1
|
Criollo V, John FA, Gaghan C, Fletcher OJ, Thachil A, Crespo R, Kulkarni RR. Characterization of immune responses and immunopathology in turkeys experimentally infected with clostridial dermatitis-producing strains of Clostridium septicum. Vet Immunol Immunopathol 2024; 269:110717. [PMID: 38340537 DOI: 10.1016/j.vetimm.2024.110717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Clostridium septicum is one of the major causative agents of clostridial dermatitis (CD), an emerging disease of turkeys, characterized by sudden deaths and necrotic dermatitis. Despite its economic burden on the poultry industry, the immunopathological changes and pathogen-specific immune responses are poorly characterized. Here, we used three strains of C. septicum, namely Str. A1, Str. B1 and Str. C1, isolated from CD field outbreaks, to experimentally infect turkeys to evaluate local (skin and muscle) and systemic (spleen) pathological and immunological responses. Results showed that while all three strains produced an acute disease, Str. A1 and B1 caused significantly higher mortality when compared to Str. C1. Gross and histopathology evaluation showed that birds infected with Str. A1 and B1 had severe inflammatory, edematous, granulomatous and necrotic lesions in the skin, muscle and spleen, while these lesions produced by Str. C1 were relatively less severe and mostly confined to skin and/or muscle. Immune gene expression in these tissues showed that Str. B1-infected birds had significantly higher expression of interleukin (IL)-1β, IL-6 and interferon (IFN)γ genes compared to uninfected control, suggesting a robust inflammatory response both locally as well as systemically. The transcription of IL-1β and IFNγ in the muscle or spleen of Str. A1-infected birds and IL-1β in the skin of Str. C1-infected group was also significantly higher than control. Additionally, Str. A1 or B1-infected groups also had significantly higher IL-4 transcription in these tissues, while birds infected with all three strains developed C. septicum-specific serum antibodies. Furthermore, splenic cellular immunophenotyping in the infected turkeys showed a marked reduction in CD4+ cells. Collectively, it can be inferred that host responses against C. septicum involve an acute inflammatory response along with antibody production and that the disease severity seem to depend on the strain of C. septicum involved in CD in turkeys.
Collapse
Affiliation(s)
- Valeria Criollo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States
| | - Feba Ann John
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States
| | - Oscar J Fletcher
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States
| | - Anil Thachil
- Bacteriology & Mycology Division, Rollins Animal Disease Diagnostic Laboratory, 4400 Reedy Creek Rd, Raleigh, NC 27607, United States
| | - Rocio Crespo
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27606, United States.
| |
Collapse
|
2
|
Kulkarni RR, Gaghan C, Gorrell K, Fletcher OJ. Mucosal and systemic lymphoid immune responses against Clostridium perfringens strains with variable virulence in the production of necrotic enteritis in broiler chickens. Avian Pathol 2023; 52:108-118. [PMID: 36453684 DOI: 10.1080/03079457.2022.2154195] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Necrotic enteritis (NE), caused by Clostridium perfringens, is an economically important disease of chickens. Although NE pathogenesis is moderately well studied, the host immune responses against C. perfringens are poorly understood. The present study used an experimental NE model to characterize lymphoid immune responses in the caecal tonsils (CT), bursa of Fabricius, Harderian gland (HG) and spleen tissues of broiler chickens infected with four netB+ C. perfringens strains (CP1, CP5, CP18, and CP26), of which CP18 and CP26 strains also carried the tpeL gene. The gross and histopathological lesions in chickens revealed CP5 to be avirulent, while CP1, CP18, and CP26 strains were virulent with CP26 being "very virulent". Gene expression analysis showed that, while the virulent strains induced a significantly upregulated expression of pro-inflammatory IL-1β gene in CT, the CP26-infected birds had significantly higher CT transcription of IFNγ and IL-6 pro-inflammatory genes compared to CP5-infected or uninfected chickens. Furthermore, CP26 infection also led to significantly increased bursal and HG expression of the anti-inflammatory/regulatory genes, IL-10 or TGFβ, compared to control, CP5 and CP1 groups. Additionally, the splenic pro- and anti-inflammatory transcriptional changes were observed only in the CP26-infected chickens. An antibody-mediated response, as characterized by increased IL-4 and/or IL-13 transcription and elevated IgM levels in birds infected with virulent strains, particularly in the CP26-infected group compared to uninfected controls, was also evident. Collectively, our findings suggest that lymphoid immune responses during NE in chickens are spatially regulated such that the inflammatory responses against C. perfringens depend on the virulence of the strain.
Collapse
Affiliation(s)
- Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Carissa Gaghan
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Kaitlin Gorrell
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Oscar J Fletcher
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
3
|
Jiang Z, Su W, Wen C, Li W, Zhang Y, Gong T, Du S, Wang X, Lu Z, Jin M, Wang Y. Effect of Porcine Clostridium perfringens on Intestinal Barrier, Immunity, and Quantitative Analysis of Intestinal Bacterial Communities in Mice. Front Vet Sci 2022; 9:881878. [PMID: 35769317 PMCID: PMC9234579 DOI: 10.3389/fvets.2022.881878] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Clostridium perfringens (C. perfringens) is one of the main pathogens which can cause a range of histotoxic and enteric diseases in humans or animals (pigs, or broilers). The Centers for Disease Control and Prevention (CDC) estimates these bacteria cause nearly 1 million illnesses in the United States every year. For animal husbandry, necrotizing enteritis caused by C. perfringens can cost the global livestock industry between $2 billion and $6 billion per year. C. perfringens-infected animals can be isolated for its identification and pathology. A suitable animal model is one of the essential conditions for studying the disease pathogenesis. In previous studies, mice have been used as subjects for a variety of Clostridium perfringens toxicity tests. Thus, this study was designed to build a mouse model infected porcine C. perfringens which was isolated from the C.perfringens-infected pigs. A total of 32 6-week-old male C57BL/6 mice were randomly divided into four groups. Control group was orally administrated with PBS (200 μL) on day 0. Low group, Medium group, and High group were gavaged with 200 ul of PBS resuspension containing 8.0 × 107 CFU, 4.0 × 108 CFU, and 2.0 × 109 CFU, respectively. We examined growth performance, immune status, intestinal barrier integrity, apoptosis-related genes expression, and copies of C. perfringens in mice. The results showed that the growth performance declined and intestinal structure was seriously damaged in High group. Meanwhile, pro-inflammatory factors (IL-1β, TNF-α, and IL-6) were significantly increased (P < 0.05) in High group compared to other groups. The tight junctions and pro-apoptosis related genes' expression significantly decreased (P < 0.05) in High group, and high dose caused a disruption of intestinal villi integrity and tissue injury in the jejunum of mice. In addition, the enumerations of C. perfringens, Escherichia coli, and Lactobacillus explained why the gut of High group mice was seriously damaged, because the C. perfringens and Escherichia coli significantly enriched (P < 0.05), and Lactobacillus dramatically decreased (P < 0.05). Overall, our results provide an experimental and theoretical basis for understanding the pathogenesis and exploring the effects of porcine C. perfringens on mice.
Collapse
Affiliation(s)
- Zipeng Jiang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Weifa Su
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Chaoyue Wen
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Wentao Li
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Tao Gong
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Shuai Du
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Xinxia Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Zeqing Lu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Zeqing Lu
| | - Mingliang Jin
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
- College of Animal Science, Institute of Feed Science, Zhejiang University, Hangzhou, China
- Yizhen Wang
| |
Collapse
|
4
|
Abstract
Clostridium perfringens, a prevalent Gram-positive bacterium, causes necrotic diseases associated with abundant life loss and economic burdens of billions of USD. The mechanism of C. perfringens-induced necrotic diseases remains largely unknown, in part, because of the lack of effective animal models and the presence of a large array of exotoxins and diverse disease manifestations from the skin and deep tissues to the gastrointestinal tract. In the light of the advancement of medical and veterinary research, a large body of knowledge is accumulating on the factors influencing C. perfringens-induced necrotic disease onset, development, and outcomes. Here, we present an overview of the key virulence factors of C. perfringens exotoxins. Subsequently, we focus on comprehensively reviewing C. perfringens-induced necrotic diseases such as myonecrosis, acute watery diarrhea, enteritis necroticans, preterm infant necrotizing enterocolitis, and chicken necrotic enteritis. We then review the current understanding on the mechanisms of myonecrosis and enteritis in relation to the immune system and intestinal microbiome. Based on these discussions, we then review current preventions and treatments of the necrotic diseases and propose potential new intervention options. The purpose of this review is to provide an updated and comprehensive knowledge on the role of the host–microbe interaction to develop new interventions against C. perfringens-induced necrotic diseases.
Collapse
|
5
|
Kulkarni RR, Gaghan C, Mohammed J. Avian Macrophage Responses to Virulent and Avirulent Clostridium perfringens. Pathogens 2022; 11:pathogens11010100. [PMID: 35056048 PMCID: PMC8778324 DOI: 10.3390/pathogens11010100] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
The present study evaluated the avian macrophage responses against Clostridium perfringens that varied in their ability to cause necrotic enteritis in chickens. Strains CP5 (avirulent-netB+), CP1 (virulent-netB+), and CP26 (highly virulent-netB+tpeL+) were used to evaluate their effect on macrophages (MQ-NCSU cells) and primary splenic and cecal tonsil mononuclear cells. The bacilli (whole cells) or their secretory products from all three strains induced a significant increase in the macrophage transcription of Toll-like receptor (TLR)21, TLR2, interleukin (IL)-1β, inducible nitric oxide synthase (iNOS), and CD80 genes as well as their nitric oxide (NO) production and major histocompatibility complex (MHC)-II surface expression compared to an unstimulated control. The CP1 and CP26-induced expression of interferon (IFN)γ, IL-6, CD40 genes, MHC-II upregulation, and NO production was significantly higher than that of CP5 and control groups. Furthermore, splenocytes and cecal tonsillocytes stimulated with bacilli or secretory products from all the strains showed a significant increase in the frequency of macrophages, their surface expression of MHC-II and NO production, while CP26-induced responses were significantly higher for the rest of the groups. In summary, macrophage interaction with C. perfringens can lead to cellular activation and, the ability of this pathogen to induce macrophage responses may depend on its level of virulence.
Collapse
|
6
|
Deficient Skeletal Muscle Regeneration after Injury Induced by a Clostridium perfringens Strain Associated with Gas Gangrene. Infect Immun 2019; 87:IAI.00200-19. [PMID: 31138614 DOI: 10.1128/iai.00200-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023] Open
Abstract
Gas gangrene, or clostridial myonecrosis, is usually caused by Clostridium perfringens and may occur spontaneously in association with diabetes mellitus, peripheral vascular disease, or some malignancies but more often after contamination of a deep surgical or traumatic lesion. If not controlled, clostridial myonecrosis results in multiorgan failure, shock, and death, but very little is known about the muscle regeneration process that follows myonecrosis when the infection is controlled. In this study, we characterized the muscle regeneration process after myonecrosis caused in a murine experimental infection with a sublethal inoculum of C. perfringens vegetative cells. The results show that myonecrosis occurs concomitantly with significant vascular injury, which limits the migration of inflammatory cells. A significant increase in cytokines that promote inflammation explains the presence of an inflammatory infiltrate; however, impaired interferon gamma (IFN-γ) expression, a reduced number of M1 macrophages, deficient phagocytic activity, and a prolongation of the permanence of inflammatory cells lead to deficient muscle regeneration. The expression of transforming growth factor β1 (TGF-β1) agrees with the consequent accumulation of collagen in the muscle, i.e., fibrosis observed 30 days after infection. These results provide new information on the pathogenesis of gas gangrene caused by C. perfringens, shed light on the basis of the deficient muscle regenerative activity, and may open new perspectives for the development of novel therapies for patients suffering from this disease.
Collapse
|
7
|
Uzal FA, McClane BA, Cheung JK, Theoret J, Garcia JP, Moore RJ, Rood JI. Animal models to study the pathogenesis of human and animal Clostridium perfringens infections. Vet Microbiol 2015; 179:23-33. [PMID: 25770894 DOI: 10.1016/j.vetmic.2015.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 10/23/2022]
Abstract
The most common animal models used to study Clostridium perfringens infections in humans and animals are reviewed here. The classical C. perfringens-mediated histotoxic disease of humans is clostridial myonecrosis or gas gangrene and the use of a mouse myonecrosis model coupled with genetic studies has contributed greatly to our understanding of disease pathogenesis. Similarly, the use of a chicken model has enhanced our understanding of type A-mediated necrotic enteritis in poultry and has led to the identification of NetB as the primary toxin involved in disease. C. perfringens type A food poisoning is a highly prevalent bacterial illness in the USA and elsewhere. Rabbits and mice are the species most commonly used to study the action of enterotoxin, the causative toxin. Other animal models used to study the effect of this toxin are rats, non-human primates, sheep and cattle. In rabbits and mice, CPE produces severe necrosis of the small intestinal epithelium along with fluid accumulation. C. perfringens type D infection has been studied by inoculating epsilon toxin (ETX) intravenously into mice, rats, sheep, goats and cattle, and by intraduodenal inoculation of whole cultures of this microorganism in mice, sheep, goats and cattle. Molecular Koch's postulates have been fulfilled for enterotoxigenic C. perfringens type A in rabbits and mice, for C. perfringens type A necrotic enteritis and gas gangrene in chickens and mice, respectively, for C. perfringens type C in mice, rabbits and goats, and for C. perfringens type D in mice, sheep and goats.
Collapse
Affiliation(s)
- Francisco A Uzal
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, School of Veterinary Medicine, University of California, Davis, San Bernardino, CA 92408, USA.
| | - Bruce A McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jackie K Cheung
- Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - James Theoret
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jorge P Garcia
- Department of Large Animal Medicine, School of Veterinary Medicine, National University of the Center of Buenos Aires Province, Tandil, Argentina
| | - Robert J Moore
- Department of Microbiology, Monash University, Clayton, Victoria, Australia; School of Applied Sciences, RMIT University, Bundoora, Victoria, Australia; Poultry Cooperative Research Centre, Armidale, New South Wales, Australia
| | - Julian I Rood
- Department of Microbiology, Monash University, Clayton, Victoria, Australia; Poultry Cooperative Research Centre, Armidale, New South Wales, Australia
| |
Collapse
|
8
|
Dinh H, Hong YH, Lillehoj HS. Modulation of microRNAs in two genetically disparate chicken lines showing different necrotic enteritis disease susceptibility. Vet Immunol Immunopathol 2014; 159:74-82. [DOI: 10.1016/j.vetimm.2014.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/23/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
|
9
|
Rogers LM, Thelen T, Fordyce K, Bourdonnay E, Lewis C, Yu H, Zhang J, Xie J, Serezani CH, Peters-Golden M, Aronoff DM. EP4 and EP2 receptor activation of protein kinase A by prostaglandin E2 impairs macrophage phagocytosis of Clostridium sordellii. Am J Reprod Immunol 2013; 71:34-43. [PMID: 23902376 DOI: 10.1111/aji.12153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/01/2013] [Indexed: 12/18/2022] Open
Abstract
PROBLEM Clostridium sordellii causes endometrial infections, but little is known regarding host defenses against this pathogen. METHOD OF STUDY We tested the hypothesis that the immunoregulatory lipid prostaglandin (PG) E2 suppresses human macrophage clearance of C. sordellii through receptor-induced increases in intracellular cyclic adenosine monophosphate (cAMP). The THP-1 macrophage cell line was used to quantify C. sordellii phagocytosis. RESULTS PGE2 increased cAMP levels, activated protein kinase A (PKA), and inhibited the class A scavenger receptor-dependent phagocytosis of C. sordellii. Activation of the EP2 and EP4 receptors increased intracellular cAMP and inhibited phagocytosis, with evidence favoring a more important role for EP4 over EP2. This was supported by EP receptor expression data and the use of pharmacological receptor antagonists. In addition, the PKA isoform RI appeared to be more important than RII in mediating the suppression of ingestion of C. sordellii. CONCLUSION The endogenous lipid mediator PGE2 impairs human innate immune responses against C. sordellii.
Collapse
Affiliation(s)
- Lisa M Rogers
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Interactions between Clostridium perfringens spores and Raw 264.7 macrophages. Anaerobe 2012; 18:148-56. [DOI: 10.1016/j.anaerobe.2011.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 11/21/2011] [Accepted: 12/20/2011] [Indexed: 01/09/2023]
|
11
|
Sugar inhibits the production of the toxins that trigger clostridial gas gangrene. Microb Pathog 2011; 52:85-91. [PMID: 22079896 DOI: 10.1016/j.micpath.2011.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 01/22/2023]
Abstract
Histotoxic strains of Clostridium perfringens cause human gas gangrene, a devastating infection during which potent tissue-degrading toxins are produced and secreted. Although this pathogen only grows in anaerobic-nutrient-rich habitats such as deep wounds, very little is known regarding how nutritional signals influence gas gangrene-related toxin production. We hypothesize that sugars, which have been used throughout history to prevent wound infection, may represent a nutritional signal against gas gangrene development. Here we demonstrate, for the first time, that sugars (sucrose, glucose) inhibited the production of the main protein toxins, PLC (alpha-toxin) and PFO (theta-toxin), responsible for the onset and progression of gas gangrene. Transcription analysis experiments using plc-gusA and pfoA-gusA reporter fusions as well as RT-PCR analysis of mRNA transcripts confirmed that sugar represses plc and pfoA expression. In contrast an isogenic C. perfringens strain that is defective in CcpA, the master transcription factor involved in carbon catabolite response, was completely resistant to the sugar-mediated inhibition of PLC and PFO toxin production. Furthermore, the production of PLC and PFO toxins in the ccpA mutant strain was several-fold higher than the toxin production found in the wild type strain. Therefore, CcpA is the primary or unique regulatory protein responsible for the carbon catabolite (sugar) repression of toxin production of this pathogen. The present results are analyzed in the context of the role of CcpA for the development and aggressiveness of clostridial gas gangrene and the well-known, although poorly understood, anti-infective and wound healing effects of sugars and related substances.
Collapse
|
12
|
Molecular and cellular basis of microvascular perfusion deficits induced by Clostridium perfringens and Clostridium septicum. PLoS Pathog 2008; 4:e1000045. [PMID: 18404211 PMCID: PMC2275794 DOI: 10.1371/journal.ppat.1000045] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 03/14/2008] [Indexed: 01/05/2023] Open
Abstract
Reduced tissue perfusion leading to tissue ischemia is a central component of the pathogenesis of myonecrosis caused by Clostridium perfringens. The C. perfringens α-toxin has been shown capable of inducing these changes, but its potential synergy with perfringolysin O (θ-toxin) is less well understood. Similarly, Clostridium septicum is a highly virulent causative agent of spontaneous gas gangrene, but its effect on the microcirculation has not been examined. Therefore, the aim of this study was to use intravital microscopy to examine the effects of C. perfringens and C. septicum on the functional microcirculation, coupled with the use of isogenic toxin mutants to elucidate the role of particular toxins in the resultant microvascular perfusion deficits. This study represents the first time this integrated approach has been used in the analysis of the pathological response to clostridial toxins. Culture supernatants from wild-type C. perfringens induced extensive cell death within 30 min, as assessed by in vivo uptake of propidium iodide. Furthermore, significant reductions in capillary perfusion were observed within 60 min. Depletion of either platelets or neutrophils reduced the alteration in perfusion, consistent with a role for these blood-borne cells in obstructing perfusion. In addition, mutation of either the α-toxin or perfringolysin O structural genes attenuated the reduction in perfusion, a process that was reversed by genetic complementation. C. septicum also induced a marked reduction in perfusion, with the degree of microvascular compromise correlating with the level of the C. septicum α-toxin. Together, these data indicate that as a result of its ability to produce α-toxin and perfringolysin O, C. perfringens rapidly induces irreversible cellular injury and a marked reduction in microvascular perfusion. Since C. septicum induces a similar reduction in microvascular perfusion, it is postulated that this function is central to the pathogenesis of clostridial myonecrosis, irrespective of the causative bacterium. Clostridial myonecrosis is a life-threatening process induced by infection with species such as C. perfringens and C. septicum. The associated pathology includes muscle death and a characteristic disruption in tissue perfusion. Exotoxins produced by these species have been implicated in the reduction in perfusion. However, how these toxins function in tandem remains unclear. In this study we used intravital microscopy to study microvascular blood flow in a muscle exposed to products of C. perfringens and C. septicum. C. perfringens supernatants induced cellular injury and a progressive reduction in blood flow. Removal of blood-borne platelets and neutrophils from the circulation reduced the alteration in blood flow. In addition, this response was reduced by genetic deletion of either the α-toxin or perfringolysin O, providing the first indication that each of these exotoxins contributes to the reduction in blood supply to affected tissues. Using a similar approach, we observed that C. septicum supernatant induced a comparable reduction in perfusion, which was mediated in part via the C. septicum α-toxin. These results indicate that platelets, neutrophils and multiple clostridial toxins contribute to reduced blood supply and oxygen delivery associated with clostridial infection and suggest that the dominant component of the pathology is toxin-induced cellular injury and death.
Collapse
|