1
|
Lisiecka N, Parus A, Simpson M, Kloziński A, Zembrzuska J, Frankowski R, Zgoła-Grześkowiak A, Woźniak-Karczewska M, Siwińska-Ciesielczyk K, Niemczak M, Sandomierski M, Eberlein C, Heipieper HJ, Chrzanowski Ł. Unraveling the effects of acrylonitrile butadiene styrene (ABS) microplastic ageing on the sorption and toxicity of ionic liquids with 2,4-D and glyphosate herbicides. CHEMOSPHERE 2024; 364:143271. [PMID: 39241837 DOI: 10.1016/j.chemosphere.2024.143271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Microplastics represent a novel category of environmental pollutants, and understanding their interactions with typical xenobiotics is crucial. In this study, we investigated the impact of ionic liquids (ILs) containing herbicidal anions, namely glyphosate [Glyph] and 2,4-dichlorophenoxyacetate [2,4-D], and the surfactant cation - dodecyltrimethylammonium [C12TMA] on acrylonitrile butadiene styrene (ABS) microplastics. The aim of the study was to assess the sorption capacity of microplastics that were present in both untreated and aged form using standard and modified Fenton methods. In addition, impact on toxicity and stress adaptation of the model soil bacterium Pseudomonas putida KT2440 was measured. Upon ageing, ABS microplastics underwent a fivefold increase in BET surface area and total pore volume (from 0.001 to 0.004 cm3/g) which lead to a dramatic increase in adsorption of the cations on ABS microplastics from 40 to 45% for virgin ABS to 75-80% for aged ABS. Toxicity was mainly attributed to hydrophobic cations in ILs (EC50 ∼ 60-65 mg/dm3), which was also mitigated by sorption on ABS. Furthermore, both cations and anions behaved similarly across different ILs, corresponding chlorides, and substrates used in the ILs synthesis. These findings highlight microplastics potential as hazardous sorbents, contributing to the accumulation of xenobiotics in the environment.
Collapse
Affiliation(s)
- Natalia Lisiecka
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland; Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Anna Parus
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
| | - Maria Simpson
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Arkadiusz Kloziński
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Joanna Zembrzuska
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Robert Frankowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Marta Woźniak-Karczewska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | | | - Michał Niemczak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Mariusz Sandomierski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Christian Eberlein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Hermann J Heipieper
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland; Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
2
|
Goenaga-Mafud LC, Vollet-Filho JD, Costa C, Inada NM, Netto AS, Kurachi C, Bagnato VS. A proof-of-principle for decontamination of transplantation kidney through UV-C exposition of the perfusate solution. Sci Rep 2024; 14:5715. [PMID: 38459094 PMCID: PMC10923919 DOI: 10.1038/s41598-024-55574-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/25/2024] [Indexed: 03/10/2024] Open
Abstract
Kidney transplantation is a common yet highly demanding medical procedure worldwide, enhancing the quality of life for patients with chronic kidney disease. Despite its prevalence, the procedure faces a shortage of available organs, partly due to contamination by microorganisms, leading to significant organ disposal. This study proposes utilizing photonic techniques associated with organ support machines to prevent patient contamination during kidney transplantation. We implemented a decontamination system using ultraviolet-C (UV-C) irradiation on the preservation solution circulating through pigs' kidneys between harvest and implant. UV-C irradiation, alone or combined with ultrasound (US) and Ps80 detergent during ex-vivo swine organ perfusion in a Lifeport® Kidney Transporter machine, aimed to reduce microbiological load in both fluid and organ. Results show rapid fluid decontamination compared to microorganism release from the organ, with notable retention. By including Ps80 detergent at 0.5% during UV-C irradiation 3 log10 (CFU mL-1) of Staphylococcus aureus bacteria previously retained in the organ were successfully removed, indicating the technique's feasibility and effectiveness.
Collapse
Affiliation(s)
- L C Goenaga-Mafud
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil.
| | - J D Vollet-Filho
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - C Costa
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - N M Inada
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - A S Netto
- Department of Animal Science, College of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - C Kurachi
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
| | - V S Bagnato
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP, Brazil
- Biomedical Engineering, Texas A&M University College of Engineering, College Station, TX, USA
| |
Collapse
|
3
|
Moreland AS, Limwongyut J, Holton SJ, Bazan GC. Structural modulation of membrane-intercalating conjugated oligoelectrolytes decouples outer membrane permeabilizing and antimicrobial activities. Chem Commun (Camb) 2023; 59:12172-12175. [PMID: 37747122 DOI: 10.1039/d3cc02861e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
We report a series of membrane-intercalating conjugated oligoelectrolytes (MICOEs) to probe how structural features impact bacterial membrane integrity and antibiotic activity. Minimum inhibitory concentrations (MICs) and outer membrane (OM) permeability correlated to different structural parameters suggesting that the antimicrobial mechanism is not related to OM permeabilization. However, lipid order parameters and MICs correlated to the same structural feature suggesting a possible link.
Collapse
Affiliation(s)
- Alex S Moreland
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | - Samuel J Holton
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
- Department of Chemistry, National University of Singapore 117544, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore 117544, Singapore.
| |
Collapse
|
4
|
Pal S, Chatterjee N, Das AK, McClements DJ, Dhar P. Sophorolipids: A comprehensive review on properties and applications. Adv Colloid Interface Sci 2023; 313:102856. [PMID: 36827914 DOI: 10.1016/j.cis.2023.102856] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 01/27/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Sophorolipids are surface-active glycolipids produced by several non-pathogenic yeast species and are widely used as biosurfactants in several industrial applications. Sophorolipids provide a plethora of benefits over chemically synthesized surfactants for certain applications like bioremediation, oil recovery, and pharmaceuticals. They are, for instance less toxic, more benign and environment friendly in nature, biodegradable, freely adsorb to different surfaces, self-assembly in hydrated solutions, robustness for industrial applications etc. These miraculous properties result in valuable physicochemical attributes such as low critical micelle concentrations (CMCs), reduced interfacial surface tension, and capacity to dissolve non-polar components. Moreover, they exhibit a diverse range of physicochemical, functional, and biological attributes due to their unique molecular composition and structure. In this article, we highlight the physico-chemical properties of sophorolipids, how these properties are exploited by the human community for extensive benefits and the conditions which lead to their unique tailor-made structures and how they entail their interfacial behavior. Besides, we discuss the advantages and disadvantages associated with the use of these sophorolipids. We also review their physiological and functional attributes, along with their potential commercial applications, in real-world scenario. Biosurfactants are compared to their man-made equivalents to show the variations in structure-property correlations and possible benefits. Those attempting to manufacture purported natural or green surfactant with innovative and valuable qualities can benefit from an understanding of biosurfactant features structured along the same principles. The uniqueness of this review article is the detailed physico-chemical study of the sophorolipid biosurfactant and how these properties helps in their usage and detailed explicit study of their applications in the current scenario and also covering their pros and cons.
Collapse
Affiliation(s)
- Srija Pal
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India
| | - Niloy Chatterjee
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India
| | - Arun K Das
- Eastern Regional Station, ICAR-IVRI, 37 Belgachia Road, Kolkata 700037, West Bengal, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou, Zhejiang 310018, China
| | - Pubali Dhar
- Laboratory of Food Science and Technology, Food and Nutrition Division, University of Calcutta, 20B Judges Court Road, Kolkata 700027, West Bengal, India; Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, JD 2, Sector III, Salt Lake City, Kolkata 700 098, West Bengal, India.
| |
Collapse
|
5
|
Park I, Oh S, Goo D, Celi P, Lillehoj HS. Effect of dietary sophorolipids on growth performance and gastrointestinal functionality of broiler chickens infected with Eimeria maxima. Poult Sci 2022; 101:101944. [PMID: 35679665 PMCID: PMC9189210 DOI: 10.1016/j.psj.2022.101944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/08/2022] Open
Abstract
Two experiments were conducted to evaluate the effects of dietary sophorolipids (SLs) supplementation as antibiotic alternatives on growth performance and gut health of chickens infected with Eimeria maxima. In experiment 1, 336 (zero-day-old) male broilers were used. The chickens were weighed and randomly allocated to the following 6 treatments groups with 7 chickens/cage and 8 cages/treatment: control group that received a basal diet (NC), positive control group that received a basal diet and was challenged with E. maxima (PC), PC+C18:1 lactonic diacetyled SL (SL1), PC+C18:1 deacetyled SL (SL2), PC+C18:1 monoacetyled SL (SL3), and PC+C18:1 diacetyled SL (SL4). Each SL (200 mg/kg feed) was added to the corresponding treatment group. In experiment 2, 588 (zero-day-old) male broilers were used. The chickens were randomly allocated to the following experimental groups with 10 or 11 chickens/cage and 8 cages/treatment: NC, PC, PC+ monensin at 90 mg/kg feed (MO), PC+SL1 at 200 mg/kg feed (SL1 200), PC+SL1 at 500 mg/kg feed (SL1 500), PC+SL4 at 200 mg/kg feed (SL4 200), and PC+SL4 at 500 mg/kg of feed (SL4 500). The chickens and feed were weighed at 0, 7, 14, 20, and 22 d to determine growth performance. In both experiments, all chickens except the NC group were orally infected with E. maxima (10,000 oocysts/chicken) at d 14. One chicken per cage was euthanized at d 20 to sample jejunal tissue to measure lesion scores, cytokines, and tight junction (TJ) proteins. Excreta samples were collected daily between d 20 and 22 to measure oocyst numbers. Data were analyzed using Mixed Model (PROC MIXED) in SAS. In experiment 1, SLs did not affect the growth of broiler chickens, but SL4 decreased (P < 0.05) the lesion score and oocyst number compared to PC chickens. In terms of cytokines and TJ protein gene expression, SLs increased (P < 0.05) IL-1β, IL-6, IL-17F, IL-4, IL-13, occludin, and ZO1 levels compared to PC chickens. In experiment 2, monensin increased (P < 0.05) body weight, and decreased (P < 0.05) the lesion score and oocyst number compared to the PC group. SL4 500 increased (P < 0.05) average daily gain and feed conversion ratio but decreased (P < 0.05) lesion score and fecal oocyst number. SL4 decreased (P < 0.05) IL-6, IL-17F, TNFSF-15, IL-2, and IL-10 levels but increased (P < 0.05) occludin and ZO-1 levels. Overall, dietary SL supplementation, especially SL4, improved growth and gastrointestinal functionality of young broiler chickens, demonstrating significant potential as an antibiotic alternative.
Collapse
|
6
|
Park I, Oh S, Nam H, Celi P, Lillehoj HS. Antimicrobial activity of sophorolipids against Eimeria maxima and Clostridium perfringens, and their effect on growth performance and gut health in necrotic enteritis. Poult Sci 2022; 101:101731. [PMID: 35176703 PMCID: PMC8851262 DOI: 10.1016/j.psj.2022.101731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/26/2022] Open
Abstract
The in vitro antimicrobial activity of sophorolipids (SLs) against Eimeria maxima and Clostridium perfringens, and the in vivo effects of SLs on growth performance and gut health in necrotic enteritis (NE)-afflicted broiler chickens were studied. To test the direct killing effects of SLs on enteric pathogens, 2.5 × 105 freshly prepared sporozoites of each Eimeria acervulina, E. maxima, and E. tenella were placed in each well of a 96-well plate, and the vegetative stage of Clostridium perfringens was prepared at 1 × 109 cfu/well. Four different SLs (C18:1 lactonic diacetyled SL [SL1], C18:1 deacetyled SL [SL2], C18:1 monoacetyled SL [SL3], and C18:1 diacetyled SL [SL4]), and 2 anticoccidial chemical controls, decoquinate and monensin, were evaluated at 3 dose levels (125 µg/mL, 250 µg/mL, and 500 µg/mL). Samples were incubated at 41°C for 3 h, and microbial survival ratios were measured by using a cell counter to quantify the number of live microbes stained by fluorescent dye. A total of 336 (0-day-old) male commercial broiler chickens were used to assess the effects of SLs in vivo. Chickens were randomly allocated to 6 treatment groups (7 chickens per cage, 8 cages per treatment) as follows: a control group which received a basal diet (CON), a negative control group (NC) which received a basal diet and NE challenge, and 4 SL treatment groups with NE (NC+SL1, NC+SL2, NC+SL3, and NC+SL4). The inclusion rates of SLs in each group were 200 mg/kg of feed. NE-induced chickens were orally infected with E. maxima (10,000 oocysts/chicken) on d 14, followed by C. perfringens (1 × 109 cfu/chicken) on d 19. Disease parameters measured included gut lesion scores, intestinal cytokine production, and level of tight junction protein expression. Data were analyzed using a Mixed Model (PROC MIXED) in SAS. In vitro (Experiment 1), all SLs dose-dependently decreased (P < 0.001) the viability of the three species of Eimeria sporozoites and C. perfringens. In vivo (Experiment 2), dietary SLs increased (P < 0.001) body weight and average daily gain of broiler chickens infected with NE. Dietary SL1 and SL4s increased (P < 0.05) feed conversion ratio compared to NC. Furthermore, SL1 and SL4 decreased (P < 0.05) gut lesion scores in combination with increased expression of IL1β, IL8, TNFSF15, and IL10 genes (P < 0.05) in NE-afflicted chickens. Overall, dietary SLs promoted growth performance, intestinal immune responses, and intestinal barrier integrity of NE-afflicted, young broiler chickens.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Sungtaek Oh
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Pietro Celi
- DSM Nutritional Products, Animal Nutrition and Health, Columbia, MD 21045, USA; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hyun S Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.
| |
Collapse
|
7
|
Preparation and Optimization of Garlic Oil/Apple Cider Vinegar Nanoemulsion Loaded with Minoxidil to Treat Alopecia. Pharmaceutics 2021; 13:pharmaceutics13122150. [PMID: 34959435 PMCID: PMC8706394 DOI: 10.3390/pharmaceutics13122150] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
Alopecia areata is a scarless, localized hair loss disorder that is typically treated with topical formulations that ultimately only further irritate the condition. Hence, the goal of this study was to develop a nanoemulsion with a base of garlic oil (GO) and apple cider vinegar (APCV) and loaded with minoxidil (MX) in order to enhance drug solubilization and permeation through skin. A distance coordinate exchange quadratic mixture design was used to optimize the proposed nanoemulsion. Span 20 and Tween 20 mixtures were used as the surfactant, and Transcutol was used as the co-surfactant. The developed formulations were characterized for their droplet size, minoxidil steady-state flux (MX Jss) and minimum inhibitory concentration (MIC) against Propionibacterium acnes. The optimized MX-GO-APCV nanoemulsion had a droplet size of 110 nm, MX Jss of 3 μg/cm2 h, and MIC of 0.275 μg/mL. The optimized formulation acquired the highest ex vivo skin permeation parameters compared to MX aqueous dispersion, and varying formulations lacked one or more components of the proposed nanoemulsion. GO and APCV in the optimized formulation had a synergistic, enhancing activity on the MX permeation across the skin membrane, and the percent permeated increased from 12.7% to 41.6%. Finally, the MX-GO-APCV nanoemulsion followed the Korsmeyer–Peppas model of diffusion, and the value of the release exponent (n) obtained for the formulations was found to be 1.0124, implying that the MX permeation followed Super case II transport. These results demonstrate that the MX-GO-APCV nanoemulsion formulation could be useful in promoting MX activity in treating alopecia areata.
Collapse
|
8
|
Loeto D, Jongman M, Lekote L, Muzila M, Mokomane M, Motlhanka K, Ndlovu T, Zhou N. Biosurfactant production by halophilic yeasts isolated from extreme environments in Botswana. FEMS Microbiol Lett 2021; 368:6426179. [PMID: 34788824 DOI: 10.1093/femsle/fnab146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/10/2021] [Indexed: 12/27/2022] Open
Abstract
Nine morphologically distinct halophilic yeasts were isolated from Makgadikgadi and Sua pans, as pristine and extreme environments in Botswana. Screening for biosurfactant production showed that Rhodotorula mucilaginosa SP6 and Debaryomyces hansenii MK9 exhibited the highest biosurfactant activity using Xanthocercis zambesiaca seed powder as a novel and alternative inexpensive carbon substrate. Chemical characterization of the purified biosurfactants by Fourier Transform Infra-Red spectroscopy suggested that the biosurfactant from R. mucilaginosa SP6 was a rhamnolipid-type whereas the biosurfactant from D. hansenii MK9 was a sophorolipid-type. The two biosurfactants exhibited antimicrobial activities against eight pathogenic bacteria and fungal strains (Proteus vulgaris, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Micrococcus luteus, Cryptococcus neoformans, Candida albicans and Aspergilus niger). The sophorolopid-type biosurfactant was found to be the most potent among the antimicrobial drug resistant strains tested. The findings open up prospects for the development of environmentally friendly antimicrobial drugs that use an inexpensive source of carbon to reduce the costs associated with the production of biosurfactants.
Collapse
Affiliation(s)
- Daniel Loeto
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Mosimanegape Jongman
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Lerato Lekote
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Mbaki Muzila
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Margaret Mokomane
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Private Bag 0022, Gaborone Botswana
| | - Koketso Motlhanka
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Thando Ndlovu
- Department of Biological Sciences, Faculty of Science, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag 16, Palapye, Botswana
| |
Collapse
|
9
|
Rolando L, Grenni P, Rauseo J, Pescatore T, Patrolecco L, Garbini GL, Visca A, Barra Caracciolo A. Isolation and Characterization in a Soil Conditioned With Foaming Agents of a Bacterial Consortium Able to Degrade Sodium Lauryl Ether Sulfate. Front Microbiol 2020; 11:1542. [PMID: 32733421 PMCID: PMC7359553 DOI: 10.3389/fmicb.2020.01542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023] Open
Abstract
The anionic surfactant Sodium Lauryl Ether Sulfate (SLES) is the principal component of several commercial foaming products for soil conditioning in the tunneling industry. Huge amounts of spoil material are produced during the excavation process and the presence of SLES can affect its re-use as a by-product. Anionic surfactants can be a risk for ecosystems if occurring in the environment at toxic concentrations. SLES biodegradability is a key issue if the excavated soil is to be reused. The aim of this study was to identify bacteria able to degrade SLES, so that it could potentially be used in bioaugmentation techniques. Enrichment cultures were performed using bacterial populations from spoil material collected in a tunnel construction site as the inoculum. A bacterial consortium able to grow in a few hours with SLES concentrations from 125 mg/L to 2 g/L was selected and then identified by Next Generation Sequencing analysis. Most of bacteria identified belonged to Gamma-Proteobacteria (99%) and Pseudomonas (ca 90%) was the predominant genus. The bacterial consortium was able to degrade 94% of an initial SLES concentration of 250 mg/L in 9 h. A predictive functional analysis using the PICRUSt2 software showed the presence of esterase enzymes, responsible for SLES degradation. The bacterial consortium selected could be useful for its possible seeding (bioaugmentation) on spoil material from tunneling excavation.
Collapse
Affiliation(s)
- Ludovica Rolando
- Water Research Institute - National Research Council (IRSA-CNR), Monterotondo, Italy.,Department of Ecological and Biological Sciences, Tuscia University, Viterbo, Italy
| | - Paola Grenni
- Water Research Institute - National Research Council (IRSA-CNR), Monterotondo, Italy
| | - Jasmin Rauseo
- Institute of Polar Sciences - National Research Council (ISP-CNR), Monterotondo, Italy
| | - Tanita Pescatore
- Department of Ecological and Biological Sciences, Tuscia University, Viterbo, Italy.,Institute of Polar Sciences - National Research Council (ISP-CNR), Monterotondo, Italy
| | - Luisa Patrolecco
- Institute of Polar Sciences - National Research Council (ISP-CNR), Monterotondo, Italy
| | - Gian Luigi Garbini
- Water Research Institute - National Research Council (IRSA-CNR), Monterotondo, Italy
| | - Andrea Visca
- Water Research Institute - National Research Council (IRSA-CNR), Monterotondo, Italy
| | - Anna Barra Caracciolo
- Water Research Institute - National Research Council (IRSA-CNR), Monterotondo, Italy
| |
Collapse
|
10
|
Alshehab M, Budamagunta MS, Voss JC, Nitin N. Real-time measurements of milk fat globule membrane modulation during simulated intestinal digestion using electron paramagnetic resonance spectroscopy. Colloids Surf B Biointerfaces 2019; 184:110511. [PMID: 31600680 DOI: 10.1016/j.colsurfb.2019.110511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/14/2022]
Abstract
Milk Fat Globules with their unique interfacial structure and membrane composition are a key nutritional source for mammalian infants, however, there is a limited understanding of the dynamics of fat digestion in these structures. Lipid digestion is an interfacial process involving interactions of enzymes and bile salts with the interface of suspended lipid droplets in an aqueous environment. In this study, we have developed an electron paramagnetic resonance spectroscopy approach to evaluate real time dynamics of milk fat globules interfacial structure during simulated intestinal digestion. To measure these dynamics, natural milk fat globule membrane was labeled with EPR-active probe, partitioning of EPR probes into MFGs membrane was validated using saturation-recovery measurements and calculation of the depth parameter Φ. After validation, the selected spin probe was used to evaluate the membrane's fluidity as a measure of the interface's modulation in the presence of bile salts and pancreatic lipase. Independently, bile salts were found to have a rigidifying effect on the spin probed MFGM, while pancreatic lipase resulted in an increase in membrane fluidity. When combined, the effect of lipase appears to be diminished in the presence of bile salts. These results indicate the efficacy of EPR in providing an insight into small time scale molecular dynamics of phospholipid interfaces in milk fat globules. Understanding interfacial dynamics of naturally occurring complex structures can significantly aid in understanding the role of interfacial composition and structural complexity in delivery of nutrients during digestion.
Collapse
Affiliation(s)
- Maha Alshehab
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, United States
| | - Madhu S Budamagunta
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, CA 95616, United States
| | - John C Voss
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, CA 95616, United States
| | - Nitin Nitin
- Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, United States.
| |
Collapse
|
11
|
Evaluation of the biological activity of the prepared nonionic polymeric based on the acrylated polyethylene glycol. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Tonyali B, McDaniel A, Trinetta V, Yucel U. Evaluation of heating effects on the morphology and membrane structure of Escherichia coli using electron paramagnetic resonance spectroscopy. Biophys Chem 2019; 252:106191. [PMID: 31177024 DOI: 10.1016/j.bpc.2019.106191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 01/14/2023]
Abstract
Bacterial cell characteristics, such as size, morphology, and membrane integrity, are affected by environmental conditions. Thermal treatment results in related structural changes, extent of which is determined by the microorganism's survival skills and inactivation kinetics. The objective of this study was to characterize changes in cell structure of Escherichia coli during heating using the combined analysis of dynamic light scattering (DLS), electron paramagnetic resonance (EPR) spectroscopy, and transmission electron microscopy (TEM) techniques. The size of E. coli cells increased from 2.3 μm to 3.0 μm with heating up to 50 °C followed by a shrinkage with further heating up to 70 °C. The morphological changes were verified using transmission electron microscopy. Related changes in membrane integrity was quantified via the mobility of 16-doxylstearic acid (16-DSA) spin probe using EPR spectroscopy. Two order parameters S1 and S2 defined on x- and y-axes, respectively, decreased with increasing temperature indicating loss of membrane integrity. The combined techniques as in this study can be used to further understand factors that play role in survival behavior of microorganisms.
Collapse
Affiliation(s)
- Bade Tonyali
- Food Science Institute, Kansas State University, Manhattan, KS 66506, United States of America
| | - Austin McDaniel
- Food Science Institute, Kansas State University, Manhattan, KS 66506, United States of America
| | - Valentina Trinetta
- Food Science Institute, Kansas State University, Manhattan, KS 66506, United States of America; Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, United States of America
| | - Umut Yucel
- Food Science Institute, Kansas State University, Manhattan, KS 66506, United States of America; Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, United States of America.
| |
Collapse
|
13
|
Zhang S, Xiong J, Lou W, Ning Z, Zhang D, Yang J. Antimicrobial activity and action mechanism of triglycerol monolaurate on common foodborne pathogens. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Percival SL, Mayer D, Kirsner RS, Schultz G, Weir D, Roy S, Alavi A, Romanelli M. Surfactants: Role in biofilm management and cellular behaviour. Int Wound J 2019; 16:753-760. [PMID: 30883044 DOI: 10.1111/iwj.13093] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 01/08/2023] Open
Abstract
Appropriate and effective wound cleaning represents an important process that is necessary for preparing the wound for improved wound healing and for helping to dislodge biofilms. Wound cleaning is of paramount importance to wound bed preparation for helping to enhance wound healing. Surfactant applications in wound care may represent an important area in the cleaning continuum. However, understanding of the role and significance of surfactants in wound cleansing, biofilm prevention and control, and enhancing cellular viability and proliferation is currently lacking. Despite this, some recent evidence on poloxamer-based surfactants where the surfactants are present in high concentration have been shown to have an important role to play in biofilm management; matrix metalloproteinase modulation; reducing inflammation; and enhancing cellular proliferation, behaviour, and viability. Consequently, this review aims to discuss the role, mode of action, and clinical significance of the use of medically accepted surfactants, with a focus on concentrated poloxamer-based surfactants, to wound healing but, more specifically, the role they may play in biofilm management and effects on cellular repair.
Collapse
Affiliation(s)
- Steven L Percival
- 5D Health Protection Group Ltd, Liverpool Bio-Innovation Hub, Liverpool, UK.,Department of Research and Development, Centre of Excellence in Biofilm science (CEBS), Liverpool Bio-Innovation Hub, Liverpool, UK
| | - Dieter Mayer
- Department of Surgery, HFR Fribourg - Cantonal Hospital, Fribourg, Switzerland
| | - Robert S Kirsner
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida
| | - Greg Schultz
- Institute for Wound Research, University of Florida, Gainesville, Florida
| | - Dot Weir
- Catholic Health Advanced Wound Healing Centers, Buffalo, New York
| | - Sashwati Roy
- Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, Indiana
| | - Afsaneh Alavi
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
15
|
Silveira T, Varela Junior AS, Corcini CD, Domingues WB, Remião M, Santos L, Barreto B, Lessa I, Martins D, Boyle RT, Costa PG, Bianchini A, Robaldo RB, Campos VF. Roundup® Herbicide Decreases Quality Parameters of Spermatozoa of Silversides Odontesthes Humensis. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:1-6. [PMID: 30511085 DOI: 10.1007/s00128-018-2508-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
The silverside (Odontesthes humensis) is a very interesting model for toxicological studies due its high sensitivity and need for good water quality. The aim of this study was to evaluate the effects of Roundup on spermatozoa of O. humensis, after acute exposure. The fish were exposed to 0 and 7.8 mg L-1 (a.e.) of glyphosate, respectively. Through computer-assisted sperm analysis, a significant decrease in concentration, total and progressive motility, average path distance, straight line distance, path average velocity, curved line velocity, straight line velocity linearity, wobble, amplitude of lateral head displacement, cross beat frequency, and motility period of silverside spermatozoa exposed to Roundup was observed. Also, increase in membrane fluidity, ROS production and lipid peroxidation and a decrease in the mitochondrial functionality was observed in spermatozoa of Roundup exposed silversides. It was demonstrated that Roundup exposure in a concentration that can be achieve in natural water bodies soon after its application in fields is able to cause losses in several sperm quality parameters, consequently decreasing the fertilization potential of O. humensis spermatozoa.
Collapse
Affiliation(s)
- Tony Silveira
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Antonio Sergio Varela Junior
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Laboratório de Reprodução Animal Comparada, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Carine Dahl Corcini
- Laboratório de Reprodução Animal Comparada, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - William B Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mariana Remião
- Laboratório de Biotecnologia do Câncer, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Lucas Santos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bruna Barreto
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Ingrid Lessa
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Diego Martins
- Laboratório de Reprodução Animal Comparada, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Robert T Boyle
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Patrícia Gomes Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Ricardo B Robaldo
- Laboratório de Fisiologia, Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
16
|
Herman A. Antimicrobial Ingredients as Preservative Booster and Components of Self-Preserving Cosmetic Products. Curr Microbiol 2018; 76:744-754. [PMID: 29651551 DOI: 10.1007/s00284-018-1492-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 04/10/2018] [Indexed: 01/24/2023]
Abstract
This review reports cosmetic ingredients with antimicrobial activity including synthetic and natural (plant and microbial) origin as alternative for preservatives used in cosmetics as well described mechanism of their action.
Collapse
Affiliation(s)
- Anna Herman
- Faculty of Cosmetology, The Academy of Cosmetics and Health Care, Podwale 13 Street, 00-252, Warsaw, Poland.
| |
Collapse
|
17
|
How Does a Photocatalytic Antimicrobial Coating Affect Environmental Bioburden in Hospitals? Infect Control Hosp Epidemiol 2018; 39:398-404. [DOI: 10.1017/ice.2017.297] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUNDThe healthcare environment is recognized as a source for healthcare-acquired infection. Because cleaning practices are often erratic and always intermittent, we hypothesize that continuously antimicrobial surfaces offer superior control of surface bioburden.OBJECTIVETo evaluate the impact of a photocatalytic antimicrobial coating at near-patient, high-touch sites in a hospital ward.SETTINGThe study took place in 2 acute-care wards in a large acute-care hospital.METHODSA titanium dioxide-based photocatalytic coating was sprayed onto 6 surfaces in a 4-bed bay in a ward and compared under normal illumination against the same surfaces in an untreated ward: right and left bed rails, bed control, bedside locker, overbed table, and bed footboard. Using standardized methods, the overall microbial burden and presence of an indicator pathogen (Staphylococcus aureus) were assessed biweekly for 12 weeks.RESULTSTreated surfaces demonstrated significantly lower microbial burden than control sites, and the difference increased between treated and untreated surfaces during the study. Hygiene failures (>2.5 colony-forming units [CFU]/cm2) increased 2.6% per day for control surfaces (odds ratio [OR], 1.026; 95% confidence interval [CI], 1.009–1.043; P=.003) but declined 2.5% per day for treated surfaces (OR, 0.95; 95% CI, 0.925–0.977; P<.001). We detected no significant difference between coated and control surfaces regarding S. aureus contamination.CONCLUSIONPhotocatalytic coatings reduced the bioburden of high-risk surfaces in the healthcare environment. Treated surfaces became steadily cleaner, while untreated surfaces accumulated bioburden. This evaluation encourages a larger-scale investigation to ascertain whether the observed environmental amelioration has an effect on healthcare-acquired infection.Infect Control Hosp Epidemiol 2018;39:398–404
Collapse
|
18
|
Sloan AWN, Santana-Pereira ALR, Goswami J, Liles MR, Davis VA. Single-Walled Carbon Nanotube Dispersion in Tryptic Soy Broth. ACS Macro Lett 2017; 6:1228-1231. [PMID: 35650799 DOI: 10.1021/acsmacrolett.7b00656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There has been little research on the dispersion of carbon nanotubes in dispersions of standard microbiological media. We report that tryptic soy broth (TSB) containing casein digest disperses single-walled carbon nanotubes (SWNT) at concentrations similar to those achieved in lysozyme (LSZ), one of the best known biomolecular SWNT dispersants. Similar to LSZ, the proposed mechanism for SWNT dispersion in TSB is favorable π-π stacking interactions with l-tryptophan. This is supported by similar SWNT concentrations in both LSZ and TSB supernatants, and the absence of appreciable dispersion in TSB that does not contain a source of l-tryptophan. Since l-tryptophan alone is insufficient to enable dispersion, it was previously hypothesized that LSZ's macromolecular structure created steric hindrance that was critical for SWNT dispersion. These new results show that intermediately sized l-tryptophan containing species can also enable dispersion. In addition, since TSB is a commonly used growth medium for microbiological research, its dispersive ability presents new research avenues for studying the effect of SWNT on prokaryotic cells without the need to oxidize SWNT or add dispersants that may induce microbial stress.
Collapse
Affiliation(s)
- Arthur W. N. Sloan
- Department of Chemical Engineering and ‡Department of Biological Sciences, Auburn University, Auburn, Alabama, United States
| | - Alinne L. R. Santana-Pereira
- Department of Chemical Engineering and ‡Department of Biological Sciences, Auburn University, Auburn, Alabama, United States
| | - Joyanta Goswami
- Department of Chemical Engineering and ‡Department of Biological Sciences, Auburn University, Auburn, Alabama, United States
| | - Mark R. Liles
- Department of Chemical Engineering and ‡Department of Biological Sciences, Auburn University, Auburn, Alabama, United States
| | - Virginia A. Davis
- Department of Chemical Engineering and ‡Department of Biological Sciences, Auburn University, Auburn, Alabama, United States
| |
Collapse
|
19
|
Williams FE, Lee AK, Orandi S, Sims SK, Lewis DM. Moringa oleifera functionalised sand - reuse with non-ionic surfactant dodecyl glucoside. JOURNAL OF WATER AND HEALTH 2017; 15:863-872. [PMID: 29215351 DOI: 10.2166/wh.2017.241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Moringa oleifera seeds are well known for their ability to cause flocculation in turbid water and facilitate bacterial inhibition. These effects are due to the cationic polypeptide MO2.1, which affects the surface charge of suspended particles and causes lysis of bacterial cells. However, the attachment of bacteria to MO2.1 prevents further bacterial attachment, reducing the effectiveness of the seeds. This research investigated the effect of surfactants on functionality and reuse of Moringa seeds to develop a sustainable water treatment technique. The seed extracts (MO2.1) were used with a functionalised sand system, and the sands were exposed to commercially available (ionic and non-ionic) surfactants, dodecyl glucoside and sodium dodecyl sulfate. Artificially polluted water contaminated with Escherichia coli was used to evaluate the efficiency of the system. The non-ionic surfactant was found to be effective at separating E. coli from the functionalised sand without the detachment of the MO2.1 and subsequent loss of the system efficiency. This was successfully repeated four times. The results demonstrated a sustainable, reusable technique to inhibit bacterial contamination in water.
Collapse
Affiliation(s)
- Frances E Williams
- School of Chemical Engineering, The University of Adelaide, Adelaide 5005, Australia E-mail:
| | - Andrew K Lee
- School of Chemical Engineering, The University of Adelaide, Adelaide 5005, Australia E-mail:
| | - Sanaz Orandi
- School of Chemical Engineering, The University of Adelaide, Adelaide 5005, Australia E-mail:
| | - Sarah K Sims
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy 5371, Australia
| | - David M Lewis
- School of Chemical Engineering, The University of Adelaide, Adelaide 5005, Australia E-mail:
| |
Collapse
|
20
|
Antibiofilm agents: A new perspective for antimicrobial strategy. J Microbiol 2017; 55:753-766. [PMID: 28956348 DOI: 10.1007/s12275-017-7274-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 02/08/2023]
Abstract
Biofilms are complex microbial architectures that attach to surfaces and encase microorganisms in a matrix composed of self-produced hydrated extracellular polymeric substances (EPSs). In biofilms, microorganisms become much more resistant to antimicrobial treatments, harsh environmental conditions, and host immunity. Biofilm formation by microbial pathogens greatly enhances survival in hosts and causes chronic infections that result in persistent inflammation and tissue damages. Currently, it is believed over 80% of chronic infectious diseases are mediated by biofilms, and it is known that conventional antibiotic medications are inadequate at eradicating these biofilm-mediated infections. This situation demands new strategies for biofilm-associated infections, and currently, researchers focus on the development of antibiofilm agents that are specific to biofilms, but are nontoxic, because it is believed that this prevents the development of drug resistance. Here, we review the most promising antibiofilm agents undergoing intensive research and development.
Collapse
|
21
|
Antibacterial properties of sophorolipid-modified gold surfaces against Gram positive and Gram negative pathogens. Colloids Surf B Biointerfaces 2017; 157:325-334. [PMID: 28609707 DOI: 10.1016/j.colsurfb.2017.05.072] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/21/2017] [Accepted: 05/29/2017] [Indexed: 11/23/2022]
Abstract
Sophorolipids are bioderived glycolipids displaying interesting antimicrobial properties. We show that they can be used to develop biocidal monolayers against Listeria ivanovii, a Gram-positive bacterium. The present work points out the dependence between the surface density and the antibacterial activity of grafted sophorolipids. It also emphasizes the broad spectrum of activity of these coatings, demonstrating their potential against both Gram-positive strains (Enteroccocus faecalis, Staphylococcus epidermidis, Streptococcus pyogenes) and Gram-negative strains (Escherichia coli, Pseudomonas aeruginosa and Salmonella typhymurium). After exposure to sophorolipids grafted onto gold, all these bacterial strains show a significant reduction in viability resulting from membrane damage as evidenced by fluorescent labelling and SEM-FEG analysis.
Collapse
|
22
|
Indelicato S, Bongiorno D, Calabrese V, Perricone U, Almerico AM, Ceraulo L, Piazzese D, Tutone M. Micelles, Rods, Liposomes, and Other Supramolecular Surfactant Aggregates: Computational Approaches. Interdiscip Sci 2017; 9:392-405. [PMID: 28478537 DOI: 10.1007/s12539-017-0234-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/31/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
Abstract
Surfactants are an interesting class of compounds characterized by the segregation of polar and apolar domains in the same molecule. This peculiarity makes possible a whole series of microscopic and macroscopic effects. Among their features, their ability to segregate particles (fluids or entire domains) and to reduce the surface/interfacial tension is the utmost important. The interest in the chemistry of surfactants never weakened; instead, waves of increasing interest have occurred every time a new field of application of these molecules has been discovered. All these special characteristics depend largely on the ability of surfactants to self-assemble and constitute supramolecular structures where their chemical properties are amplified. The possibility to obtain structural and energy information and, above all, the possibility of forecast the self-organizing mechanisms of surfactants have had a significant boost via computational chemistry. The molecular dynamics models, initially coarse-grained and subsequently (with the increasing computer power) using more accurate models, allowed, over the years, to better understand different aspects of the processes of dispersion, self-assembly, segregation of surfactant. Moreover, several other aspects have been investigated as the effect of the counterions of many ionic surfactants in defining the final supramolecular structures, the mobility of side chains, and the capacity of some surfactant to envelope entire proteins. This review constitutes a perspective/prospective view of these results. On the other hand, some comparison of in silico results with experimental information recently acquired through innovative analytical techniques such as ion mobility mass spectrometry which have been introduced.
Collapse
Affiliation(s)
- Serena Indelicato
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università degli Studi di Palermo, Palermo, Italy
| | - David Bongiorno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Valentina Calabrese
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Ugo Perricone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Leopoldo Ceraulo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy
| | - Daniela Piazzese
- Dipartimento di Scienze della Terra e del Mare (DISTEM), Università degli Studi di Palermo, Palermo, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo (STEBICEF), Palermo, Italy.
| |
Collapse
|
23
|
Sodium lauryl ether sulfate (SLES) degradation by nitrate-reducing bacteria. Appl Microbiol Biotechnol 2017; 101:5163-5173. [PMID: 28299401 PMCID: PMC5486822 DOI: 10.1007/s00253-017-8212-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 02/26/2017] [Indexed: 11/06/2022]
Abstract
The surfactant sodium lauryl ether sulfate (SLES) is widely used in the composition of detergents and frequently ends up in wastewater treatment plants (WWTPs). While aerobic SLES degradation is well studied, little is known about the fate of this compound in anoxic environments, such as denitrification tanks of WWTPs, nor about the bacteria involved in the anoxic biodegradation. Here, we used SLES as sole carbon and energy source, at concentrations ranging from 50 to 1000 mg L−1, to enrich and isolate nitrate-reducing bacteria from activated sludge of a WWTP with the anaerobic-anoxic-oxic (A2/O) concept. In the 50 mg L−1 enrichment, Comamonas (50%), Pseudomonas (24%), and Alicycliphilus (12%) were present at higher relative abundance, while Pseudomonas (53%) became dominant in the 1000 mg L−1 enrichment. Aeromonas hydrophila strain S7, Pseudomonas stutzeri strain S8, and Pseudomonas nitroreducens strain S11 were isolated from the enriched cultures. Under denitrifying conditions, strains S8 and S11 degraded 500 mg L−1 SLES in less than 1 day, while strain S7 required more than 6 days. Strains S8 and S11 also showed a remarkable resistance to SLES, being able to grow and reduce nitrate with SLES concentrations up to 40 g L−1. Strain S11 turned out to be the best anoxic SLES degrader, degrading up to 41% of 500 mg L−1. The comparison between SLES anoxic and oxic degradation by strain S11 revealed differences in SLES cleavage, degradation, and sulfate accumulation; both ester and ether cleavage were probably employed in SLES anoxic degradation by strain S11.
Collapse
|
24
|
Bernegossi J, Calixto GMF, Sanches PRDS, Fontana CR, Cilli EM, Garrido SS, Chorilli M. Peptide KSL-W-Loaded Mucoadhesive Liquid Crystalline Vehicle as an Alternative Treatment for Multispecies Oral Biofilm. Molecules 2015; 21:E37. [PMID: 26712726 PMCID: PMC6273598 DOI: 10.3390/molecules21010037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 11/20/2022] Open
Abstract
Decapeptide KSL-W shows antibacterial activities and can be used in the oral cavity, however, it is easily degraded in aqueous solution and eliminated. Therefore, we aimed to develop liquid crystalline systems (F1 and F2) for KSL-W buccal administration to treat multispecies oral biofilms. The systems were prepared with oleic acid, polyoxypropylene (5) polyoxyethylene (20) cetyl alcohol (PPG-5-CETETH-20), and a 1% poloxamer 407 dispersion as the oil phase (OP), surfactant (S), and aqueous phase (AP), respectively. We characterized them using polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), rheology, and in vitro bioadhesion, and performed in vitro biological analysis. PLM showed isotropy (F1) or anisotropy with lamellar mesophases (F2), confirmed by peak ratio quantification using SAXS. Rheological tests demonstrated that F1 exhibited Newtonian behavior but not F2, which showed a structured AP concentration-dependent system. Bioadhesion studies revealed an AP concentration-dependent increase in the system’s bioadhesiveness (F2 = 15.50 ± 1.00 mN·s) to bovine teeth blocks. Antimicrobial testing revealed 100% inhibition of multispecies oral biofilm growth after KSL-W administration, which was incorporated in the F2 aqueous phase at a concentration of 1 mg/mL. Our results suggest that this system could serve as a potential vehicle for buccal administration of antibiofilm peptides.
Collapse
Affiliation(s)
- Jéssica Bernegossi
- School of Pharmaceutical Sciences, Sao Paulo State University, UNESP, Rodovia Araraquara-Jaú Km 01, Araraquara, SP 14800-850, Brazil.
| | - Giovana Maria Fioramonti Calixto
- School of Pharmaceutical Sciences, Sao Paulo State University, UNESP, Rodovia Araraquara-Jaú Km 01, Araraquara, SP 14800-850, Brazil.
| | | | - Carla Raquel Fontana
- School of Pharmaceutical Sciences, Sao Paulo State University, UNESP, Rodovia Araraquara-Jaú Km 01, Araraquara, SP 14800-850, Brazil.
| | - Eduardo Maffud Cilli
- Chemistry Institute, Sao Paulo State University, UNESP, Campus Araraquara, Araraquara, SP 14800-900, Brazil.
| | - Saulo Santesso Garrido
- Chemistry Institute, Sao Paulo State University, UNESP, Campus Araraquara, Araraquara, SP 14800-900, Brazil.
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Sao Paulo State University, UNESP, Rodovia Araraquara-Jaú Km 01, Araraquara, SP 14800-850, Brazil.
| |
Collapse
|
25
|
Quesnel DM, Oldenburg TBP, Larter SR, Gieg LM, Chua G. Biostimulation of Oil Sands Process-Affected Water with Phosphate Yields Removal of Sulfur-Containing Organics and Detoxification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13012-13020. [PMID: 26448451 DOI: 10.1021/acs.est.5b01391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The ability to mitigate toxicity of oil sands process-affected water (OSPW) for return into the environment is an important issue for effective tailings management in Alberta, Canada. OSPW toxicity has been linked to classical naphthenic acids (NAs), but the toxic contribution of other acid-extractable organics (AEOs) remains unknown. Here, we examine the potential for in situ bioremediation of OSPW AEOs by indigenous algae. Phosphate biostimulation was performed in OSPW to promote the growth of indigenous photosynthetic microorganisms and subsequent toxicity and chemical changes were determined. After 12 weeks, the AEO fraction of phosphate-biostimulated OSPW was significantly less toxic to the fission yeast Schizosaccharomyces pombe than unstimulated OSPW. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) analysis of the AEO fraction in phosphate-biostimulated OSPW showed decreased levels of SO3 class compounds, including a subset that may represent linear arylsulfonates. A screen with S. pombe transcription factor mutant strains for growth sensitivity to the AEO fraction or sodium dodecylbenzenesulfonate revealed a mode of toxic action consistent with oxidative stress and detrimental effects on cellular membranes. These findings demonstrate a potential algal-based in situ bioremediation strategy for OSPW AEOs and uncover a link between toxicity and AEOs other than classical NAs.
Collapse
Affiliation(s)
- Dean M Quesnel
- Department of Biological Sciences, and ‡PRG, Department of Geosciences, University of Calgary , 2500 University Drive NW, Calgary, Alberta Canada T2N 1N4
| | - Thomas B P Oldenburg
- Department of Biological Sciences, and ‡PRG, Department of Geosciences, University of Calgary , 2500 University Drive NW, Calgary, Alberta Canada T2N 1N4
| | - Stephen R Larter
- Department of Biological Sciences, and ‡PRG, Department of Geosciences, University of Calgary , 2500 University Drive NW, Calgary, Alberta Canada T2N 1N4
| | - Lisa M Gieg
- Department of Biological Sciences, and ‡PRG, Department of Geosciences, University of Calgary , 2500 University Drive NW, Calgary, Alberta Canada T2N 1N4
| | - Gordon Chua
- Department of Biological Sciences, and ‡PRG, Department of Geosciences, University of Calgary , 2500 University Drive NW, Calgary, Alberta Canada T2N 1N4
| |
Collapse
|
26
|
Valotteau C, Calers C, Casale S, Berton J, Stevens CV, Babonneau F, Pradier CM, Humblot V, Baccile N. Biocidal Properties of a Glycosylated Surface: Sophorolipids on Au(111). ACS APPLIED MATERIALS & INTERFACES 2015; 7:18086-18095. [PMID: 26247605 DOI: 10.1021/acsami.5b05090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Classical antibacterial surfaces usually involve antiadhesive and/or biocidal strategies. Glycosylated surfaces are usually used to prevent biofilm formation via antiadhesive mechanisms. We report here the first example of a glycosylated surface with biocidal properties created by the covalent grafting of sophorolipids (a sophorose unit linked by a glycosidic bond to an oleic acid) through a self-assembled monolayer (SAM) of short aminothiols on gold (111) surfaces. The biocidal effect of such surfaces on Gram+ bacteria was assessed by a wide combination of techniques including microscopy observations, fluorescent staining, and bacterial growth tests. About 50% of the bacteria are killed via alteration of the cell envelope. In addition, the roles of the sophorose unit and aliphatic chain configuration are highlighted by the lack of activity of substrates modified, respectively, with sophorose-free oleic acid and sophorolipid-derivative having a saturated aliphatic chain. This system demonstrates thus the direct implication of a carbohydrate in the destabilization and disruption of the bacterial cell envelope.
Collapse
Affiliation(s)
- Claire Valotteau
- †Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574, 11 Place Marcelin Berthelot, 75005 Paris, France
- ‡Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Réactivité de Surface, UMR 7197, 4 Place Jussieu, 75005 Paris, France
| | - Christophe Calers
- ‡Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Réactivité de Surface, UMR 7197, 4 Place Jussieu, 75005 Paris, France
| | - Sandra Casale
- ‡Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Réactivité de Surface, UMR 7197, 4 Place Jussieu, 75005 Paris, France
| | - Jan Berton
- §SynBioC Research Group, Departement of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Christian V Stevens
- §SynBioC Research Group, Departement of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Florence Babonneau
- †Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Claire-Marie Pradier
- ‡Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Réactivité de Surface, UMR 7197, 4 Place Jussieu, 75005 Paris, France
| | - Vincent Humblot
- ‡Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Réactivité de Surface, UMR 7197, 4 Place Jussieu, 75005 Paris, France
| | - Niki Baccile
- †Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, UMR 7574, 11 Place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
27
|
Hubčík L, Funari SS, Pullmannová P, Devínsky F, Uhríková D. Stimuli responsive polymorphism of C12NO/DOPE/DNA complexes: Effect of pH, temperature and composition. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1127-38. [DOI: 10.1016/j.bbamem.2015.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 01/09/2015] [Accepted: 01/29/2015] [Indexed: 01/10/2023]
|
28
|
Rezende CO, Oliveira LA, Oliveira BA, Almeida CG, Ferreira BS, Le Hyaric M, Carvalho GSL, Lourenço MCS, Batista M, Marchini FK, Silva VL, Diniz CG, Almeida MV. Synthesis and Antibacterial Activity of Alkylated Diamines and Amphiphilic Amides of Quinic Acid Derivatives. Chem Biol Drug Des 2015; 86:344-50. [PMID: 25528858 DOI: 10.1111/cbdd.12498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/08/2014] [Accepted: 12/12/2014] [Indexed: 11/29/2022]
Abstract
Different series of N-alkylated diamines and their derivatives condensed to quinic acid were synthesized and tested for antibacterial properties against Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. The lipophilic chain and carbohydrate moiety modulate the antibacterial activity and the compounds showed a structure-activity relationship. Overall, 11 compounds displayed better activity than chloramphenicol against Gram-positive and Gram-negative bacteria. Monoalkylated amines 2a-h displayed an activity similar to that of ethambutol against Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Celso O Rezende
- Departamento de Química, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
| | - Larissa A Oliveira
- Departamento de Química, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
| | - Bruno A Oliveira
- Departamento de Química, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
| | - Camila G Almeida
- Departamento de Química, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
| | - Bianca S Ferreira
- Departamento de Química, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
| | - Mireille Le Hyaric
- Departamento de Química, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
| | - Guilherme S L Carvalho
- Instituto Nacional de Infectologia Evandro Chagas-Fiocruz, 21040-360, Rio de Janeiro, RJ, Brazil
| | | | - Michel Batista
- Instituto Carlos Chagas-Fiocruz, 81350-010, Curitiba, PR, Brazil
| | | | - Vânia L Silva
- Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
| | - Claudio G Diniz
- Departamento de Parasitologia, Microbiologia e Imunologia, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
| | - Mauro V Almeida
- Departamento de Química, Universidade Federal de Juiz de Fora, 36036-330, Juiz de Fora, MG, Brazil
| |
Collapse
|
29
|
El Kadri H, Overton T, Bakalis S, Gkatzionis K. Understanding and controlling the release mechanism of Escherichia coli in double W1/O/W2emulsion globules in the presence of NaCl in the W2phase. RSC Adv 2015. [DOI: 10.1039/c5ra24469b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The results suggest that release of bacteria from W1/O/W2emulsion can be controlled by varying the formulation. Release occurs due to oil globule bursting independent to diffusion.
Collapse
Affiliation(s)
| | - Tim Overton
- School of Chemical Engineering
- UK
- Institute of Microbiology & Infection University of Birmingham
- UK
| | | | - Konstantinos Gkatzionis
- School of Chemical Engineering
- UK
- Institute of Microbiology & Infection University of Birmingham
- UK
| |
Collapse
|
30
|
Adukwu EC, Allen SC, Phillips CA. A comparison of the sensitivity of four Staphylococcus aureus isolates to two chlorine-based disinfectants and an eco-friendly commercially available cleaning agent. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2014; 25:115-125. [PMID: 24725246 DOI: 10.1080/09603123.2014.903905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The aim of this study was to determine the effect of household bleach, a sodium dichloroisocyanurate (NaDCC)-based disinfectant and an eco-friendly cleaning agent (EFCA) on four Staphylococcus aureus strains, including two isolated from community infections. The products were assessed using the suspension (EN 1276) and surface (EN 13697) tests, while biofilm activity was determined using the 96-well plate method. Bleach and NaDCC caused > 5 log reduction in viable counts within 5 min in suspension, whilst on surfaces the reduction was < 3 log. Bleach at 5000 ppm free available chlorine completely eradicated MSSA NCTC 13297 and PVL CA MSSA biofilms within 10 min, but not at 500 and 50 ppm, NaDCC was less effective against biofilms. The EFCA demonstrated no antimicrobial activity. It is of concern that at the recommended "use" dilution, bleach did not eradicate biofilms. Although increasing contact time and/or concentration should improve the activity, this may not be acceptable to the user.
Collapse
Affiliation(s)
- Emmanuel C Adukwu
- a Department of Biology and Biomedical Science , University of the West of England , Bristol , UK
| | | | | |
Collapse
|
31
|
Belička M, Kučerka N, Uhríková D, Islamov AK, Kuklin AI, Devínsky F, Balgavý P. Effects of N,N-dimethyl-N-alkylamine-N-oxides on DOPC bilayers in unilamellar vesicles: small-angle neutron scattering study. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:179-89. [DOI: 10.1007/s00249-014-0954-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 02/27/2014] [Accepted: 03/10/2014] [Indexed: 10/25/2022]
|
32
|
A 2H solid-state NMR study of the effect of antimicrobial agents on intact Escherichia coli without mutating. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:614-22. [DOI: 10.1016/j.bbamem.2012.09.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/30/2012] [Accepted: 09/07/2012] [Indexed: 01/13/2023]
|
33
|
Dusane DH, Dam S, Nancharaiah YV, Kumar AR, Venugopalan VP, Zinjarde SS. Disruption of Yarrowia lipolytica biofilms by rhamnolipid biosurfactant. AQUATIC BIOSYSTEMS 2012; 8:17. [PMID: 22839701 PMCID: PMC3445841 DOI: 10.1186/2046-9063-8-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/27/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Yarrowia lipolytica is an ascomycetous dimorphic fungus that exhibits biofilm mode of growth. Earlier work has shown that biosurfactants such as rhamnolipids are efficient dispersants of bacterial biofilms. However, their effectiveness against fungal biofilms (particularly Y. lipolytica) has not been investigated. The aim of this study was to determine the effect of rhamnolipid on a biofilm forming strain of Y. lipolytica. Two chemical surfactants, cetyl-trimethyl ammonium bromide (CTAB) and sodium dodecyl sulphate (SDS) were used as controls for comparison. RESULTS The methylene blue dye exclusion assay indicated an increase in fungal cell permeability after rhamnolipid treatment. Microtiter plate assay showed that the surfactant coating decreased Y. lipolytica biofilm formation by 50%. Rhamnolipid treatment disrupted pre-formed biofilms in a more effective manner than the other two surfactants. Confocal laser scanning microscopic studies showed that biofilm formation onto glass surfaces was decreased by 67% after sub-minimum inhibitory concentration (sub-MIC) treatment with rhamnolipids. The disruption of biofilms after rhamnolipid treatment was significant (P<0.05) when compared to SDS and CTAB. CONCLUSION The results indicate a potential application of the biological surfactant to disrupt Y. lipolytica biofilms.
Collapse
Affiliation(s)
- Devendra H Dusane
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune, 411 007, India
- Present address: Biocolloids and Surfaces Laboratory, Department of Chemical engineering, McGill University, Montreal, QC, Canada
| | - Sushovan Dam
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune, 411 007, India
| | | | - Ameeta Ravi Kumar
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune, 411 007, India
| | - Vayalam P Venugopalan
- Biofouling and Biofilm Processes Section, BARC Facilities, Kalpakkam, 603 102, India
| | - Smita S Zinjarde
- Institute of Bioinformatics and Biotechnology, University of Pune, Pune, 411 007, India
| |
Collapse
|
34
|
Samadi N, Abadian N, Ahmadkhaniha R, Amini F, Dalili D, Rastkari N, Safaripour E, Mohseni FA. Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus. Folia Microbiol (Praha) 2012; 57:501-8. [PMID: 22644668 DOI: 10.1007/s12223-012-0164-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 05/14/2012] [Indexed: 11/30/2022]
Abstract
The aim of present work was to study chemical structures and biological activities of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa MN1 isolated from oil-contaminated soil. The results of liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed that total rhamnolipids (RLs) contained 16 rhamnolipid homologues. Di-lipid RLs containing C(10)-C(10) moieties were by far the most predominant congeners among mono-rhamnose (53.29 %) and di-rhamnose (23.52 %) homologues. Mono-rhamnolipids form 68.35 % of the total congeners in the RLs. Two major fractions were revealed in the thin layer chromatogram of produced RLs which were then purified by column chromatography. The retardation factors (R (f)) of the two rhamnolipid purple spots were 0.71 for RL1 and 0.46 for RL2. LC-MS/MS analysis proved that RL1 was composed of mono-RLs and RL2 consisted of di-RLs. RL1 was more surface-active with the critical micelle concentration (CMC) value of 15 mg/L and the surface tension of 25 mN/m at CMC. The results of biological assay showed that RL1 is a more potent antibacterial agent than RL2. All methicillin-resistant Staphylococcus aureus (MRSA) strains were inhibited by RLs that were independent of their antibiotic susceptibility patterns. RLs remarkably enhanced the activity of oxacillin against MRSA strains and lowered the minimum inhibitory concentrations of oxacillin to the range of 3.12-6.25 μg/mL.
Collapse
Affiliation(s)
- Nasrin Samadi
- Department of Drug and Food Control and Biotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Monoglyceride esters of fatty acids occur naturally and encompass a broad spectrum of antimicrobial activity. Monocaprylate is generally regarded as safe (GRAS) and can function both as an emulsifier and as a preservative in food. However, knowledge about its mode of action is lacking. The aim of this study was therefore to elucidate the mechanism behind monocaprylate's antimicrobial effect. The cause of cell death in Escherichia coli, Staphylococcus xylosus, and Zygosaccharomyces bailii was investigated by examining monocaprylate's effect on cell structure, membrane integrity, and its interaction with model membranes. Changes in cell structure were visible by atomic force microscopy (AFM), and propidium iodide staining showed membrane disruption, indicating the membrane as a site of action. This indication was confirmed by measuring calcein leakage from membrane vesicles exposed to monocaprylate. AFM imaging of supported lipid bilayers visualized the integration of monocaprylate into the liquid disordered, and not the solid ordered, phase of the membrane. The integration of monocaprylate was confirmed by quartz crystal microbalance measurements, showing an abrupt increase in mass and hydration of the membrane after exposure to monocaprylate above a threshold concentration. We hypothesize that monocaprylate destabilizes membranes by increasing membrane fluidity and the number of phase boundary defects. The sensitivity of cells to monocaprylate will therefore depend on the lipid composition, fluidity, and curvature of the membrane.
Collapse
|
36
|
Ogugbue CJ, Sawidis T, Oranusi NA. Bioremoval of chemically different synthetic dyes by Aeromonas hydrophila in simulated wastewater containing dyeing auxiliaries. ANN MICROBIOL 2011. [DOI: 10.1007/s13213-011-0354-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Ferreira C, Pereira AM, Pereira MC, Melo LF, Simoes M. Physiological changes induced by the quaternary ammonium compound benzyldimethyldodecylammonium chloride on Pseudomonas fluorescens. J Antimicrob Chemother 2011; 66:1036-43. [DOI: 10.1093/jac/dkr028] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
38
|
Vonlanthen S, Brown MT, Turner A. Toxicity of the amphoteric surfactant, cocamidopropyl betaine, to the marine macroalga, Ulva lactuca. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:202-207. [PMID: 21082243 DOI: 10.1007/s10646-010-0571-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/03/2010] [Indexed: 05/30/2023]
Abstract
The degradation of the synthetic, amphoteric surfactant, cocamidopropyl betaine (CAPB) and its toxicity to the marine macroalga, Ulva lactuca, has been evaluated using several different physiological test end-points over different periods of exposure up to 120 h. Droplet surface angle measurements revealed that, following a period of acclimation of about 24 h, CAPB began to degrade and that primary degradation was complete within 120 h. Effective quantum yield (∆F/F(m)') and relative growth rates (RGRs) were the most sensitive measures of phytotoxicity, with CAPB concentrations at and above 10 mg l(-1) eliciting irreversible, time-dependent and/or dose-dependent responses. Cell membrane damage, estimated from measurements of ion leakage, was detected only at a concentration of 40 mg l(-1) after 48 h of exposure to CAPB but by 120 h damage was evident at all measured concentrations above 10 mg l(-1). These observations suggest that both CAPB and its metabolites are intrinsically toxic to U. lactuca. The findings of this study are discussed in terms of the environmental consequences of applying CAPB to control harmful algal blooms.
Collapse
Affiliation(s)
- Sofie Vonlanthen
- School of Marine Science and Engineering, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | | | | |
Collapse
|
39
|
Galindo H, Revah S, Cervantes FJ, Arriaga S. Effect of surfactant and oil additions in the biodegradation of hexane and toluene vapours in batch tests. ENVIRONMENTAL TECHNOLOGY 2011; 32:167-173. [PMID: 21473279 DOI: 10.1080/09593330.2010.491132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The biological treatment of gaseous emissions of hydrophobic volatile organic compounds (VOCs) results in low rates of elimination partially because of the low solubility of VOCs in water. Recently, the use of two-phase partition bioreactors (TPPBs) was proposed to increase the bioavailability and consequently the elimination capacities of this kind of VOC. In the present study, TPPBs operating in a batch feed mode were tested for biodegradation of hexane and toluene vapours with a microbial consortium. The results obtained were compared with single-phase systems (control experiments). The liquid phase used was silicone oil (organic phase) with the surfactant Pluronic F-68. Experiments were named F1 and F2 for one and two phases, respectively, and F(1S) and F(2S) when the surfactant was included. The maximum specific rates (S(rates)) of hydrocarbon consumption for hexane and toluene were 539 and 773 mg(hydrocarbon)/(g(protein) x h), respectively. For both substrates, the systems that showed the highest S(rates) of hydrocarbon consumption were F2 and F(2S). In experiment F(1S) the surfactant Pluronic F-68 increased the solubility of hydrocarbons in the liquid phase, but did not increase the S(rates). The maximum percentages of mineralization were 51% and 72% for hexane and toluene, respectively. The results showed that simultaneous addition of silicone oil and surfactant favours the mineralization, but not the rate ofbiodegradation, of toluene and hexane vapours.
Collapse
Affiliation(s)
- H Galindo
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México
| | | | | | | |
Collapse
|
40
|
|
41
|
Preté PSC, Domingues CC, Meirelles NC, Malheiros SVP, Goñi FM, de Paula E, Schreier S. Multiple stages of detergent-erythrocyte membrane interaction--a spin label study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:164-70. [PMID: 21040698 DOI: 10.1016/j.bbamem.2010.10.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 09/15/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
Abstract
The various stages of the interaction between the detergent Triton X-100 (TTX-100) and membranes of whole red blood cells (RBC) were investigated in a broad range of detergent concentrations. The interaction was monitored by RBC hemolysis-assessed by release of intracellular hemoglobin (Hb) and inorganic phosphate-and by analysis of EPR spectra of a fatty acid spin probe intercalated in whole RBC suspensions, as well as pellets and supernatants obtained upon centrifugation of detergent-treated cells. Hemolysis finished at ca. 0.9mM TTX-100. Spectral analysis and calculation of order parameters (S) indicated that a complex sequence of events takes place, and allowed the characterization of various structures formed in the different stages of detergent-membrane interaction. Upon reaching the end of cell lysis, essentially no pellet was detected, the remaining EPR signal being found almost entirely in the supernatants. Calculated order parameters revealed that whole RBC suspensions, pellets, and supernatants possessed a similar degree of molecular packing, which decreased to a small extent up to 2.5mM detergent. Between 3.2 and 10mM TTX-100, a steep decrease in S was observed for both whole RBC suspensions and supernatants. Above 10mM detergent, S decreased in a less pronounced manner and the EPR spectra approached that of pure TTX-100 micelles. The data were interpreted in terms of the following events: at the lower detergent concentrations, an increase in membrane permeability occurs; the end of hemolysis coincides with the lack of pellet upon centrifugation. Up to 2.5mM TTX-100 the supernatants consist of a (very likely) heterogeneous population of membrane fragments with molecular packing similar to that of whole cells. As the detergent concentration increases, mixed micelles are formed containing lipid and/or protein, approaching the packing found in pure TTX-100 micelles. This analysis is in agreement with the models proposed by Lasch (Biochim. Biophys Acta 1241 (1995) 269-292) and by Le Maire and coworkers (Biochim. Biophys. Acta 1508 (2000) 86-111).
Collapse
Affiliation(s)
- Paulo S C Preté
- Department of Biochemistry, Institute of Biology, State University of Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
Serio A, Chiarini M, Tettamanti E, Paparella A. Electronic paramagnetic resonance investigation of the activity of Origanum vulgare L. essential oil on the Listeria monocytogenes membrane. Lett Appl Microbiol 2010; 51:149-57. [DOI: 10.1111/j.1472-765x.2010.02877.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Patrone V, Campana R, Vittoria E, Baffone W. In vitro synergistic activities of essential oils and surfactants in combination with cosmetic preservatives against Pseudomonas aeruginosa and Staphylococcus aureus. Curr Microbiol 2009; 60:237-41. [PMID: 19921329 DOI: 10.1007/s00284-009-9531-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
The aim of this study is to evaluate possible synergistic antimicrobial interactions between common cosmetic preservatives and selected essential oils or surfactants. The antimicrobial efficacy of six essential oils, three surfactants and five preservatives against Pseudomonas aeruginosa ATCC 9027 and Staphylococcus aureus ATCC 43387 was assessed by a broth micro-dilution assay. MICs for individual and combined antimicrobials were determined and then transformed to fractional inhibitory concentration (FIC) indexes. All essential oils exhibited antibacterial activity; among surfactants, bacteria resulted most susceptible to the cationic agent. Synergy was observed when essential oils of eucalyptus and mint were combined with methylparaben against P. aeruginosa, while essential oils of mint, oregano and sage combined with propylparaben and imidazolidinyl urea acted against S. aureus. Many binary mixtures of preservatives and surfactants produced synergistic activity with the most effective interactions involving the cationic and amphoteric compounds under study. FIC indexes demonstrated synergistic effects when preservatives were combined with either essential oils or surfactants against both bacterial strains. These results highlight the potential usefulness of essential oils and surfactants to enhance the activities of conventional biocides. This kind of study should contribute to the selection and optimization of preservative systems for cosmetic preparations.
Collapse
Affiliation(s)
- Vania Patrone
- Department of Biomolecular Science, Division of Toxicological, Hygienic and Environmental Science, University of Urbino, Via S. Chiara 27, 61029, Urbino, Italy
| | | | | | | |
Collapse
|
44
|
de Almeida CG, Garbois GD, Amaral LM, Diniz CC, Le Hyaric M. Relationship between structure and antibacterial activity of lipophilic N-acyldiamines. Biomed Pharmacother 2009; 64:287-90. [PMID: 19942397 DOI: 10.1016/j.biopha.2009.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 09/01/2009] [Indexed: 11/27/2022] Open
Abstract
We report in this work the preparation and antibacterial evaluation of a series of N-monoacylated diamines against six Gram-positive and 11 Gram-negative bacteria. The results obtained showed the existence of relationship between lipophilicity and antibacterial activity of the tested compounds. The best results were obtained against Gram-positive bacteria for compounds having a 10-12 carbons alkyl chain. Compound 4e was the most active against Microccus lentus (MIC=2 microg/mL), Staphylococcus aureus ATCC 29213 (MIC=4 microg/mL) and Enterobacter aerogenes CDC 1680 (MIC=8 microg/mL).
Collapse
Affiliation(s)
- Camila G de Almeida
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | | | | | | | | |
Collapse
|
45
|
Chu S, Hawes JW, Lorigan GA. Solid-state NMR spectroscopic studies on the interaction of sorbic acid with phospholipid membranes at different pH levels. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2009; 47:651-7. [PMID: 19444862 PMCID: PMC4817853 DOI: 10.1002/mrc.2444] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
2H, 31P, and 1H-magic-angle-spinning (MAS) solid-state NMR spectroscopic methods were used to elucidate the interaction between sorbic acid, a widely used weak acid food preservative, and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers under both acidic and neutral pH conditions. The linewidth broadening observed in the 31P NMR powder pattern spectra and the changes in the 31P longitudinal relaxation time (T1) indicate interaction with the phospholipid headgroup upon titration of sorbic acid or decanoic acid into DMPC bilayers over the pH range from 3.0 to 7.4. The peak intensities of sorbic acid decrease upon addition of paramagnetic Mn2+ ions in DMPC bilayers as recorded in the 1H MAS NMR spectra, suggesting that sorbic acid molecules are in close proximity with the membrane/aqueous surface. No significant 2H quadrupolar splitting (DeltanuQ) changes are observed in the 2H NMR spectra of DMPC-d54 upon titration of sorbic acid, and the change of pH has a slight effect on DeltanuQ, indicating that sorbic acid has weak influence on the orientation order of the DMPC acyl chains in the fluid phase over the pH range from 3.0 to 7.4. This finding is in contrast to the results of the decanoic acid/DMPC-d54 systems, where DeltanuQ increases as the concentration of decanoic acid increases. Thus, in the membrane association process, sorbic acids are most likely interacting with the headgroups and shallowly embedded near the top of the phospholipid headgroups, rather than inserting deep into the acyl chains. Thus, antimicrobial mode of action for sorbic acid may be different from that of long-chain fatty acids.
Collapse
Affiliation(s)
| | | | - Gary A. Lorigan
- Correspondence to: Gary A. Lorigan, Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA.,
| |
Collapse
|
46
|
Li H, Miao J, Cui F, Li G. SURFACTANT PROMOTION OF THE INHIBITORY EFFECTS OF CUPRIC GLUTAMATE ON THE DINOFLAGELLATE ALEXANDRIUM(1). JOURNAL OF PHYCOLOGY 2008; 44:1364-1371. [PMID: 27039850 DOI: 10.1111/j.1529-8817.2008.00591.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We studied cupric glutamate as a novel algicide for marine harmful algae and hexadecyltrimethyleamine bromide (HDTMAB) as an accelerant. Cupric glutamate had an excellent ability to inhibit the growth of Alexandrium sp. LC3, but the inhibition efficiency did not increase with higher cupric glutamate concentration. The studies on the inhibition ofAlexandrium sp. LC3 by cupric sulfate or cupric glutamate showed that cupric glutamate had a higher inhibition rate than cupric sulfate (P < 0.05). HDTMAB could significantly enhance the inhibition by cupric glutamate (P < 0.05). Ultrastructural changes of Alexandrium sp. LC3 under cupric sulfate, cupric glutamate, and cupric glutamate-HDTMAB combined treatment were studied with TEM. Under these stresses, the integrity of the cell plasma membranes (cell plasma membrane, chloroplast and mitochondria membranes) was destroyed. The degree of damage under cupric glutamate-HDTMAB combined treatment was more severe than under the other stresses. These results indicated that mechanistically cupric glutamate inhibits algal growth by destroying the cell membranes, and that HDTMAB promotes this process, which induced mass extravasation of intracellular components and more copper ion entry into the plasma.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of Marine Biological Active Substances, SOA, Qingdao 266061, ChinaChina National Research Institute of Food & Fermentation Industries, Beijing 100027, ChinaKey Laboratory of Marine Biological Active Substances, SOA, Qingdao 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Biological Active Substances, SOA, Qingdao 266061, ChinaChina National Research Institute of Food & Fermentation Industries, Beijing 100027, ChinaKey Laboratory of Marine Biological Active Substances, SOA, Qingdao 266061, China
| | - Fengxia Cui
- Key Laboratory of Marine Biological Active Substances, SOA, Qingdao 266061, ChinaChina National Research Institute of Food & Fermentation Industries, Beijing 100027, ChinaKey Laboratory of Marine Biological Active Substances, SOA, Qingdao 266061, China
| | - Guangyou Li
- Key Laboratory of Marine Biological Active Substances, SOA, Qingdao 266061, ChinaChina National Research Institute of Food & Fermentation Industries, Beijing 100027, ChinaKey Laboratory of Marine Biological Active Substances, SOA, Qingdao 266061, China
| |
Collapse
|
47
|
Walton JT, Hill DJ, Protheroe RG, Nevill A, Gibson H. Investigation into the effect of detergents on disinfectant susceptibility of attached Escherichia coli and Listeria monocytogenes. J Appl Microbiol 2008; 105:309-15. [PMID: 18410344 DOI: 10.1111/j.1365-2672.2008.03805.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Investigate the effect of detergent treatment on susceptibility of attached Escherichia coli and Listeria monocytogenes to subsequent disinfectant treatment. METHODS AND RESULTS Plate counts show that E. coli attached to stainless steel surfaces became significantly more susceptible to benzalkonium chloride (BAC) after treatment with sodium alkyl sulfate (SAS) and fatty alcohol ethoxylate (FAE). No change in susceptibility was observed with Sodium dodecyl sulfate (SDS). L. monocytogenes became significantly less susceptible to BAC after treatment with SAS and SDS yet no change in susceptibility was observed with FAE. Flow cytometry using the fluoresceine propidium iodide revealed significant increases in cell membrane permeability of both organisms by SAS and FAE, although the effect was much greater in E. coli. No change was observed with SDS. Hydrophobic interaction chromatography showed that both organisms became less hydrophobic following treatment with SAS and SDS but FAE had no effect. CONCLUSIONS In E. coli, detergents that increase susceptibility to BAC increase membrane permeability. In L. monocytogenes, detergents that reduce susceptibility to BAC lower cell surface hydrophobicity. SIGNIFICANCE AND IMPACT OF THE STUDY Detergents can influence the sensitivity of pathogenic food borne micro-organisms to BAC.
Collapse
Affiliation(s)
- J T Walton
- School of Applied Sciences, Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton, UK
| | | | | | | | | |
Collapse
|
48
|
Keane A, Lau PCK, Ghoshal S. Use of a whole-cell biosensor to assess the bioavailability enhancement of aromatic hydrocarbon compounds by nonionic surfactants. Biotechnol Bioeng 2008; 99:86-98. [PMID: 17570716 DOI: 10.1002/bit.21524] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The whole-cell bioluminescent biosensor Pseudomonas putida F1G4 (PpF1G4), which contains a chromosomally-based sep-lux transcriptional fusion, was used as a tool for direct measurement of the bioavailability of hydrophobic organic compounds (HOCs) partitioned into surfactant micelles. The increased bioluminescent response of PpF1G4 in micellar solutions (up to 10 times the critical micellar concentration) of Triton X-100 and Brij 35 indicated higher intracellular concentrations of the test compounds, toluene, naphthalene, and phenanthrene, compared to control systems with no surfactants present. In contrast, Brij 30 caused a decrease in the bioluminescent response to the test compounds in single-solute systems, without adversely affecting cell growth. The decrease in bioluminescent response in the presence of Brij 30 did not occur in the presence of multiple HOCs extracted into the surfactant solutions from crude oil and creosote. The effect of the micellar solutions on the toluene biodegradation rate was consistent with the bioluminescent response in single-solute systems. None of the surfactants were toxic to PpF1G4 at the doses employed in this study, and PpF1G4 did not produce a bioluminescent response to the surfactants nor utilize them as growth substrates. TEM images suggest that the surfactants did not rupture the cell membranes. The results demonstrate that for Pseudomonas putida F1, nonionic surfactants such as Triton X-100 and Brij 35, at doses between 2 and 10 CMC, may increase the bioavailability and direct uptake of micellar phase HOCs that are common pollutants at contaminated sites.
Collapse
Affiliation(s)
- Angela Keane
- Department of Civil Engineering, McGill University, Macdonald Engineering Bldg, 817 Sherbrooke Street West, Montreal, Quebec, Canada
| | | | | |
Collapse
|
49
|
Simões M, Simões LC, Cleto S, Machado I, Pereira MO, Vieira MJ. Antimicrobial mechanisms of ortho-phthalaldehyde action. J Basic Microbiol 2007; 47:230-42. [PMID: 17518416 DOI: 10.1002/jobm.200610280] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biocides generally have multiple biochemical targets. Such a feature easily entangles the analysis of the mechanisms of antimicrobial action. In this study, the action of the dialdehyde biocide ortho-phtalaldehyde (OPA), on bacteria, was investigated using the Gram-negative Pseudomonas fluorescens. The targets of the biocide action were studied using different bacterial physiological indices. The respiratory activity, membrane permeabilization, physico-chemical characterization of the bacterial surfaces, outer membrane proteins (OMP) expression, concomitant influence of pH, contact time and presence of bovine serum albumin (BSA) on respiratory activity, morphological changes and OPA-DNA interactions were assessed for different OPA concentrations. With the process conditions used, the minimum inhibitory concentration was 1500 mg/l, the concentration to promote total loss of bacterial culturability was 65 mg/l and the concentration needed to inactivate respiratory activity was 80 mg/l. These data are evidence that culturability and respiratory activity were markedly affected by the biocide. OPA lead, moreover, to a significant change in cell surface hydrophobicity and induced propidium iodide uptake. Such results suggest cytoplasmic membrane damage, although no release of ATP was detected. At pH 5, the bactericidal action of OPA was stronger, though not influenced by BSA presence. Nevertheless, at pH 9, BSA noticeably (p < 0.05) impaired biocide action. A time-dependent effect in OPA action was evident when contemplating respiratory activity variation, mainly for the lower exposure times. Scanning electron microscopy allowed to detect bacterial morphological changes, translated on cellular elongation, for OPA concentrations higher than 100 mg/l. Interferences at DNA level were, however, restricted to extreme biocide concentrations. The overall bactericidal events occurred without detectable OMP expression changes. In conclusion, the results indicated a sequence of events responsible for the antimicrobial action of OPA: it binds to membrane receptors due to cross-linkage; impairs the membrane functions allowing the biocide to enter through the permeabilized membrane; it interacts with intracellular reactive molecules, such as RNA, compromising the growth cycle of the cells and, at last, with DNA.
Collapse
Affiliation(s)
- Manuel Simões
- IBB-Institute for Biotechnology and Bioengineering, Centre for Biological Engineering, Universidade do Minho, Campus de Gualtar, Braga, Portugal.
| | | | | | | | | | | |
Collapse
|
50
|
Cristani M, D'Arrigo M, Mandalari G, Castelli F, Sarpietro MG, Micieli D, Venuti V, Bisignano G, Saija A, Trombetta D. Interaction of four monoterpenes contained in essential oils with model membranes: implications for their antibacterial activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:6300-8. [PMID: 17602646 DOI: 10.1021/jf070094x] [Citation(s) in RCA: 337] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The present article reports the antimicrobial efficacy of four monoterpenes (thymol, carvacrol, p-cymene, and gamma-terpinene) against the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Escherichia coli. For a better understanding of their mechanism of action, the damage caused by these four monoterpenes on biomembranes was evaluated by monitoring the release, following exposure to the compounds under study, of the water-soluble fluorescent marker carboxyfluorescein (CF) from large unilamellar vesicles (LUVs) with different lipidic composition (phosphatidylcholine, PC, phosphatidylcholine/phosphatidylserine, PC/PS, 9:1; phosphatidylcholine/stearylamine, PC/SA, 9:1). Furthermore, the interaction of these terpenes with dimyristoylphosphatidylcholine multilamellar vesicles as model membranes was monitored by means of differential scanning calorimetry (DSC) technique. Finally, the results were related also with the relative lipophilicity and water solubility of the compounds examined. We observed that thymol is considerably more toxic against S. aureus than the other three terpenes, while carvacrol and p-cymene are the most inhibitory against E. coli. Thymol and carvacrol, but not gamma-terpinene and p-cymene, caused a concentration-dependent CF leakage from all kinds of LUVs employed; in particular, thymol was more effective on PC and PC/SA LUVS than on PC/PS vesicles, while carvacrol challenge evoked a CF leakage from PC/PS LUVs similar to that induced from PC/SA LUVs, and lower than that measured with PC vesicles. Concerning DSC experiments, these four terpenes caused a decrease in Tm and (especially carvacrol and p-cymene) DeltaH values, very likely acting as substitutional impurities. Taken together, our findings lead us to speculate that the antimicrobial effect of thymol, carvacrol, p-cymene, and gamma-terpinene may result, partially at least, from a gross perturbation of the lipidic fraction of the plasmic membrane of the microorganism. In addition to being related to the physicochemical characteristics of the compounds (such as lipophilicity and water solubility), this effect seems to be dependent on the lipidic composition and net surface charge of the microbic membranes. Furthermore, the compounds might cross the cell membranes, thus penetrating into the interior of the cell and interacting with intracellular sites critical for antibacterial activity.
Collapse
Affiliation(s)
- Mariateresa Cristani
- Department Farmaco-Biologico, School of Pharmacy, University of Messina, Contrada Annunziata, 98168 Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|