1
|
Ssekitoleko J, Ojok L, Abd El Wahed A, Erume J, Amanzada A, Eltayeb E, Eltom KH, Okuni JB. Mycobacterium avium subsp. paratuberculosis Virulence: A Review. Microorganisms 2021; 9:2623. [PMID: 34946224 PMCID: PMC8707695 DOI: 10.3390/microorganisms9122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
To propose a solution for control of Mycobacterium avium subsp. paratuberculosis (MAP) infections in animals as well as in humans, and develop effective prevention, diagnostic and treatment strategies, it is essential to understand the molecular mechanisms of MAP pathogenesis. In the present review, we discuss the mechanisms utilised by MAP to overcome the host defense system to achieve the virulence status. Putative MAP virulence genes are mentioned and their probable roles in view of other mycobacteria are discussed. This review provides information on MAP strain diversity, putative MAP virulence factors and highlights the knowledge gaps regarding MAP virulence mechanisms that may be important in control and prevention of paratuberculosis.
Collapse
Affiliation(s)
- Judah Ssekitoleko
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P. O. Box 7062, Uganda; (J.S.); (L.O.); (J.E.)
- Department of Livestock Health Research, Rwebitaba Zonal Agricultural Research and Development Institute, National Agricultural Research Organisation, Entebbe P. O. Box 295, Uganda
| | - Lonzy Ojok
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P. O. Box 7062, Uganda; (J.S.); (L.O.); (J.E.)
- Department of Pathology, Faculty of Medicine, Gulu University, Gulu P. O. Box 166, Uganda
| | - Ahmed Abd El Wahed
- Institute of Animal Hygiene and Veterinary Public Health, Leipzig University, D-04103 Leipzig, Germany
| | - Joseph Erume
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P. O. Box 7062, Uganda; (J.S.); (L.O.); (J.E.)
| | - Ahmad Amanzada
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Centre Goettingen, D-37075 Goettingen, Germany;
| | - ElSagad Eltayeb
- Ibn Sina Specialised Hospital, Mohammed Najeeb St., Khartoum 11560, Sudan;
- Faculty of Medicine, Al Neelain University, 52nd St., Khartoum 11112, Sudan
| | - Kamal H. Eltom
- Unit of Animal Health and Safety of Animal Products, Institute for Studies and Promotion of Animal Exports, University of Khartoum, Shambat, Khartoum North 13314, Sudan;
| | - Julius Boniface Okuni
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala P. O. Box 7062, Uganda; (J.S.); (L.O.); (J.E.)
| |
Collapse
|
2
|
Davis WC, Abdellrazeq GS, Mahmoud AH, Park KT, Elnaggar MM, Donofrio G, Hulubei V, Fry LM. Advances in Understanding of the Immune Response to Mycobacterial Pathogens and Vaccines through Use of Cattle and Mycobacterium avium subsp. paratuberculosis as a Prototypic Mycobacterial Pathogen. Vaccines (Basel) 2021; 9:vaccines9101085. [PMID: 34696193 PMCID: PMC8541111 DOI: 10.3390/vaccines9101085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 01/29/2023] Open
Abstract
Lack of understanding of the immune response to mycobacterial pathogens has impeded progress in development of vaccines. Infection leads to development of an immune response that controls infection but is unable to eliminate the pathogen, resulting in a persistent infection. Although this puzzle remains to be solved, progress has been made using cattle as a model species to study the immune response to a prototypic mycobacterium, Mycobacterium a. paratuberculosis (Map). As chronicled in the review, incremental advances in characterizing the immune response to mycobacteria during the last 30 years with increases in information on the evolution of mycobacteria and relA, a gene regulating the stringent response, have brought us closer to an answer. We provide a brief overview of how mycobacterial pathogens were introduced into cattle during the transition of humankind to nomadic pastoralists who domesticated animals for food and farming. We summarize what is known about speciation of mycobacteria since the discovery of Mybacterium tuberculsis Mtb, M. bovis Mbv, and Map as zoonotic pathogens and discuss the challenges inherent in the development of vaccines to mycobacteria. We then describe how cattle were used to characterize the immune response to a prototypic mycobacterial pathogen and development of novel candidate vaccines.
Collapse
Affiliation(s)
- William C. Davis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (G.S.A.); (A.H.M.); (M.M.E.); (V.H.); (L.M.F.)
- Correspondence:
| | - Gaber S. Abdellrazeq
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (G.S.A.); (A.H.M.); (M.M.E.); (V.H.); (L.M.F.)
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Asmaa H. Mahmoud
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (G.S.A.); (A.H.M.); (M.M.E.); (V.H.); (L.M.F.)
- Veterinary Quarantine of Alexandria, General Organization for Veterinary Services, Ministry of Agriculture and Land Reclamation, Dokki, Giza 12611, Egypt
| | - Kun-Taek Park
- Department of Biotechnology, Inje University, Injero 197, Kimhae-si 50834, Korea;
| | - Mahmoud M. Elnaggar
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (G.S.A.); (A.H.M.); (M.M.E.); (V.H.); (L.M.F.)
- Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, 43126 Parma, Italy;
| | - Victoria Hulubei
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (G.S.A.); (A.H.M.); (M.M.E.); (V.H.); (L.M.F.)
| | - Lindsay M. Fry
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA; (G.S.A.); (A.H.M.); (M.M.E.); (V.H.); (L.M.F.)
- Animal Disease Research Unit, USDA-ARS, Pullman, WA 99164, USA
| |
Collapse
|
3
|
Chimukuche NM, Williams MJ. Genetic Manipulation of Non-tuberculosis Mycobacteria. Front Microbiol 2021; 12:633510. [PMID: 33679662 PMCID: PMC7925387 DOI: 10.3389/fmicb.2021.633510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/27/2021] [Indexed: 11/25/2022] Open
Abstract
Non-tuberculosis mycobacteria (NTMs) comprise a large group of organisms that are phenotypically diverse. Analysis of the growing number of completed NTM genomes has revealed both significant intra-genus genetic diversity, and a high percentage of predicted genes that appear to be unique to this group. Most NTMs have not been studied, however, the rise in NTM infections in several countries has prompted increasing interest in these organisms. Mycobacterial research has recently benefitted from the development of new genetic tools and a growing number of studies describing the genetic manipulation of NTMs have now been reported. In this review, we discuss the use of both site-specific and random mutagenesis tools in NTMs, highlighting the challenges that exist in applying these techniques to this diverse group of organisms.
Collapse
Affiliation(s)
| | - Monique J Williams
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Alonso MN, Malaga W, Mc Neil M, Jackson M, Romano MI, Guilhot C, Santangelo MP. Efficient method for targeted gene disruption by homologous recombination in Mycobacterium avium subspecie paratuberculosis. Res Microbiol 2020; 171:203-210. [PMID: 32283218 DOI: 10.1016/j.resmic.2020.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
Targeted gene disruption by homologous recombination, has been widely used in mycobacterium species to understand the genetic basis of virulence and persistence in the host and to develop efficacious potential live vaccines. However, in slow growing pathogenic mycobacteria as Mycobacterium avium subsp paratuberculosis (MAP), these methods have been inefficient, in part due to the low frequency of legitimate homologous recombination. Another feature of mycobacteria is the low efficiency of transformation; therefore, some years ago, a phage-mediated transduction process was developed to introduce DNA into mycobacteria. This strategy is very efficient, due to the high rate of infection of the phage. This report describes a genetic method for the generation of targeted deletion mutations in MAP by allelic exchange using in vitro-generated specialized transducing mycobacteriophages, which does not require the critical packaging step and that could also be applied to other mycobacteria. We provide a detailed gene deletion methodology and demonstrate the use of this genetic system by deleting the mce4 operon of MAP. Finally, our results showed that the deletion of mce4 in MAP induces triacylglycerol accumulation; alter morphology and aggregation in liquid culture.
Collapse
Affiliation(s)
- Maria Natalia Alonso
- IABIMO Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Los Reseros y Nicolas Repetto 1686, Hurlingham, Buenos Aires, Argentina.
| | - Wladimir Malaga
- Institut de Pharmacologie et de Biologie Structurale, IPBS, University of Toulouse, CNRS, UPS, BP64182 205 Route de Narbonne, 31077 Toulouse Cedex 04, France.
| | - Michael Mc Neil
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA.
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA.
| | - Maria Isabel Romano
- IABIMO Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Los Reseros y Nicolas Repetto 1686, Hurlingham, Buenos Aires, Argentina.
| | - Christophe Guilhot
- Institut de Pharmacologie et de Biologie Structurale, IPBS, University of Toulouse, CNRS, UPS, BP64182 205 Route de Narbonne, 31077 Toulouse Cedex 04, France.
| | - María Paz Santangelo
- IABIMO Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Los Reseros y Nicolas Repetto 1686, Hurlingham, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Bannantine JP, Zinniel DK, Barletta RG. Transposon Mutagenesis in Mycobacterium avium Subspecies Paratuberculosis. Methods Mol Biol 2020; 2016:117-125. [PMID: 31197714 DOI: 10.1007/978-1-4939-9570-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
While transposon mutagenesis has been developed for Mycobacterium avium subspecies paratuberculosis (Map), relatively few laboratories have adopted this important genetic tool to examine gene function and essentiality. Here we describe the construction of a Map transposon library using the Himar1 mariner transposon, but concepts can also be applied to the Tn5367 transposon, which has also been used by our group. Delivery of the transposon is by a temperature-sensitive phagemid, ϕMycoMarT7, and plating transductants requires patience and specialized media due to length of incubation required to observe colonies. Several transposon mutants obtained from these libraries have been tested in vaccine and pathogenesis studies. By providing the following detailed protocol herein, we expect to demystify the procedure and encourage additional investigators to incorporate transposon mutagenesis in their studies on Johne's disease.
Collapse
Affiliation(s)
| | - Denise K Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, USA
| | - Raúl G Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
6
|
Rathnaiah G, Zinniel DK, Bannantine JP, Stabel JR, Gröhn YT, Collins MT, Barletta RG. Pathogenesis, Molecular Genetics, and Genomics of Mycobacterium avium subsp. paratuberculosis, the Etiologic Agent of Johne's Disease. Front Vet Sci 2017; 4:187. [PMID: 29164142 PMCID: PMC5681481 DOI: 10.3389/fvets.2017.00187] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's disease in ruminants causing chronic diarrhea, malnutrition, and muscular wasting. Neonates and young animals are infected primarily by the fecal-oral route. MAP attaches to, translocates via the intestinal mucosa, and is phagocytosed by macrophages. The ensuing host cellular immune response leads to granulomatous enteritis characterized by a thick and corrugated intestinal wall. We review various tissue culture systems, ileal loops, and mice, goats, and cattle used to study MAP pathogenesis. MAP can be detected in clinical samples by microscopy, culturing, PCR, and an enzyme-linked immunosorbent assay. There are commercial vaccines that reduce clinical disease and shedding, unfortunately, their efficacies are limited and may not engender long-term protective immunity. Moreover, the potential linkage with Crohn's disease and other human diseases makes MAP a concern as a zoonotic pathogen. Potential therapies with anti-mycobacterial agents are also discussed. The completion of the MAP K-10 genome sequence has greatly improved our understanding of MAP pathogenesis. The analysis of this sequence has identified a wide range of gene functions involved in virulence, lipid metabolism, transcriptional regulation, and main metabolic pathways. We also review the transposons utilized to generate random transposon mutant libraries and the recent advances in the post-genomic era. This includes the generation and characterization of allelic exchange mutants, transcriptomic analysis, transposon mutant banks analysis, new efforts to generate comprehensive mutant libraries, and the application of transposon site hybridization mutagenesis and transposon sequencing for global analysis of the MAP genome. Further analysis of candidate vaccine strains development is also provided with critical discussions on their benefits and shortcomings, and strategies to develop a highly efficacious live-attenuated vaccine capable of differentiating infected from vaccinated animals.
Collapse
Affiliation(s)
- Govardhan Rathnaiah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| | - Denise K. Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| | - John P. Bannantine
- Infectious Bacterial Diseases, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Judith R. Stabel
- Infectious Bacterial Diseases, National Animal Disease Center, USDA-ARS, Ames, IA, United States
| | - Yrjö T. Gröhn
- Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Michael T. Collins
- Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Raúl G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
7
|
Otal I, Pérez-Herrán E, Garcia-Morales L, Menéndez MC, Gonzalez-Y-Merchand JA, Martín C, García MJ. Detection of a Putative TetR-Like Gene Related to Mycobacterium bovis BCG Growth in Cholesterol Using a gfp-Transposon Mutagenesis System. Front Microbiol 2017; 8:315. [PMID: 28321208 PMCID: PMC5337628 DOI: 10.3389/fmicb.2017.00315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
In vitro transposition is a powerful genetic tool for identifying mycobacterial virulence genes and studying virulence factors in relation to the host. Transposon shuttle mutagenesis is a method for constructing stable insertions in the genome of different microorganisms including mycobacteria. Using an IS1096 derivative, we have constructed the Tngfp, a transposon containing a promoterless green fluorescent protein (gfp) gene. This transposon was able to transpose randomly in Mycobacterium bovis BCG. Bacteria with a single copy of the gfp gene per chromosome from an M. bovis BCG::Tngfp library were analyzed and cells exhibiting high levels of fluorescence were detected by flow cytometry. Application of this approach allowed for the selection of a mutant, BCG_2177c::Tngfp (BCG-Tn), on the basis of high level of long-standing fluorescence at stationary phase. This BCG-Tn mutant showed some particular phenotypic features compared to the wild type strain, mainly during stationary phase, when cholesterol was used as a sole carbon source, thus supporting the relationships of the targeted gene with the regulation of cholesterol metabolism in this bacteria. This approach showed that Tngfp is a potentially useful tool for studying the involvement of the targeted loci in metabolic pathways of mycobacteria.
Collapse
Affiliation(s)
- Isabel Otal
- Grupo de Genética de Micobacterias, Departamento de Microbiologia, Medicina Preventiva y Salud Pública, Universidad de ZaragozaZaragoza, Spain; Centros de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos IIIMadrid, Spain; Instituto de Investigación Sanitaria AragónZaragoza, Spain
| | - Esther Pérez-Herrán
- Grupo de Genética de Micobacterias, Departamento de Microbiologia, Medicina Preventiva y Salud Pública, Universidad de ZaragozaZaragoza, Spain; Diseases of the Developing World, GlaxoSmithKlineTres Cantos, Spain
| | - Lazaro Garcia-Morales
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Ciudad de Mexico, Mexico
| | - María C Menéndez
- Departamento de Medicina Preventiva, Universidad Autónoma Madrid, Spain
| | - Jorge A Gonzalez-Y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional Ciudad de Mexico, Mexico
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Departamento de Microbiologia, Medicina Preventiva y Salud Pública, Universidad de ZaragozaZaragoza, Spain; Centros de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos IIIMadrid, Spain; Instituto de Investigación Sanitaria AragónZaragoza, Spain
| | - María J García
- Departamento de Medicina Preventiva, Universidad Autónoma Madrid, Spain
| |
Collapse
|
8
|
Park HT, Yoo HS. Development of vaccines to Mycobacterium avium subsp. paratuberculosis infection. Clin Exp Vaccine Res 2016; 5:108-16. [PMID: 27489800 PMCID: PMC4969274 DOI: 10.7774/cevr.2016.5.2.108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 12/27/2022] Open
Abstract
Johne's disease or paratuberculosis is a chronic debilitating disease in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). The disease causes significant economic losses in livestock industries worldwide. There are no effective control measures to eradicate the disease because there are no appropriate diagnostic methods to detect subclinically infected animals. Therefore, it is very difficult to control the disease using only test and cull strategies. Vaccination against paratuberculosis has been considered as an alternative strategy to control the disease when combined with management interventions. Understanding host-pathogen interactions is extremely important to development of vaccines. It has long been known that Th1-mediated cellular immune responses are play a crucial role in protection against MAP infection. However, recent studies suggested that innate immune responses are more closely related to protective effects than adaptive immunity. Based on this understanding, several attempts have been made to develop vaccines against paratuberculosis. A variety of ideas for designing novel vaccines have emerged, and the tests of the efficacy of these vaccines are conducted constantly. However, no effective vaccines are commercially available. In this study, studies of the development of vaccines for MAP were reviewed and summarized.
Collapse
Affiliation(s)
- Hong-Tae Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Korea.; Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Korea
| |
Collapse
|
9
|
Rathnaiah G, Bannantine JP, Bayles DO, Zinniel DK, Stabel JR, Gröhn YT, Barletta RG. Analysis of Mycobacterium avium subsp. paratuberculosis mutant libraries reveals loci-dependent transposition biases and strategies for novel mutant discovery. MICROBIOLOGY-SGM 2016; 162:633-641. [PMID: 26888023 DOI: 10.1099/mic.0.000258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP), the aetiological agent of Johne's disease, is one of the most important bacterial pathogens in ruminants. A thorough understanding of MAP pathogenesis is needed to develop new vaccines and diagnostic tests. The generation of comprehensive random transposon mutant libraries is a fundamental genetic technology to determine the role of genes in physiology and pathogenesis. In this study, whole MAP genome analysis compared the insertion sites for the mycobacterial transposon Tn5367 derived from the Mycobacterium smegmatis insertion sequence IS1096 and the mariner transposon MycoMarT7 carrying the Himar1 transposase. We determined that only MycoMarT7 provides a random representation of insertions in 99 % of all MAP genes. Analysis of the MAP K-10 genome indicated that 710 of all ORFs do not possess IS1096 recognition sites, while only 37 do not have the recognition site for MycoMarT7. Thus, a significant number of MAP genes remain underrepresented in insertion libraries from IS1096-derived transposons. Analysis of MycoMarT7 and Tn5367 mutants showed that Tn5367 has a predilection to insert within intergenic regions, suggesting that MycoMarT7 is the more adequate for generating a comprehensive library. However, we uncovered the novel finding that both transposons have loci-dependent biases, with Tn5367 being the most skewed. These loci-dependent transposition biases led to an underestimation of the number of independent mutants required to generate a comprehensive mutant library, leading to an overestimation of essential genes. Herein, we also demonstrated a useful platform for gene discovery and analysis by isolating three novel mutants for each transposon.
Collapse
Affiliation(s)
- Govardhan Rathnaiah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE,USA
| | - John P Bannantine
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service, Ames, IA, USA
| | - Darrell O Bayles
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service, Ames, IA, USA
| | - Denise K Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE,USA
| | - Judith R Stabel
- Infectious Bacterial Diseases, National Animal Disease Center, United States Department of Agriculture - Agricultural Research Service, Ames, IA, USA
| | - Yrjö T Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, NY, USA
| | - Raúl G Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, NE,USA
| |
Collapse
|
10
|
Abstract
Infectious diseases have plagued humankind throughout history and have posed serious public health problems. Yet vaccines have eradicated smallpox and antibiotics have drastically decreased the mortality rate of many infectious agents. These remarkable successes in the control of infections came from knowing the causative agents of the diseases, followed by serendipitous discoveries of attenuated viruses and antibiotics. The discovery of DNA as genetic material and the understanding of how this information translates into specific phenotypes have changed the paradigm for developing new vaccines, drugs, and diagnostic tests. Knowledge of the mechanisms of immunity and mechanisms of action of drugs has led to new vaccines and new antimicrobial agents. The key to the acquisition of the knowledge of these mechanisms has been identifying the elemental causes (i.e., genes and their products) that mediate immunity and drug resistance. The identification of these genes is made possible by being able to transfer the genes or mutated forms of the genes into causative agents or surrogate hosts. Such an approach was limited in Mycobacterium tuberculosis by the difficulty of transferring genes or alleles into M. tuberculosis or a suitable surrogate mycobacterial host. The construction of shuttle phasmids-chimeric molecules that replicate in Escherichia coli as plasmids and in mycobacteria as mycobacteriophages-was instrumental in developing gene transfer systems for M. tuberculosis. This review will discuss M. tuberculosis genetic systems and their impact on tuberculosis research.
Collapse
|
11
|
Rathnaiah G, Lamont EA, Harris NB, Fenton RJ, Zinniel DK, Liu X, Sotos J, Feng Z, Livneh-Kol A, Shpigel NY, Czuprynski CJ, Sreevatsan S, Barletta RG. Generation and screening of a comprehensive Mycobacterium avium subsp. paratuberculosis transposon mutant bank. Front Cell Infect Microbiol 2014; 4:144. [PMID: 25360421 PMCID: PMC4197770 DOI: 10.3389/fcimb.2014.00144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/25/2014] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne's Disease in ruminants. This enteritis has significant economic impact and worldwide distribution. Vaccination is one of the most cost effective infectious disease control measures. Unfortunately, current vaccines reduce clinical disease and shedding, but are of limited efficacy and do not provide long-term protective immunity. Several strategies have been followed to mine the MAP genome for virulence determinants that could be applied to vaccine and diagnostic assay development. In this study, a comprehensive mutant bank of 13,536 MAP K-10 Tn5367 mutants (P > 95%) was constructed and screened in vitro for phenotypes related to virulence. This strategy was designated to maximize identification of genes important to MAP pathogenesis without relying on studies of other mycobacterial species that may not translate into similar effects in MAP. This bank was screened for mutants with colony morphology alterations, susceptibility to D-cycloserine, impairment in siderophore production or secretion, reduced cell association, and decreased biofilm and clump formation. Mutants with interesting phenotypes were analyzed by PCR, Southern blotting and DNA sequencing to determine transposon insertion sites. These insertion sites mapped upstream from the MAP1152-MAP1156 cluster, internal to either the Mod operon gene MAP1566 or within the coding sequence of lsr2, and several intergenic regions. Growth curves in broth cultures, invasion assays and kinetics of survival and replication in primary bovine macrophages were also determined. The ability of vectors carrying Tn5370 to generate stable MAP mutants was also investigated.
Collapse
Affiliation(s)
- Govardhan Rathnaiah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| | - Elise A Lamont
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul MN, USA
| | - N Beth Harris
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| | - Robert J Fenton
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| | - Denise K Zinniel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| | - Xiaofei Liu
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| | - Josh Sotos
- School of Veterinary Medicine, University of Wisconsin Madison, WI, USA
| | - Zhengyu Feng
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| | - Ayala Livneh-Kol
- The Koret School of Veterinary Medicine, The Hebrew University of Jerusalem Rehovot, Israel
| | - Nahum Y Shpigel
- The Koret School of Veterinary Medicine, The Hebrew University of Jerusalem Rehovot, Israel
| | | | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul MN, USA
| | - Raúl G Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| |
Collapse
|
12
|
Bannantine JP, Hines ME, Bermudez LE, Talaat AM, Sreevatsan S, Stabel JR, Chang YF, Coussens PM, Barletta RG, Davis WC, Collins DM, Gröhn YT, Kapur V. A rational framework for evaluating the next generation of vaccines against Mycobacterium avium subspecies paratuberculosis. Front Cell Infect Microbiol 2014; 4:126. [PMID: 25250245 PMCID: PMC4158869 DOI: 10.3389/fcimb.2014.00126] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/20/2014] [Indexed: 12/31/2022] Open
Abstract
Since the early 1980s, several investigations have focused on developing a vaccine against Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne's disease in cattle and sheep. These studies used whole-cell inactivated vaccines that have proven useful in limiting disease progression, but have not prevented infection. In contrast, modified live vaccines that invoke a Th1 type immune response, may improve protection against infection. Spurred by recent advances in the ability to create defined knockouts in MAP, several independent laboratories have developed modified live vaccine candidates by transpositional mutation of virulence and metabolic genes in MAP. In order to accelerate the process of identification and comparative evaluation of the most promising modified live MAP vaccine candidates, members of a multi-institutional USDA-funded research consortium, the Johne's disease integrated program (JDIP), met to establish a standardized testing platform using agreed upon protocols. A total of 22 candidates vaccine strains developed in five independent laboratories in the United States and New Zealand voluntarily entered into a double blind stage gated trial pipeline. In Phase I, the survival characteristics of each candidate were determined in bovine macrophages. Attenuated strains moved to Phase II, where tissue colonization of C57/BL6 mice were evaluated in a challenge model. In Phase III, five promising candidates from Phase I and II were evaluated for their ability to reduce fecal shedding, tissue colonization and pathology in a baby goat challenge model. Formation of a multi-institutional consortium for vaccine strain evaluation has revealed insights for the implementation of vaccine trials for Johne's disease and other animal pathogens. We conclude by suggesting the best way forward based on this 3-phase trial experience and challenge the rationale for use of a macrophage-to-mouse-to native host pipeline for MAP vaccine development.
Collapse
Affiliation(s)
- John P Bannantine
- Infectious Bacterial Diseases USDA-ARS, National Animal Disease Center Ames, IA, USA
| | - Murray E Hines
- Tifton Veterinary Diagnostic and Investigational Lab, The University of Georgia Tifton, GA, USA
| | - Luiz E Bermudez
- Departments of Microbiology and Biomedical Sciences, Oregon State University Corvalis, OR, USA
| | - Adel M Talaat
- Department of Pathobiological Sciences, University of Wisconsin-Madison Madison, WI, USA ; Department of Food Hygenie, Cairo University Cairo, Egypt
| | - Srinand Sreevatsan
- Veterinary Population Medicine Department, University of Minnesota Minneapolis, MN, USA
| | - Judith R Stabel
- Infectious Bacterial Diseases USDA-ARS, National Animal Disease Center Ames, IA, USA
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University Ithaca, NY, USA
| | - Paul M Coussens
- Department of Animal Science, Michigan State University Lansing, MI, USA
| | - Raúl G Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| | - William C Davis
- Department of Veterinary Microbiology, Washington State University Pullman, WA, USA
| | | | - Yrjö T Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University Ithaca, NY, USA
| | - Vivek Kapur
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University University Park, PA, USA
| |
Collapse
|
13
|
Bannantine JP, Everman JL, Rose SJ, Babrak L, Katani R, Barletta RG, Talaat AM, Gröhn YT, Chang YF, Kapur V, Bermudez LE. Evaluation of eight live attenuated vaccine candidates for protection against challenge with virulent Mycobacterium avium subspecies paratuberculosis in mice. Front Cell Infect Microbiol 2014; 4:88. [PMID: 25072031 PMCID: PMC4077120 DOI: 10.3389/fcimb.2014.00088] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/11/2014] [Indexed: 11/16/2022] Open
Abstract
Johne's disease is caused by Mycobacterium avium subsp. paratuberculosis (MAP), which results in serious economic losses worldwide in farmed livestock such as cattle, sheep, and goats. To control this disease, an effective vaccine with minimal adverse effects is needed. In order to identify a live vaccine for Johne's disease, we evaluated eight attenuated mutant strains of MAP using a C57BL/6 mouse model. The persistence of the vaccine candidates was measured at 6, 12, and 18 weeks post vaccination. Only strains 320, 321, and 329 colonized both the liver and spleens up until the 12-week time point. The remaining five mutants showed no survival in those tissues, indicating their complete attenuation in the mouse model. The candidate vaccine strains demonstrated different levels of protection based on colonization of the challenge strain in liver and spleen tissues at 12 and 18 weeks post vaccination. Based on total MAP burden in both tissues at both time points, strain 315 (MAP1566::Tn5370) was the most protective whereas strain 318 (intergenic Tn5367 insertion between MAP0282c and MAP0283c) had the most colonization. Mice vaccinated with an undiluted commercial vaccine preparation displayed the highest bacterial burden as well as enlarged spleens indicative of a strong infection. Selected vaccine strains that showed promise in the mouse model were moved forward into a goat challenge model. The results suggest that the mouse trial, as conducted, may have a relatively poor predictive value for protection in a ruminant host such as goats.
Collapse
Affiliation(s)
- John P Bannantine
- Infectious Bacterial Diseases, National Animal Disease Center, USDA-ARS Ames, IA, USA
| | - Jamie L Everman
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR, USA ; Department of Microbiology, College of Science, Oregon State University Corvallis, OR, USA
| | - Sasha J Rose
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR, USA ; Department of Microbiology, College of Science, Oregon State University Corvallis, OR, USA
| | - Lmar Babrak
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR, USA ; Department of Microbiology, College of Science, Oregon State University Corvallis, OR, USA
| | - Robab Katani
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University University Park, PA, USA
| | - Raúl G Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska Lincoln, NE, USA
| | - Adel M Talaat
- Department of Pathobiological Sciences, University of Wisconsin-Madison Madison, WI, USA ; Department of Food Hygiene, Cairo University Cairo, Egypt
| | - Yrjö T Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University Ithaca, NY, USA
| | - Yung-Fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University Ithaca, NY, USA
| | - Vivek Kapur
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University University Park, PA, USA
| | - Luiz E Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR, USA ; Department of Microbiology, College of Science, Oregon State University Corvallis, OR, USA
| |
Collapse
|
14
|
Wang J, Pritchard JR, Kreitmann L, Montpetit A, Behr MA. Disruption of Mycobacterium avium subsp. paratuberculosis-specific genes impairs in vivo fitness. BMC Genomics 2014; 15:415. [PMID: 24885784 PMCID: PMC4058006 DOI: 10.1186/1471-2164-15-415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 05/27/2014] [Indexed: 01/08/2023] Open
Abstract
Background Mycobacterium avium subsp. paratuberculosis (MAP) is an obligate intracellular pathogen that infects many ruminant species. The acquisition of foreign genes via horizontal gene transfer has been postulated to contribute to its pathogenesis, as these genetic elements are absent from its putative ancestor, M. avium subsp. hominissuis (MAH), an environmental organism with lesser pathogenicity. In this study, high-throughput sequencing of MAP transposon libraries were analyzed to qualitatively and quantitatively determine the contribution of individual genes to bacterial survival during infection. Results Out of 52384 TA dinucleotides present in the MAP K-10 genome, 12607 had a MycoMarT7 transposon in the input pool, interrupting 2443 of the 4350 genes in the MAP genome (56%). Of 96 genes situated in MAP-specific genomic islands, 82 were disrupted in the input pool, indicating that MAP-specific genomic regions are dispensable for in vitro growth (odds ratio = 0.21). Following 5 independent in vivo infections with this pool of mutants, the correlation between output pools was high for 4 of 5 (R = 0.49 to 0.61) enabling us to define genes whose disruption reproducibly reduced bacterial fitness in vivo. At three different thresholds for reduced fitness in vivo, MAP-specific genes were over-represented in the list of predicted essential genes. We also identified additional genes that were severely depleted after infection, and several of them have orthologues that are essential genes in M. tuberculosis. Conclusions This work indicates that the genetic elements required for the in vivo survival of MAP represent a combination of conserved mycobacterial virulence genes and MAP-specific genes acquired via horizontal gene transfer. In addition, the in vitro and in vivo essential genes identified in this study may be further characterized to offer a better understanding of MAP pathogenesis, and potentially contribute to the discovery of novel therapeutic and vaccine targets. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-415) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Marcel A Behr
- Department of Microbiology and Immunology, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
15
|
Pope WH, Ferreira CM, Jacobs-Sera D, Benjamin RC, Davis AJ, DeJong RJ, Elgin SCR, Guilfoile FR, Forsyth MH, Harris AD, Harvey SE, Hughes LE, Hynes PM, Jackson AS, Jalal MD, MacMurray EA, Manley CM, McDonough MJ, Mosier JL, Osterbann LJ, Rabinowitz HS, Rhyan CN, Russell DA, Saha MS, Shaffer CD, Simon SE, Sims EF, Tovar IG, Weisser EG, Wertz JT, Weston-Hafer KA, Williamson KE, Zhang B, Cresawn SG, Jain P, Piuri M, Jacobs WR, Hendrix RW, Hatfull GF. Cluster K mycobacteriophages: insights into the evolutionary origins of mycobacteriophage TM4. PLoS One 2011; 6:e26750. [PMID: 22053209 PMCID: PMC3203893 DOI: 10.1371/journal.pone.0026750] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/03/2011] [Indexed: 01/21/2023] Open
Abstract
Five newly isolated mycobacteriophages –Angelica, CrimD, Adephagia, Anaya, and Pixie – have similar genomic architectures to mycobacteriophage TM4, a previously characterized phage that is widely used in mycobacterial genetics. The nucleotide sequence similarities warrant grouping these into Cluster K, with subdivision into three subclusters: K1, K2, and K3. Although the overall genome architectures of these phages are similar, TM4 appears to have lost at least two segments of its genome, a central region containing the integration apparatus, and a segment at the right end. This suggests that TM4 is a recent derivative of a temperate parent, resolving a long-standing conundrum about its biology, in that it was reportedly recovered from a lysogenic strain of Mycobacterium avium, but it is not capable of forming lysogens in any mycobacterial host. Like TM4, all of the Cluster K phages infect both fast- and slow-growing mycobacteria, and all of them – with the exception of TM4 – form stable lysogens in both Mycobacterium smegmatis and Mycobacterium tuberculosis; immunity assays show that all five of these phages share the same immune specificity. TM4 infects these lysogens suggesting that it was either derived from a heteroimmune temperate parent or that it has acquired a virulent phenotype. We have also characterized a widely-used conditionally replicating derivative of TM4 and identified mutations conferring the temperature-sensitive phenotype. All of the Cluster K phages contain a series of well conserved 13 bp repeats associated with the translation initiation sites of a subset of the genes; approximately one half of these contain an additional sequence feature composed of imperfectly conserved 17 bp inverted repeats separated by a variable spacer. The K1 phages integrate into the host tmRNA and the Cluster K phages represent potential new tools for the genetics of M. tuberculosis and related species.
Collapse
Affiliation(s)
- Welkin H. Pope
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Christina M. Ferreira
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Deborah Jacobs-Sera
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert C. Benjamin
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Ariangela J. Davis
- Department of Biology, Calvin College, Grand Rapids , Michigan, United States of America
| | - Randall J. DeJong
- Department of Biology, Calvin College, Grand Rapids , Michigan, United States of America
| | - Sarah C. R. Elgin
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Forrest R. Guilfoile
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mark H. Forsyth
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Alexander D. Harris
- Department of Biology, Calvin College, Grand Rapids , Michigan, United States of America
| | - Samuel E. Harvey
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Lee E. Hughes
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Peter M. Hynes
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Arrykka S. Jackson
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Marilyn D. Jalal
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Elizabeth A. MacMurray
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Coreen M. Manley
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Molly J. McDonough
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Jordan L. Mosier
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Larissa J. Osterbann
- Department of Biology, Calvin College, Grand Rapids , Michigan, United States of America
| | - Hannah S. Rabinowitz
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Corwin N. Rhyan
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Daniel A. Russell
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Margaret S. Saha
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Christopher D. Shaffer
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Stephanie E. Simon
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Erika F. Sims
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Isabel G. Tovar
- Department of Biological Sciences, University of North Texas, Denton, Texas, United States of America
| | - Emilie G. Weisser
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - John T. Wertz
- Department of Biology, Calvin College, Grand Rapids , Michigan, United States of America
| | | | - Kurt E. Williamson
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Bo Zhang
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Steven G. Cresawn
- Department of Biology, James Madison University, Harrisonburg , Virginia, United States of America
| | - Paras Jain
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Mariana Piuri
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York, United States of America
| | - Roger W. Hendrix
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Graham F. Hatfull
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
16
|
Park KT, Allen AJ, Bannantine JP, Seo KS, Hamilton MJ, Abdellrazeq GS, Rihan HM, Grimm A, Davis WC. Evaluation of two mutants of Mycobacterium avium subsp. paratuberculosis as candidates for a live attenuated vaccine for Johne's disease. Vaccine 2011; 29:4709-19. [PMID: 21565243 DOI: 10.1016/j.vaccine.2011.04.090] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/19/2011] [Accepted: 04/25/2011] [Indexed: 02/07/2023]
Abstract
Control of Johne's disease, caused by Mycobacterium avium subsp. paratuberculosis, has been difficult because of a lack of an effective vaccine. To address this problem we used targeted gene disruption to develop candidate mutants with impaired capacity to survive ex vivo and in vivo to test as a vaccine. We selected relA and pknG, genes known to be important virulence factors in Mycobacterium tuberculosis and Mycobacterium bovis, for initial studies. Deletion mutants were made in a wild type Map (K10) and its recombinant strain expressing the green fluorescent protein (K10-GFP). Comparison of survival in an ex vivo assay revealed deletion of either gene attenuated survival in monocyte-derived macrophages compared to survival of wild-type K10. In contrast, study in calves revealed survival in vivo was mainly affected by deletion of relA. Bacteria were detected in tissues from wild-type and the pknG mutant infected calves by bacterial culture and PCR at three months post infection. No bacteria were detected in tissues from calves infected with the relA mutant (P<0.05). Flow cytometric analysis of the immune response to the wild-type K10-GFP and the mutant strains showed deletion of either gene did not affect their capacity to elicit a strong proliferative response to soluble antigen extract or live Map. Quantitative RT-PCR revealed genes encoding IFN-γ, IL-17, IL-22, T-bet, RORC, and granulysin were up-regulated in PBMC stimulated with live Map three months post infection compared to the response of PBMC pre-infection. A challenge study in kid goats showed deletion of pknG did not interfere with establishment of an infection. As in calves, deletion of relA attenuated survival in vivo. The mutant also elicited an immune response that limited colonization by challenge wild type Map. The findings show the relA mutant is a good candidate for development of a live attenuated vaccine for Johne's disease.
Collapse
Affiliation(s)
- Kun Taek Park
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Comparative immunological and microbiological aspects of paratuberculosis as a model mycobacterial infection. Vet Immunol Immunopathol 2011; 148:29-47. [PMID: 21450348 DOI: 10.1016/j.vetimm.2011.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 02/12/2011] [Accepted: 03/03/2011] [Indexed: 11/20/2022]
Abstract
Paratuberculosis or Johne's disease of livestock, which is caused by Mycobacterium avium subsp. paratuberculosis (MAP), has increased in prevalence and expanded in geographic and host ranges over about 100 years. The slow and progressive spread of MAP reflects its substantial adaptation to its hosts, the technical limitations of diagnosis, the lack of practical therapeutic approaches, the lack of a vaccine that prevents transmission and the complexity and difficulty of the on-farm control strategies needed to prevent infection. More recently evidence has accumulated for an association of MAP with Crohn's disease in humans, adding to the pressure on animal health authorities to take precautions by controlling paratuberculosis. Mycobacterial infections invoke complex immune responses but the essential determinants of virulence and pathogenesis are far from clear. In this review we compare the features of major diseases in humans and animals that are caused by the pathogenic mycobacteria M. ulcerans, M. avium subsp. avium, M. leprae, M. tuberculosis and MAP. We seek to answer key questions: are the common mycobacterial infections of humans and animals useful "models" for each other, or are the differences between them too great to enable meaningful extrapolation? To simplify this, the immunopathogenesis of mycobacterial infections will be defined at cellular, tissue, animal and population levels and the key events at each level will be discussed. Many pathogenic processes are similar between divergent mycobacterial diseases, and at variance between virulent and avirulent isolates of mycobacteria, suggesting that the research on the pathogenesis of one mycobacterial disease will be informative for the others.
Collapse
|
18
|
Demonstration of allelic exchange in the slow-growing bacterium Mycobacterium avium subsp. paratuberculosis, and generation of mutants with deletions at the pknG, relA, and lsr2 loci. Appl Environ Microbiol 2008; 74:1687-95. [PMID: 18192416 DOI: 10.1128/aem.01208-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis is the causative pathogen of Johne's disease, a chronic inflammatory wasting disease in ruminants. This disease has been difficult to control because of the lack of an effective vaccine. To address this need, we adapted a specialized transduction system originally developed for M. tuberculosis and modified it to improve the efficiency of allelic exchange in order to generate site-directed mutations in preselected M. avium subsp. paratuberculosis genes. With our novel optimized method, the allelic exchange frequency was 78 to 100% and the transduction frequency was 1.1 x 10(-7) to 2.9 x 10(-7). Three genes were selected for mutagenesis: pknG and relA, which are genes that are known to be important virulence factors in M. tuberculosis and M. bovis, and lsr2, a gene regulating lipid biosynthesis and antibiotic resistance. Mutants were successfully generated with a virulent strain of M. avium subsp. paratuberculosis (M. avium subsp. paratuberculosis K10) and with a recombinant K10 strain expressing the green fluorescent protein gene, gfp. The improved efficiency of disruption of selected genes in M. avium subsp. paratuberculosis should accelerate development of additional mutants for vaccine testing and functional studies.
Collapse
|
19
|
Abstract
The past several years have witnessed an upsurge of genomic data pertaining to the Mycobacterium avium complex (MAC). Despite clear advances, problems with the detection of MAC persist, spanning the tests that can be used, samples required for their validation, and the use of appropriate nomenclature. Additionally, the amount of genomic variability documented to date greatly outstrips the functional understanding of epidemiologically different subsets of the organism. In this review, we discuss how postgenomic insights into the MAC have helped to clarify the relationships between MAC organisms, highlighting the distinction between environmental and pathogenic subsets of M. avium. We discuss the availability of various genetic targets for accurate classification of organisms and how these results provide a framework for future studies of MAC variability. The results of postgenomic M. avium study provide optimism that a functional understanding of these organisms will soon emerge, with genomically defined subsets that are epidemiologically distinct and possess different survival mechanisms for their various niches. Although the status quo has largely been to study different M. avium subsets in isolation, it is expected that attention to the similarities and differences between M. avium organisms will provide greater insight into their fundamental differences, including their propensity to cause disease.
Collapse
Affiliation(s)
- Christine Y Turenne
- McGill University Health Centre, A5.156, 1650 Cedar Avenue, Montreal H3G 1A4, Canada
| | | | | |
Collapse
|
20
|
Shin SJ, Wu CW, Steinberg H, Talaat AM. Identification of novel virulence determinants in Mycobacterium paratuberculosis by screening a library of insertional mutants. Infect Immun 2006; 74:3825-33. [PMID: 16790754 PMCID: PMC1489745 DOI: 10.1128/iai.01742-05] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Johne's disease, caused by Mycobacterium paratuberculosis infection, is a worldwide problem for the dairy industry and has a possible involvement in Crohn's disease in humans. To identify virulence determinants of this economically important pathogen, a library of 5,060 transposon mutants was constructed using Tn5367 insertion mutagenesis, followed by large-scale sequencing to identify disrupted genes. In this report, 1,150 mutants were analyzed and 970 unique insertion sites were identified. Sequence analysis of the disrupted genes indicated that the insertion of Tn5367 was more prevalent in genomic regions with G+C content (50.5 to 60.5%) lower than the average G+C content (69.3%) of the rest of the genome. Phenotypic screening of the library identified disruptions of genes involved in iron, tryptophan, or mycolic acid metabolic pathways that displayed unique growth characteristics. Bioinformatic analysis of disrupted genes identified a list of potential virulence determinants for further testing with animals. Mouse infection studies showed a significant decrease in tissue colonization by mutants with a disruption in the gcpE, pstA, kdpC, papA2, impA, umaA1, or fabG2_2 gene. Attenuation phenotypes were tissue specific (e.g., for the umaA1 mutant) as well as time specific (e.g., for the impA mutant), suggesting that those genes may be involved in different virulence mechanisms. The identified potential virulence determinants represent novel functional classes that could be necessary for mycobacterial survival during infection and could provide suitable targets for vaccine and drug development against Johne's and Crohn's diseases.
Collapse
Affiliation(s)
- Sung Jae Shin
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706-1581, USA
| | | | | | | |
Collapse
|
21
|
Rybniker J, Kramme S, Small PL. Host range of 14 mycobacteriophages in Mycobacterium ulcerans and seven other mycobacteria including Mycobacterium tuberculosis--application for identification and susceptibility testing. J Med Microbiol 2006; 55:37-42. [PMID: 16388028 DOI: 10.1099/jmm.0.46238-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The host range of well-characterized mycobacteriophages, such as D29 and TM4, has been determined, together with that of more recently isolated mycobacteriophages, in Mycobacterium ulcerans, Mycobacterium tuberculosis, Mycobacterium bovis BCG, Mycobacterium avium, Mycobacterium marinum, Mycobacterium scrofulaceum, Mycobacterium fortuitum and Mycobacterium chelonae. Here, a set of virulent phages for M. ulcerans, a pathogen with a dramatic increase of incidence over the last decade, is demonstrated. In this work, a mycobacteriophage replication assay was adapted for the identification and rifampicin-susceptibility testing of M. ulcerans. Mycobacteriophages have generated a number of useful tools and enabled insights into mycobacterial genetics. With regard to the neglected pathogen M. ulcerans, the findings presented in this work allow the application of a large range of phage-based vectors and markers. The potential of phage therapy can now be evaluated for this extracellular pathogen.
Collapse
Affiliation(s)
- Jan Rybniker
- Department of Microbiology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | - Stefanie Kramme
- Department of Microbiology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany
| | - Pamela L Small
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
22
|
Li Y, Miltner E, Wu M, Petrofsky M, Bermudez LE. A Mycobacterium avium PPE gene is associated with the ability of the bacterium to grow in macrophages and virulence in mice. Cell Microbiol 2005; 7:539-48. [PMID: 15760454 DOI: 10.1111/j.1462-5822.2004.00484.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PPE and PE gene families, which encode numerous proteins of unknown function, account for 10% of Mycobacterium tuberculosis genome. Mycobacterium avium genome has similar PPE and PE gene families. Using a temperature-sensitive phage phAE94 transposon mutagenesis system, a M. avium transposon library was created in the strain MAC109. Screening of individual mutants in human U937 macrophages for the ability to replicate intracellularly, we identified several attenuated clones. One of them, the 2D6 mutant, has a transposon interrupting a PPE gene (52% homologous to Rv 1787 in M. tuberculosis) was identified. The mutant and the wild-type strain had comparable ability to enter macrophages. Challenge of mice with the 2D6 mutant resulted in approximately 1 log and 2 log fewer bacteria in the spleen, at 1 and 3 weeks after infection, compared with the wild-type bacterium. The 2D6 mutant grows like the wild-type bacterium in vitro. Vacuoles containing the 2D6 mutant acidified to pH 4.8; whereas, vacuoles containing wild-type bacterium were only slightly acidic. It was also observed that, in contrast to the wild-type bacterium, the 2D6 mutant did not prevent phagosome-lysosome fusion, and it is only expressed within macrophage but not in 7H9 broth. These results revealed a role for this PPE gene in the growth of M. avium in macrophages and in virulence in mice.
Collapse
Affiliation(s)
- Yongjun Li
- Kuzell Institute for Arthritis and Infectious Diseases, California Pacific Medical, Center Research Institute San Francisco, CA 94115, USA
| | | | | | | | | |
Collapse
|
23
|
O'Shea B, Khare S, Bliss K, Klein P, Ficht TA, Adams LG, Rice-Ficht AC. Amplified fragment length polymorphism reveals genomic variability among Mycobacterium avium subsp. paratuberculosis isolates. J Clin Microbiol 2004; 42:3600-6. [PMID: 15297504 PMCID: PMC497631 DOI: 10.1128/jcm.42.8.3600-3606.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ninety-six primer sets were used for amplified fragment length polymorphism (AFLP) to characterize the genomes of 20 Mycobacterium avium subsp. paratuberculosis field isolates, 1 American Type Culture Collection (ATCC) M. avium subsp. paratuberculosis isolate (ATCC 19698), and 2 M. avium subsp. avium isolates (ATCC 35716 and Mac 104). AFLP analysis revealed a high degree of genomic polymorphism among M. avium subsp. paratuberculosis isolates that may be used to establish diagnostic patterns useful for the epidemiological tracking of M. avium subsp. paratuberculosis isolates. Four M. avium subsp. paratuberculosis-polymorphic regions revealed by AFLP were cloned and sequenced. Primers were generated internal to these regions for use in PCR analysis and applied to the M. avium subsp. paratuberculosis field isolates. An appropriate PCR product was obtained in 79 of 80 reactions, while the M. avium subsp. avium isolates failed to act as templates for PCR amplification in seven of eight reactions. This work revealed the presence of extensive polymorphisms in the genomes of M. avium subsp. paratuberculosis and M. avium subsp. avium, many of which are based on deletions. Of the M. avium subsp. paratuberculosis-specific sequences studied, one revealed a 5,145-bp region with no homologue in the M. avium subsp. avium genome. Within this region are genes responsible for integrase-recombinase function. Three additional M. avium subsp. paratuberculosis-polymorphic regions were cloned, revealing a number of housekeeping genes; all were evaluated for their diagnostic and epidemiological value.
Collapse
Affiliation(s)
- B O'Shea
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843-1114, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Parrish NM, Ko CG, Dick JD, Jones PB, Ellingson JLE. Growth, Congo Red agar colony morphotypes and antibiotic susceptibility testing of Mycobacterium avium subspecies paratuberculosis. Clin Med Res 2004; 2:107-14. [PMID: 15931343 PMCID: PMC1069079 DOI: 10.3121/cmr.2.2.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2003] [Accepted: 03/11/2004] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Mycobacterium avium subspecies (subsp.) paratuberculosis (MAP) is the causative agent of Johne's disease in ruminants and has been associated with Crohn's disease in humans. We sought to test growth rates and susceptibilities of various strains of MAP in two available growth media. DESIGN Paired comparison design. METHODS Using the BACTEC macrobroth radiometric growth system and Congo Red-staining agar media, we determined inherent differences in growth characteristics of three bovine and two human strains of MAP and compared susceptibility results obtained in each growth system. RESULTS Significant differences were observed in growth rate as well as mycobactin J dependence between strains and between a laboratory-adapted isolate of the same strain in the macrobroth system. Similarly, colonial morphology and Congo Red staining on agar media were observed. Two strains, one human and one bovine, demonstrated a 100% rough transparent colony with white coloration on Congo Red agar, while one bovine isolate exclusively grew as a smooth opaque colony with red coloration on Congo Red agar. The remaining strains exhibited mixtures of these two colonial morphotypes on agar media. Comparative susceptibility results between the BACTEC radiometric macrobroth method and the agar proportionality method showed good correlation for most antibiotics/inhibitors tested. However, erratic or poor growth in the macrobroth system prevented minimal inhibitory concentration determinations for two bovine strains by this method. CONCLUSION This study demonstrates the variability in the colonial morphology of MAP on Congo Red agar as well as the correlation of antibiotic susceptibility results between the BACTEC macro broth method and the agar proportionality method. This study also emphasizes the need for the development of improved, standardized culture and susceptibility test methods for MAP.
Collapse
Affiliation(s)
- Nicole M Parrish
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
25
|
Bannantine JP, Barletta RG, Stabel JR, Paustian ML, Kapur V. Application of the Genome Sequence to Address Concerns ThatMycobacterium aviumSubspeciesParatuberculosisMight Be a Foodborne Pathogen. Foodborne Pathog Dis 2004; 1:3-15. [PMID: 15992257 DOI: 10.1089/153531404772914419] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Johne's disease, a chronic inflammatory disease caused by infection with Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis), is one of the most prevalent and costly diseases of dairy cattle worldwide. This ruminant pathogen is closely related to the ubiquitous animal and human pathogen Mycobacterium avium subspecies avium (M. avium), confounding the development of specific diagnostic reagents. Exacerbating this problem further is that most existing microbiological, serological, and immunologic assays for the identification of infected animals are inadequate. This is primarily because of the slow-growing nature of the organism, genetic intractability and the previous lack of information on M. paratuberculosis subspecies-specific genes or proteins that may enable the development of specific and sensitive assays. New detection tools are critically needed to definitively answer questions surrounding M. paratuberculosis as a foodborne pathogen as well as aid in determining if it is a contributing factor in Crohn's disease. Thus, the recent characterization of the complete genome sequence of M. paratuberculosis in our laboratories has been a major step forward in meeting this need. We have performed studies that utilize genomic information for the identification of specific DNA sequences and protein antigens in M. paratuberculosis. Based on a preliminary in silico comparison of the M. paratuberculosis genome sequence with that of M. avium, we have now identified at least 35 novel coding sequences that are unique to M. paratuberculosis. These in silico data were then confirmed and expanded by PCR amplification analysis with DNA from several species and isolates of mycobacteria. Finally, these unique sequences have been incorporated into an antigen discovery project that may allow reliable detection of the bacterium in antigen-based diagnostic tests. Application of these new tools in addressing foodborne related issues of M. paratuberculosis is discussed.
Collapse
|
26
|
Otero J, Jacobs WR, Glickman MS. Efficient allelic exchange and transposon mutagenesis in Mycobacterium avium by specialized transduction. Appl Environ Microbiol 2003; 69:5039-44. [PMID: 12957884 PMCID: PMC194949 DOI: 10.1128/aem.69.9.5039-5044.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis and Mycobacterium avium are pathogenic slow-growing mycobacteria that cause distinct human diseases. In contrast to recent advances in M. tuberculosis genetics and pathogenesis investigation, M. avium has remained genetically intractable and, consequently, its pathogenic strategies remain poorly understood. Here we report the successful development of efficient allelic exchange and transposon mutagenesis in an opaque clinical strain of M. avium by specialized transduction. Efforts to disrupt the leuD gene of M. avium by specialized transduction were successful but were complicated by inefficient isolation of recombinants secondary to high spontaneous antibiotic resistance. However, by using this leucine auxotroph as a genetic host and the Streptomyces coelicolor leuD gene as a selectable marker, we achieved efficient allelic exchange at the M. avium pcaA locus. A leuD-marked transposon delivered by specialized transduction mutagenized M. avium with efficiencies similar to M. tuberculosis. These results establish a system for random and directed mutagenesis of M. avium. In combination with the forthcoming M. avium genome sequence, these tools will allow the distinct physiologic and pathogenic properties of M. avium to be dissected in molecular detail.
Collapse
Affiliation(s)
- Joel Otero
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
27
|
Laurent JP, Hauge K, Burnside K, Cangelosi G. Mutational analysis of cell wall biosynthesis in Mycobacterium avium. J Bacteriol 2003; 185:5003-6. [PMID: 12897021 PMCID: PMC166487 DOI: 10.1128/jb.185.16.5003-5006.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall of the environmental pathogen Mycobacterium avium is important to its virulence and intrinsic antimicrobial resistance. To identify genes involved in cell wall biosynthesis, "transposome" insertion libraries were screened for mutants with altered colony morphology on medium containing the lipoprotein stain Congo red. Nineteen such mutants were isolated and mapped, including 10 with insertions in a functional island of cell wall biosynthetic genes that spans approximately 40 kb of the M. avium genome.
Collapse
|
28
|
Rybniker J, Wolke M, Haefs C, Plum G. Transposition of Tn5367 in Mycobacterium marinum, using a conditionally recombinant mycobacteriophage. J Bacteriol 2003; 185:1745-8. [PMID: 12591896 PMCID: PMC148076 DOI: 10.1128/jb.185.5.1745-1748.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium marinum is a close relative of the obligate human pathogen Mycobacterium tuberculosis. As with M. tuberculosis, M. marinum causes intracellular infection of poikilothermic vertebrates and skin infection in humans. It is considered a valid model organism for the study of intracellular pathogenesis of mycobacteria. Low transformation efficiencies for this species have precluded approaches using mutant libraries in pathogenesis studies. We have adapted the conditionally replicating mycobacteriophage phAE94, originally developed as a transposon mutagenesis tool for M. tuberculosis, to meet the specific requirements of M. marinum. Conditions permissive for phage replication in M. tuberculosis facilitated highly efficient transposon delivery in M. marinum. Using this technique we succeeded in generating a representative mutant library of this species, and we conclude that TM4-derived mycobacteriophages are temperature-independent suicide vectors for M. marinum.
Collapse
Affiliation(s)
- Jan Rybniker
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | | | | | | |
Collapse
|
29
|
Wooff E, Michell SLI, Gordon SV, Chambers MA, Bardarov S, Jacobs WR, Hewinson RG, Wheeler PR. Functional genomics reveals the sole sulphate transporter of the Mycobacterium tuberculosis complex and its relevance to the acquisition of sulphur in vivo. Mol Microbiol 2002; 43:653-63. [PMID: 11929522 DOI: 10.1046/j.1365-2958.2002.02771.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sulphur is essential for some of the most vital biological activities such as translation initiation and redox maintenance, and genes involved in sulphur metabolism have been implicated in virulence. Mycobacterium tuberculosis has three predicted genes for the prototrophic acquisition of sulphur as sulphate: cysA, part of an ABC transporter, and cysA2 and A3, SseC sulphotransferases. Screening for amino acid auxotrophs of Mycobacterium bovis BCG, obtained by transposon mutagenesis, was used to select methionine auxotrophs requiring a sulphur-containing amino acid for growth. We have characterized one of these auxotrophs as being disrupted in cysA. Both the cysA mutant and a previously identified mutant in an upstream gene, subI, were functionally characterized as being completely unable to take up sulphate. Complementation of the cysA mutant with the wild-type gene from M. tuberculosis restored prototrophy and the ability to take up sulphate with the functional characteristics of an ABC transporter. Hence, it appears that this is the sole locus encoding inorganic sulphur transport in the M. tuberculosis complex.
Collapse
Affiliation(s)
- Esen Wooff
- Tuberculosis Research Group, Veterinary Laboratories Agency-Weybridge, New Haw, Surrey, UK
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bhatt A, Stewart GR, Kieser T. Transposition of Tn4560 of Streptomyces fradiae in Mycobacterium smegmatis. FEMS Microbiol Lett 2002; 206:241-6. [PMID: 11814670 DOI: 10.1111/j.1574-6968.2002.tb11016.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Tn4560 (8.6 kb) was derived from Tn4556, a Tn3-like element from Streptomyces fradiae. It contains a viomycin resistance gene that has not been used previously for selection in mycobacteria. Tn4560, cloned in a Streptomyces plasmid, was introduced by electroporation into Mycobacterium smegmatis mc(2)155. Tn4560 transposed into the host genome: there was no obvious target sequence preference, and insertions were in or near several conserved open reading frames. The insertions were located far apart on different AseI macrorestriction fragments. Unexpectedly, the transposon delivery plasmid, pUC1169, derived from the Streptomyces multicopy plasmid pIJ101, replicated partially in M. smegmatis, but was lost spontaneously during subculture. Replication of pUC1169 probably contributed to the relatively high efficiency of Tn4560 delivery: up to 28% of the potential M. smegmatis transformants acquired a stable transposon insertion. The data indicated that Tn4560 may be useful for random mutagenesis of M. smegmatis.
Collapse
Affiliation(s)
- Apoorva Bhatt
- Department of Genetics, john Innes Centre, Norwich Research Park, Colney, UK.
| | | | | |
Collapse
|
31
|
Liu X, Feng Z, Harris NB, Cirillo JD, Bercovier H, Barletta RG. Identification of a secreted superoxide dismutase in Mycobacterium avium ssp. paratuberculosis. FEMS Microbiol Lett 2001; 202:233-8. [PMID: 11520620 DOI: 10.1111/j.1574-6968.2001.tb10809.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mycobacterium avium ssp. paratuberculosis (M. paratuberculosis), the causative agent of Johne's disease, is an important animal pathogen that has also been implicated in human disease. The major proteins expressed by M. paratuberculosis were analyzed by two-dimensional gel electrophoresis, and a superoxide dismutase (Sod) was identified from this protein profile. The M. paratuberculosis Sod has a molecular mass of 23 kDa and an isoelectric point of 6.1. Sequence analysis of the corresponding sodA gene from M. paratuberculosis indicates that this protein is a manganese-dependent enzyme. We show that the M. paratuberculosis Sod is actively secreted, suggesting that it may elicit a protective cellular immune response in the host during infection.
Collapse
Affiliation(s)
- X Liu
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln 68583-0905, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Mycobacterium avium subsp. paratuberculosis (basonym M. paratuberculosis) is the etiologic agent of a severe gastroenteritis in ruminants known as Johne's disease. Economic losses to the cattle industry in the United States are staggering, reaching $1.5 billion annually. A potential pathogenic role in humans in the etiology of Crohn's disease is under investigation. In this article, we review the epidemiology, pathogenesis, diagnostics, and disease control measures of this important veterinary pathogen. We emphasize molecular genetic aspects including the description of markers used for strain identification, diagnostics, and phylogenetic analysis. Recent important advances in the development of animal models and genetic systems to study M. paratuberculosis virulence determinants are also discussed. We conclude with proposals for the applications of these models and recombinant technology to the development of diagnostic, control, and therapeutic measures.
Collapse
Affiliation(s)
- N B Harris
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, USA
| | | |
Collapse
|
33
|
Bannantine JP, Stabel JR. HspX is present within Mycobacterium paratuberculosis-infected macrophages and is recognized by sera from some infected cattle. Vet Microbiol 2000; 76:343-58. [PMID: 11000531 DOI: 10.1016/s0378-1135(00)00247-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A portion of the gene encoding HspX has been previously identified as a sequence specific to Mycobacterium avium subspecies paratuberculosis (hereafter referred to as M. paratuberculosis) based on DNA hybridization experiments. In this study, rabbit antisera were raised against a recombinant protein of HspX fused to the Escherichia coli maltose binding protein (MBP/HspX). Immunoblots of lysates of M. paratuberculosis-infected macrophages probed with the rabbit antisera showed that HspX was present within infected macrophages of bovine and murine origin. This observation was confirmed by immunofluorescence microscopy of infected macrophages. Lysates of E. coli expressing HspX without the MBP fusion partner were loaded onto preparative SDS-PAGE gels and used to determine whether infected cattle generated a humoral immune response to the antigen. Sera from four of 24 paratuberculous cows (17%) detected HspX. No reactivity was present in sera from control cows. While HspX may be immunogenic during infection in some cows, the protein is not secreted and it does not stimulate cell-mediated immunity. Collectively, these data give a preliminary characterization of the first described M. paratuberculosis protein identified within infected macrophages.
Collapse
Affiliation(s)
- J P Bannantine
- National Animal Disease Center, ARS-USDA, Ames, IA 50010, USA.
| | | |
Collapse
|
34
|
Machowski EE, McAdam RA, Derbyshire KM, Mizrahi V. Construction and application of mycobacterial reporter transposons. Gene 2000; 253:67-75. [PMID: 10925203 DOI: 10.1016/s0378-1119(00)00238-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The transposon Tn5367, which is a derivative of the mycobacterial insertion sequence IS1096, was modified by introducing novel genes to produce reporter transposons which can be used to generate transposon insertion libraries containing mycobacterial gene or operon fusions. A plasmid that is temperature-sensitive for replication in mycobacteria was used to deliver promoterless lacZ or aph reporter genes to Mycobacterium smegmatis as transcriptional (lacZ), or translational ('aph) fusions. Mutants containing lacZ produced varying intensities of blue colour on indicator media. This reporter activity could be used as a quantitative measure of promoter strength. Mutants displaying varying levels of resistance to kanamycin were obtained by transpositional insertion of the 'aph reporter lacking a promoter, ribosome binding site and start codon to form functionally active translational fusions. Finally, inclusion of the R6Kgamma origin within Tn5367 allowed transposon insertions to be rescued in an Escherichia coli host strain permissive for the replication of this origin. This study demonstrates that transcriptional and translational reporter derivatives of Tn5367 are functional, and they supplement the growing range of molecular tools available for the study of mycobacteria.
Collapse
Affiliation(s)
- E E Machowski
- Department of Molecular Medicine and Haematology, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | |
Collapse
|