1
|
Fortinez CM, Bloudoff K, Harrigan C, Sharon I, Strauss M, Schmeing TM. Structures and function of a tailoring oxidase in complex with a nonribosomal peptide synthetase module. Nat Commun 2022; 13:548. [PMID: 35087027 PMCID: PMC8795117 DOI: 10.1038/s41467-022-28221-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/19/2021] [Indexed: 12/15/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are large modular enzymes that synthesize secondary metabolites and natural product therapeutics. Most NRPS biosynthetic pathways include an NRPS and additional proteins that introduce chemical modifications before, during or after assembly-line synthesis. The bacillamide biosynthetic pathway is a common, three-protein system, with a decarboxylase that prepares an NRPS substrate, an NRPS, and an oxidase. Here, the pathway is reconstituted in vitro. The oxidase is shown to perform dehydrogenation of the thiazoline in the peptide intermediate while it is covalently attached to the NRPS, as the penultimate step in bacillamide D synthesis. Structural analysis of the oxidase reveals a dimeric, two-lobed architecture with a remnant RiPP recognition element and a dramatic wrapping loop. The oxidase forms a stable complex with the NRPS and dimerizes it. We visualized co-complexes of the oxidase bound to the elongation module of the NRPS using X-ray crystallography and cryo-EM. The three active sites (for adenylation, condensation/cyclization, and oxidation) form an elegant arc to facilitate substrate delivery. The structures enabled a proof-of-principle bioengineering experiment in which the BmdC oxidase domain is embedded into the NRPS.
Collapse
Affiliation(s)
- Camille Marie Fortinez
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - Kristjan Bloudoff
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - Connor Harrigan
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - Itai Sharon
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
| | - Mike Strauss
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC, H3A 0C7, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, QC, H3G 0B1, Canada.
- Centre de recherche en biologie structurale, McGill University, Montréal, QC, H3G 0B1, Canada.
| |
Collapse
|
2
|
Kalbhenn EM, Bauer T, Stark TD, Knüpfer M, Grass G, Ehling-Schulz M. Detection and Isolation of Emetic Bacillus cereus Toxin Cereulide by Reversed Phase Chromatography. Toxins (Basel) 2021; 13:toxins13020115. [PMID: 33557428 PMCID: PMC7915282 DOI: 10.3390/toxins13020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
The emetic toxin cereulide is a 1.2 kDa dodecadepsipeptide produced by the food pathogen Bacillus cereus. As cereulide poses a serious health risk to humans, sensitive and specific detection, as well as toxin purification and quantification, methods are of utmost importance. Recently, a stable isotope dilution assay tandem mass spectrometry (SIDA–MS/MS)-based method has been described, and an method for the quantitation of cereulide in foods was established by the International Organization for Standardization (ISO). However, although this SIDA–MS/MS method is highly accurate, the sophisticated high-end MS equipment required for such measurements limits the method’s suitability for microbiological and molecular research. Thus, we aimed to develop a method for cereulide toxin detection and isolation using equipment commonly available in microbiological and biochemical research laboratories. Reproducible detection and relative quantification of cereulide was achieved, employing reversed phase chromatography (RPC). Chromatographic signals were cross validated by ultraperformance liquid chromatography–mass spectrometry (UPLC–MS/MS). The specificity of the RPC method was tested using a test panel of strains that included non-emetic representatives of the B. cereus group, emetic B. cereus strains, and cereulide-deficient isogenic mutants. In summary, the new method represents a robust, economical, and easily accessible research tool that complements existing diagnostics for the detection and quantification of cereulide.
Collapse
Affiliation(s)
- Eva Maria Kalbhenn
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (E.M.K.); (T.B.)
| | - Tobias Bauer
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (E.M.K.); (T.B.)
| | - Timo D. Stark
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany;
| | - Mandy Knüpfer
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany; (M.K.); (G.G.)
| | - Gregor Grass
- Bundeswehr Institute of Microbiology, Neuherbergstraße 11, 80937 Munich, Germany; (M.K.); (G.G.)
| | - Monika Ehling-Schulz
- Functional Microbiology, Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (E.M.K.); (T.B.)
- Correspondence:
| |
Collapse
|
3
|
Alonzo DA, Schmeing TM. Biosynthesis of depsipeptides, or Depsi: The peptides with varied generations. Protein Sci 2020; 29:2316-2347. [PMID: 33073901 DOI: 10.1002/pro.3979] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Depsipeptides are compounds that contain both ester bonds and amide bonds. Important natural product depsipeptides include the piscicide antimycin, the K+ ionophores cereulide and valinomycin, the anticancer agent cryptophycin, and the antimicrobial kutzneride. Furthermore, database searches return hundreds of uncharacterized systems likely to produce novel depsipeptides. These compounds are made by specialized nonribosomal peptide synthetases (NRPSs). NRPSs are biosynthetic megaenzymes that use a module architecture and multi-step catalytic cycle to assemble monomer substrates into peptides, or in the case of specialized depsipeptide synthetases, depsipeptides. Two NRPS domains, the condensation domain and the thioesterase domain, catalyze ester bond formation, and ester bonds are introduced into depsipeptides in several different ways. The two most common occur during cyclization, in a reaction between a hydroxy-containing side chain and the C-terminal amino acid residue in a peptide intermediate, and during incorporation into the growing peptide chain of an α-hydroxy acyl moiety, recruited either by direct selection of an α-hydroxy acid substrate or by selection of an α-keto acid substrate that is reduced in situ. In this article, we discuss how and when these esters are introduced during depsipeptide synthesis, survey notable depsipeptide synthetases, and review insight into bacterial depsipeptide synthetases recently gained from structural studies.
Collapse
Affiliation(s)
- Diego A Alonzo
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
4
|
Naka T, Takaki Y, Hattori Y, Takenaka H, Ohta Y, Kirihata M, Tanimori S. Chemical structure of hydrolysates of cereulide and their time course profile. Bioorg Med Chem Lett 2020; 30:127050. [DOI: 10.1016/j.bmcl.2020.127050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/10/2020] [Accepted: 02/18/2020] [Indexed: 11/17/2022]
|
5
|
Synthesis of the reported structure of homocereulide and its vacuolation assay. Bioorg Med Chem Lett 2019; 29:734-739. [DOI: 10.1016/j.bmcl.2019.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 11/23/2022]
|
6
|
Analysis of emetic toxin production by Bacillus species using cellular cytotoxicity, molecular, and chromatographic assays. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-014-0574-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Wang J, Ding T, Oh DH. Effect of Temperatures on the Growth, Toxin Production, and Heat Resistance of Bacillus cereus in Cooked Rice. Foodborne Pathog Dis 2014; 11:133-7. [DOI: 10.1089/fpd.2013.1609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Jun Wang
- Department of Food Science and Biotechnology and Institute of Bioscience and Biotechnology, Kangwon National University, Gangwon, Korea
| | - Tian Ding
- Department of Food Science and Nutrition, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology and Institute of Bioscience and Biotechnology, Kangwon National University, Gangwon, Korea
| |
Collapse
|
8
|
Oh MH, Ham JS, Cox JM. Diversity and toxigenicity among members of the Bacillus cereus group. Int J Food Microbiol 2012; 152:1-8. [DOI: 10.1016/j.ijfoodmicro.2011.09.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 08/01/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022]
|
9
|
Kefiran protects Caco-2 cells from cytopathic effects induced by Bacillus cereus infection. Antonie Van Leeuwenhoek 2009; 96:505-13. [DOI: 10.1007/s10482-009-9366-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
|
10
|
Ngamwongsatit P, Banada PP, Panbangred W, Bhunia AK. WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line. J Microbiol Methods 2008; 73:211-5. [DOI: 10.1016/j.mimet.2008.03.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 11/25/2022]
|
11
|
Andersson MA, Hakulinen P, Honkalampi-Hämäläinen U, Hoornstra D, Lhuguenot JC, Mäki-Paakkanen J, Savolainen M, Severin I, Stammati AL, Turco L, Weber A, von Wright A, Zucco F, Salkinoja-Salonen M. Toxicological profile of cereulide, the Bacillus cereus emetic toxin, in functional assays with human, animal and bacterial cells. Toxicon 2007; 49:351-67. [PMID: 17156808 DOI: 10.1016/j.toxicon.2006.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 10/20/2006] [Accepted: 10/23/2006] [Indexed: 11/27/2022]
Abstract
Some strains of the endospore-forming bacterium Bacillus cereus produce a heat-stable ionophoric peptide, cereulide, of high human toxicity. We assessed cell toxicity of cereulide by measuring the toxicities of crude extracts of cereulide producing and non-producing strains of B. cereus, and of pure cereulide, using cells of human, animal and bacterial origins. Hepatic cell lines and boar sperm, with cytotoxicity and sperm motility, respectively, as the end points, were inhibited by 1 nM of cereulide present as B. cereus extract. RNA synthesis and cell proliferation in HepG2 cells was inhibited by 2 nM of cereulide. These toxic effects were explainable by the action of cereulide as a high-affinity mobile K+ carrier. Exposure to cereulide containing extracts of B. cereus caused neither activation of CYP1A1 nor genotoxicity (comet assay, micronucleus test) at concentrations below those that were cytotoxic (0.6 nM cereulide). Salmonella typhimurium reverse mutation (Ames) test was negative. Exposure of Vibrio fischeri to extracts of B. cereus caused stimulated luminescence up to 600%, independent on the presence of cereulide, but purified cereulide inhibited the luminescence with an IC(50% (30 min)) of 170 nM. Thus the luminescence-stimulating B. cereus substance(s) masked the toxicity of cereulide in B. cereus extracts to V. fischeri.
Collapse
Affiliation(s)
- Maria A Andersson
- Department of Applied Chemistry and Microbiology, University of Helsinki, Biocenter, P.O. Box 56, Fi 00014 Helsinki University, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
King NJ, Whyte R, Hudson JA. Presence and significance of Bacillus cereus in dehydrated potato products. J Food Prot 2007; 70:514-20. [PMID: 17340893 DOI: 10.4315/0362-028x-70.2.514] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dehydrated potato contains Bacillus cereus at a prevalences of 10 to 40% and at numbers usually less than 10(3) CFU g(-1). B. cereus in dehydrated potato is likely to be present as spores that are able to survive drying of the raw vegetable and may represent a significant inoculum in the reconstituted (rehydrated) product where conditions favor germination of, and outgrowth from, spores. Holding rehydrated mashed potato alone, or as part of another product (e.g., potato-topped pie), at temperatures above 10 degrees C and below 60 degrees C may allow growth of vegetative B. cereus. Levels exceeding 10(4) CFU g(-1) are considered hazardous to human health and may be reached within a few hours if stored inappropriately between these temperatures. Foods incorporating mashed potato prepared from dehydrated potato flakes have been implicated in B. cereus foodborne illness. This review is a summary of the information available concerning the prevalence and numbers of B. cereus in dehydrated potato flakes and the rate at which growth might occur in the rehydrated product.
Collapse
Affiliation(s)
- Nicola J King
- Food Safety Programme, Institute of Environmental Science and Research, P.O. Box 29-181, 27 Creyke Road, Ilam, Christchurch 8041, New Zealand
| | | | | |
Collapse
|
13
|
Gray KM, Banada PP, O'Neal E, Bhunia AK. Rapid Ped-2E9 cell-based cytotoxicity analysis and genotyping of Bacillus species. J Clin Microbiol 2005; 43:5865-72. [PMID: 16333068 PMCID: PMC1317164 DOI: 10.1128/jcm.43.12.5865-5872.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/22/2005] [Accepted: 09/25/2005] [Indexed: 11/20/2022] Open
Abstract
Bacillus species causing food-borne disease produce multiple toxins eliciting gastroenteritis. Toxin assays with mammalian cell cultures are reliable but may take 24 to 72 h to complete and also lack sensitivity. Here, a sensitive and rapid assay was developed using a murine hybridoma Ped-2E9 cell model. Bacillus culture supernatants containing toxins were added to a Ped-2E9 cell line and analyzed for cytotoxicity with an alkaline phosphatase release assay. Most Bacillus cereus strains produced positive cytotoxicity results within 1 h, and data were comparable to those obtained with the standard Chinese hamster ovary (CHO)-based cytotoxicity assay, which took about 72 h to complete. Moreover, the Ped-2E9 cell assay had 25- to 58-fold-higher sensitivity than the CHO assay. Enterotoxin-producing Bacillus thuringiensis also gave positive results with Ped-2E9 cells, while several other Bacillus species were negative. Eight isolates from food suspected of Bacillus contamination were also tested, and only one strain, which was later confirmed as B. cereus, gave a positive result. In comparison with two commercial diarrheal toxin assay kits (BDE-VIA and BCET-RPLA), the Ped-2E9 assay performed more reliably. Toxin fractions of >30 kDa showed the highest degree of cytotoxicity effects, and heat treatment significantly reduced the toxin activity, indicating the involvement of a heat-labile high-molecular-weight component in Ped-2E9 cytotoxicity. PCR results, in most cases, were in agreement with the cytotoxic potential of each strain. Ribotyping was used to identify cultures and indicated differences for several previously reported isolates. This Ped-2E9 cell assay could be used as a rapid (approximately 1-h) alternative to current methods for sensitive detection of enterotoxins from Bacillus species.
Collapse
Affiliation(s)
- Kristen M Gray
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
14
|
Abstract
The genus Bacillus includes members that demonstrate a wide range of diversity from physiology and ecological niche to DNA sequence and gene regulation. The species of most interest tend to be known for their pathogenicity and are closely linked genetically. Bacillus anthracis causes anthrax, and Bacillus thuringiensis is widely used for its insecticidal properties but has also been associated with foodborne disease. Bacillus cereus causes two types of food poisoning, the emetic and diarrheal syndromes, and a variety of local and systemic infections. Although in this review we provide information on the genus and a variety of species, the primary focus is on the B. cereus strains and toxins that are involved in foodborne illness. B. cereus produces a large number of potential virulence factors, but for the majority of these factors their roles in specific infections have not been established. To date, only cereulide and the tripartite hemolysin BL have been identified specifically as emetic and diarrheal toxins, respectively. Nonhemolytic enterotoxin, a homolog of hemolysin BL, also has been associated with the diarrheal syndrome. Recent findings regarding these and other putative enterotoxins are discussed.
Collapse
Affiliation(s)
- Jean L Schoeni
- Department of Food Microbiology and Toxicology, Food Research Institute, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
15
|
Biochemical and toxic diversity of Bacillus cereus in a pasta and meat dish associated with a food-poisoning case. Food Microbiol 2005. [DOI: 10.1016/j.fm.2004.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Ehling-Schulz M, Fricker M, Scherer S. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol Nutr Food Res 2004; 48:479-87. [PMID: 15538709 DOI: 10.1002/mnfr.200400055] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bacillus cereus is the causative agent of two distinct forms of gastroenteritic disease connected to food-poisoning. It produces one emesis-causing toxin and three enterotoxins that elicit diarrhea. Due to changing lifestyles and eating habits, B. cereus is responsible for an increasing number of food-borne diseases in the industrial world. In the past, most studies concentrated on the diarrhoeal type of food-borne disease, while less attention has been given to the emetic type of the disease. The toxins involved in the diarrhoeal syndrome are well-known and detection methods are commercially available, whereas diagnostic methods for the emetic type of disease have been limited. Only recently, progress has been made in developing identification methods for emetic B. cereus and its corresponding toxin. We will summarize the data available for the emetic type of the disease and discuss some new insights in emetic strain characteristics, diagnosis, and toxin synthesis.
Collapse
|
17
|
Jääskeläinen EL, Häggblom MM, Andersson MA, Salkinoja-Salonen MS. Atmospheric oxygen and other conditions affecting the production of cereulide by Bacillus cereus in food. Int J Food Microbiol 2004; 96:75-83. [PMID: 15358508 DOI: 10.1016/j.ijfoodmicro.2004.03.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2003] [Revised: 09/15/2003] [Accepted: 03/06/2004] [Indexed: 10/26/2022]
Abstract
Factors influencing the production of cereulide, the emetic toxin of Bacillus cereus in food and laboratory media were investigated, using liquid chromatography-ion trap mass spectrometry and sperm motility inhibition bioassay for detection and quantitation. Oxygen was essential for production of the emetic toxin by B. cereus. When beans, rice or tryptic soy broth were inoculated with cereulide producing strains B203, B116 (recent food isolates) or the strain F-4810/72, high amounts (2 to 7 microg ml(-1) or g(-1) wet wt) of cereulide accumulated during 4-day storage at room temperature. In parallel cultures and foods, stored under nitrogen atmosphere (> 99.5% N2), less than 0.05 microg of cereulide ml(-1) or g(-1) wet wt accumulated. The outcome of the bioassay matched that of the chemical assay, with no indication of interference by substances in the rice or beans. Boiling for 20 to 30 min did not inactivate cereulide or cereulide producing strains in rice or the beans. Adding l-leucine and l-valine (0.3 g l(-1)) stimulated cereulide production 10- to 20-fold in R2A and in rice water agar. When the B. cereus strains were grown on agar media under permissive conditions (air, room temperature), cereulide was produced overnight with little or no increase when the incubation was extended to 4 days. In broth culture, the production of cereulide started later than 16-24 h. Anoxic storage prevented cereulide production also when the amino acids had been supplied. Packaging with modified atmosphere low in oxygen may thus be used to reduce the risk of cereulide formation during storage of food.
Collapse
Affiliation(s)
- E L Jääskeläinen
- Department of Applied Chemistry and Microbiology, Division of Microbiology, University of Helsinki, P.O. Box 56, FIN-00014 Helsinki, Finland.
| | | | | | | |
Collapse
|
18
|
Minnaard J, Lievin-Le Moal V, Coconnier MH, Servin AL, Pérez PF. Disassembly of F-actin cytoskeleton after interaction of Bacillus cereus with fully differentiated human intestinal Caco-2 cells. Infect Immun 2004; 72:3106-12. [PMID: 15155611 PMCID: PMC415652 DOI: 10.1128/iai.72.6.3106-3112.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Revised: 07/10/2003] [Accepted: 01/19/2004] [Indexed: 11/20/2022] Open
Abstract
In the present study, the role of direct procaryote-eucaryote interactions in the virulence of Bacillus cereus was investigated. As a model of human enterocytes, differentiated Caco-2 cells were used. Infection of fully differentiated Caco-2 cells with B. cereus in the exponential phase of growth, in order to minimize the concentration of spores or sporulating microorganisms, shows that a strain-dependent cytopathic effect develops. Interestingly, addition of 3-h-old cultures of some strains resulted in complete detachment of the cultured cells after a 3-h infection whereas no such effect was found after a 3-h infection with 16-h-old cultures. Infection of enterocyte-like cells with B. cereus leads to disruption of the F-actin network and necrosis. Even though the effect of secreted factors cannot be ruled out, direct eucaryote-procaryote interaction seems to be necessary. In addition, we observed that some B. cereus strains were able to be internalized in Caco-2 cells. Our findings add a new insight into the mechanisms of virulence of B. cereus in the context of intestinal infection.
Collapse
Affiliation(s)
- Jessica Minnaard
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Cátedra de Microbiología, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | | | | | | | | |
Collapse
|
19
|
Jääskeläinen EL, Häggblom MM, Andersson MA, Vanne L, Salkinoja-Salonen MS. Potential of Bacillus cereus for producing an emetic toxin, cereulide, in bakery products: quantitative analysis by chemical and biological methods. J Food Prot 2003; 66:1047-54. [PMID: 12801008 DOI: 10.4315/0362-028x-66.6.1047] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A method for the direct quantitative analysis of cereulide, the emetic toxin of Bacillus cereus, in bakery products was developed. The analysis was based on robotized extraction followed by quantitation of cereulide by liquid chromatography-mass spectrometry and an assay of toxicity by the boar sperm motility inhibition test. The bioassay and the chemical assay gave comparable results, demonstrating that the extracted cereulide was in a biologically active form. Cereulide was formed when cereulide-producing B. cereus strains were present at > or = 10(6) CFU/g in products with water activity values of > 0.953 and pHs of > 5.6. Rice-containing pastries accumulated high contents of cereulide (0.3 to 5.5 microg/g [wet weight]) when stored at nonrefrigeration temperatures (21 to 23 degrees C). Cereulide was not formed in products stored at refrigeration temperatures (4 to 8 degrees C). Cereulide is not inactivated by heating during food processing. Therefore, direct analysis of this toxin in food is preferable to cultivating methods for assessing the risk of food poisoning by emetic B. cereus.
Collapse
Affiliation(s)
- Elina L Jääskeläinen
- University of Helsinki, Department of Applied Chemistry and Microbiology, Division of Microbiology, P.O. Box 56, FIN-00014 Helsinki, Finland.
| | | | | | | | | |
Collapse
|
20
|
Pedersen PB, Bjørnvad ME, Rasmussen MD, Petersen JN. Cytotoxic potential of industrial strains of Bacillus sp. Regul Toxicol Pharmacol 2002; 36:155-61. [PMID: 12460750 DOI: 10.1006/rtph.2002.1574] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cytotoxic potential of selected strains of Bacillus licheniformis, Bacillus amyloliquefaciens, and Bacillus subtilis, used in the production of industrial enzyme products, has been assessed. Cytotoxicity was determined in Chinese hamster ovary (CHO-K1) cells by measuring total cellular metabolic activity using the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Initially the MTT assay was validated against toxigenic strains of Bacillus cereus, to define the exact criteria for a toxigenic versus a nontoxigenic response. The assay proved sensitive to culture broths of both a diarrheagenic strain and an emetic strain of B. cereus. The enzyme-producing strains tested were nontoxic to CHO-K1 cells. Additionally it was demonstrated that our industrial strains did not react with antibodies against B. cereus enterotoxins by use of commercial antibody-based kits from Oxoid and Tecra. A short survey of the literature concerning the toxigenic potential of species within the subtilis group is included, as is a database search of known B. cereus enterotoxins against B. subtilis and B. licheniformis DNA sequences.
Collapse
Affiliation(s)
- P B Pedersen
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsvaerd, Denmark.
| | | | | | | |
Collapse
|
21
|
Häggblom MM, Apetroaie C, Andersson MA, Salkinoja-Salonen MS. Quantitative analysis of cereulide, the emetic toxin of Bacillus cereus, produced under various conditions. Appl Environ Microbiol 2002; 68:2479-83. [PMID: 11976124 PMCID: PMC127581 DOI: 10.1128/aem.68.5.2479-2483.2002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This paper describes a quantitative and sensitive chemical assay for cereulide, the heat-stable emetic toxin produced by Bacillus cereus. The methods previously available for measuring cereulide are bioassays that give a toxicity titer, but not an accurate concentration. The dose of cereulide causing illness in humans is therefore not known, and thus safety limits for cereulide cannot be indicated. We developed a quantitative and sensitive chemical assay for cereulide based on high-performance liquid chromatography (HPLC) connected to ion trap mass spectrometry. This chemical assay and a bioassay based on boar sperm motility inhibition were calibrated with purified cereulide and with valinomycin, a structurally similar cyclic depsipeptide. The boar spermatozoan motility assay and chemical assay gave uniform results over a wide range of cereulide concentrations, ranging from 0.02 to 230 microg ml(-1). The detection limit for cereulide and valinomycin by HPLC-mass spectrometry was 10 pg per injection. The combined chemical and biological assays were used to define conditions and concentrations of cereulide formation by B. cereus strains F4810/72, NC7401, and F5881. Cereulide production commenced at the end of logarithmic growth, but was independent of sporulation. Production of cereulide was enhanced by incubation with shaking compared to static conditions. The three emetic B. cereus strains accumulated 80 to 166 microg of cereulide g(-1) (wet weight) when grown on solid medium. Strain NC7401 accumulated up to 25 microg of cereulide ml(-1) in liquid medium at room temperature (21 +/- 1 degrees C) in 1 to 3 days, during the stationary growth phase when cell density was 2 x 10(8) to 6 x 10(8) CFU ml(-1). Cereulide production at temperatures at and below 8 degrees C or at 40 degrees C was minimal.
Collapse
Affiliation(s)
- Max M Häggblom
- Department of Applied Chemistry and Microbiology, University of Helsinki, FIN-00014 University of Helsinki, Finland.
| | | | | | | |
Collapse
|
22
|
Minnaard J, Humen M, Pérez- PF. Effect of Bacillus cereus exocellular factors on human intestinal epithelial cells. J Food Prot 2001; 64:1535-41. [PMID: 11601702 DOI: 10.4315/0362-028x-64.10.1535] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To gain insight on the biological effects of the exocellular factors produced by Bacillus cereus, culture filtrate supernatants of different strains were coincubated with differentiated Caco-2 cells. Exocellular factors were able to detach enterocyte-like cells from the substratum after 1 h of incubation. In addition, microvilli effacing and dramatic changes on the cellular surface of enterocytes were found after incubation periods as short as 20 min. Since cell detachment was not inhibited by fetal calf serum, thiol activated cholesterol-binding cytolysin, cereolysin O, does not seem to be involved. Also, translocation of phosphatidylserine from the inner to the outer leaflets of the plasma membrane was demonstrated by using fluorescein isothiocyanate (FITC)-Annexin V. In contrast to the high capability of detaching Caco-2 cells shown by all the strains under study, the mitochondrial dehydrogenase activity was lowered by culture filtrate supernatants in a strain-dependent manner. For strain M2, the decrease in dehydrogenase activity was already evident after 30 min of incubation. Production of biologically active factors depends on the growth phase, and maximal activity was found in late exponential-early stationary phases. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of concentrated exocellular factors showed a very complex scenery supporting the multifactorial character of the biological activity of B. cereus.
Collapse
Affiliation(s)
- J Minnaard
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Cátedra de Microbiología-Facultad de Ciencias Exactas-Universidad Nacional de La Plata, Argentina
| | | | | |
Collapse
|
23
|
Abstract
Bacillus cereus is a causative agent in both gastrointestinal and in nongastrointestinal infections. Enterotoxins, emetic toxin (cereulide), hemolysins, and phoshpolipase C as well as many enzymes such as beta-lactamases, proteases and collagenases are known as potential virulence factors of B. cereus. A special surface structure of B. cereus cells, the S-layer, has a significant role in the adhesion to host cells, in phagocytosis and in increased radiation resistance. Interest in B. cereus has been growing lately because it seems that B. cereus-related diseases, in particular food poisonings, are growing in number.
Collapse
Affiliation(s)
- A Kotiranta
- Institute of Dentistry, P.O. Box 41, FIN-00014, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
24
|
Beattie SH, Williams AG. Detection of toxigenic strains of Bacillus cereus and other Bacillus spp. with an improved cytotoxicity assay. Lett Appl Microbiol 1999; 28:221-5. [PMID: 10196773 DOI: 10.1046/j.1365-2672.1999.00498.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An improved qualitative cell cytotoxicity assay for the detection of Bacillus cereus emetic and enterotoxin is described. The presence of toxin in culture supernatant fluids was detected by measurement with the tetrazolium salt MTT, as it adversely affects the metabolic status of cultured CHO cells. Psychrotrophic B. cereus isolates (65) were assessed for toxin production using the cytotoxicity assay, and 91% of culture supernatant fluids were cytotoxic. Toxin assessment using BCET-RPLA and ELISA immunoassays indicated that 51% and 85% of the cultures, respectively, were toxigenic. There were pronounced strain differences in the amount of toxin produced by the B. cereus isolates. Some isolates of B. circulans, B. laterosporus/cereus, B. lentus, B. licheniformis, B. mycoides, B. subtilis and B. thuringiensis were also toxigenic.
Collapse
|
25
|
Andersson MA, Mikkola R, Helin J, Andersson MC, Salkinoja-Salonen M. A novel sensitive bioassay for detection of Bacillus cereus emetic toxin and related depsipeptide ionophores. Appl Environ Microbiol 1998; 64:1338-43. [PMID: 9546170 PMCID: PMC106152 DOI: 10.1128/aem.64.4.1338-1343.1998] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Of the toxins produced by Bacillus cereus, the emetic toxin is likely the most dangerous but, due to the lack of a suitable assay, the least well known. In this paper, a new, sensitive, inexpensive, and rapid bioassay for detection of the emetic toxin of B. cereus is described. The assay is based on the loss of motility of boar spermatozoa upon 24 h of exposure to extracts of emetic B. cereus strains or contaminated food. The paralyzed spermatozoa exhibited swollen mitochondria, but no depletion of cellular ATP or damage to plasma membrane integrity was observed. Analysis of the purified toxin by electrospray tandem mass spectrometry showed that it was a dodecadepsipeptide with a mass fragmentation pattern similar to that described for cereulide. The 50% effective concentration of the purified toxin to boar spermatozoa was 0.5 ng of purified toxin ml of extended boar semen-1. This amount corresponds to 10(4) to 10(5) CFU of B. cereus cells. No toxicity was detected for 27 other B. cereus strains up to 10(8) CFU ml-1. The detection limit for food was 3 g of rice containing 10(6) to 10(7) CFU of emetic B. cereus per gram. Effects similar to those provoked by emetic B. cereus toxin were also induced in boar spermatozoa by valinomycin and gramicidin at 2 and 3 ng ml of extended boar semen-1, respectively. The symptoms provoked by the toxin in spermatozoa indicated that B. cereus emetic toxin was acting as a membrane channel-forming ionophore, damaging mitochondria and blocking the oxidative phosphorylation required for the motility of boar spermatozoa.
Collapse
Affiliation(s)
- M A Andersson
- Department of Applied Chemistry and Microbiology, University of Helsinki, Finland.
| | | | | | | | | |
Collapse
|
26
|
Granum PE, Tomas JM, Alouf JE. A survey of bacterial toxins involved in food poisoning: a suggestion for bacterial food poisoning toxin nomenclature. Int J Food Microbiol 1995; 28:129-44. [PMID: 8750662 DOI: 10.1016/0168-1605(95)00052-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is at present no accepted nomenclature for bacterial protein toxins, although there have been several attempts at dividing them into groups by their mode of action. In this paper we will not try to describe all known bacterial protein toxins, but concentrate on the toxins involved in food poisoning. Although most of these toxins are enterotoxins (protein exotoxins with the site of action on the mucosal cells of the intestinal tract) there are also other toxins involved in food poisoning, like the neurotoxins. In Table 1 the most important food pathogens in Europe are listed. For most, but not all, of these food pathogens, toxins are virulence factors. Generally, we divide food poisoning into infections and intoxications, where Salmonella spp. and Shigella spp. are typical examples of infections and Clostridium botulinum and Staphylococcus aureus for intoxications. We consider it better to make four different groups of food pathogenic bacteria, according to Table 2. Today the first three groups are all defined as infections, although for both group 2 and 3 the bacterium itself does not harm the host directly. The bacterium in such locations is like an 'enterotoxin factory'. The bacteria belonging to group 3 do not even interact with the epithelial cells in the intestine, while the bacteria of group 2 must colonise the epithelial cells prior to enterotoxin production.
Collapse
Affiliation(s)
- P E Granum
- Department of Pharmacology, Norwegian College of Veterinary Medicine, Oslo, Norway.
| | | | | |
Collapse
|