CH4 oxidation can also vary, and this could lead to incomplete oxidation. This study aims at analyzing the effect of temperature on CH4 oxidation potential and microbial community structure of methanotrophs in laboratory-based studies of landfill cover soil and cultivated consortia. Soil and enrichment cultures were incubated at temperatures ranging from 6 to 70 °C, and rates of CH4 oxidation were measured, and the microbial community structure was analyzed using 16S rRNA gene amplicon sequencing and shotgun metagenome sequencing. CH4 oxidation occurred at temperatures from 6 to 50 °C in soil microcosm tests, and 6-40 °C in enrichment culture batch tests; maximum rates of oxidation were obtained at 30 °C. A corresponding shift in the soil microbiota was observed, with a transition from putative psychrophilic to thermophilic methanotrophs with increasing incubation temperature. A strong shift in methanotrophic community structure was observed above 30 °C. At temperatures up to 30 °C, methanotrophs from the genus Methylobacter were dominant in soils and enrichment cultures; at a temperature of 40 °C, putative thermophilic methanotrophs from the genus Methylocaldum become dominant. Maximum rate measurements of nearly 195 μg CH4 g-1 day-1 were observed in soil incubations, while observed maximum rates in enrichments were significantly lower, likely as a result of diffusion limitations. This study demonstrates that temperature is a critical factor affecting rates of landfill soil CH4 oxidation in vitro and that changing rates of CH4 oxidation are in part driven by changes in methylotroph community structure.
Collapse
Affiliation(s)
- Krishna R Reddy
- Department of Civil and Materials Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA.
| | - Raksha K Rai
- Department of Civil and Materials Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA
| | - Stefan J Green
- Department of Biological Sciences, Sequencing Core, Resources Center, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL, 60612, USA
| | - Jyoti K Chetri
- Department of Civil and Materials Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA
| |
Collapse
|
16
|
Reddy KR, Rai RK, Green SJ, Chetri JK. Effect of temperature on methane oxidation and community composition in landfill cover soil. J Ind Microbiol Biotechnol 2019; 46:1283-1295. [PMID: 31317292 DOI: 10.1007/s10295-019-02217-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/11/2019] [Indexed: 11/30/2022]
Abstract
Municipal solid waste (MSW) landfills are the third largest anthropogenic source of methane (CH4) emissions in the United States. The majority of CH4 generated in landfills is converted to carbon dioxide (CO2) by CH4-oxidizing bacteria (MOB) present in the landfill cover soil, whose activity is controlled by various environmental factors including temperature. As landfill temperature can fluctuate substantially seasonally, rates of CH4 oxidation can also vary, and this could lead to incomplete oxidation. This study aims at analyzing the effect of temperature on CH4 oxidation potential and microbial community structure of methanotrophs in laboratory-based studies of landfill cover soil and cultivated consortia. Soil and enrichment cultures were incubated at temperatures ranging from 6 to 70 °C, and rates of CH4 oxidation were measured, and the microbial community structure was analyzed using 16S rRNA gene amplicon sequencing and shotgun metagenome sequencing. CH4 oxidation occurred at temperatures from 6 to 50 °C in soil microcosm tests, and 6-40 °C in enrichment culture batch tests; maximum rates of oxidation were obtained at 30 °C. A corresponding shift in the soil microbiota was observed, with a transition from putative psychrophilic to thermophilic methanotrophs with increasing incubation temperature. A strong shift in methanotrophic community structure was observed above 30 °C. At temperatures up to 30 °C, methanotrophs from the genus Methylobacter were dominant in soils and enrichment cultures; at a temperature of 40 °C, putative thermophilic methanotrophs from the genus Methylocaldum become dominant. Maximum rate measurements of nearly 195 μg CH4 g-1 day-1 were observed in soil incubations, while observed maximum rates in enrichments were significantly lower, likely as a result of diffusion limitations. This study demonstrates that temperature is a critical factor affecting rates of landfill soil CH4 oxidation in vitro and that changing rates of CH4 oxidation are in part driven by changes in methylotroph community structure.
Collapse
Affiliation(s)
- Krishna R Reddy
- Department of Civil and Materials Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA.
| | - Raksha K Rai
- Department of Civil and Materials Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA
| | - Stefan J Green
- Department of Biological Sciences, Sequencing Core, Resources Center, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL, 60612, USA
| | - Jyoti K Chetri
- Department of Civil and Materials Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA
| |
Collapse
|
17
|
Xu S, Lu W, Muhammad FM, Liu Y, Guo H, Meng R, Wang H. New molecular method to detect denitrifying anaerobic methane oxidation bacteria from different environmental niches. J Environ Sci (China) 2018; 65:367-374. [PMID: 29548408 DOI: 10.1016/j.jes.2017.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/22/2017] [Accepted: 04/19/2017] [Indexed: 06/08/2023]
Abstract
The denitrifying anaerobic methane oxidation is an ecologically important process for reducing the potential methane emission into the atmosphere. The responsible bacterium for this process was Candidatus Methylomirabilis oxyfera belonging to the bacterial phylum of NC10. In this study, a new pair of primers targeting all the five groups of NC10 bacteria was designed to amplify NC10 bacteria from different environmental niches. The results showed that the group A was the dominant NC10 phylum bacteria from the sludges and food waste digestate while in paddy soil samples, group A and group B had nearly the same proportion. Our results also indicated that NC10 bacteria could exist in a high pH environment (pH9.24) from the food waste treatment facility. The Pearson relationship analysis showed that the pH had a significant positive relationship with the NC10 bacterial diversity (p<0.05). The redundancy analysis further revealed that the pH, volatile solid and nitrite nitrogen were the most important factors in shaping the NC10 bacterial structure (p=0.01) based on the variation inflation factors selection and Monte Carlo test (999 times). Results of this study extended the existing molecular tools for studying the NC10 bacterial community structures and provided new information on the ecological distributions of NC10 bacteria.
Collapse
Affiliation(s)
- Sai Xu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenjing Lu
- School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory for Solid Waste Management and Environment Safety (Tsinghua University), Ministry of Education of China, Tsinghua University, Beijing 100084, China.
| | | | - Yanting Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hanwen Guo
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruihong Meng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Hongtao Wang
- School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory for Solid Waste Management and Environment Safety (Tsinghua University), Ministry of Education of China, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Jiang B, Jin N, Xing Y, Su Y, Zhang D. Unraveling uncultivable pesticide degraders via stable isotope probing (SIP). Crit Rev Biotechnol 2018; 38:1025-1048. [DOI: 10.1080/07388551.2018.1427697] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Naifu Jin
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, PR China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, PR China
| | - Yuping Su
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
- Environmental Science and Engineering College, Fujian Normal University, Fuzhou, PR China
- School of Environment, Tsinghua University, Beijing, PR China
| |
Collapse
|
19
|
Martinez-Cruz K, Leewis MC, Herriott IC, Sepulveda-Jauregui A, Anthony KW, Thalasso F, Leigh MB. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:23-31. [PMID: 28686892 DOI: 10.1016/j.scitotenv.2017.06.187] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 05/25/2023]
Abstract
Anaerobic oxidation of methane (AOM) is a biological process that plays an important role in reducing the CH4 emissions from a wide range of ecosystems. Arctic and sub-Arctic lakes are recognized as significant contributors to global methane (CH4) emission, since CH4 production is increasing as permafrost thaws and provides fuels for methanogenesis. Methanotrophy, including AOM, is critical to reducing CH4 emissions. The identity, activity, and metabolic processes of anaerobic methane oxidizers are poorly understood, yet this information is critical to understanding CH4 cycling and ultimately to predicting future CH4 emissions. This study sought to identify the microorganisms involved in AOM in sub-Arctic lake sediments using DNA- and phospholipid-fatty acid (PLFA)- based stable isotope probing. Results indicated that aerobic methanotrophs belonging to the genus Methylobacter assimilate carbon from CH4, either directly or indirectly. Other organisms that were found, in minor proportions, to assimilate CH4-derived carbon were methylotrophs and iron reducers, which might indicate the flow of CH4-derived carbon from anaerobic methanotrophs into the broader microbial community. While various other taxa have been reported in the literature to anaerobically oxidize methane in various environments (e.g. ANME-type archaea and Methylomirabilis Oxyfera), this report directly suggest that Methylobacter can perform this function, expanding our understanding of CH4 oxidation in anaerobic lake sediments.
Collapse
Affiliation(s)
- Karla Martinez-Cruz
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA; Biotechnology and Bioengineering Department, Cinvestav, 2508 IPN Av, 07360, Mexico City, Mexico.
| | - Mary-Cathrine Leewis
- Institute of Arctic Biology, University of Alaska Fairbanks, 930 N Koyukuk Dr, 99775Fairbanks, AK, USA.
| | - Ian Charold Herriott
- Institute of Arctic Biology, University of Alaska Fairbanks, 930 N Koyukuk Dr, 99775Fairbanks, AK, USA.
| | - Armando Sepulveda-Jauregui
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA.
| | - Katey Walter Anthony
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA.
| | - Frederic Thalasso
- Water and Environmental Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, 306 Tanana Loop, 99775 Fairbanks, AK, USA; Biotechnology and Bioengineering Department, Cinvestav, 2508 IPN Av, 07360, Mexico City, Mexico.
| | - Mary Beth Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, 930 N Koyukuk Dr, 99775Fairbanks, AK, USA.
| |
Collapse
|
20
|
Xing ZL, Zhao TT, Gao YH, Yang X, Liu S, Peng XY. Methane oxidation in a landfill cover soil reactor: Changing of kinetic parameters and microorganism community structure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:254-264. [PMID: 27901632 DOI: 10.1080/10934529.2016.1253394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Changing of CH4 oxidation potential and biological characteristics with CH4 concentration was studied in a landfill cover soil reactor (LCSR). The maximum rate of CH4 oxidation reached 32.40 mol d-1 m-2 by providing sufficient O2 in the LCSR. The kinetic parameters of methane oxidation in landfill cover soil were obtained by fitting substrate diffusion and consumption model based on the concentration profile of CH4 and O2. The values of [Formula: see text] (0.93-2.29%) and [Formula: see text] (140-524 nmol kgsoil-DW-1·s-1) increased with CH4 concentration (9.25-20.30%), while the values of [Formula: see text] (312.9-2.6%) and [Formula: see text] (1.3 × 10-5 to 9.0 × 10-3 nmol mL-1 h-1) were just the opposite. MiSeq pyrosequencing data revealed that Methylobacter (the relative abundance was decreased with height of LCSR) and Methylococcales_unclassified (the relative abundance was increased expect in H 80) became the key players after incubation with increasing CH4 concentration. These findings provide information for assessing CH4 oxidation potential and changing of biological characteristics in landfill cover soil.
Collapse
Affiliation(s)
- Zhi L Xing
- a Faculty of Urban Construction and Environment Engineering, Chongqing University , Chongqing , China
- b School of Chemistry and Chemical Engineering, Chongqing University of Technology , Chongqing , China
| | - Tian T Zhao
- a Faculty of Urban Construction and Environment Engineering, Chongqing University , Chongqing , China
- b School of Chemistry and Chemical Engineering, Chongqing University of Technology , Chongqing , China
| | - Yan H Gao
- a Faculty of Urban Construction and Environment Engineering, Chongqing University , Chongqing , China
- b School of Chemistry and Chemical Engineering, Chongqing University of Technology , Chongqing , China
| | - Xu Yang
- b School of Chemistry and Chemical Engineering, Chongqing University of Technology , Chongqing , China
| | - Shuai Liu
- b School of Chemistry and Chemical Engineering, Chongqing University of Technology , Chongqing , China
| | - Xu Y Peng
- a Faculty of Urban Construction and Environment Engineering, Chongqing University , Chongqing , China
| |
Collapse
|
21
|
Coyotzi S, Pratscher J, Murrell JC, Neufeld JD. Targeted metagenomics of active microbial populations with stable-isotope probing. Curr Opin Biotechnol 2016; 41:1-8. [DOI: 10.1016/j.copbio.2016.02.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/09/2016] [Accepted: 02/13/2016] [Indexed: 02/02/2023]
|
22
|
Alpha- and Gammaproteobacterial Methanotrophs Codominate the Active Methane-Oxidizing Communities in an Acidic Boreal Peat Bog. Appl Environ Microbiol 2016; 82:2363-2371. [PMID: 26873322 DOI: 10.1128/aem.03640-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/03/2016] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to characterize metabolically active, aerobic methanotrophs in an ombrotrophic peatland in the Marcell Experimental Forest, in Minnesota. Methanotrophs were investigated in the field and in laboratory incubations using DNA-stable isotope probing (SIP), expression studies on particulate methane monooxygenase (pmoA) genes, and amplicon sequencing of 16S rRNA genes. Potential rates of oxidation ranged from 14 to 17 μmol of CH4g dry weight soil(-1)day(-1) Within DNA-SIP incubations, the relative abundance of methanotrophs increased from 4% in situ to 25 to 36% after 8 to 14 days. Phylogenetic analysis of the(13)C-enriched DNA fractions revealed that the active methanotrophs were dominated by the genera Methylocystis(type II;Alphaproteobacteria),Methylomonas, and Methylovulum(both, type I;Gammaproteobacteria). In field samples, a transcript-to-gene ratio of 1 to 2 was observed for pmoA in surface peat layers, which attenuated rapidly with depth, indicating that the highest methane consumption was associated with a depth of 0 to 10 cm. Metagenomes and sequencing of cDNA pmoA amplicons from field samples confirmed that the dominant active methanotrophs were Methylocystis and Methylomonas Although type II methanotrophs have long been shown to mediate methane consumption in peatlands, our results indicate that members of the genera Methylomonas and Methylovulum(type I) can significantly contribute to aerobic methane oxidation in these ecosystems.
Collapse
|
23
|
Henneberger R, Chiri E, Bodelier PEL, Frenzel P, Lüke C, Schroth MH. Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability. Environ Microbiol 2014; 17:1721-37. [PMID: 25186436 DOI: 10.1111/1462-2920.12617] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/31/2014] [Indexed: 01/11/2023]
Abstract
Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4 ) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar lipid-derived fatty acids (PLFA-SIP) were complemented by microarray analysis of pmoA genes and transcripts, linking diversity and function at the field scale. In situ CH4 oxidation rates varied between sites and were generally one order of magnitude lower in winter compared with summer. Results from PLFA-SIP and pmoA transcripts were largely congruent, revealing distinct spatial and seasonal clustering. Overall, active MOB communities were highly diverse. Type Ia MOB, specifically Methylomonas and Methylobacter, were key drivers for CH4 oxidation, particularly at a high-activity site. Type II MOB were mainly active at a site showing substantial fluctuations in CH4 loading and soil moisture content. Notably, Upland Soil Cluster-gamma-related pmoA transcripts were also detected, indicating concurrent oxidation of atmospheric CH4 . Spatial separation was less distinct in winter, with Methylobacter and uncultured MOB mediating CH4 oxidation. We propose that high diversity of active MOB communities in this soil is promoted by high variability in environmental conditions, facilitating substantial removal of CH4 generated in the waste body.
Collapse
Affiliation(s)
- Ruth Henneberger
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
24
|
Sharp CE, Martínez-Lorenzo A, Brady AL, Grasby SE, Dunfield PF. Methanotrophic bacteria in warm geothermal spring sediments identified using stable-isotope probing. FEMS Microbiol Ecol 2014; 90:92-102. [DOI: 10.1111/1574-6941.12375] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/11/2014] [Accepted: 06/22/2014] [Indexed: 01/06/2023] Open
Affiliation(s)
- Christine E. Sharp
- Department of Biological Sciences; University of Calgary; Calgary AB Canada
| | | | - Allyson L. Brady
- Department of Biological Sciences; University of Calgary; Calgary AB Canada
| | | | - Peter F. Dunfield
- Department of Biological Sciences; University of Calgary; Calgary AB Canada
| |
Collapse
|
25
|
Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera". Appl Environ Microbiol 2014; 80:2451-60. [PMID: 24509918 DOI: 10.1128/aem.04199-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Methane is an important greenhouse gas and the most abundant hydrocarbon in the Earth's atmosphere. Methanotrophic microorganisms can use methane as their sole energy source and play a crucial role in the mitigation of methane emissions in the environment. "Candidatus Methylomirabilis oxyfera" is a recently described intra-aerobic methanotroph that is assumed to use nitric oxide to generate internal oxygen to oxidize methane via the conventional aerobic pathway, including the monooxygenase reaction. Previous genome analysis has suggested that, like the verrucomicrobial methanotrophs, "Ca. Methylomirabilis oxyfera" encodes and transcribes genes for the Calvin-Benson-Bassham (CBB) cycle for carbon assimilation. Here we provide multiple independent lines of evidence for autotrophic carbon dioxide fixation by "Ca. Methylomirabilis oxyfera" via the CBB cycle. The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), a key enzyme of the CBB cycle, in cell extracts from an "Ca. Methylomirabilis oxyfera" enrichment culture was shown to account for up to 10% of the total methane oxidation activity. Labeling studies with whole cells in batch incubations supplied with either (13)CH4 or [(13)C]bicarbonate revealed that "Ca. Methylomirabilis oxyfera" biomass and lipids became significantly more enriched in (13)C after incubation with (13)C-labeled bicarbonate (and unlabeled methane) than after incubation with (13)C-labeled methane (and unlabeled bicarbonate), providing evidence for autotrophic carbon dioxide fixation. Besides this experimental approach, detailed genomic and transcriptomic analysis demonstrated an operational CBB cycle in "Ca. Methylomirabilis oxyfera." Altogether, these results show that the CBB cycle is active and plays a major role in carbon assimilation by "Ca. Methylomirabilis oxyfera" bacteria. Our results suggest that autotrophy might be more widespread among methanotrophs than was previously assumed and implies that a methanotrophic community in the environment is not necessarily revealed by (13)C-depleted lipids.
Collapse
|
26
|
Kallistova AY, Montonen L, Jurgens G, Münster U, Kevbrina MV, Nozhevnikova AN. Culturable psychrotolerant methanotrophic bacteria in landfill cover soil. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714010044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Dam B, Dam S, Blom J, Liesack W. Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp. strain SC2. PLoS One 2013; 8:e74767. [PMID: 24130670 PMCID: PMC3794950 DOI: 10.1371/journal.pone.0074767] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/28/2013] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Methylocystis sp. strain SC2 can adapt to a wide range of methane concentrations. This is due to the presence of two isozymes of particulate methane monooxygenase exhibiting different methane oxidation kinetics. To gain insight into the underlying genetic information, its genome was sequenced and found to comprise a 3.77 Mb chromosome and two large plasmids. PRINCIPAL FINDINGS We report important features of the strain SC2 genome. Its sequence is compared with those of seven other methanotroph genomes, comprising members of the Alphaproteobacteria, Gammaproteobacteria, and Verrucomicrobia. While the pan-genome of all eight methanotroph genomes totals 19,358 CDS, only 154 CDS are shared. The number of core genes increased with phylogenetic relatedness: 328 CDS for proteobacterial methanotrophs and 1,853 CDS for the three alphaproteobacterial Methylocystaceae members, Methylocystis sp. strain SC2 and strain Rockwell, and Methylosinus trichosporium OB3b. The comparative study was coupled with physiological experiments to verify that strain SC2 has diverse nitrogen metabolism capabilities. In correspondence to a full complement of 34 genes involved in N2 fixation, strain SC2 was found to grow with atmospheric N2 as the sole nitrogen source, preferably at low oxygen concentrations. Denitrification-mediated accumulation of 0.7 nmol (30)N2/hr/mg dry weight of cells under anoxic conditions was detected by tracer analysis. N2 production is related to the activities of plasmid-borne nitric oxide and nitrous oxide reductases. CONCLUSIONS/PERSPECTIVES Presence of a complete denitrification pathway in strain SC2, including the plasmid-encoded nosRZDFYX operon, is unique among known methanotrophs. However, the exact ecophysiological role of this pathway still needs to be elucidated. Detoxification of toxic nitrogen compounds and energy conservation under oxygen-limiting conditions are among the possible roles. Relevant features that may stimulate further research are, for example, absence of CRISPR/Cas systems in strain SC2, high number of iron acquisition systems in strain OB3b, and large number of transposases in strain Rockwell.
Collapse
Affiliation(s)
- Bomba Dam
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Somasri Dam
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Jochen Blom
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Werner Liesack
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
28
|
Aerobic Methanotrophs in Natural and Agricultural Soils of European Russia. DIVERSITY 2013. [DOI: 10.3390/d5030541] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Mills CT, Slater GF, Dias RF, Carr SA, Reddy CM, Schmidt R, Mandernack KW. The relative contribution of methanotrophs to microbial communities and carbon cycling in soil overlying a coal-bed methane seep. FEMS Microbiol Ecol 2013; 84:474-94. [PMID: 23346979 DOI: 10.1111/1574-6941.12079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 11/30/2022] Open
Abstract
Seepage of coal-bed methane (CBM) through soils is a potential source of atmospheric CH4 and also a likely source of ancient (i.e. (14) C-dead) carbon to soil microbial communities. Natural abundance (13) C and (14) C compositions of bacterial membrane phospholipid fatty acids (PLFAs) and soil gas CO2 and CH4 were used to assess the incorporation of CBM-derived carbon into methanotrophs and other members of the soil microbial community. Concentrations of type I and type II methanotroph PLFA biomarkers (16:1ω8c and 18:1ω8c, respectively) were elevated in CBM-impacted soils compared with a control site. Comparison of PLFA and 16s rDNA data suggested type I and II methanotroph populations were well estimated and overestimated by their PLFA biomarkers, respectively. The δ(13) C values of PLFAs common in type I and II methanotrophs were as negative as -67‰ and consistent with the assimilation of CBM. PLFAs more indicative of nonmethanotrophic bacteria had δ(13) C values that were intermediate indicating assimilation of both plant- and CBM-derived carbon. Δ(14) C values of select PLFAs (-351 to -936‰) indicated similar patterns of CBM assimilation by methanotrophs and nonmethanotrophs and were used to estimate that 35-91% of carbon assimilated by nonmethanotrophs was derived from CBM depending on time of sampling and soil depth.
Collapse
Affiliation(s)
- Christopher T Mills
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, CO, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Microorganisms in landfill bioreactors for accelerated stabilization of solid wastes. J Biosci Bioeng 2012; 114:243-50. [DOI: 10.1016/j.jbiosc.2012.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 03/24/2012] [Accepted: 04/06/2012] [Indexed: 11/22/2022]
|
31
|
Sharp CE, Stott MB, Dunfield PF. Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing. Front Microbiol 2012; 3:303. [PMID: 22912630 PMCID: PMC3421453 DOI: 10.3389/fmicb.2012.00303] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/31/2012] [Indexed: 12/22/2022] Open
Abstract
Genomic analysis of the methanotrophic verrucomicrobium “Methylacidiphilum infernorum” strain V4 has shown that most pathways conferring its methanotrophic lifestyle are similar to those found in proteobacterial methanotrophs. However, due to the large sequence divergence of its methane monooxygenase-encoding genes (pmo), “universal” pmoA polymerase chain reaction (PCR) primers do not target these bacteria. Unlike proteobacterial methanotrophs, “Methylacidiphilum” fixes carbon autotrophically, and uses methane only for energy generation. As a result, techniques used to detect methanotrophs in the environment such as 13CH4-stable isotope probing (SIP) and pmoA-targeted PCR do not detect verrucomicrobial methanotrophs, and they may have been overlooked in previous environmental studies. We developed a modified SIP technique to identify active methanotrophic Verrucomicrobia in the environment by labeling with 13CO2 and 13CH4, individually and in combination. Testing the protocol in “M. infernorum” strain V4 resulted in assimilation of 13CO2 but not 13CH4, verifying its autotrophic lifestyle. To specifically detect methanotrophs (as opposed to other autotrophs) via 13CO2-SIP, a quantitative PCR (qPCR) assay specific for verrucomicrobial-pmoA genes was developed and used in combination with SIP. Incubation of an acidic, high-temperature geothermal soil with 13CH4 + 12CO2 caused little shift in the density distribution of verrucomicrobial-pmoA genes relative to controls. However, labeling with 13CO2 in combination with 12CH4 or 13CH4 induced a strong shift in the distribution of verrucomicrobial-pmoA genes towards the heavy DNA fractions. The modified SIP technique demonstrated that the primary methanotrophs active in the soil were autotrophs and belonged to the Verrucomicrobia. This is the first demonstration of autotrophic, non-proteobacterial methanotrophy in situ, and provides a tool to detect verrucomicrobial methanotrophs in other ecosystems.
Collapse
Affiliation(s)
- Christine E Sharp
- Department of Biological Sciences, University of Calgary Calgary, AB, Canada
| | | | | |
Collapse
|
32
|
Yun J, Zhuang G, Ma A, Guo H, Wang Y, Zhang H. Community structure, abundance, and activity of methanotrophs in the Zoige wetland of the Tibetan Plateau. MICROBIAL ECOLOGY 2012; 63:835-843. [PMID: 22159497 DOI: 10.1007/s00248-011-9981-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/29/2011] [Indexed: 05/31/2023]
Abstract
The Zoige wetland of the Tibetan Plateau is a high-altitude tundra wetland and one of the biggest methane emission centers in China. In this study, methanotrophs with respect to community structure, abundance, and activity were investigated in peat soils collected in the vicinity of different marshland plants that dominate different regions of the wetland, including Polygonum amphibium, Carex muliensis, and Eleocharis valleculosa (EV). 16S rRNA gene and particulate methane monooxygenase gene (pmoA) clone library sequence data indicated the presence of methanotrophs with two genera, Methylobacter and Methylocystis. Methylococcus, like pmoA gene sequences, were also retrieved and showed low similarity to those from Methylococcus spp. and thus indicates the existence of novel methanotrophs in the Zoige wetland. Quantitative polymerase chain reaction (qPCR) assays were used to measure the abundance of methantrophs and detected 10(7) to 10(8) of total pmoA gene copies per gram dry weight of soil in the three marshes. Group-specific qPCR and reverse transcriptase qPCR results found that the Methylobacter genus dominates the wetland, and Methylocystis methanotrophs were less abundant, although this group of methanotrophs was estimated to be more active according to mRNA/DNA ratio. Furthermore, EV marsh demonstrated the highest methanotrophs abundance and activity among the three marshes investigated. Our study suggests that both type I and type II methanotrophs contribute to the methane oxidation in the Zoige wetland.
Collapse
Affiliation(s)
- Juanli Yun
- Graduate University of Chinese Academic of Sciences, 19 A Yuquan Road, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
33
|
Shifts in identity and activity of methanotrophs in arctic lake sediments in response to temperature changes. Appl Environ Microbiol 2012; 78:4715-23. [PMID: 22522690 DOI: 10.1128/aem.00853-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Methane (CH(4)) flux to the atmosphere is mitigated via microbial CH(4) oxidation in sediments and water. As arctic temperatures increase, understanding the effects of temperature on the activity and identity of methanotrophs in arctic lake sediments is important to predicting future CH(4) emissions. We used DNA-based stable-isotope probing (SIP), quantitative PCR (Q-PCR), and pyrosequencing analyses to identify and characterize methanotrophic communities active at a range of temperatures (4°C, 10°C, and 21°C) in sediments (to a depth of 25 cm) sampled from Lake Qalluuraq on the North Slope of Alaska. CH(4) oxidation activity was measured in microcosm incubations containing sediments at all temperatures, with the highest CH(4) oxidation potential of 37.5 μmol g(-1) day(-1) in the uppermost (depth, 0 to 1 cm) sediment at 21°C after 2 to 5 days of incubation. Q-PCR of pmoA and of the 16S rRNA genes of type I and type II methanotrophs, and pyrosequencing of 16S rRNA genes in (13)C-labeled DNA obtained by SIP demonstrated that the type I methanotrophs Methylobacter, Methylomonas, and Methylosoma dominated carbon acquisition from CH(4) in the sediments. The identity and relative abundance of active methanotrophs differed with the incubation temperature. Methylotrophs were also abundant in the microbial community that derived carbon from CH(4), especially in the deeper sediments (depth, 15 to 20 cm) at low temperatures (4°C and 10°C), and showed a good linear relationship (R = 0.82) with the relative abundances of methanotrophs in pyrosequencing reads. This study describes for the first time how methanotrophic communities in arctic lake sediments respond to temperature variations.
Collapse
|
34
|
Henneberger R, Lüke C, Mosberger L, Schroth MH. Structure and function of methanotrophic communities in a landfill-cover soil. FEMS Microbiol Ecol 2012; 81:52-65. [PMID: 22172054 DOI: 10.1111/j.1574-6941.2011.01278.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/23/2011] [Accepted: 12/05/2011] [Indexed: 11/30/2022] Open
Abstract
In landfill-cover soils, aerobic methane-oxidizing bacteria (MOB) convert CH(4) to CO(2), mitigating emissions of the greenhouse gas CH(4) to the atmosphere. We investigated overall MOB community structure and assessed spatial differences in MOB diversity, abundance and activity in a Swiss landfill-cover soil. Molecular cloning, terminal restriction-fragment length polymorphism (T-RFLP) and quantitative PCR of pmoA genes were applied to soil collected from 16 locations at three different depths to study MOB community structure, diversity and abundance; MOB activity was measured in the field using gas push-pull tests. The MOB community was highly diverse but dominated by Type Ia MOB, with novel pmoA sequences present. Type II MOB were detected mainly in deeper soil with lower nutrient and higher CH(4) concentrations. Substantial differences in MOB community structure were observed between one high- and one low-activity location. MOB abundance was highly variable across the site [4.0 × 10(4) to 1.1 × 10(7) (g soil dry weight)(-1)]. Potential CH(4) oxidation rates were high [1.8-58.2 mmol CH(4) (L soil air)(-1) day(-1) ] but showed significant lateral variation and were positively correlated with mean CH(4) concentrations (P < 0.01), MOB abundance (P < 0.05) and MOB diversity (weak correlation, P < 0.17). Our findings indicate that Methylosarcina and closely related MOB are key players and that MOB abundance and community structure are driving factors in CH(4) oxidation at this landfill.
Collapse
Affiliation(s)
- Ruth Henneberger
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
35
|
Lü F, He P, Guo M, Yang N, Shao L. Ammonium-dependent regulation of aerobic methane-consuming bacteria in landfill cover soil by leachate irrigation. J Environ Sci (China) 2012; 24:711-719. [PMID: 22894107 DOI: 10.1016/s1001-0742(11)60813-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The impacts of landfill leachate irrigation on methane oxidation activities and methane-consuming bacteria populations were studied by incubation of landfill cover soils with leachate and (NH4)2SO4 solution at different ammonium concentrations. The community structures and abundances of methane-oxidizing bacteria (MOB) and ammonia-oxidizing bacteria (AOB) were examined by PCR-DGGE and real-time PCR. Compared with the pure (NH4)2SO4 solution, leachate addition was found to have a positive effect on methane oxidation activity. In terms of the irrigation amount, ammonium in leachate was responsible for the actual inhibition of leachate. The extent of inhibitory effect mainly depended on its ammonium concentration. The suppression of the predominant methane-consuming bacteria, type I MOB, was responsible for the decreased methane oxidation activity by ammonium inhibition. Methane-consuming bacteria responded diversely in abundance to ammonium. The abundance of type I MOB decreased by fivefold; type II MOB showed stimulation response of fivefold magnification upon the first addition but lessened to be lower than the original level after the second addition; the amount of AOB was stimulated to increase for 20-30 times gradually. Accumulated nitrate from nitrification strengthened the ammonium inhibition on type I and type II MOB, as a result, repetitive irrigation was unfavorable for methane oxidation.
Collapse
Affiliation(s)
- Fan Lü
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | | | | | | | | |
Collapse
|
36
|
Ekkers DM, Cretoiu MS, Kielak AM, van Elsas JD. The great screen anomaly--a new frontier in product discovery through functional metagenomics. Appl Microbiol Biotechnol 2011; 93:1005-20. [PMID: 22189864 PMCID: PMC3264863 DOI: 10.1007/s00253-011-3804-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/27/2011] [Accepted: 11/29/2011] [Indexed: 11/25/2022]
Abstract
Functional metagenomics, the study of the collective genome of a microbial community by expressing it in a foreign host, is an emerging field in biotechnology. Over the past years, the possibility of novel product discovery through metagenomics has developed rapidly. Thus, metagenomics has been heralded as a promising mining strategy of resources for the biotechnological and pharmaceutical industry. However, in spite of innovative work in the field of functional genomics in recent years, yields from function-based metagenomics studies still fall short of producing significant amounts of new products that are valuable for biotechnological processes. Thus, a new set of strategies is required with respect to fostering gene expression in comparison to the traditional work. These new strategies should address a major issue, that is, how to successfully express a set of unknown genes of unknown origin in a foreign host in high throughput. This article is an opinionating review of functional metagenomic screening of natural microbial communities, with a focus on the optimization of new product discovery. It first summarizes current major bottlenecks in functional metagenomics and then provides an overview of the general metagenomic assessment strategies, with a focus on the challenges that are met in the screening for, and selection of, target genes in metagenomic libraries. To identify possible screening limitations, strategies to achieve optimal gene expression are reviewed, examining the molecular events all the way from the transcription level through to the secretion of the target gene product.
Collapse
Affiliation(s)
- David Matthias Ekkers
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Mariana Silvia Cretoiu
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Anna Maria Kielak
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Centre for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
37
|
Kip N, Dutilh BE, Pan Y, Bodrossy L, Neveling K, Kwint MP, Jetten MSM, Op den Camp HJM. Ultra-deep pyrosequencing of pmoA amplicons confirms the prevalence of Methylomonas and Methylocystis in Sphagnum mosses from a Dutch peat bog. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:667-673. [PMID: 23761355 DOI: 10.1111/j.1758-2229.2011.00260.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Sphagnum peatlands are important ecosystems in the methane cycle. Methanotrophs in these ecosystems have been shown to reduce methane emissions and provide additional carbon to Sphagnum mosses. However, little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses in these peatlands. In this study, we applied a pmoA microarray and high-throughput 454 pyrosequencing to pmoA PCR products obtained from total DNA from Sphagnum mosses from a Dutch peat bog to investigate the presence of methanotrophs and to compare the two different methods. Both techniques showed comparable results and revealed an abundance of Methylomonas and Methylocystis species in the Sphagnum mosses. The advantage of the microarray analysis is that it is fast and cost-effective, especially when many samples have to be screened. Pyrosequencing is superior in providing pmoA sequences of many unknown or uncultivated methanotrophs present in the Sphagnum mosses and, thus, provided much more detailed and quantitative insight into the microbial diversity.
Collapse
Affiliation(s)
- Nardy Kip
- Radboud University Nijmegen, Institute for Water and Wetland Research (IWWR), Department of Microbiology, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands. Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands. Department of Bioresources, AIT, Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria. Department of Human Genetics, Radboud University Nijmegen Medical Centre, Geert Grooteplein 10, 6525 GA Nijmegen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kumaresan D, Stralis-Pavese N, Abell GCJ, Bodrossy L, Murrell JC. Physical disturbance to ecological niches created by soil structure alters community composition of methanotrophs. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:613-621. [PMID: 23761342 DOI: 10.1111/j.1758-2229.2011.00270.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Aggregates of different sizes and stability in soil create a composite of ecological niches differing in terms of physico-chemical and structural characteristics. The aim of this study was to identify, using DNA-SIP and mRNA-based microarray analysis, whether shifts in activity and community composition of methanotrophs occur when ecological niches created by soil structure are physically perturbed. Landfill cover soil was subject to three treatments termed: 'control' (minimal structural disruption), 'sieved' (sieved soil using 2 mm mesh) and 'ground' (grinding using mortar and pestle). 'Sieved' and 'ground' soil treatments exhibited higher methane oxidation potentials compared with the 'control' soil treatment. Analysis of the active community composition revealed an effect of physical disruption on active methanotrophs. Type I methanotrophs were the most active methanotrophs in 'sieved' and 'ground' soil treatments, whereas both Type I and Type II methanotrophs were active in the 'control' soil treatment. The result emphasize that changes to a particular ecological niche may not result in an immediate change to the active bacterial composition and change in composition will depend on the ability of the bacterial communities to respond to the perturbation.
Collapse
Affiliation(s)
- Deepak Kumaresan
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK Austrian Institute of Technology, Department of Bioresources, A-2444 Seibersdorf, Austria
| | | | | | | | | |
Collapse
|
39
|
Lüke C, Bodrossy L, Lupotto E, Frenzel P. Methanotrophic bacteria associated to rice roots: the cultivar effect assessed by T-RFLP and microarray analysis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:518-525. [PMID: 23761330 DOI: 10.1111/j.1758-2229.2011.00251.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Rice plants play a key role in regulating methane emissions from paddy fields by affecting both underlying processes: methane production and oxidation. Specific differences were reported for methane oxidation rates; however, studies on the bacterial communities involved are rare. Here, we analysed the methanotrophic community on the roots of 18 different rice cultivars by pmoA-based terminal restriction fragment length polymorphism (T-RFLP) and microarray analysis. Both techniques showed comparable and consistent results revealing a high diversity dominated by type II and type Ib methanotrophs. pmoA microarrays have been successfully used to study methane-oxidizing bacteria in various environments. However, the microarray's full potential resolving community structure has not been exploited yet. Here, we provide an example on how to include this information into multivariate statistics. The analysis revealed a rice cultivar effect on the methanotroph community composition that could be affiliated to the plant genotype. This effect became only significant by including the specific phylogenetic resolution provided by the microarray into the statistical analysis.
Collapse
Affiliation(s)
- Claudia Lüke
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str.10, D-35043 Marburg, Germany. Department of Bioresources/Microbiology, Austrian Institute of Technology, Seibersdorf, Austria. CRA-Agricultural Research Council, Rice Research Unit, s.s.11 to Torino km 2.5, 13100 Vercelli, Italy
| | | | | | | |
Collapse
|
40
|
Mayumi D, Yoshimoto T, Uchiyama H, Nomura N, Nakajima-Kambe T. Seasonal change in methanotrophic diversity and populations in a rice field soil assessed by DNA-stable isotope probing and quantitative real-time PCR. Microbes Environ 2011; 25:156-63. [PMID: 21576868 DOI: 10.1264/jsme2.me10120] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The community structure of methane-oxidizing bacteria (methanotrophs) is affected by concentrations of methane and oxygen. In rice fields, concentrations of both gases differ significantly between the flooded and drained seasons. We investigated the active methanotrophic community structures in flooded and drained soils by DNA-based stable isotope probing. Active methanotrophic diversity was assessed with clone library-based analyses of the 16S rRNA gene and the particulate methane monooxygenase gene (pmoA). The active methanotrophic populations were also estimated by group-specific quantitative real-time PCR assays targeting the 16S rRNA gene and the pmoA gene in (13)C-labeled DNA. These molecular biological analyses showed that the flooded rice field soil was dominated by Type II methanotrophs closely related to the genera Methylocystis and Methylosinus, whereas the drained rice field soil was dominated by Type I methanotrophs closely related to the genera Methylomonas, Methylosarcina, and Methylomicrobium. The alternating conditions in a rice field select for methanotrophs adapted to each environment, resulting in a dramatic change in methanotrophic community structure from one season to another.
Collapse
Affiliation(s)
- Daisuke Mayumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8572, Japan
| | | | | | | | | |
Collapse
|
41
|
Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. Appl Environ Microbiol 2011; 77:5643-54. [PMID: 21724892 DOI: 10.1128/aem.05017-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphaproteobacterial methanotrophs was found. With Sphagnum mosses as the inoculum, alpha- and gammaproteobacterial acidophilic methanotrophs were isolated using established and newly designed media. The 16S rRNA, pmoA, pxmA, and mmoX gene sequences showed that the alphaproteobacterial isolates belonged to the Methylocystis and Methylosinus genera. The Methylosinus species isolated are the first acid-tolerant members of this genus. Of the acidophilic gammaproteobacterial strains isolated, strain M5 was affiliated with the Methylomonas genus, and the other strain, M200, may represent a novel genus, most closely related to the genera Methylosoma and Methylovulum. So far, no acidophilic or acid-tolerant methanotrophs in the Gammaproteobacteria class are known. All strains showed the typical features of either type I or II methanotrophs and are, to the best of our knowledge, the first isolated (acidophilic or acid-tolerant) methanotrophs from Sphagnum mosses.
Collapse
|
42
|
Interaction and independence on methane oxidation of landfill cover soil among three impact factors: water, oxygen and ammonium. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11783-011-0320-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Analysis of methanotroph community composition using a pmoA-based microbial diagnostic microarray. Nat Protoc 2011; 6:609-24. [PMID: 21527919 DOI: 10.1038/nprot.2010.191] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microbial diagnostic microarrays (MDMs) are highly parallel hybridization platforms containing multiple sets of immobilized oligonucleotide probes used for parallel detection and identification of many different microorganisms in environmental and clinical samples. Each probe is approximately specific to a given group of organisms. Here we describe the protocol used to develop and validate an MDM method for the semiquantification of a range of functional genes--in this case, particulate methane monooxygenase (pmoA)--and we give an example of its application to the study of the community structure of methanotrophs and functionally related bacteria in the environment. The development and validation of an MDM, following this protocol, takes ∼6 months. The pmoA MDM described in detail comprises 199 probes and addresses ∼50 different species-level clades. An experiment comprising 24 samples can be completed, from DNA extraction to data acquisition, within 3 d (12-13 h bench work).
Collapse
|
44
|
Genome sequence of the methanotrophic alphaproteobacterium Methylocystis sp. strain Rockwell (ATCC 49242). J Bacteriol 2011; 193:2668-9. [PMID: 21441518 DOI: 10.1128/jb.00278-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylocystis sp. strain Rockwell (ATCC 49242) is an aerobic methane-oxidizing alphaproteobacterium isolated from an aquifer in southern California. Unlike most methanotrophs in the Methylocystaceae family, this strain has a single pmo operon encoding particulate methane monooxygenase but no evidence of the genes encoding soluble methane monooxygenase. This is the first reported genome sequence of a member of the Methylocystis species of the Methylocystaceae family in the order Rhizobiales.
Collapse
|
45
|
Dumont MG, Pommerenke B, Casper P, Conrad R. DNA-, rRNA- and mRNA-based stable isotope probing of aerobic methanotrophs in lake sediment. Environ Microbiol 2011; 13:1153-67. [PMID: 21261798 DOI: 10.1111/j.1462-2920.2010.02415.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A stable isotope probing (SIP) approach was used to study aerobic methane-oxidizing bacteria (methanotrophs) in lake sediment. Oligotrophic Lake Stechlin was chosen because it has a permanently oxic sediment surface. 16S rRNA and the pmoA gene, which encodes a subunit of the methane monooxygenase enzyme, were analysed following the incubation of sediment with (13) CH(4) and the separation of (13) C-labelled DNA and RNA from unlabelled nucleic acids. The incubation with (13) CH(4) was performed over a 4-day time-course and the pmoA genes and transcripts became progressively labelled such that approximately 70% of the pmoA genes and 80% of the transcripts were labelled at 96 h. The labelling of pmoA mRNA was quicker than pmoA genes, demonstrating that mRNA-SIP is more sensitive than DNA-SIP; however, the general rate of pmoA transcript labelling was comparable to that of the pmoA genes, indicating that the incorporation of (13) C into ribonucleic acids of methanotrophs was a gradual process. Labelling of Betaproteobacteria was clearly seen in analyses of 16S rRNA by DNA-SIP and not by RNA-SIP, suggesting that cross-feeding of the (13) C was primarily detected by DNA-SIP. In general, we show that the combination of SIP approaches provided valuable information about the activity and growth of the methanotrophic populations and the cross-feeding of methanotroph metabolites by other microorganisms.
Collapse
Affiliation(s)
- Marc G Dumont
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse, Marburg, Germany.
| | | | | | | |
Collapse
|
46
|
Lee EH, Park H, Cho KS. Effect of substrate interaction on oxidation of methane and benzene in enriched microbial consortia from landfill cover soil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2011; 46:997-1007. [PMID: 21847790 DOI: 10.1080/10934529.2011.586266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The interaction of methane and benzene during oxidation in enriched methane-oxidizing consortium (MOC) and in benzene-oxidizing consortium (BOC) from landfill cover soil was characterized. Oxidation of both methane and benzene occurred in the MOC due to the coexistence of bacteria responsible for benzene oxidation, as well as methanotrophs, whereas in the BOC, only benzene was oxidized, not methane. Methane oxidation rates in the MOC were decreased with increasing benzene/methane ratio (mol/mol), indicating its methane oxidation was inhibited by the benzene coexistence. Benzene oxidation rates in the MOC, however, were increased with increasing benzene/methane ratio. The benzene oxidation in the BOC was not affected by the coexistence of methane or by the ratio of methane/benzene ratio (mol/mol). No effect of methane or benzene was found on the dynamics of functional genes, such as particulate methane monooxygenase and toluene monooxygenase, in association with oxidation of methane and benzene in the MOC and BOC.
Collapse
Affiliation(s)
- Eun-Hee Lee
- Department of Environmental Science and Engineering, Ewha Womans University, Republic of Korea
| | | | | |
Collapse
|
47
|
Lee EH, Park H, Cho KS. Characterization of methane, benzene and toluene-oxidizing consortia enriched from landfill and riparian wetland soils. JOURNAL OF HAZARDOUS MATERIALS 2010; 184:313-320. [PMID: 20832163 DOI: 10.1016/j.jhazmat.2010.08.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/14/2010] [Accepted: 08/11/2010] [Indexed: 05/29/2023]
Abstract
The microbial oxidations of methane (M) and volatile organic compounds (VOCs) were compared with those of M and VOCs alone after enriching soil samples with M and/or VOCs. Landfill cover and riparian wetland soils from which M and VOCs were simultaneously emitted were selected as representative samples. Benzene (B) and toluene (T) were employed as the model VOCs. With the landfill soil consortia, the rate of M oxidation decreased from 4.15-5.56 to 2.26-3.42 μmol g-dry soil(-1)h(-1) in the presence of both B and T, but with the wetland soil consortia the rate of M oxidation (3.09 μmol g-dry soil(-1)h(-1)) in the mixture of M as well as both B and T was similar to that of M alone (3.04 μmol g-dry soil(-1)h(-1)). Compared with the methanotrophic community with M alone, the portion of type II methanotrophs was greater in the landfill consortia; whereas, the proportion in wetland consortia was less in the presence of both B and T. The oxidations of B and T were stimulated by the presence of M with both the landfill and wetland consortia. There were no correlations between the oxidation rate of M and those of B and T with the gene copy numbers of pmoA and tmoA responsible for the oxidations.
Collapse
Affiliation(s)
- Eun-Hee Lee
- Department of Environmental Science and Engineering, Ewha Womans University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Hyunjung Park
- Department of Environmental Science and Engineering, Ewha Womans University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul 120-750, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Womans University, 11-1 Daehyun-dong, Seodaemun-gu, Seoul 120-750, Republic of Korea.
| |
Collapse
|
48
|
Current knowledge of microbial community structures in landfills and its cover soils. Appl Microbiol Biotechnol 2010; 89:961-9. [DOI: 10.1007/s00253-010-3024-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/17/2010] [Accepted: 11/17/2010] [Indexed: 10/18/2022]
|
49
|
Field application of nitrogen and phenylacetylene to mitigate greenhouse gas emissions from landfill cover soils: effects on microbial community structure. Appl Microbiol Biotechnol 2010; 89:189-200. [PMID: 20809077 DOI: 10.1007/s00253-010-2811-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/17/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
Abstract
Landfills are large sources of CH(4), but a considerable amount of CH(4) can be removed in situ by methanotrophs if their activity can be stimulated through the addition of nitrogen. Nitrogen can, however, lead to increased N(2)O production. To examine the effects of nitrogen and a selective inhibitor on CH(4) oxidation and N(2)O production in situ, 0.5 M of NH(4)Cl and 0.25 M of KNO(3), with and without 0.01% (w/v) phenylacetylene, were applied to test plots at a landfill in Kalamazoo, MI from 2007 November to 2009 July. Nitrogen amendments stimulated N(2)O production but had no effect on CH(4) oxidation. The addition of phenylacetylene stimulated CH(4) oxidation while reducing N(2)O production. Methanotrophs possessing particulate methane monooxygenase and archaeal ammonia-oxidizers (AOAs) were abundant. The addition of nitrogen reduced methanotrophic diversity, particularly for type I methanotrophs. The simultaneous addition of phenylacetylene increased methanotrophic diversity and the presence of type I methanotrophs. Clone libraries of the archaeal amoA gene showed that the addition of nitrogen increased AOAs affiliated with Crenarchaeal group 1.1b, while they decreased with the simultaneous addition of phenylacetylene. These results suggest that the addition of phenylacetylene with nitrogen reduces N(2)O production by selectively inhibiting AOAs and/or type II methanotrophs.
Collapse
|
50
|
Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian high Arctic. Appl Environ Microbiol 2010; 76:5773-84. [PMID: 20622133 DOI: 10.1128/aem.03094-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The melting of permafrost and its potential impact on CH(4) emissions are major concerns in the context of global warming. Methanotrophic bacteria have the capacity to mitigate CH(4) emissions from melting permafrost. Here, we used quantitative PCR (qPCR), stable isotope probing (SIP) of DNA, denaturing gradient gel electrophoresis (DGGE) fingerprinting, and sequencing of the 16S rRNA and pmoA genes to study the activity and diversity of methanotrophic bacteria in active-layer soils from Ellesmere Island in the Canadian high Arctic. Results showed that most of the soils had the capacity to oxidize CH(4) at 4 degrees C and at room temperature (RT), but the oxidation rates were greater at RT than at 4 degrees C and were significantly enhanced by nutrient amendment. The DGGE banding patterns associated with active methanotrophic bacterial populations were also different depending on the temperature of incubation and the addition of nutrients. Sequencing of the 16S rRNA and pmoA genes indicated a low diversity of the active methanotrophic bacteria, with all methanotroph 16S rRNA and pmoA gene sequences being related to type I methanotrophs from Methylobacter and Methylosarcina. The dominance of type I methanotrophs over type II methanotrophs in the native soil samples was confirmed by qPCR of the 16S rRNA gene with primers specific for these two groups of bacteria. The 16S rRNA and pmoA gene sequences related to those of Methylobacter tundripaludum were found in all soils, regardless of the incubation conditions, and they might therefore play a role in CH(4) degradation in situ. This work is providing new information supporting the potential importance of Methylobacter spp. in Arctic soils found in previous studies and contributes to the limited body of knowledge on methanotrophic activity and diversity in this extreme environment.
Collapse
|