1
|
Zhao Y, Ling N, Liu X, Li C, Jing X, Hu J, Rui J. Altitudinal patterns of alpine soil ammonia-oxidizing community structure and potential nitrification rate. Appl Environ Microbiol 2024; 90:e0007024. [PMID: 38385702 PMCID: PMC11206213 DOI: 10.1128/aem.00070-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Nitrogen availability limits the net primary productivity in alpine meadows on the Qinghai-Tibetan Plateau, which is regulated by ammonia-oxidizing microorganisms. However, little is known about the elevational patterns of soil ammonia oxidizers in alpine meadows. Here, we investigated the potential nitrification rate (PNR), abundance, and community diversity of soil ammonia-oxidizing microorganisms along the altitudinal gradient between 3,200 and 4,200 m in Qinghai-Tibetan alpine meadows. We found that both PNR and amoA gene abundance declined from 3,400 to 4,200 m but lowered at 3,200 m, possibly due to intense substrate competition and biological nitrification inhibition from grasses. The primary contributors to soil nitrification were ammonia-oxidizing archaea (AOA), and their proportionate share of soil nitrification increased with altitude in comparison to ammonia-oxidizing bacteria (AOB). The alpha diversity of AOA increased by higher temperature and plant richness at low elevations, while decreased by higher moisture and low legume biomass at middle elevations. In contrast, the alpha diversity of AOB increased along elevation. The elevational patterns of AOA and AOB communities were primarily driven by temperature, soil moisture, and vegetation. These findings suggest that elevation-induced climate changes, such as shifts in temperature and water conditions, could potentially alter the soil nitrification process in alpine meadows through changes in vegetation and soil properties, which provide new insights into how soil ammonia oxidizers respond to climate change in alpine meadows.IMPORTANCEThe importance of this study is revealing that elevational patterns and nitrification contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) communities were primarily driven by temperature, soil moisture, and vegetation. Compared to AOB, the relative contribution of AOA to soil nitrification increased at higher elevations. The research highlights the potential impact of elevation-induced climate change on nitrification processes in alpine meadows, mediated by alterations in vegetation and soil properties. By providing new insights into how ammonia oxidizers respond to climate change, this study contributes valuable knowledge to the field of microbial ecology and helps predict ecological responses to environmental changes in alpine meadows.
Collapse
Affiliation(s)
- Yuwei Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Ning Ling
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Chao Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Xin Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jingjing Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Junpeng Rui
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
- Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Akter R, Mukhles MB, Rahman MM, Rana MR, Huda N, Ferdous J, Rahman F, Rafi MH, Biswas SK. Effect of pesticides on nitrification activity and its interaction with chemical fertilizer and manure in long-term paddy soils. CHEMOSPHERE 2022; 304:135379. [PMID: 35716712 DOI: 10.1016/j.chemosphere.2022.135379] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Effect of pesticides on nitrification activity and its interaction among heavy metal concentrations (HMCs), antibiotic resistance genes (ARGs), and ammonia monooxygenase (amoA) genes of long-term paddy soils is little known. The aim was to study the effect of pesticides on net nitrification rate (NR), potential nitrification rate (NP), HMCs, ARGs (sulI, sulII, tetO, and tetQ), and amoA (amoA-AOA, amoA-AOB, and amoA-NOB) genes in long-term treated paddy soils. NR and NP were significantly decreased (p < 0.05), whereas HMCs (Pb2+, Cu2+, Zn2+, and Fe3+) were a significantly increased (p < 0.05) in chemical fertilizer with pesticide treated paddy soils as compared with chemical fertilizer treated paddy soils. The scatter plot matrix indicated that total carbon (TC), soil organic carbon (SOC), total nitrogen (TN), and Fe were linearly correlated with NR and NP in long-term treated paddy soils. ARGs and amoA genes were significantly decreased (p < 0.05) in chemical fertilizer and manure with pesticide treated paddy soils. Overall, the result indicated the response of pesticide and their combination of manure with pesticide interaction present in long-term paddy soils, which will play a great role in the control uses of pesticides, manure, and chemical fertilizers in paddy soils and protect the nitrogen cycle as well as environment.
Collapse
Affiliation(s)
- Rehena Akter
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Muntaha Binte Mukhles
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh.
| | - Md Rasel Rana
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Nazmul Huda
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Fahida Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Meherab Hossain Rafi
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| | - Sudhangshu Kumar Biswas
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|
3
|
Bhaduri D, Sihi D, Bhowmik A, Verma BC, Munda S, Dari B. A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front Microbiol 2022; 13:938481. [PMID: 36060788 PMCID: PMC9428492 DOI: 10.3389/fmicb.2022.938481] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Preventing degradation, facilitating restoration, and maintaining soil health is fundamental for achieving ecosystem stability and resilience. A healthy soil ecosystem is supported by favorable components in the soil that promote biological productivity and provide ecosystem services. Bio-indicators of soil health are measurable properties that define the biotic components in soil and could potentially be used as a metric in determining soil functionality over a wide range of ecological conditions. However, it has been a challenge to determine effective bio-indicators of soil health due to its temporal and spatial resolutions at ecosystem levels. The objective of this review is to compile a set of effective bio-indicators for developing a better understanding of ecosystem restoration capabilities. It addresses a set of potential bio-indicators including microbial biomass, respiration, enzymatic activity, molecular gene markers, microbial metabolic substances, and microbial community analysis that have been responsive to a wide range of ecosystem functions in agricultural soils, mine deposited soil, heavy metal contaminated soil, desert soil, radioactive polluted soil, pesticide polluted soil, and wetland soils. The importance of ecosystem restoration in the United Nations Sustainable Development Goals was also discussed. This review identifies key management strategies that can help in ecosystem restoration and maintain ecosystem stability.
Collapse
Affiliation(s)
- Debarati Bhaduri
- ICAR-National Rice Research Institute, Cuttack, India
- *Correspondence: Debarati Bhaduri
| | - Debjani Sihi
- Department of Environmental Sciences, Emory University, Atlanta, GA, United States
| | - Arnab Bhowmik
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
- Arnab Bhowmik
| | - Bibhash C. Verma
- Central Rainfed Upland Rice Research Station (ICAR-NRRI), Hazaribagh, India
| | | | - Biswanath Dari
- Agriculture and Natural Resources, Cooperative Extension at North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
4
|
Reji L, Cardarelli EL, Boye K, Bargar JR, Francis CA. Diverse ecophysiological adaptations of subsurface Thaumarchaeota in floodplain sediments revealed through genome-resolved metagenomics. THE ISME JOURNAL 2022; 16:1140-1152. [PMID: 34873295 PMCID: PMC8940955 DOI: 10.1038/s41396-021-01167-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 02/03/2023]
Abstract
The terrestrial subsurface microbiome contains vastly underexplored phylogenetic diversity and metabolic novelty, with critical implications for global biogeochemical cycling. Among the key microbial inhabitants of subsurface soils and sediments are Thaumarchaeota, an archaeal phylum that encompasses ammonia-oxidizing archaea (AOA) as well as non-ammonia-oxidizing basal lineages. Thaumarchaeal ecology in terrestrial systems has been extensively characterized, particularly in the case of AOA. However, there is little knowledge on the diversity and ecophysiology of Thaumarchaeota in deeper soils, as most lineages, particularly basal groups, remain uncultivated and underexplored. Here we use genome-resolved metagenomics to examine the phylogenetic and metabolic diversity of Thaumarchaeota along a 234 cm depth profile of hydrologically variable riparian floodplain sediments in the Wind River Basin near Riverton, Wyoming. Phylogenomic analysis of the metagenome-assembled genomes (MAGs) indicates a shift in AOA population structure from the dominance of the terrestrial Nitrososphaerales lineage in the well-drained top ~100 cm of the profile to the typically marine Nitrosopumilales in deeper, moister, more energy-limited sediment layers. We also describe two deeply rooting non-AOA MAGs with numerous unexpected metabolic features, including the reductive acetyl-CoA (Wood-Ljungdahl) pathway, tetrathionate respiration, a form III RuBisCO, and the potential for extracellular electron transfer. These MAGs also harbor tungsten-containing aldehyde:ferredoxin oxidoreductase, group 4f [NiFe]-hydrogenases and a canonical heme catalase, typically not found in Thaumarchaeota. Our results suggest that hydrological variables, particularly proximity to the water table, impart a strong control on the ecophysiology of Thaumarchaeota in alluvial sediments.
Collapse
Affiliation(s)
- Linta Reji
- grid.168010.e0000000419368956Department of Earth System Science, Stanford University, Stanford, CA USA ,grid.16750.350000 0001 2097 5006Present Address: Department of Geosciences, Princeton University, Princeton, NJ USA
| | - Emily L. Cardarelli
- grid.168010.e0000000419368956Department of Earth System Science, Stanford University, Stanford, CA USA ,grid.20861.3d0000000107068890Present Address: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Kristin Boye
- grid.445003.60000 0001 0725 7771Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - John R. Bargar
- grid.445003.60000 0001 0725 7771Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Christopher A. Francis
- grid.168010.e0000000419368956Department of Earth System Science, Stanford University, Stanford, CA USA
| |
Collapse
|
5
|
Ye H, Tang C, Cao Y, Li X, Huang P. Contribution of ammonia-oxidizing archaea and bacteria to nitrification under different biogeochemical factors in acidic soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17209-17222. [PMID: 34661841 DOI: 10.1007/s11356-021-16887-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Nitrification in soils is an essential process that involves archaeal and bacterial ammonia-oxidizers. Despite its importance, the relative contributions of soil factors to the abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and their nitrification performances are seldom discussed. The aim of this study was to determine the effects of AOA and AOB abundance and different environmental conditions (pH, TC, TN, moisture, and temperature) on nitrification performance. The soils of the long-term fertilized tea orchards and forests were sampled in the field, and nitrification experiments were conducted in the laboratory. The acid soils were collected from the field and used in laboratory incubation experiments to calculate the nitrification rate, including the net nitrification rate (NN rate), nitrification potential (NP), and nitrification kinetics. The basic parameters, different forms of nitrogen content, and AOA and AOB amoA gene copies were also analyzed. Compared with the forest soil, the tea orchard soil had a lower pH and higher nitrogen content (p < 0.05). The AOA and AOB abundance in the soils of the forests and tea orchards were pH-dependent. The NN rate and NP had good relationships with AOA or AOB in the forest soil; however, poor relationships were observed in the tea orchard soil. When pH < 4, the performances of AOA and AOB were restricted by pH and the environment, especially in long-term fertilized farmlands. Long-term fertilization can cause soil acidification, which regulates the abundance of AOA and AOB and their nitrifying ability. The soil environment rather than AOA or AOB could control nitrification in long-term fertilized farmlands with a pH below 4. These findings could improve fertilization efficiency and control nutrient runoff in hilly agricultural ecosystems.
Collapse
Affiliation(s)
- Huijun Ye
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China
| | - Changyuan Tang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yingjie Cao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China.
- Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China.
| | - Xing Li
- Wuhan Institute of Technology, Wuhan, 430000, China
| | - Pinyi Huang
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Buessecker S, Zamora Z, Sarno AF, Finn DR, Hoyt AM, van Haren J, Urquiza Muñoz JD, Cadillo-Quiroz H. Microbial Communities and Interactions of Nitrogen Oxides With Methanogenesis in Diverse Peatlands of the Amazon Basin. Front Microbiol 2021; 12:659079. [PMID: 34267733 PMCID: PMC8276178 DOI: 10.3389/fmicb.2021.659079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/21/2021] [Indexed: 12/03/2022] Open
Abstract
Tropical peatlands are hotspots of methane (CH4) production but present high variation and emission uncertainties in the Amazon region. This is because the controlling factors of methane production in tropical peats are not yet well documented. Although inhibitory effects of nitrogen oxides (NOx) on methanogenic activity are known from pure culture studies, the role of NOx in the methane cycling of peatlands remains unexplored. Here, we investigated the CH4 content, soil geochemistry and microbial communities along 1-m-soil profiles and assessed the effects of soil NOx and nitrous oxide (N2O) on methanogenic abundance and activity in three peatlands of the Pastaza-Marañón foreland basin. The peatlands were distinct in pH, DOC, nitrate pore water concentrations, C/N ratios of shallow soils, redox potential, and 13C enrichment in dissolved inorganic carbon and CH4 pools, which are primarily contingent on H2-dependent methanogenesis. Molecular 16S rRNA and mcrA gene data revealed diverse and novel methanogens varying across sites. Importantly, we also observed a strong stratification in relative abundances of microbial groups involved in NOx cycling, along with a concordant stratification of methanogens. The higher relative abundance of ammonia-oxidizing archaea (Thaumarchaeota) in acidic oligotrophic peat than ammonia-oxidizing bacteria (Nitrospira) is noteworthy as putative sources of NOx. Experiments testing the interaction of NOx species and methanogenesis found that the latter showed differential sensitivity to nitrite (up to 85% reduction) and N2O (complete inhibition), which would act as an unaccounted CH4 control in these ecosystems. Overall, we present evidence of diverse peatlands likely differently affected by inhibitory effects of nitrogen species on methanogens as another contributor to variable CH4 fluxes.
Collapse
Affiliation(s)
- Steffen Buessecker
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Zacary Zamora
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Analissa F Sarno
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Damien Robert Finn
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Alison M Hoyt
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Joost van Haren
- Biosphere 2 Institute, University of Arizona, Oracle, AZ, United States.,Honors College, University of Arizona, Tucson, AZ, United States
| | - Jose D Urquiza Muñoz
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany.,Laboratory of Soil Research, Research Institute of Amazonia's Natural Resources, National University of the Peruvian Amazon, Iquitos, Peru.,School of Forestry, National University of the Peruvian Amazon, Iquitos, Peru
| | - Hinsby Cadillo-Quiroz
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Swette Center for Environmental Biotechnology, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
7
|
Corinne BP, Corentin H, Hélène G, Eric DB, Sébastien T, Isabelle JD, Raphaël P. Analysis of bacterial and archaeal communities associated with Fogo volcanic soils of different ages. FEMS Microbiol Ecol 2020; 96:5848192. [PMID: 32463439 DOI: 10.1093/femsec/fiaa104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/27/2020] [Indexed: 11/13/2022] Open
Abstract
Basaltic rocks play a significant role in CO2 sequestration from the atmosphere during their weathering. Moreover, the primary microorganisms that colonize them, by providing mineral elements and nutrients, are shown to promote growth of diverse heterotrophic communities and plants, therefore positively impacting Earth's long-term climate balance. However, the first steps of microbial colonization and subsequent rock weathering remain poorly understood, especially regarding microbial communities over a chronological sequence. Here, we analyzed the microbial communities inhabiting the soil developed in crevices on lava flows derived from different eruptions on Fogo Island. Investigated soils show typically low carbon and nitrogen content and are relatively similar to one another regarding their phylogenetic composition, and similar to what was recorded in large soil surveys with dominance of Actinobacteria and Proteobacteria. Moreover, our results suggest a stronger effect of the organic carbon than the lava flow age in shaping microbial communities as well as the possibility of exogenous sources of bacteria as important colonizers. Furthermore, archaea reach up to 8.4% of the total microbial community, dominated by the Soil Crenarchaeotic Group, including the ammonium-oxidizer Candidatus Nitrososphaera sp. Therefore, this group might be largely responsible for ammonia oxidation under the environmental conditions found on Fogo.
Collapse
Affiliation(s)
- Biderre-Petit Corinne
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Hochart Corentin
- CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Sorbonne Université, F-66650 Banyuls sur Mer, France
| | - Gardon Hélène
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Dugat-Bony Eric
- INRAE, AgroParisTech, UMR SayFood, Université Paris-Saclay, F-78850, Thiverval-Grignon, France
| | - Terrat Sébastien
- Agroécologie, AgroSup Dijon, INRAE, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jouan-Dufournel Isabelle
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Paris Raphaël
- CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| |
Collapse
|
8
|
Zhao Y, Liu H, Wang R, Wu C. Interactions between dicyandiamide and periphytic biofilms in paddy soils and subsequent effects on nitrogen cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137417. [PMID: 32105918 DOI: 10.1016/j.scitotenv.2020.137417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Dicyandiamide (DCD) is commonly used as nitrification inhibitors which has the potential to reduce nitrogen loss from paddy soils. In paddy systems, periphytic biofilms are commonly presented at the soil/water interface and show significant effects on nutrient cycling. However, the interaction between DCD and periphytic biofilms in paddy and subsequent effects on nitrogen cycling is unclear. In this work, microcosm experiments were carried out to study the interaction between the periphytic biofilms and DCD and the potential influence on nitrogen cycling from in paddy. Results showed that DCD affected the development of periphytic biofilms, while the presence of periphytic biofilms accelerated DCD degradation. Results also showed DCD application reduced nitrification potential mainly by inhibiting ammonia-oxidizing bacteria (AOB). Higher DCD dosage increased NH3 volatilization loss. However, presence of periphytic biofilm reduced the NH3 volatilization loss but increased denitrification. Our work contributes to a better understanding on the nitrogen cycling processes in paddy, and provides useful information for the improvement of nitrogen utilization efficiency and the control of non-point source pollution.
Collapse
Affiliation(s)
- Yanhui Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Center for Environmental Monitoring and Scientific Research of Yangtze River Basin Ecology and Environment Administration, Ministry of Ecology and Environment of the People's Republic of China, Wuhan 430019, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huafeng Liu
- Shandong Institute of Geological Survey, Jinan 250014, China
| | - Renyong Wang
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
9
|
Fang J, Zhao R, Cao Q, Quan Q, Sun R, Liu J. Effects of emergent aquatic plants on nitrogen transformation processes and related microorganisms in a constructed wetland in northern China. PLANT AND SOIL 2019; 443:473-492. [DOI: 10.1007/s11104-019-04249-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/01/2019] [Indexed: 06/14/2024]
|
10
|
Urbanization Altered Bacterial and Archaeal Composition in Tidal Freshwater Wetlands Near Washington DC, USA, and Buenos Aires, Argentina. Microorganisms 2019; 7:microorganisms7030072. [PMID: 30845660 PMCID: PMC6463075 DOI: 10.3390/microorganisms7030072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/14/2019] [Accepted: 03/02/2019] [Indexed: 02/03/2023] Open
Abstract
Urban expansion causes coastal wetland loss, and environmental stressors associated with development can lead to wetland degradation and loss of ecosystem services. This study investigated the effect of urbanization on prokaryotic community composition in tidal freshwater wetlands. Sites in an urban, suburban, and rural setting were located near Buenos Aires, Argentina, and Washington D.C., USA. We sampled soil associated with two pairs of functionally similar plant species, and used Illumina sequencing of the 16S rRNA gene to examine changes in prokaryotic communities. Urban stressors included raw sewage inputs, nutrient pollution, and polycyclic aromatic hydrocarbons. Prokaryotic communities changed along the gradient (nested PerMANOVA, Buenos Aires: p = 0.005; Washington D.C.: p = 0.001), but did not differ between plant species within sites. Indicator taxa included Methanobacteria in rural sites, and nitrifying bacteria in urban sites, and we observed a decrease in methanogens and an increase in ammonia-oxidizers from rural to urban sites. Functional profiles in the Buenos Aires communities showed higher abundance of pathways related to nitrification and xenobiotic degradation in the urban site. These results suggest that changes in prokaryotic taxa across the gradient were due to surrounding stressors, and communities in urban and rural wetlands are likely carrying out different functions.
Collapse
|
11
|
Tao J, Bai T, Xiao R, Wang P, Wang F, Duryee AM, Wang Y, Zhang Y, Hu S. Vertical distribution of ammonia-oxidizing microorganisms across a soil profile of the Chinese Loess Plateau and their responses to nitrogen inputs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:240-248. [PMID: 29665543 DOI: 10.1016/j.scitotenv.2018.04.104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/01/2018] [Accepted: 04/07/2018] [Indexed: 06/08/2023]
Abstract
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) oxidize ammonia into nitrite, the first and rate-limiting step of microbial nitrification, and exert major controls over soil nitrogen transformations. The Loess Plateau in northwest China is characterized with deep soils that are often exposed to the surface and reactive nitrogen (N) inputs due to erosion and human removal of the surface soil. However, few have examined the distribution of AOA and AOB along the profile of Loess Plateau soils and their responses to N inputs. We examined the abundance and diversity of AOA and AOB along the soil profile (0-100cm) and their responses to two levels of N inputs (low at 10, and high at 100μgNg-1 soil) in a 55-d incubation experiment. While AOB were most numerous in the surface soil (0-20cm), AOA were most abundant in the subsoils (20-40 and 40-60cm), suggesting a niche differentiation between AOA and AOB along the soil profile. High N input increased AOB nearly ten-fold in the upper two layers of soils (0-20 and 20-40cm) and sixteen to twenty-five fold in the deeper soil layers (40-60, 60-80 and 80-100cm). However, it only increased AOA by 7% (40-60cm) to 48% (20-40cm). In addition, potential nitrification rate and N2O emissions correlated only with AOB. Finally, high N input significantly increased AOB diversity and led to nitrite accumulation in deep soil layers (60-80 and 80-100cm). Together, our results showed that high N input can significantly alter the diversity and function of ammonia-oxidizing microbes in the deep soil of Loess Plateau, suggesting the need to examine the generality of the observed changes and their potential environmental impacts.
Collapse
Affiliation(s)
- Jinjin Tao
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongshuo Bai
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Xiao
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fuwei Wang
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Alexander M Duryee
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Yi Wang
- State Key Laboratory of Loess and Quaternary, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Yi Zhang
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuijin Hu
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
12
|
Li B, Yang Y, Chen J, Wu Z, Liu Y, Xie S. Nitrifying activity and ammonia-oxidizing microorganisms in a constructed wetland treating polluted surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:310-318. [PMID: 29444483 DOI: 10.1016/j.scitotenv.2018.02.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/03/2018] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Ammonia oxidation, performed by both ammonia oxidizing bacteria (AOB) and archaea (AOA), is an important step for nitrogen removal in constructed wetlands (CWs). However, little is known about the distribution of these ammonia oxidizing organisms in CWs and the associated wetland environmental variables. Their relative importance to nitrification in CWs remains still controversial. The present study investigated the seasonal dynamics of AOA and AOB communities in a free water surface flow CW (FWSF-CW) used to ameliorate the quality of polluted river water. Strong seasonality effects on potential nitrification rate (PNR) and the abundance, richness, diversity and structure of AOA and AOB communities were observed in the river water treatment FWSF-CW. PNR was positively correlated to AOB abundance. AOB (6.76×105-6.01×107 bacterial amoA gene copies per gram dry sediment/soil) tended to be much more abundant than AOA (from below quantitative PCR detection limit to 9.62×106 archaeal amoA gene copies per gram dry sediment/soil). Both AOA and AOB abundance were regulated by the levels of nitrogen, phosphorus and organic carbon. Different wetland environmental variables determined the diversity and structure of AOA and AOB communities. Wetland AOA communities were mainly composed of unknown species and Nitrosopumilus-like organisms, while AOB communities were mainly represented by both Nitrosospira and Nitrosomonas.
Collapse
Affiliation(s)
- Bingxin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhen Wu
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yong Liu
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Wang H, Li X, Li X, Li X, Wang J, Zhang H. Changes of microbial population and N-cycling function genes with depth in three Chinese paddy soils. PLoS One 2017; 12:e0189506. [PMID: 29284018 PMCID: PMC5746221 DOI: 10.1371/journal.pone.0189506] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2017] [Indexed: 01/27/2023] Open
Abstract
Microbial communities play critical roles in soil nitrogen (N) cycle; however, we have limited understanding of the distribution of N-cycling microbial groups in deeper soil horizons. In this study, we used quantitative PCR to characterize the changes of microbial populations (16S rRNA and 18S rRNA) and five key N-cycling gene abundances involved in N fixation (nifH), ammonia oxidation (amoA) by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), and nitrite reduction (nirS and nirK) along profiles (0–100 cm depth) of different paddy soils from three regions (Hailun, Changshu, Yingtan) across China from north to south. We found that most microbial and N-cycling functional genes significantly decreased with soil depth; however, AOA were enriched in deeper soil layers (20–40 cm). The abundances of microbial and N-cycling functional genes generally decreased by one to two orders of magnitude in the deeper horizons relative to topsoils. The AOA gene abundance was higher than that of AOB in the paddy soil profile, and the nirS and nirK abundances were dominant in topsoil and deeper soil, respectively. All N functional genes except AOA were more abundant in Changshu than Hailun and Yingtan. High abundances and low vertical changes of N-cycling genes in Changshu suggest more dynamic N-transformations in this region. Correlation analysis showed that soil properties and climate parameters had a significant relationship with N-cycling gene abundances. Moreover, the abundance of different N-cycling genes was affected by different environmental parameters, which should be studied further to explore their roles in N cycling for sustainable agriculture and environmental management.
Collapse
Affiliation(s)
- Huanhuan Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xiang Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Li
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- * E-mail:
| | - Jian Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Huiwen Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
14
|
Wang J, Ni L, Song Y, Rhodes G, Li J, Huang Q, Shen Q. Dynamic Response of Ammonia-Oxidizers to Four Fertilization Regimes across a Wheat-Rice Rotation System. Front Microbiol 2017; 8:630. [PMID: 28446904 PMCID: PMC5388685 DOI: 10.3389/fmicb.2017.00630] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/28/2017] [Indexed: 11/23/2022] Open
Abstract
Ammonia oxidation by microorganisms is a rate-limiting step of the nitrification process and determines the efficiency of fertilizer utilized by crops. Little is known about the dynamic response of ammonia-oxidizers to different fertilization regimes in a wheat-rice rotation system. Here, we examined ammonia-oxidizing bacteria (AOB) and archaea (AOA) communities across eight representative stages of wheat and rice growth and under four fertilization regimes: no nitrogen fertilization (NNF), chemical fertilization (CF), organic-inorganic mixed fertilizer (OIMF) and organic fertilization (OF). The abundance and composition of ammonia oxidizers were analyzed using quantitative PCR (qPCR) and terminal restriction fragment length polymorphism (T-RFLP) of their amoA genes. Results showed that fertilization but not plant growth stages was the best predictor of soil AOB community abundance and composition. Soils fertilized with more urea-N had higher AOB abundance, while organic-N input showed little effect on AOB abundance. 109 bp T-RF (Nitrosospira Cluster 3b) and 280 bp T-RF (Nitrosospira Cluster 3c) dominated the AOB communities with opposing responses to fertilization regimes. Although the abundance and composition of the AOA community was significantly impacted by fertilization and plant growth stage, it differed from the AOB community in that there was no particular trend. In addition, across the whole wheat-rice rotation stages, results of multiple stepwise linear regression revealed that AOB played a more important role in ammonia oxidizing process than AOA. This study provided insight into the dynamic effects of fertilization strategies on the abundance and composition of ammonia-oxidizers communities, and also offered insights into the potential of managing nitrogen for sustainable agricultural productivity with respect to soil ammonia-oxidizers.
Collapse
Affiliation(s)
- Jichen Wang
- Jiangsu Provincial Key Lab and Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Lei Ni
- Jiangsu Provincial Key Lab and Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Yang Song
- Jiangsu Provincial Key Lab and Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Geoff Rhodes
- Department of Plant, Soil and Microbial Sciences, Michigan State UniversityEast Lansing, MI, USA
| | - Jing Li
- Jiangsu Provincial Key Lab and Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Qiwei Huang
- Jiangsu Provincial Key Lab and Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural UniversityNanjing, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab and Coordinated Research Center for Organic Solid Waste Utilization, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
15
|
Lu X, Seuradge BJ, Neufeld JD. Biogeography of soil Thaumarchaeota in relation to soil depth and land usage. FEMS Microbiol Ecol 2016; 93:fiw246. [DOI: 10.1093/femsec/fiw246] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/27/2016] [Accepted: 12/07/2016] [Indexed: 01/02/2023] Open
|
16
|
Xu M, Liu W, Li C, Xiao C, Ding L, Xu K, Geng J, Ren H. Evaluation of the treatment performance and microbial communities of a combined constructed wetland used to treat industrial park wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10990-11001. [PMID: 26903125 DOI: 10.1007/s11356-016-6181-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
Constructed wetlands are ecosystems that use plants and microorganisms to remediate pollution in soil and water. In this study, two parallel pilot-scale vertical flow wetland and horizontal flow wetland (VF-HF) systems were implemented to investigate the treatment performance and microorganism community structure in the secondary effluent of an industrial park wastewater treatment plant (WWTP) with a loading rate of 100 mm/day near the Yangtze River in Suzhou City, East China. Removal efficiencies of 82.3, 69.8, 77.8, and 32.3 were achieved by the VF-HF systems for ammonium nitrogen (NH4 (+)-N), total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD), respectively. The VF system specialized in COD and NH4 (+)-N removal (73.6 and 79.2 %), whereas the HF system mainly contributed to TN removal (63.5 %). The effluents in all seasons are capable of achieving the "surface water environmental quality standard" (GB3838-2002) grade IV. In the VF system, the 16S gene and nirK gene were significantly correlated with depth, with the 16S gene showing significant correlations with the dissolved oxygen (DO) level (r = 0.954, p < 0.05), which was determined by real-time PCR and high-throughput sequencing. Many types of bacteria capable of biodegradation, including nitrifiers, denitrifiers, and polyaromatic hydrocarbon (PAH) degraders (improvement of the BOD5/COD ratio), were observed, and they contributed to approximately 90 % of the nitrogen removal in the VF-HF system.
Collapse
Affiliation(s)
- Ming Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, People's Republic of China
| | - Weijing Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, People's Republic of China
| | - Chao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, People's Republic of China
| | - Chun Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, People's Republic of China
| | - Lili Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, People's Republic of China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, People's Republic of China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, People's Republic of China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu, 210023, People's Republic of China.
| |
Collapse
|
17
|
Soil Nitrogen Transformations and Availability in Upland Pine and Bottomland Alder Forests. FORESTS 2015. [DOI: 10.3390/f6092941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Hong JK, Cho JC. Environmental Variables Shaping the Ecological Niche of Thaumarchaeota in Soil: Direct and Indirect Causal Effects. PLoS One 2015; 10:e0133763. [PMID: 26241328 PMCID: PMC4524719 DOI: 10.1371/journal.pone.0133763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/01/2015] [Indexed: 11/18/2022] Open
Abstract
To find environmental variables (EVs) shaping the ecological niche of the archaeal phylum Thaumarchaeota in terrestrial environments, we determined the abundance of Thaumarchaeota in various soil samples using real-time PCR targeting thaumarchaeotal 16S rRNA gene sequences. We employed our previously developed primer, THAUM-494, which had greater coverage for Thaumarchaeota and lower tolerance to nonthaumarchaeotal taxa than previous Thaumarchaeota-directed primers. The relative abundance estimates (RVs) of Thaumarchaeota (RTHAUM), Archaea (RARCH), and Bacteria (RBACT) were subjected to a series of statistical analyses. Redundancy analysis (RDA) showed a significant (p < 0.05) canonical relationship between RVs and EVs. Negative causal relationships between RTHAUM and nutrient level-related EVs were observed in an RDA biplot. These negative relationships were further confirmed by correlation and regression analyses. Total nitrogen content (TN) appeared to be the EV that affected RTHAUM most strongly, and total carbon content (TC), which reflected the content of organic matter (OM), appeared to be the EV that affected it least. However, in the path analysis, a path model indicated that TN might be a mediator EV that could be controlled directly by the OM. Additionally, another path model implied that water content (WC) might also indirectly affect RTHAUM by controlling ammonium nitrogen (NH4+-N) level through ammonification. Thus, although most directly affected by NH4+-N, RTHAUM could be ultimately determined by OM content, suggesting that Thaumarchaeota could prefer low-OM or low-WC conditions, because either of these EVs could subsequently result in low levels of NH4+-N in soil.
Collapse
Affiliation(s)
- Jin-Kyung Hong
- Institute of Environmental Sciences and Department of Environmental Sciences, Hankuk University of Foreign Studies, Yong-In, Korea
| | - Jae-Chang Cho
- Institute of Environmental Sciences and Department of Environmental Sciences, Hankuk University of Foreign Studies, Yong-In, Korea
- * E-mail:
| |
Collapse
|
19
|
Distribution of ammonia-oxidizing archaea and bacteria in plateau soils across different land use types. Appl Microbiol Biotechnol 2015; 99:6899-909. [DOI: 10.1007/s00253-015-6625-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
|
20
|
Meinhardt KA, Bertagnolli A, Pannu MW, Strand SE, Brown SL, Stahl DA. Evaluation of revised polymerase chain reaction primers for more inclusive quantification of ammonia-oxidizing archaea and bacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:354-63. [PMID: 25534249 DOI: 10.1111/1758-2229.12259] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/27/2014] [Indexed: 05/20/2023]
Abstract
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) fill key roles in the nitrogen cycle. Thus, well-vetted methods for characterizing their distribution are essential for framing studies of their significance in natural and managed systems. Quantification of the gene coding for one subunit of the ammonia monooxygenase (amoA) by polymerase chain reaction is frequently employed to enumerate the two groups. However, variable amplification of sequence variants comprising this conserved genetic marker for ammonia oxidizers potentially compromises within- and between-system comparisons. We compared the performance of newly designed non-degenerate quantitative polymerase chain reaction primer sets to existing primer sets commonly used to quantify the amoA of AOA and AOB using a collection of plasmids and soil DNA samples. The new AOA primer set provided improved quantification of model mixtures of different amoA sequence variants and increased detection of amoA in DNA recovered from soils. Although both primer sets for the AOB provided similar results for many comparisons, the new primers demonstrated increased detection in environmental application. Thus, the new primer sets should provide a useful complement to primers now commonly used to characterize the environmental distribution of AOA and AOB.
Collapse
Affiliation(s)
- Kelley A Meinhardt
- Civil and Environmental Engineering, University of Washington, Seattle, WA, 98105, USA
| | | | | | | | | | | |
Collapse
|
21
|
Chi XQ, Liu K, Zhou NY. Effects of bioaugmentation in para-nitrophenol-contaminated soil on the abundance and community structure of ammonia-oxidizing bacteria and archaea. Appl Microbiol Biotechnol 2015; 99:6069-82. [DOI: 10.1007/s00253-015-6462-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 10/23/2022]
|
22
|
Thion C, Prosser JI. Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. FEMS Microbiol Ecol 2014; 90:380-9. [PMID: 25070168 DOI: 10.1111/1574-6941.12395] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 11/30/2022] Open
Abstract
Climate change is expected to increase the frequency of severe drought events followed by heavy rainfall, which will influence growth and activity of soil microorganisms, through osmotic stress and changes in nutrient concentration. There is evidence of rapid recovery of processes and adaptation of communities in soils regularly experiencing drying/rewetting and lower resistance and resilience in nonadapted soils. A microcosm-based study of ammonia-oxidising archaea (AOA) and bacteria (AOB), employing a grassland soil that rarely experiences drought, was used to test this hypothesis and also whether AOB were more resistant and resilient, through greater tolerance of high ammonia concentrations produced during drought and rewetting. Treated soils were dried, incubated for 3 weeks, rewetted, incubated for a further 3 weeks and compared to untreated soils, maintained at a constant moisture content. Nitrate accumulation and AOA and AOB abundance (abundance of respective amoA genes) and community composition (DGGE analysis of AOA amoA and AOB 16S rRNA genes) were poorly adapted to drying-rewetting. AOA abundance and community composition were less resistant than AOB during drought and less resilient after rewetting, at times when ammonium concentration was higher. Data provide evidence for poor adaptation of microbial communities and processes to drying-rewetting in soils with no history of drought and indicate niche differentiation of AOA and AOB associated with high ammonia concentration.
Collapse
Affiliation(s)
- Cécile Thion
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
23
|
Chen Q, Qi L, Bi Q, Dai P, Sun D, Sun C, Liu W, Lu L, Ni W, Lin X. Comparative effects of 3,4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) on ammonia-oxidizing bacteria and archaea in a vegetable soil. Appl Microbiol Biotechnol 2014; 99:477-87. [PMID: 25172135 DOI: 10.1007/s00253-014-6026-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
Abstract
Nitrification inhibitors (NIs) 3,4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) have been used extensively to improve nitrogen fertilizer utilization in farmland. However, their comparative effects on ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in agricultural soils are still unclear. Here, we compared the impacts of these two inhibitors on soil nitrification, AOA and AOB abundance as well as their community structure in a vegetable soil by using real-time PCR and terminal restriction fragment length polymorphism (T-RFLP). Our results showed that urea application significantly increased the net nitrification rates, but were significantly inhibited by both NIs, and the inhibitory effect of DMPP was significantly greater than that of DCD. AOB growth was more greatly inhibited by DMPP than by DCD, and the net nitrification rate was significantly related to AOB abundance, but not to AOA abundance. Application of urea and NIs to soil did not change the diversity of the AOA community, with the T-RFs remaining in proportions that were similar to control soils, while the community structure of AOB exhibited obvious shifts within all different treatments compared to the control. Phylogenetic analysis showed that all AOA sequences fell within group 1.1a and group 1.1b, and the AOB community consisted of Nitrosospira cluster 3, cluster 0, and unidentified species. These results suggest that DMPP exhibited a stronger inhibitory effect on nitrification than DCD by inhibiting AOB rather than AOA.
Collapse
Affiliation(s)
- Qiuhui Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ammonia- and methane-oxidizing microorganisms in high-altitude wetland sediments and adjacent agricultural soils. Appl Microbiol Biotechnol 2014; 98:10197-209. [PMID: 25030456 DOI: 10.1007/s00253-014-5942-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/02/2014] [Accepted: 07/06/2014] [Indexed: 10/25/2022]
Abstract
Ammonia oxidation is known to be carried out by ammonia-oxidizing bacteria (AOB) and archaea (AOA), while methanotrophs (methane-oxidizing bacteria (MOB)) play an important role in mitigating methane emissions from the environment. However, the difference of AOA, AOB, and MOB distribution in wetland sediment and adjacent upland soil remains unclear. The present study investigated the abundances and community structures of AOA, AOB, and MOB in sediments of a high-altitude freshwater wetland in Yunnan Province (China) and adjacent agricultural soils. Variations of AOA, AOB, and MOB community sizes and structures were found in water lily-vegetated and Acorus calamus-vegetated sediments and agricultural soils (unflooded rice soil, cabbage soil, and garlic soil and flooded rice soil). AOB community size was higher than AOA in agricultural soils and lily-vegetated sediment, but lower in A. calamus-vegetated sediment. MOB showed a much higher abundance than AOA and AOB. Flooded rice soil had the largest AOA, AOB, and MOB community sizes. Principal coordinate analyses and Jackknife Environment Clusters analyses suggested that unflooded and flooded rice soils had relatively similar AOA, AOB, and MOB structures. Cabbage soil and A. calamus-vegetated sediment had relatively similar AOA and AOB structures, but their MOB structures showed a large difference. Nitrososphaera-like microorganisms were the predominant AOA species in garlic soil but were present with a low abundance in unflooded rice soil and cabbage soil. Nitrosospira-like AOB were dominant in wetland sediments and agricultural soils. Type I MOB Methylocaldum and type II MOB Methylocystis were dominant in wetland sediments and agricultural soils. Moreover, Pearson's correlation analysis indicated that AOA Shannon diversity was positively correlated with the ratio of organic carbon to nitrogen (p < 0.05). This work could provide some new insights toward ammonia and methane oxidation in soil and wetland sediment ecosystems.
Collapse
|
25
|
Impacts of edaphic factors on communities of ammonia-oxidizing archaea, ammonia-oxidizing bacteria and nitrification in tropical soils. PLoS One 2014; 9:e89568. [PMID: 24586878 PMCID: PMC3938500 DOI: 10.1371/journal.pone.0089568] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
Nitrification is a key process in soil nitrogen (N) dynamics, but relatively little is known about it in tropical soils. In this study, we examined soils from Trinidad to determine the edaphic drivers affecting nitrification levels and community structure of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in non-managed soils. The soils were naturally vegetated, ranged in texture from sands to clays and spanned pH 4 to 8. The AOA were detected by qPCR in all soils (ca. 105 to 106 copies archaeal amoA g−1 soil), but AOB levels were low and bacterial amoA was infrequently detected. AOA abundance showed a significant negative correlation (p<0.001) with levels of soil organic carbon, clay and ammonium, but was not correlated to pH. Structures of AOA and AOB communities, as determined by amoA terminal restriction fragment (TRF) analysis, differed significantly between soils (p<0.001). Variation in AOA TRF profiles was best explained by ammonium-N and either Kjeldahl N or total N (p<0.001) while variation in AOB TRF profiles was best explained by phosphorus, bulk density and iron (p<0.01). In clone libraries, phylotypes of archaeal amoA (predominantly Nitrososphaera) and bacterial amoA (predominanatly Nitrosospira) differed between soils, but variation was not correlated with pH. Nitrification potential was positively correlated with clay content and pH (p<0.001), but not to AOA or AOB abundance or community structure. Collectively, the study showed that AOA and AOB communities were affected by differing sets of edaphic factors, notably that soil N characteristics were significant for AOA, but not AOB, and that pH was not a major driver for either community. Thus, the effect of pH on nitrification appeared to mainly reflect impacts on AOA or AOB activity, rather than selection for AOA or AOB phylotypes differing in nitrifying capacity.
Collapse
|
26
|
Habteselassie MY, Xu L, Norton JM. Ammonia-oxidizer communities in an agricultural soil treated with contrasting nitrogen sources. Front Microbiol 2013; 4:326. [PMID: 24223575 PMCID: PMC3818573 DOI: 10.3389/fmicb.2013.00326] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/15/2013] [Indexed: 11/13/2022] Open
Abstract
The community of ammonia-oxidizing prokaryotes was examined in an agricultural soil treated for six seasons with contrasting nitrogen (N) sources. Molecular tools based on the genes encoding ammonia monooxygenase were used to characterize the ammonia oxidizer (AO) communities and their abundance. Soil DNA was extracted from soils sampled from silage corn plots that received no additional N (control), dairy waste compost, liquid dairy waste (LW), and ammonium sulfate (AS) treatments at approximately 100 and 200 kg available N ha(-1) over 6 years. The N treatment affected the quantity of AO based on estimates of amoA by real-time PCR. Ammonia oxidizing bacteria (AOB) were higher in soils from the AS200, AS100, and LW200 treatments (2.5 × 10(7), 2.5 × 10(7), and 2.1 × 10(7)copies g(-1) soil, respectively) than in the control (8.1 × 10(6) copies g(-1) soil) while the abundance of amoA encoding archaea [ammonia oxidizing archaea (AOA)] was not significantly affected by treatment (3.8 × 10(7) copies g(-1) soil, average). The ratio of AOA/AOB was higher in the control and compost treated soils, both treatments have the majority of their ammonium supplied through mineralization of organic nitrogen. Clone libraries of partial amoA sequences indicated AOB related to Nitrosospira multiformis and AOA related to uncultured Nitrososphaera similar to those described by soil fosmid 54d9 were prevalent. Profiles of the amoC-amoA intergenic region indicated that both Nitrosospira- and Nitrosomonas-type AOB were present in all soils examined. In contrast to the intergenic amoC-amoA profile results, Nitrosomonas-like clones were recovered only in the LW200 treated soil-DNA. The impact of 6 years of contrasting nitrogen sources applications caused changes in AO abundance while the community composition remained relatively stable for both AOB and AOA.
Collapse
Affiliation(s)
- Mussie Y Habteselassie
- Department of Crop and Soil Sciences, The University of Georgia Griffin Campus Griffin, GA, USA
| | | | | |
Collapse
|
27
|
Wang Y, Zhu G, Song L, Wang S, Yin C. Manure fertilization alters the population of ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea in a paddy soil. J Basic Microbiol 2013; 54:190-7. [PMID: 23686819 DOI: 10.1002/jobm.201200671] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/17/2013] [Indexed: 11/12/2022]
Abstract
Manure fertilizers are widely used in agriculture and highly impacted the soil microbial communities such as ammonia oxidizers. However, the knowledge on the communities of archaeal versus bacterial ammonia oxidizers in paddy soil affected by manure fertilization remains largely unknown, especially for a long-term influence. In present work, the impact of manure fertilization on the population of ammonia oxidizers, related potential nitrification rates (PNRs) and the key factors manipulating the impact were investigated through studying two composite soil cores (long-term fed with manure fertilization versus undisturbed). Moreover, soil incubated with NH(4)(+) for 5 weeks was designed to verify the field research. The results showed that the copy numbers of bacterial amoA gene in the manure fed soil were significant higher than those in the unfed soil (p < 0.05), suggesting a clear stimulating effect of long-term manure fertilization on the population of ammonia-oxidizing bacteria (AOB). The detected PNRs in the manure fed soil core (14-218 nmol L(-1) N g(-1) h(-1)) were significant higher than those in the unfed soil core (5-72 nmol L(-1) N g(-1) h(-1) ; p < 0.05). Highly correlations between the PNRs and the bacterial amoA gene copies rather than archaeal amoA gene were observed, indicating strong nitrification capacity related to bacterial ammonia oxidizers. The NH(4)(+) -N significantly correlated to the abundance of AOB (p < 0.01) and explained 96.1% of the environmental variation, showing the NH(4)(+) -N was the main factor impacting the population of AOB. The incubation experiment demonstrated a clear increase of the bacterial amoA gene abundance (2.0 × 10(6) to 8.4 × 10(6) g(-1) d.w.s. and 1.6 × 10(4) to 4.8 × 10(5) g(-1) d.w.s.) in both soil but not for the archaeal amoA gene, in agreement with the field observation. Overall, our results suggested that manure fertilization promoted the population size of bacterial ammonia oxidizers rather than their archaeal counterparts whether in long-term or short-term usage and the NH(4)(+) -N was the key impact factor.
Collapse
Affiliation(s)
- Yu Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China; State Key Laboratory of Environmental Aquatic Quality, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
28
|
Spatial distribution and factors shaping the niche segregation of ammonia-oxidizing microorganisms in the Qiantang River, China. Appl Environ Microbiol 2013; 79:4065-71. [PMID: 23624482 DOI: 10.1128/aem.00543-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ammonia oxidation is performed by both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, the current knowledge of the distribution, diversity, and relative abundance of these two microbial groups in freshwater sediments is insufficient. We examined the spatial distribution and analyzed the possible factors leading to the niche segregation of AOA and AOB in the sediments of the Qiantang River, using clone library construction and quantitative PCR for both archaeal and bacterial amoA genes. pH and NH4(+)-N content had a significant effect on AOA abundance and AOA operational taxonomy unit (OTU) numbers. pH and organic carbon content influenced the ratio of AOA/AOB OTU numbers significantly. The influence of these factors showed an obvious spatial trend along the Qiantang River. This result suggested that AOA may contribute more than AOB to the upstream reaches of the Qiantang River, where the pH is lower and the organic carbon and NH4(+)-N contents are higher, but AOB were the principal driver of nitrification downstream, where the opposite environmental conditions were present.
Collapse
|
29
|
Sims A, Zhang Y, Gajaraj S, Brown PB, Hu Z. Toward the development of microbial indicators for wetland assessment. WATER RESEARCH 2013; 47:1711-1725. [PMID: 23384515 DOI: 10.1016/j.watres.2013.01.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 06/01/2023]
Abstract
Wetland assessment tools are being developed and employed in wetland monitoring and conservation based on physical, chemical and biological characterization. In wetland biological assessment, various ecological functions have been described by biological traits of an entire species pool that adapts to different types of wetland environments. Since microorganisms play a key role in wetland biogeochemical processes and respond quickly to environmental disturbances, this review paper describes the different macro indicators used in wetland biological monitoring and expands the potential use of microbial indicators in wetland assessment and management. Application of molecular microbial technologies paves the path to an integrated measure of wetland health conditions. For example, the ratio of ammonia-oxidizing archaeal and bacterial populations has been proposed to serve as a microbial indicator of wetland nutrient conditions. The microbial indicators coupled with physical, chemical and other biological parameters are vital to the development of multi-metric index for measuring wetland health conditions. Inclusion of microbial indicators will lead to a more comprehensive wetland assessment for wetland restoration and management practices.
Collapse
Affiliation(s)
- Atreyee Sims
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
30
|
Community structure and transcript responses of anammox bacteria, AOA, and AOB in mangrove sediment microcosms amended with ammonium and nitrite. Appl Microbiol Biotechnol 2013; 97:9859-74. [PMID: 23455621 DOI: 10.1007/s00253-012-4683-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
Abstract
The anthropogenic nitrogen (N) input as an important source strongly influences the microbial N cycling in coastal ecosystems. In this study, we investigated the responses of anammox bacteria, ammonia oxidizing archaea (AOA), and ammonia oxidizing bacteria (AOB) to the amendments of ammonium and nitrite into mangrove sediments incubated in laboratory microcosm experiments. The variations of diversity, abundances, and transcription of 16S rRNA and hydrazine oxidoreductase (hzo) genes for anammox bacteria, and amoA genes for AOA and AOB were monitored during the incubation. The T-RFLP analysis demonstrated that both ammonium and nitrite additions significantly altered the community compositions of anammox bacteria, AOA, and AOB, while abundance and transcripts analyzed quantitatively confirmed that the amendment of ammonium (25 mM) stimulated the growth of anammox bacteria, AOA, and AOB, whereas nitrite (0.8 mM) generally inhibited them with some exceptions for specific species of AOA and AOB, showing different responses of anammox bacteria, AOA, and AOB to the nitrite and ammonium amendments. Results further suggest that AOB as the dominant group with higher amoA gene abundances and transcripts might play a more important role on the ammonium oxidization in mangrove sediment of this subtropical site.
Collapse
|
31
|
Ke X, Angel R, Lu Y, Conrad R. Niche differentiation of ammonia oxidizers and nitrite oxidizers in rice paddy soil. Environ Microbiol 2013; 15:2275-92. [PMID: 23437806 DOI: 10.1111/1462-2920.12098] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 01/16/2013] [Accepted: 01/22/2013] [Indexed: 11/27/2022]
Abstract
The dynamics of populations and activities of ammonia-oxidizing and nitrite-oxidizing microorganisms were investigated in rice microcosms treated with two levels of nitrogen. Different soil compartments (surface, bulk, rhizospheric soil) and roots (young and old roots) were collected at three time points (the panicle initiation, heading and maturity periods) of the season. The population dynamics of bacterial (AOB) and archaeal (AOA) ammonia oxidizers was assayed by determining the abundance (using qPCR) and composition (using T-RFLP and cloning/sequencing) of their amoA genes (coding for a subunit of ammonia monooxygenase), that of nitrite oxidizers (NOB) by quantifying the nxrA gene (coding for a subunit of nitrite oxidase of Nitrobacter spp.) and the 16S rRNA gene of Nitrospira spp. The activity of the nitrifiers was determined by measuring the rates of potential ammonia oxidation and nitrite oxidation and by quantifying the copy numbers of amoA and nxrA transcripts. Potential nitrite oxidation activity was much higher than potential ammonia oxidation activity and was not directly affected by nitrogen amendment demonstrating the importance of ammonia oxidizers as pace makers for nitrite oxidizer populations. Marked differences in the distribution of bacterial and archaeal ammonia oxidizers, and of Nitrobacter-like and Nitrospira-like nitrite oxidizers were found in the different compartments of planted paddy soil indicating niche differentiation. In bulk soil, ammonia-oxidizing bacteria (Nitrosospira and Nitrosomonas) were at low abundance and displayed no activity, but in surface soil their activity and abundance was high. Nitrite oxidation in surface soil was dominated by Nitrospira spp. By contrast, ammonia-oxidizing Thaumarchaeota and Nitrobacter spp. seemed to dominate nitrification in rhizospheric soil and on rice roots. In contrast to soil compartment, the level of N fertilization and the time point of sampling had only little effect on the abundance, composition and activity of the nitrifying communities. The results of our study show that in rice fields population dynamics and activity of nitrifiers is mainly differentiated by the soil compartments rather than by nitrogen amendment or season.
Collapse
Affiliation(s)
- Xiubin Ke
- College of Resources and Environment Sciences, China Agricultural University, Beijing, 100193, China
| | | | | | | |
Collapse
|
32
|
Nitrogen cycling and relationships between ammonia oxidizers and denitrifiers in a clay-loam soil. Appl Microbiol Biotechnol 2013; 97:5507-15. [DOI: 10.1007/s00253-013-4765-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 11/26/2022]
|
33
|
Herrmann M, Hädrich A, Küsel K. Predominance of thaumarchaeal ammonia oxidizer abundance and transcriptional activity in an acidic fen. Environ Microbiol 2012; 14:3013-25. [PMID: 23016896 DOI: 10.1111/j.1462-2920.2012.02882.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 08/23/2012] [Indexed: 11/27/2022]
Abstract
We investigated the abundance, community composition and transcriptional activity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in the acidic fen Schlöppnerbrunnen (Germany) that was subjected to water table manipulations. Quantitative PCR targeting amoA gene copies and transcripts showed that AOA dominated the ammonia-oxidizing community in the upper 20 cm of the peat soil. Numbers of archaeal amoA gene copies and transcripts as well as the relative fraction of AOA of the total archaea decreased with depth. AOA-AmoA sequences were 96.2-98.9% identical to that of Candidatus Nitrosotalea devanaterra while bacterial AmoA sequences affiliated with Nitrosospira clusters 2 and 4. Archaeal but not bacterial amoA transcripts were detected in short-term laboratory incubations of peat that showed nitrifying activity. Nitrate accumulated in the peat pore water after 6 weeks of induced drought during a field experiment. Subsequent rewetting resulted in a significant decrease of AOA transcriptional activity, indicating that AOA responded to water table fluctuations on the transcriptional level. Our results suggest that nitrification in this fen is primarily linked to archaeal ammonia oxidation. pH and anoxia appear to be key factors regulating AOA community composition, vertical distribution and activity in acidic fens.
Collapse
Affiliation(s)
- Martina Herrmann
- Aquatic Geomicrobiology Group, Institute of Ecology, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany.
| | | | | |
Collapse
|
34
|
Sims A, Horton J, Gajaraj S, McIntosh S, Miles RJ, Mueller R, Reed R, Hu Z. Temporal and spatial distributions of ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands. WATER RESEARCH 2012; 46:4121-4129. [PMID: 22673339 DOI: 10.1016/j.watres.2012.05.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 03/18/2012] [Accepted: 05/04/2012] [Indexed: 06/01/2023]
Abstract
Ammonia-oxidizing organisms play an important role in wetland water purification and nitrogen cycling. We determined soil nitrification rates and investigated the seasonal and spatial distributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in three freshwater wetlands by using specific primers targeting the amoA genes of AOA and AOB and real-time quantitative polymerase chain reaction (qPCR). The nitrifying potentials of wetland soils ranged from 1.4 to 4.0 μg g(-1) day(-1). The specific rates of ammonia oxidation activity by AOA and AOB at the Bee Hollow wetlands were 1.9 fmol NH(3) cell(-1) day(-1) and 36.8 fmol NH(3) cell(-1) day(-1), respectively. Soil nitrification potential was positively correlated with both archaeal and bacterial amoA abundance. However, the gene copies of AOA amoA were higher than those of AOB amoA by at least an order of magnitude in wetland soils and water in both summer and winter over a three year study period. AOB were more sensitive to low temperature than AOA. The amoA gene copy ratios of AOA to AOB in top soils (0-10 cm) ranged from 19 ± 4 to 100 ± 11 among the wetland sites. In contrast, the ratio of the wetland boundary soil was 10 ± 2, which was significantly lower than that of the wetland soils (P < 0.001). The NH(4)(+)-N concentrations in wetland water were lower than 2 mg/L throughout the study. The results suggest that ammonium concentration is a major factor influencing AOA and AOB population in wetlands, although other factors such as temperature, dissolved oxygen, and soil organic matter are involved. AOA are more persistent and more abundant than AOB in the nutrient-depleted oligotrophic wetlands. Therefore, ratio of AOA amoA gene copies to AOB amoA gene copies may serve as a new biological indicator for wetland condition assessment and wetland restoration applications.
Collapse
Affiliation(s)
- Atreyee Sims
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Baolan H, Shuai L, Lidong S, Ping Z, Xiangyang X, Liping L. Effect of different ammonia concentrations on community succession of ammonia-oxidizing microorganisms in a simulated paddy soil column. PLoS One 2012; 7:e44122. [PMID: 22952893 PMCID: PMC3432066 DOI: 10.1371/journal.pone.0044122] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 07/30/2012] [Indexed: 01/23/2023] Open
Abstract
Ammonia oxidation is performed by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). To explore the effect of ammonia concentration on the population dynamic changes of ammonia-oxidizing microorganisms, we examined changes in the abundance and community composition of AOA and AOB in different layers. Most of the archaeal amoA sequences were Nitrosotalea-related and the proportion that Nitrosotalea cluster occupied decreased in the surface layer and increased in the deep layer during the cultivation process. Nitrosopumilus-related sequences were only detected in the deep layer in the first stage and disappeared later. Both phylogenetic and quantitative analysis showed that there were increased Nitrosomonas-related sequences appeared in the surface layer where the ammonia concentration was the highest. Both AOA and AOB OTU numbers in different layers decreased under selective pressure and then recovered. The potential nitrification rates were 25.06 µg · N · L(-1) · g(-1) dry soil · h(-1) in the mid layer which was higher than the other two layers. In general, obvious population dynamic changes were found for both AOA and AOB under the selective pressure of exogenous ammonia and the changes were different in three layers of the soil column.
Collapse
Affiliation(s)
- Hu Baolan
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liu Shuai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shen Lidong
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zheng Ping
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xu Xiangyang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lou Liping
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
36
|
Emergent macrophytes act selectively on ammonia-oxidizing bacteria and archaea. Appl Environ Microbiol 2012; 78:6352-6. [PMID: 22706066 DOI: 10.1128/aem.00919-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ammonia-oxidizing bacteria (AOB) and archaea (AOA) were quantified in the sediments and roots of dominant macrophytes in eight neutral to alkaline coastal wetlands. The AOA dominated in most samples, but the bacterial-to-archaeal amoA gene ratios increased with increasing ammonium levels and pH in the sediments. For all plant species, the ratios increased on the root surface relative to the adjacent bulk sediment. This suggests that root surfaces in these environments provide conditions favoring enrichment of AOB.
Collapse
|
37
|
Zhalnina K, de Quadros PD, Camargo FAO, Triplett EW. Drivers of archaeal ammonia-oxidizing communities in soil. Front Microbiol 2012; 3:210. [PMID: 22715335 PMCID: PMC3375578 DOI: 10.3389/fmicb.2012.00210] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/22/2012] [Indexed: 01/24/2023] Open
Abstract
Soil ammonia-oxidizing archaea (AOA) are highly abundant and play an important role in the nitrogen cycle. In addition, AOA have a significant impact on soil quality. Nitrite produced by AOA and further oxidized to nitrate can cause nitrogen loss from soils, surface and groundwater contamination, and water eutrophication. The AOA discovered to date are classified in the phylum Thaumarchaeota. Only a few archaeal genomes are available in databases. As a result, AOA genes are not well annotated, and it is difficult to mine and identify archaeal genes within metagenomic libraries. Nevertheless, 16S rRNA and comparative analysis of ammonia monooxygenase sequences show that soils can vary greatly in the relative abundance of AOA. In some soils, AOA can comprise more than 10% of the total prokaryotic community. In other soils, AOA comprise less than 0.5% of the community. Many approaches have been used to measure the abundance and diversity of this group including DGGE, T-RFLP, q-PCR, and DNA sequencing. AOA have been studied across different soil types and various ecosystems from the Antarctic dry valleys to the tropical forests of South America to the soils near Mount Everest. Different studies have identified multiple soil factors that trigger the abundance of AOA. These factors include pH, concentration of available ammonia, organic matter content, moisture content, nitrogen content, clay content, as well as other triggers. Land use management appears to have a major effect on the abundance of AOA in soil, which may be the result of nitrogen fertilizer used in agricultural soils. This review summarizes the published results on this topic and suggests future work that will increase our understanding of how soil management and edaphoclimatic factors influence AOA.
Collapse
Affiliation(s)
- Kateryna Zhalnina
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | | | | | | |
Collapse
|
38
|
Ke X, Lu Y. Adaptation of ammonia-oxidizing microorganisms to environment shift of paddy field soil. FEMS Microbiol Ecol 2012; 80:87-97. [DOI: 10.1111/j.1574-6941.2011.01271.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/10/2011] [Accepted: 11/25/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
- Xiubin Ke
- College of Resources and Environment Sciences; China Agricultural University; Beijing; China
| | - Yahai Lu
- College of Resources and Environment Sciences; China Agricultural University; Beijing; China
| |
Collapse
|
39
|
Levičnik-Höfferle S, Nicol GW, Ausec L, Mandić-Mulec I, Prosser JI. Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen. FEMS Microbiol Ecol 2012; 80:114-23. [PMID: 22150211 DOI: 10.1111/j.1574-6941.2011.01275.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/21/2011] [Accepted: 11/29/2011] [Indexed: 11/29/2022] Open
Abstract
Ammonia oxidation, the first step in nitrification, is performed by autotrophic bacteria and thaumarchaea, whose relative contributions vary in different soils. Distinctive environmental niches for the two groups have not been identified, but evidence from previous studies suggests that activity of thaumarchaea, unlike that of bacterial ammonia oxidizers, is unaffected by addition of inorganic N fertilizer and that they preferentially utilize ammonia generated from the mineralization of organic N. This hypothesis was tested by determining the influence of both inorganic and organic N sources on nitrification rate and ammonia oxidizer growth and community structure in microcosms containing acidic, forest soil in which ammonia oxidation was dominated by thaumarchaea. Nitrification rate was unaffected by the incubation of soil with inorganic ammonium but was significantly stimulated by the addition of organic N. Oxidation of ammonia generated from native soil organic matter or added organic N, but not added inorganic N, was accompanied by increases in abundance of the thaumarchaeal amoA gene, a functional gene for ammonia oxidation, but changes in community structure were not observed. Bacterial amoA genes could not be detected. Ammonia oxidation was completely inhibited by 0.01% acetylene in all treatments, indicating ammonia monooxygenase-dependent activity. The findings have implications for current models of soil nitrification and for nitrification control strategies to minimize fertilizer loss and nitrous oxide production.
Collapse
Affiliation(s)
- Spela Levičnik-Höfferle
- Department of Food Science and Technology, Chair of Microbiology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
40
|
Wang Y, Zhu G, Ye L, Feng X, Op den Camp HJM, Yin C. Spatial distribution of archaeal and bacterial ammonia oxidizers in the littoral buffer zone of a nitrogen-rich lake. J Environ Sci (China) 2012; 24:790-799. [PMID: 22893953 DOI: 10.1016/s1001-0742(11)60861-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The spatial distribution and diversity of archaeal and bacterial ammonia oxidizers (AOA and AOB) were evaluated targeting amoA genes in the gradient of a littoral buffer zone which has been identified as a hot spot for N cycling. Here we found high spatial heterogeneity in the nitrification rate and abundance of ammonia oxidizers in the five sampling sites. The bacterial amoA gene was numerically dominant in most of the surface soil but decreased dramatically in deep layers. Higher nitrification potentials were detected in two sites near the land/water interface at 4.4-6.1 microg NO(2-)-N/(g dry weight soil x hr), while only 1.0-1.7 microg NO(2-)-N/(g dry weight soil x hr) was measured at other sites. The potential nitrification rates were proportional to the amoA gene abundance for AOB, but with no significant correlation with AOA. The NH4+ concentration was the most determinative parameter for the abundance of AOB and potential nitrification rates in this study. Higher richness in the surface layer was found in the analysis of biodiversity. Phylogenetic analysis revealed that most of the bacterial amoA sequences in surface soil were affiliated with the genus of Nitrosopira while the archaeal sequences were almost equally affiliated with Candidatus 'Nitrososphaera gargensis' and Candidatus 'Nitrosocaldus yellowstonii'. The spatial distribution of AOA and AOB indicated that bacteria may play a more important role in nitrification in the littoral buffer zone of a N-rich lake.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Environmental Aquatic Quality, Research Center for Eco-Environmental Sciences, the Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | | | |
Collapse
|
41
|
Wessén E, Söderström M, Stenberg M, Bru D, Hellman M, Welsh A, Thomsen F, Klemedtson L, Philippot L, Hallin S. Spatial distribution of ammonia-oxidizing bacteria and archaea across a 44-hectare farm related to ecosystem functioning. THE ISME JOURNAL 2011; 5:1213-25. [PMID: 21228891 PMCID: PMC3146283 DOI: 10.1038/ismej.2010.206] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 11/09/2022]
Abstract
Characterization of spatial patterns of functional microbial communities could facilitate the understanding of the relationships between the ecology of microbial communities, the biogeochemical processes they perform and the corresponding ecosystem functions. Because of the important role the ammonia-oxidizing bacteria (AOB) and archaea (AOA) have in nitrogen cycling and nitrate leaching, we explored the spatial distribution of their activity, abundance and community composition across a 44-ha large farm divided into an organic and an integrated farming system. The spatial patterns were mapped by geostatistical modeling and correlations to soil properties and ecosystem functioning in terms of nitrate leaching were determined. All measured community components for both AOB and AOA exhibited spatial patterns at the hectare scale. The patchy patterns of community structures did not reflect the farming systems, but the AOB community was weakly related to differences in soil pH and moisture, whereas the AOA community to differences in soil pH and clay content. Soil properties related differently to the size of the communities, with soil organic carbon and total nitrogen correlating positively to AOB abundance, while clay content and pH showed a negative correlation to AOA abundance. Contrasting spatial patterns were observed for the abundance distributions of the two groups indicating that the AOB and AOA may occupy different niches in agro-ecosystems. In addition, the two communities correlated differently to community and ecosystem functions. Our results suggest that the AOA, not the AOB, were contributing to nitrate leaching at the site by providing substrate for the nitrite oxidizers.
Collapse
Affiliation(s)
- Ella Wessén
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mats Söderström
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Maria Stenberg
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Skara, Sweden
| | - David Bru
- INRA, UMR 1229, Dijon, France
- Université de Bourgogne, UMR 1229, Dijon, France
| | - Maria Hellman
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Allana Welsh
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Frida Thomsen
- Department of Plant and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Leif Klemedtson
- Department of Plant and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
| | - Laurent Philippot
- INRA, UMR 1229, Dijon, France
- Université de Bourgogne, UMR 1229, Dijon, France
| | - Sara Hallin
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
42
|
Ammonium availability affects the ratio of ammonia-oxidizing bacteria to ammonia-oxidizing archaea in simulated creek ecosystems. Appl Environ Microbiol 2011; 77:1896-9. [PMID: 21239545 DOI: 10.1128/aem.02879-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ammonia-oxidizing microbial community colonizing clay tiles in flow channels changed in favor of ammonia-oxidizing bacteria during a 12-week incubation period even at originally high ratios of ammonia-oxidizing archaea to ammonia-oxidizing bacteria (AOB). AOB predominance was established more rapidly in flow channels incubated at 350 μM NH(4)(+) than in those incubated at 50 or 20 μM NH(4)(+). Biofilm-associated potential nitrification activity was first detected after 28 days and was positively correlated with bacterial but not archaeal amoA gene copy numbers.
Collapse
|
43
|
Nicol GW, Prosser JI. Strategies to determine diversity, growth, and activity of ammonia-oxidizing archaea in soil. Methods Enzymol 2011; 496:3-34. [PMID: 21514458 DOI: 10.1016/b978-0-12-386489-5.00001-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ecological studies of soil microorganisms require reliable techniques for assessment of microbial community composition, abundance, growth, and activity. Soil structure and physicochemical properties seriously limit the applicability and value of methods involving direct observation, and ecological studies have focused on communities and populations, rather than single cells or microcolonies. Although ammonia-oxidizing archaea were discovered 5 years ago, there are still no cultured representatives from soil and there remains a lack of knowledge regarding their genomic composition, physiology, or functional diversity. Despite these limitations, however, significant insights into their distribution, growth characteristics, and metabolism have been made through the use of a range of molecular methodologies. As well as the analysis of taxonomic markers such as 16S rRNA genes, the development of PCR primers based on a limited number of (mostly marine) sequences has enabled the analysis of homologues encoding proteins involved in energy and carbon metabolism. This chapter will highlight the range of molecular methodologies available for examining the diversity, growth, and activity of ammonia-oxidizing archaea in the soil environment.
Collapse
Affiliation(s)
- Graeme W Nicol
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | |
Collapse
|
44
|
Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment. Appl Environ Microbiol 2010; 76:7626-34. [PMID: 20889787 DOI: 10.1128/aem.00595-10] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both bacteria and thaumarchaea contribute to ammonia oxidation, the first step in nitrification. The abundance of putative ammonia oxidizers is estimated by quantification of the functional gene amoA, which encodes ammonia monooxygenase subunit A. In soil, thaumarchaeal amoA genes often outnumber the equivalent bacterial genes. Ecophysiological studies indicate that thaumarchaeal ammonia oxidizers may have a selective advantage at low ammonia concentrations, with potential adaptation to soils in which mineralization is the major source of ammonia. To test this hypothesis, thaumarchaeal and bacterial ammonia oxidizers were investigated during nitrification in microcosms containing an organic, acidic forest peat soil (pH 4.1) with a low ammonium concentration but high potential for ammonia release during mineralization. Net nitrification rates were high but were not influenced by addition of ammonium. Bacterial amoA genes could not be detected, presumably because of low abundance of bacterial ammonia oxidizers. Phylogenetic analysis of thaumarchaeal 16S rRNA gene sequences indicated that dominant populations belonged to group 1.1c, 1.3, and "deep peat" lineages, while known amo-containing lineages (groups 1.1a and 1.1b) comprised only a small proportion of the total community. Growth of thaumarchaeal ammonia oxidizers was indicated by increased abundance of amoA genes during nitrification but was unaffected by addition of ammonium. Similarly, denaturing gradient gel electrophoresis analysis of amoA gene transcripts demonstrated small temporal changes in thaumarchaeal ammonia oxidizer communities but no effect of ammonium amendment. Thaumarchaea therefore appeared to dominate ammonia oxidation in this soil and oxidized ammonia arising from mineralization of organic matter rather than added inorganic nitrogen.
Collapse
|