1
|
Fina A, Àvila-Cabré S, Vázquez-Pereira E, Albiol J, Ferrer P. A Rewired NADPH-Dependent Redox Shuttle for Testing Peroxisomal Compartmentalization of Synthetic Metabolic Pathways in Komagataella phaffii. Microorganisms 2024; 13:46. [PMID: 39858813 PMCID: PMC11767246 DOI: 10.3390/microorganisms13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
The introduction of heterologous pathways into microbial cell compartments offers several potential advantages, including increasing enzyme concentrations and reducing competition with native pathways, making this approach attractive for producing complex metabolites like fatty acids and fatty alcohols. However, measuring subcellular concentrations of these metabolites remains technically challenging. Here, we explored 3-hydroxypropionic acid (3-HP), readily quantifiable and sharing the same precursors-acetyl-CoA, NADPH, and ATP-with the above-mentioned products, as a reporter metabolite for peroxisomal engineering in the yeast Komagataella phaffii. To this end, the malonyl-CoA reductase pathway for 3-HP production was targeted into the peroxisome of K. phaffii using the PTS1-tagging system, and further tested with different carbon sources. Thereafter, we used compartmentalized 3-HP production as a reporter system to showcase the impact of different strategies aimed at enhancing the peroxisomal NADPH pool. Co-overexpression of genes encoding a NADPH-dependent redox shuttle from Saccharomyces cerevisiae (IDP2/IDP3) significantly increased 3-HP yields across all substrates, whereas peroxisomal targeting of the S. cerevisiae NADH kinase Pos5 failed to improve 3-HP production. This study highlights the potential of using peroxisomal 3-HP production as a biosensor for evaluating peroxisomal acetyl-CoA and NAPDH availability by simply quantifying 3-HP, demonstrating its potential for peroxisome-based metabolic engineering in yeast.
Collapse
Affiliation(s)
| | | | | | | | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Carrer de les Sitges, s/n, 08193 Bellaterra, Catalonia, Spain; (A.F.); (S.À.-C.); (E.V.-P.); (J.A.)
| |
Collapse
|
2
|
Song S, Ye C, Jin Y, Dai H, Hu J, Lian J, Pan R. Peroxisome-based metabolic engineering for biomanufacturing and agriculture. Trends Biotechnol 2024; 42:1161-1176. [PMID: 38423802 DOI: 10.1016/j.tibtech.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Subcellular compartmentalization of metabolic pathways plays a crucial role in metabolic engineering. The peroxisome has emerged as a highly valuable and promising compartment for organelle engineering, particularly in the fields of biological manufacturing and agriculture. In this review, we summarize the remarkable achievements in peroxisome engineering in yeast, the industrially popular biomanufacturing chassis host, to produce various biocompounds. We also review progress in plant peroxisome engineering, a field that has already exhibited high potential in both biomanufacturing and agriculture. Moreover, we outline various experimentally validated strategies to improve the efficiency of engineered pathways in peroxisomes, as well as prospects of peroxisome engineering.
Collapse
Affiliation(s)
- Shuyan Song
- State Key Laboratory of Rice Biology and Breeding, College of Chemical and Biological Engineering, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Cuifang Ye
- State Key Laboratory of Rice Biology and Breeding, College of Chemical and Biological Engineering, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Yijun Jin
- State Key Laboratory of Rice Biology and Breeding, College of Chemical and Biological Engineering, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China
| | - Huaxin Dai
- Beijing Life Science Academy, Changping 102209, Beijing, China
| | - Jianping Hu
- Michigan State University-Department of Energy Plant Research Laboratory and Plant Biology Department, Michigan State University, East Lansing, MI 48824, USA
| | - Jiazhang Lian
- State Key Laboratory of Rice Biology and Breeding, College of Chemical and Biological Engineering, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China.
| | - Ronghui Pan
- State Key Laboratory of Rice Biology and Breeding, College of Chemical and Biological Engineering, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, Zhejiang, China.
| |
Collapse
|
3
|
de Moraes LMP, Marques HF, Reis VCB, Coelho CM, Leitão MDC, Galdino AS, Porto de Souza TP, Piva LC, Perez ALA, Trichez D, de Almeida JRM, De Marco JL, Torres FAG. Applications of the Methylotrophic Yeast Komagataella phaffii in the Context of Modern Biotechnology. J Fungi (Basel) 2024; 10:411. [PMID: 38921397 PMCID: PMC11205268 DOI: 10.3390/jof10060411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
Komagataella phaffii (formerly Pichia pastoris) is a methylotrophic yeast widely used in laboratories around the world to produce recombinant proteins. Given its advantageous features, it has also gained much interest in the context of modern biotechnology. In this review, we present the utilization of K. phaffii as a platform to produce several products of economic interest such as biopharmaceuticals, renewable chemicals, fuels, biomaterials, and food/feed products. Finally, we present synthetic biology approaches currently used for strain engineering, aiming at the production of new bioproducts.
Collapse
Affiliation(s)
- Lidia Maria Pepe de Moraes
- Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (L.M.P.d.M.); (H.F.M.); (L.C.P.); (A.L.A.P.); (J.L.D.M.)
| | - Henrique Fetzner Marques
- Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (L.M.P.d.M.); (H.F.M.); (L.C.P.); (A.L.A.P.); (J.L.D.M.)
| | - Viviane Castelo Branco Reis
- Laboratory of Genetics and Biotechnology, Embresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Agroenergy, Brasília 70770-901, DF, Brazil; (V.C.B.R.); (D.T.); (J.R.M.d.A.)
| | - Cintia Marques Coelho
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (C.M.C.); (M.d.C.L.)
| | - Matheus de Castro Leitão
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (C.M.C.); (M.d.C.L.)
| | - Alexsandro Sobreira Galdino
- Microbial Biotechnology Laboratory, Federal University of São João Del-Rei, Divinópolis 35501-296, MG, Brazil; (A.S.G.); (T.P.P.d.S.)
| | - Thais Paiva Porto de Souza
- Microbial Biotechnology Laboratory, Federal University of São João Del-Rei, Divinópolis 35501-296, MG, Brazil; (A.S.G.); (T.P.P.d.S.)
| | - Luiza Cesca Piva
- Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (L.M.P.d.M.); (H.F.M.); (L.C.P.); (A.L.A.P.); (J.L.D.M.)
| | - Ana Laura Alfonso Perez
- Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (L.M.P.d.M.); (H.F.M.); (L.C.P.); (A.L.A.P.); (J.L.D.M.)
| | - Débora Trichez
- Laboratory of Genetics and Biotechnology, Embresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Agroenergy, Brasília 70770-901, DF, Brazil; (V.C.B.R.); (D.T.); (J.R.M.d.A.)
| | - João Ricardo Moreira de Almeida
- Laboratory of Genetics and Biotechnology, Embresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Agroenergy, Brasília 70770-901, DF, Brazil; (V.C.B.R.); (D.T.); (J.R.M.d.A.)
| | - Janice Lisboa De Marco
- Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (L.M.P.d.M.); (H.F.M.); (L.C.P.); (A.L.A.P.); (J.L.D.M.)
| | - Fernando Araripe Gonçalves Torres
- Laboratory of Molecular Biology, Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (L.M.P.d.M.); (H.F.M.); (L.C.P.); (A.L.A.P.); (J.L.D.M.)
| |
Collapse
|
4
|
Asiri F. Polyhydroxyalkanoates for Sustainable Aquaculture: A Review of Recent Advancements, Challenges, and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2034-2058. [PMID: 38227436 DOI: 10.1021/acs.jafc.3c06488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable biopolymers produced by prokaryotic microbes, which, at the same time, can be applied as single-cell proteins (SCPs), growing on renewable waste-derived substrates. These PHA polymers have gained increasing attention as a sustainable alternative to conventional plastics. One promising application of PHA and PHA-rich SCPs lies within the aquaculture food industry, where they hold potential as feed additives, biocontrol agents against diseases, and immunostimulants. Nevertheless, the cost of PHA production and application remains high, partly due to expensive substrates for cultivating PHA-accumulating SCPs, costly sterilization, energy-intensive SCPs harvesting techniques, and toxic PHA extraction and purification processes. This review summarizes the current state of PHA production and its application in aquaculture. The structure and classification of PHA, microbial sources, cultivation substrates, biosynthesis pathways, and the production challenges and solutions are discussed. Next, the potential of PHA application in aquaculture is explored, focusing on aquaculture challenges, common and innovative PHA-integrated farming practices, and PHA mechanisms in inhibiting pathogens, enhancing the immune system, and improving growth and gut health of various aquatic species. Finally, challenges and future research needs for PHA production and application in aquaculture are identified. Overall, this review paper provides a comprehensive overview of the potential of PHA in aquaculture and highlights the need for further research in this area.
Collapse
Affiliation(s)
- Fahad Asiri
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| |
Collapse
|
5
|
Thu NTT, Hoang LH, Cuong PK, Viet-Linh N, Nga TTH, Kim DD, Leong YK, Nhi-Cong LT. Evaluation of polyhydroxyalkanoate (PHA) synthesis by Pichia sp. TSLS24 yeast isolated in Vietnam. Sci Rep 2023; 13:3137. [PMID: 36823427 PMCID: PMC9950484 DOI: 10.1038/s41598-023-28220-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023] Open
Abstract
Following the rising concern on environmental issues caused by conventional fossil-based plastics and depleting crude oil resources, polyhydroxyalkanoates (PHAs) are of great interest by scientists and biodegradable polymer market due to their outstanding properties which include high biodegradability in various conditions and processing flexibility. Many polyhydroxyalkanoate-synthesizing microorganisms, including normal and halophilic bacteria, as well as algae, have been investigated for their performance in polyhydroxyalkanoate production. However, to the best of our knowledge, there is still limited studies on PHAs-producing marine yeast. In the present study, a halophilic yeast strain isolated from Spratly Island in Vietnam were investigated for its potential in polyhydroxyalkanoate biosynthesis by growing the yeast in Zobell marine agar medium (ZMA) containing Nile red dye. The strain was identified by 26S rDNA analysis as Pichia kudriavzevii TSLS24 and registered at Genbank database under code OL757724. The amount of polyhydroxyalkanoates synthesized was quantified by measuring the intracellular materials (predicted as poly(3-hydroxybutyrate) -PHB) by gravimetric method and subsequently confirmed by Fourier transform infrared (FTIR) spectroscopic and nuclear magnetic resonance (NMR) spectroscopic analyses. Under optimal growth conditions of 35 °C and pH 7 with supplementation of glucose and yeast extract at 20 and 10 gL-1, the isolated strain achieved poly(3-hydroxybutyrate) content and concentration of 43.4% and 1.8 gL-1 after 7 days of cultivation. The poly(3-hydroxybutyrate) produced demonstrated excellent biodegradability with degradation rate of 28% after 28 days of incubation in sea water.
Collapse
Affiliation(s)
- Nguyen Thi Tam Thu
- Institute of New Technology, Academy of Military Science and Technology, Hanoi, 10072 Vietnam
| | - Le Huy Hoang
- Institute of New Technology, Academy of Military Science and Technology, Hanoi, 10072 Vietnam
| | - Pham Kien Cuong
- Institute of New Technology, Academy of Military Science and Technology, Hanoi, 10072 Vietnam
| | - Nguyen Viet-Linh
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 10072, Vietnam. .,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 10072, Vietnam.
| | - Tran Thi Huyen Nga
- grid.267852.c0000 0004 0637 2083University of Science, Vietnam National University-Hanoi, Hanoi, 11400 Vietnam
| | - Dang Dinh Kim
- grid.267849.60000 0001 2105 6888Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
| | - Yoong Kit Leong
- grid.265231.10000 0004 0532 1428Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407224 Taiwan
| | - Le Thi Nhi-Cong
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, Hanoi, 10072, Vietnam. .,Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 10072, Vietnam.
| |
Collapse
|
6
|
Asiri F, Chu KH. Valorization of agro-industrial wastes into polyhydroxyalkanoates-rich single-cell proteins to enable a circular waste-to-feed economy. CHEMOSPHERE 2022; 309:136660. [PMID: 36191769 DOI: 10.1016/j.chemosphere.2022.136660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Recovering and converting carbon and nutrients from waste streams into healthy single-cell proteins (SCPs) can be an effective strategy to address costly waste management and support the increasing animal feed demand for the global food supply. Recently, SCPs rich in polyhydroxybutyrate (PHB) have been identified as an effective biocontrol healthy feed to replace conventional antibiotics-supplemented aquaculture feed. PHB, an intercellular polymer of short-chain-length (SCL) hydroxy-fatty acids, is a common type of polyhydroxyalkanoates (PHA) that can be microbially produced from various organics, including agro-industrial wastes. The complex chemical properties of agro-industrial wastes might produce SCPs containing PHA with SCL and/or medium chain-length (MCL) hydroxy-fatty acids. However, the effects of MCL-PHA-containing SCPs on aqua species' health and disease-fighting ability remains poorly understood. This study investigated the feasibility of producing various PHA-containing SCPs from renewable agro-industrial wastes/wastewaters, the effectiveness of SCL- and MCL-PHA as biocontrol agents, and the effects of these PHA-rich SCPs on the growth and disease resistance of an aquaculture animal model, brine shrimp Artemia. Zobellella denitrificans ZD1 and Pseudomonas oleovorans were able to grow on different pure substrates and agro-industrial wastes/wastewaters to produce various SCL- and/or MCL-PHA-rich SCPs. Low doses of MCL-fatty acids (i.e., PHA intermediates) efficiently suppressed the growth of aquaculture pathogens. Moreover, MCL-PHA-rich SCPs served as great food/energy sources for Artemia and improved Artemia's ability to fight pathogens. This study offers a win-win approach to address the challenges of wastes/wastewater management and feed supply faced by the aquaculture industry.
Collapse
Affiliation(s)
- Fahad Asiri
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136, USA; Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat, 13109, Kuwait
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136, USA.
| |
Collapse
|
7
|
Behera S, Priyadarshanee M, Das S. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis, and their applications. CHEMOSPHERE 2022; 294:133723. [PMID: 35085614 DOI: 10.1016/j.chemosphere.2022.133723] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
The rising plastic pollution deteriorates the environment significantly as these petroleum-based plastics are not biodegradable, and their production requires natural fuels (energy source) and other resources. Polyhydroxyalkanoates (PHAs) are bioplastic and a sustainable and eco-friendly alternative to synthetic plastics. PHAs can be entirely synthesized using various microorganisms such as bacteria, algae, and fungi. These value-added biopolymers show promising properties such as enhanced biodegradability, biocompatibility, and other chemo-mechanical properties. Further, it has been established that the properties of PHA polymers depend on the substrates and chemical composition (monomer unit) of these polymers. PHAs hold great potential as an alternative to petroleum-based polymers, and further research for economic production and utilization of these biopolymers is required. The review describes the synthesis mechanism and different properties of microbially synthesized PHAs for various applications. The classification of PHAs and the multiple techniques necessary for their detection and evaluation have been discussed. In addition, the synthesis mechanism involving the genetic regulation of these biopolymers in various microbial groups has been described. This review provides information on various commercially available PHAs and their application in multiple sectors. The industrial production of these microbially synthesized polymers and the different extraction methods have been reviewed in detail. Furthermore, the review provides an insight into the potential applications of this biopolymer in environmental, industrial, and biomedical applications.
Collapse
Affiliation(s)
- Shivananda Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
8
|
Muthuraj R, Valerio O, Mekonnen TH. Recent developments in short- and medium-chain- length Polyhydroxyalkanoates: Production, properties, and applications. Int J Biol Macromol 2021; 187:422-440. [PMID: 34324901 DOI: 10.1016/j.ijbiomac.2021.07.143] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Developing renewable resource-based plastics with complete biodegradability and a minimal carbon footprint can open new opportunities to effectively manage the end-of-life plastics waste and achieve a low carbon society. Polyhydroxyalkanoates (PHAs) are biobased and biodegradable thermoplastic polyesters that accumulate in microorganisms (e.g., bacterial, microalgal, and fungal species) as insoluble and inert intracellular inclusion. The PHAs recovery from microorganisms, which typically involves cell lysis, extraction, and purification, provides high molecular weight and purified polyesters that can be compounded and processed using conventional plastics converting equipment. The physio-chemical, thermal, and mechanical properties of the PHAs are comparable to traditional synthetic polymers such as polypropylene and polyethylene. As a result, it has attracted substantial applications interest in packaging, personal care, coatings, agricultural and biomedical uses. However, PHAs have certain performance limitations (e.g. slow crystallization), and substantially more expensive than many other polymers. As such, more research and development is required to enable them for extensive use. This review provides a critical review of the recent progress achieved in PHAs production using different microorganisms, downstream processing, material properties, processing avenues, recycling, aerobic and anaerobic biodegradation, and applications.
Collapse
Affiliation(s)
- Rajendran Muthuraj
- Worn Again Technologies Ltd, Bio City, Pennyfoot St, NG1 1GF Nottingham, Nottinghamshire, United Kingdom
| | - Oscar Valerio
- Departamento de Ingeniería Química, Universidad de Concepción, Concepción, Chile
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada.
| |
Collapse
|
9
|
Ylinen A, Maaheimo H, Anghelescu-Hakala A, Penttilä M, Salusjärvi L, Toivari M. Production of D-lactic acid containing polyhydroxyalkanoate polymers in yeast Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2021; 48:6253250. [PMID: 33899921 PMCID: PMC9113173 DOI: 10.1093/jimb/kuab028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022]
Abstract
Polyhydroxyalkanoates (PHAs) provide biodegradable and bio-based alternatives to conventional plastics. Incorporation of 2-hydroxy acid monomers into polymer, in addition to 3-hydroxy acids, offers possibility to tailor the polymer properties. In this study, poly(D-lactic acid) (PDLA) and copolymer P(LA-3HB) were produced and characterized for the first time in the yeast Saccharomyces cerevisiae. Expression of engineered PHA synthase PhaC1437Ps6–19, propionyl-CoA transferase Pct540Cp, acetyl-CoA acetyltransferase PhaA, and acetoacetyl-CoA reductase PhaB1 resulted in accumulation of 3.6% P(LA-3HB) and expression of engineered enzymes PhaC1Pre and PctMe resulted in accumulation of 0.73% PDLA of the cell dry weight (CDW). According to NMR, P(LA-3HB) contained D-lactic acid repeating sequences. For reference, expression of PhaA, PhaB1, and PHA synthase PhaC1 resulted in accumulation 11% poly(hydroxybutyrate) (PHB) of the CDW. Weight average molecular weights of these polymers were comparable to similar polymers produced by bacterial strains, 24.6, 6.3, and 1 130 kDa for P(LA-3HB), PDLA, and PHB, respectively. The results suggest that yeast, as a robust and acid tolerant industrial production organism, could be suitable for production of 2-hydroxy acid containing PHAs from sugars or from 2-hydroxy acid containing raw materials. Moreover, the wide substrate specificity of PHA synthase enzymes employed increases the possibilities for modifying copolymer properties in yeast in the future.
Collapse
Affiliation(s)
- Anna Ylinen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Hannu Maaheimo
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | | | - Merja Penttilä
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland.,Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 11000, FI-00076 Aalto, Espoo, Finland
| | - Laura Salusjärvi
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Mervi Toivari
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|
10
|
Microbial cell factories for the production of polyhydroxyalkanoates. Essays Biochem 2021; 65:337-353. [PMID: 34132340 DOI: 10.1042/ebc20200142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
Pollution caused by persistent petro-plastics is the most pressing problem currently, with 8 million tons of plastic waste dumped annually in the oceans. Plastic waste management is not systematized in many countries, because it is laborious and expensive with secondary pollution hazards. Bioplastics, synthesized by microorganisms, are viable alternatives to petrochemical-based thermoplastics due to their biodegradable nature. Polyhydroxyalkanoates (PHAs) are a structurally and functionally diverse group of storage polymers synthesized by many microorganisms, including bacteria and Archaea. Some of the most important PHA accumulating bacteria include Cupriavidus necator, Burkholderia sacchari, Pseudomonas sp., Bacillus sp., recombinant Escherichia coli, and certain halophilic extremophiles. PHAs are synthesized by specialized PHA polymerases with assorted monomers derived from the cellular metabolite pool. In the natural cycle of cellular growth, PHAs are depolymerized by the native host for carbon and energy. The presence of these microbial PHA depolymerases in natural niches is responsible for the degradation of bioplastics. Polyhydroxybutyrate (PHB) is the most common PHA with desirable thermoplastic-like properties. PHAs have widespread applications in various industries including biomedicine, fine chemicals production, drug delivery, packaging, and agriculture. This review provides the updated knowledge on the metabolic pathways for PHAs synthesis in bacteria, and the major microbial hosts for PHAs production. Yeasts are presented as a potential candidate for industrial PHAs production, with their high amenability to genetic engineering and the availability of industrial-scale technology. The major bottlenecks in the commercialization of PHAs as an alternative for plastics and future perspectives are also critically discussed.
Collapse
|
11
|
Bedade DK, Edson CB, Gross RA. Emergent Approaches to Efficient and Sustainable Polyhydroxyalkanoate Production. Molecules 2021; 26:3463. [PMID: 34200447 PMCID: PMC8201374 DOI: 10.3390/molecules26113463] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Petroleum-derived plastics dominate currently used plastic materials. These plastics are derived from finite fossil carbon sources and were not designed for recycling or biodegradation. With the ever-increasing quantities of plastic wastes entering landfills and polluting our environment, there is an urgent need for fundamental change. One component to that change is developing cost-effective plastics derived from readily renewable resources that offer chemical or biological recycling and can be designed to have properties that not only allow the replacement of current plastics but also offer new application opportunities. Polyhydroxyalkanoates (PHAs) remain a promising candidate for commodity bioplastic production, despite the many decades of efforts by academicians and industrial scientists that have not yet achieved that goal. This article focuses on defining obstacles and solutions to overcome cost-performance metrics that are not sufficiently competitive with current commodity thermoplastics. To that end, this review describes various process innovations that build on fed-batch and semi-continuous modes of operation as well as methods that lead to high cell density cultivations. Also, we discuss work to move from costly to lower cost substrates such as lignocellulose-derived hydrolysates, metabolic engineering of organisms that provide higher substrate conversion rates, the potential of halophiles to provide low-cost platforms in non-sterile environments for PHA formation, and work that uses mixed culture strategies to overcome obstacles of using waste substrates. We also describe historical problems and potential solutions to downstream processing for PHA isolation that, along with feedstock costs, have been an Achilles heel towards the realization of cost-efficient processes. Finally, future directions for efficient PHA production and relevant structural variations are discussed.
Collapse
Affiliation(s)
- Dattatray K. Bedade
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Cody B. Edson
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| | - Richard A. Gross
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
- New York State Center for Polymer Synthesis, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA;
| |
Collapse
|
12
|
Silva JB, Pereira JR, Marreiros BC, Reis MA, Freitas F. Microbial production of medium-chain length polyhydroxyalkanoates. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids. Proc Natl Acad Sci U S A 2020; 117:31789-31799. [PMID: 33268495 DOI: 10.1073/pnas.2013968117] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Current approaches for the production of high-value compounds in microorganisms mostly use the cytosol as a general reaction vessel. However, competing pathways and metabolic cross-talk frequently prevent efficient synthesis of target compounds in the cytosol. Eukaryotic cells control the complexity of their metabolism by harnessing organelles to insulate biochemical pathways. Inspired by this concept, herein we transform yeast peroxisomes into microfactories for geranyl diphosphate-derived compounds, focusing on monoterpenoids, monoterpene indole alkaloids, and cannabinoids. We introduce a complete mevalonate pathway in the peroxisome to convert acetyl-CoA to several commercially important monoterpenes and achieve up to 125-fold increase over cytosolic production. Furthermore, peroxisomal production improves subsequent decoration by cytochrome P450s, supporting efficient conversion of (S)-(-)-limonene to the menthol precursor trans-isopiperitenol. We also establish synthesis of 8-hydroxygeraniol, the precursor of monoterpene indole alkaloids, and cannabigerolic acid, the cannabinoid precursor. Our findings establish peroxisomal engineering as an efficient strategy for the production of isoprenoids.
Collapse
|
14
|
Shahid S, Razzaq S, Farooq R, Nazli ZIH. Polyhydroxyalkanoates: Next generation natural biomolecules and a solution for the world's future economy. Int J Biol Macromol 2020; 166:297-321. [PMID: 33127548 DOI: 10.1016/j.ijbiomac.2020.10.187] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
Petrochemical plastics have become a cause of pollution for decades and finding alternative plastics that are environmental friendly. Polyhydroxyalkanoate (PHA), a biopolyester produced by microbial cells, has characteristics (biocompatible, biodegradable, non-toxic) that make it appropriate as a biodegradable plastic substance. The different forms of PHA make it suitable to a wide choice of products, from packaging materials to biomedical applications. The major challenge in commercialization of PHA is the cost of manufacturing. There are a lot of factors that could affect the efficiency of a development method. The development of new strategic parameters for better synthesis, including consumption of low cost carbon substrates, genetic modification of PHA-producing strains, and fermentational strategies are discussed. Recently, many efforts have been made to develop a method for the cost-effective production of PHAs. The isolation, analysis as well as characterization of PHAs are significant factors for any developmental process. Due to the biodegradable and biocompatible properties of PHAs, they are majorly used in biomedical applications such as vascular grafting, heart tissue engineering, skin tissue repairing, liver tissue engineering, nerve tissue engineering, bone tissue engineering, cartilage tissue engineering and therapeutic carrier. The emerging and interesting area of research is the development of self-healing biopolymer that could significantly broaden the operational life and protection of the polymeric materials for a broad range of uses. Biodegradable and biocompatible polymers are considered as the green materials in place of petroleum-based plastics in the future.
Collapse
Affiliation(s)
- Salma Shahid
- Department of Biochemistry, Government College Women University Faisalabad, Pakistan.
| | - Sadia Razzaq
- Department of Chemistry, Government College Women University Faisalabad, Pakistan
| | - Robina Farooq
- Department of Chemistry, Government College Women University Faisalabad, Pakistan
| | - Zill-I-Huma Nazli
- Department of Chemistry, Government College Women University Faisalabad, Pakistan
| |
Collapse
|
15
|
Ojha N, Das N. Process optimization and characterization of polyhydroxyalkanoate copolymers produced by marine Pichia kudriavzevii VIT-NN02 using banana peels and chicken feather hydrolysate. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Kosmachevskaya OV, Osipov EV, Van Chi T, Mai PTT, Topunov AF. Effect of Cultivation Conditions on Poly(3-hydroxybutyrate) Synthesis by Nodule Bacteria Rhizobium phaseoli. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s000368382001010x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Zhang C, Li M, Zhao GR, Lu W. Harnessing Yeast Peroxisomes and Cytosol Acetyl-CoA for Sesquiterpene α-Humulene Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1382-1389. [PMID: 31944688 DOI: 10.1021/acs.jafc.9b07290] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metabolic engineering of Saccharomyces cerevisiae focusing on the cytoplasm for sustainable terpenoid production is commonly practiced. However, engineering organelles for terpenoid production is rarely reported. Herein, peroxisomes, together with the cytoplasm, were engineered to boost sesquiterpene α-humulene synthesis in S. cerevisiae. The farnesyl diphosphate synthetic pathway and α-humulene synthase were successfully expressed inside yeast peroxisomes to enable high-level α-humulene production with glucose as the sole carbon source. With the combination of peroxisomal and cytoplasmic engineering, α-humulene production was increased by 2.5-fold compared to that in cytoplasm-engineered recombinant strains. Finally, the α-humulene titer of 1726.78 mg/L was achieved by fed-batch fermentation in a 5 L bioreactor. The strategy presented here offers an efficient method for terpenoid production in S. cerevisiae.
Collapse
Affiliation(s)
- Chuanbo Zhang
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Man Li
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
| | - Guang-Rong Zhao
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
- Key Laboratory of System Bioengineering, Ministry of Education Tianjin University , Tianjin 300350 , People's Republic of China
- SynBio Research Platform , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300350 , People's Republic of China
| | - Wenyu Lu
- School of Chemical Engineering and Technology , Tianjin University , Tianjin 300350 , People's Republic of China
- Key Laboratory of System Bioengineering, Ministry of Education Tianjin University , Tianjin 300350 , People's Republic of China
- SynBio Research Platform , Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300350 , People's Republic of China
| |
Collapse
|
18
|
Häuslein I, Sahr T, Escoll P, Klausner N, Eisenreich W, Buchrieser C. Legionella pneumophila CsrA regulates a metabolic switch from amino acid to glycerolipid metabolism. Open Biol 2018; 7:rsob.170149. [PMID: 29093212 PMCID: PMC5717341 DOI: 10.1098/rsob.170149] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/02/2017] [Indexed: 02/01/2023] Open
Abstract
Legionella pneumophila CsrA plays a crucial role in the life-stage-specific expression of virulence phenotypes and metabolic activity. However, its exact role is only partly known. To elucidate how CsrA impacts L. pneumophila metabolism we analysed the CsrA depended regulation of metabolic functions by comparative 13C-isotopologue profiling and oxygen consumption experiments of a L. pneumophila wild-type (wt) strain and its isogenic csrA− mutant. We show that a csrA− mutant has significantly lower respiration rates when serine, alanine, pyruvate, α-ketoglutarate or palmitate is the sole carbon source. By contrast, when grown in glucose or glycerol, no differences in respiration were detected. Isotopologue profiling uncovered that the transfer of label from [U-13C3]serine via pyruvate into the citrate cycle and gluconeogenesis was lower in the mutant as judged from the labelling patterns of protein-derived amino acids, cell-wall-derived diaminopimelate, sugars and amino sugars and 3-hydroxybutyrate derived from polyhydroxybutyrate (PHB). Similarly, the incorporation of [U-13C6]glucose via the glycolysis/Entner–Doudoroff (ED) pathway but not via the pentose phosphate pathway was repressed in the csrA− mutant. On the other hand, fluxes due to [U-13C3]glycerol utilization were increased in the csrA− mutant. In addition, we showed that exogenous [1,2,3,4-13C4]palmitic acid is efficiently used for PHB synthesis via 13C2-acetyl-CoA. Taken together, CsrA induces serine catabolism via the tricarboxylic acid cycle and glucose degradation via the ED pathway, but represses glycerol metabolism, fatty acid degradation and PHB biosynthesis, in particular during exponential growth. Thus, CsrA has a determining role in substrate usage and carbon partitioning during the L. pneumophila life cycle and regulates a switch from amino acid usage in replicative phase to glycerolipid usage during transmissive growth.
Collapse
Affiliation(s)
- Ina Häuslein
- Department of Chemistry, Biochemistry, Technische Universität München, Garching, Germany
| | - Tobias Sahr
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR 3525, Paris, France
| | - Pedro Escoll
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR 3525, Paris, France
| | - Nadine Klausner
- Department of Chemistry, Biochemistry, Technische Universität München, Garching, Germany
| | - Wolfgang Eisenreich
- Department of Chemistry, Biochemistry, Technische Universität München, Garching, Germany
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France .,CNRS UMR 3525, Paris, France
| |
Collapse
|
19
|
Metabolic engineering of Pichia pastoris. Metab Eng 2018; 50:2-15. [PMID: 29704654 DOI: 10.1016/j.ymben.2018.04.017] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
Besides its use for efficient production of recombinant proteins the methylotrophic yeast Pichia pastoris (syn. Komagataella spp.) has been increasingly employed as a platform to produce metabolites of varying origin. We summarize here the impressive methodological developments of the last years to model and analyze the metabolism of P. pastoris, and to engineer its genome and metabolic pathways. Efficient methods to insert, modify or delete genes via homologous recombination and CRISPR/Cas9, supported by modular cloning techniques, have been reported. An outstanding early example of metabolic engineering in P. pastoris was the humanization of protein glycosylation. More recently the cell metabolism was engineered also to enhance the productivity of heterologous proteins. The last few years have seen an increased number of metabolic pathway design and engineering in P. pastoris, mainly towards the production of complex (secondary) metabolites. In this review, we discuss the potential role of P. pastoris as a platform for metabolic engineering, its strengths, and major requirements for future developments of chassis strains based on synthetic biology principles.
Collapse
|
20
|
Ojha N, Das N. A Statistical approach to optimize the production of Polyhydroxyalkanoates from Wickerhamomyces anomalus VIT-NN01 using Response Surface Methodology. Int J Biol Macromol 2018; 107:2157-2170. [DOI: 10.1016/j.ijbiomac.2017.10.089] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/11/2017] [Accepted: 10/14/2017] [Indexed: 11/28/2022]
|
21
|
Schwarzhans JP, Luttermann T, Geier M, Kalinowski J, Friehs K. Towards systems metabolic engineering in Pichia pastoris. Biotechnol Adv 2017; 35:681-710. [DOI: 10.1016/j.biotechadv.2017.07.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 12/30/2022]
|
22
|
Towards designer organelles by subverting the peroxisomal import pathway. Nat Commun 2017; 8:454. [PMID: 28878206 PMCID: PMC5587766 DOI: 10.1038/s41467-017-00487-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/03/2017] [Indexed: 01/09/2023] Open
Abstract
The development of ‘designer’ organelles could be a key strategy to enable foreign pathways to be efficiently controlled within eukaryotic biotechnology. A fundamental component of any such system will be the implementation of a bespoke protein import pathway that can selectively deliver constituent proteins to the new compartment in the presence of existing endogenous trafficking systems. Here we show that the protein–protein interactions that control the peroxisomal protein import pathway can be manipulated to create a pair of interacting partners that still support protein import in moss cells, but are orthogonal to the naturally occurring pathways. In addition to providing a valuable experimental tool to give new insights into peroxisomal protein import, the variant receptor-signal sequence pair forms the basis of a system in which normal peroxisomal function is downregulated and replaced with an alternative pathway, an essential first step in the creation of a designer organelle. Designer organelles could allow the isolation of synthetic biological pathways from endogenous components of the host cell. Here the authors engineer a peroxisomal protein import pathway orthogonal to the naturally occurring system.
Collapse
|
23
|
Biernacki M, Marzec M, Roick T, Pätz R, Baronian K, Bode R, Kunze G. Enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) accumulation in Arxula adeninivorans by stabilization of production. Microb Cell Fact 2017; 16:144. [PMID: 28818103 PMCID: PMC5561651 DOI: 10.1186/s12934-017-0751-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022] Open
Abstract
Background In recent years the production of biobased biodegradable plastics has been of interest of researchers partly due to the accumulation of non-biodegradable plastics in the environment and to the opportunity for new applications. Commonly investigated are the polyhydroxyalkanoates (PHAs) poly(hydroxybutyrate) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHB-V). The latter has the advantage of being tougher and less brittle. The production of these polymers in bacteria is well established but production in yeast may have some advantages, e.g. the ability to use a broad spectrum of industrial by-products as a carbon sources. Results In this study we increased the synthesis of PHB-V in the non-conventional yeast Arxula adeninivorans by stabilization of polymer accumulation via genetic modification and optimization of culture conditions. An A. adeninivorans strain with overexpressed PHA pathway genes for β-ketothiolase, acetoacetyl-CoA reductase, PHAs synthase and the phasin gene was able to accumulate an unexpectedly high level of polymer. It was found that an optimized strain cultivated in a shaking incubator is able to produce up to 52.1% of the DCW of PHB-V (10.8 g L−1) with 12.3%mol of PHV fraction. Although further optimization of cultivation conditions in a fed-batch bioreactor led to lower polymer content (15.3% of the DCW of PHB-V), the PHV fraction and total polymer level increased to 23.1%mol and 11.6 g L−1 respectively. Additionally, analysis of the product revealed that the polymer has a very low average molecular mass and unexpected melting and glass transition temperatures. Conclusions This study indicates a potential of use for the non-conventional yeast, A. adeninivorans, as an efficient producer of polyhydroxyalkanoates.
Collapse
Affiliation(s)
- Mateusz Biernacki
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Gatersleben, Saxony-Anhalt, Germany
| | - Marek Marzec
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Gatersleben, Saxony-Anhalt, Germany.,Faculty of Biology and Environmental Protection, University of Silesia, Jagiellonska, 28, 40-032, Katowice, Poland
| | - Thomas Roick
- Jäckering Mühlen-und Nährmittelwerke GmbH, Vorsterhauser Weg 46, 59007, Hamm, Germany
| | - Reinhard Pätz
- Division Bioprocess Technology, University of Applied Sciences, Bernburger Str. 55, 06366, Köthen, Germany
| | - Kim Baronian
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Rüdiger Bode
- Institute of Microbiology, University of Greifswald, Jahnstr. 15, 17487, Greifswald, Germany
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Gatersleben, Saxony-Anhalt, Germany.
| |
Collapse
|
24
|
Harnessing yeast organelles for metabolic engineering. Nat Chem Biol 2017; 13:823-832. [DOI: 10.1038/nchembio.2429] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 05/23/2016] [Indexed: 11/08/2022]
|
25
|
Quin MB, Wallin KK, Zhang G, Schmidt-Dannert C. Spatial organization of multi-enzyme biocatalytic cascades. Org Biomol Chem 2017; 15:4260-4271. [DOI: 10.1039/c7ob00391a] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multi-enzyme cascades provide a wealth of valuable chemicals. Efficiency of reaction schemes can be improved by spatial organization of biocatalysts. This review will highlight various methods of spatial organization of biocatalysts: fusion, immobilization, scaffolding and encapsulation.
Collapse
Affiliation(s)
- M. B. Quin
- University of Minnesota
- Dept. of Biochemistry
- Molecular Biology and Biophysics
- St Paul
- USA
| | - K. K. Wallin
- University of Minnesota
- Dept. of Biochemistry
- Molecular Biology and Biophysics
- St Paul
- USA
| | - G. Zhang
- University of Minnesota
- Dept. of Biochemistry
- Molecular Biology and Biophysics
- St Paul
- USA
| | - C. Schmidt-Dannert
- University of Minnesota
- Dept. of Biochemistry
- Molecular Biology and Biophysics
- St Paul
- USA
| |
Collapse
|
26
|
Zhou YJ, Buijs NA, Zhu Z, Gómez DO, Boonsombuti A, Siewers V, Nielsen J. Harnessing Yeast Peroxisomes for Biosynthesis of Fatty-Acid-Derived Biofuels and Chemicals with Relieved Side-Pathway Competition. J Am Chem Soc 2016; 138:15368-15377. [DOI: 10.1021/jacs.6b07394] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | | | | | | | | | - Jens Nielsen
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark
- Science
for Life Laboratory, Royal Institute of Technology, SE-17121 Stockholm, Sweden
| |
Collapse
|
27
|
Sibirny AA. Yeast peroxisomes: structure, functions and biotechnological opportunities. FEMS Yeast Res 2016; 16:fow038. [DOI: 10.1093/femsyr/fow038] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2016] [Indexed: 01/02/2023] Open
|
28
|
DeLoache WC, Russ ZN, Dueber JE. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways. Nat Commun 2016; 7:11152. [PMID: 27025684 PMCID: PMC5476825 DOI: 10.1038/ncomms11152] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/23/2016] [Indexed: 11/29/2022] Open
Abstract
Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk and improving pathway efficiency, but improved tools and design rules are needed to make this strategy available to more engineered pathways. Here we focus on the Saccharomyces cerevisiae peroxisome and develop a sensitive high-throughput assay for peroxisomal cargo import. We identify an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly sequestering non-native cargo proteins. Additionally, we perform the first systematic in vivo measurements of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay. Finally, we apply these new insights to compartmentalize a two-enzyme pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titre. This work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal. Compartmentalization of enzymes into cellular organelles is a promising strategy for improving pathway efficiency. Here, the authors use a high-throughput assay to identify enhanced peroxisomal targeting signals in yeast, and study the effects of peroxisomal compartmentalization on the performance of a model pathway.
Collapse
Affiliation(s)
- William C DeLoache
- UC Berkeley and UCSF Graduate Program in Bioengineering, University of California, Berkeley (UC Berkeley), Berkeley, California 94720, USA.,Department of Bioengineering, UC Berkeley, Berkeley, California 94720, USA
| | - Zachary N Russ
- UC Berkeley and UCSF Graduate Program in Bioengineering, University of California, Berkeley (UC Berkeley), Berkeley, California 94720, USA.,Department of Bioengineering, UC Berkeley, Berkeley, California 94720, USA
| | - John E Dueber
- Department of Bioengineering, UC Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
29
|
Advances and needs for endotoxin-free production strains. Appl Microbiol Biotechnol 2015; 99:9349-60. [PMID: 26362682 DOI: 10.1007/s00253-015-6947-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/16/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
The choice of an appropriate microbial host cell and suitable production conditions is crucial for the downstream processing of pharmaceutical- and food-grade products. Although Escherichia coli serves as a highly valuable leading platform for the production of value-added products, like most Gram-negative bacteria, this bacterium contains a potent immunostimulatory lipopolysaccharide (LPS), referred to as an endotoxin. In contrast, Gram-positive bacteria, notably Bacillus, lactic acid bacteria (LAB), Corynebacterium, and yeasts have been extensively used as generally recognized as safe (GRAS) endotoxin-free platforms for the production of a variety of products. This review summarizes the currently available knowledge on the utilization of these representative Gram-positive bacteria for the production of eco- and bio-friendly products, particularly natural polyesters, polyhydroxyalkanoates, bacteriocins, and membrane proteins. The successful case studies presented here serve to inspire the use of these microorganisms as a main-player or by-player depending on their individual properties for the industrial production of these desirable targets.
Collapse
|
30
|
Gao C, Qi Q, Madzak C, Lin CSK. Exploring medium-chain-length polyhydroxyalkanoates production in the engineered yeast Yarrowia lipolytica. J Ind Microbiol Biotechnol 2015; 42:1255-62. [PMID: 26153503 DOI: 10.1007/s10295-015-1649-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/23/2015] [Indexed: 11/29/2022]
Abstract
Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are a large class of biopolymers that have attracted extensive attention as renewable and biodegradable bio-plastics. They are naturally synthesized via fatty acid de novo biosynthesis pathway or β-oxidation pathway from Pseudomonads. The unconventional yeast Yarrowia lipolytica has excellent lipid/fatty acid catabolism and anabolism capacity depending of the mode of culture. Nevertheless, it cannot naturally synthesize PHA, as it does not express an intrinsic PHA synthase. Here, we constructed a genetically modified strain of Y. lipolytica by heterologously expressing PhaC1 gene from P. aeruginosa PAO1 with a PTS1 peroxisomal signal. When in single copy, the codon optimized PhaC1 allowed the synthesis of 0.205 % DCW of PHA after 72 h cultivation in YNBD medium containing 0.1 % oleic acid. By using a multi-copy integration strategy, PHA content increased to 2.84 % DCW when the concentration of oleic acid in YNBD was 1.0 %. Furthermore, when the recombinant yeast was grown in the medium containing triolein, PHA accumulated up to 5.0 % DCW with as high as 21.9 g/L DCW, which represented 1.11 g/L in the culture. Our results demonstrated the potential use of Y. lipolytica as a promising microbial cell factory for PHA production using food waste, which contains lipids and other essential nutrients.
Collapse
Affiliation(s)
- Cuijuan Gao
- School of Life Science, Linyi University, Linyi, 276005, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Stehlik T, Sandrock B, Ast J, Freitag J. Fungal peroxisomes as biosynthetic organelles. Curr Opin Microbiol 2014; 22:8-14. [PMID: 25305532 DOI: 10.1016/j.mib.2014.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/04/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Peroxisomes are nearly ubiquitous single-membrane organelles harboring multiple metabolic pathways beside their prominent role in the β-oxidation of fatty acids. Here we review the diverse metabolic functions of peroxisomes in fungi. A variety of fungal metabolites are at least partially synthesized inside peroxisomes. These include the essential co-factor biotin but also different types of secondary metabolites. Peroxisomal metabolites are often derived from acyl-CoA esters for example β-oxidation intermediates. In several ascomycetes a subtype of peroxisomes has been identified that is metabolically inactive but is required to plug the septal pores of wounded hyphae. Thus, peroxisomes are versatile organelles that can adapt their function to the life style of an organism. This remarkable variability suggests that the full extent of the biosynthetic capacity of peroxisomes is still elusive. Moreover, in fungi peroxisomes are non-essential under laboratory conditions making them attractive organelles for biotechnological approaches and the design of novel metabolic pathways in customized peroxisomes.
Collapse
Affiliation(s)
- Thorsten Stehlik
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, Germany; LOEWE Center for Synthetic Microbiology (SYNMIKRO), Hans-Meerwein Str., Marburg, Germany
| | - Björn Sandrock
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, Germany
| | - Julia Ast
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, Germany
| | - Johannes Freitag
- Department of Biology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, Marburg, Germany; Senckenberg Gesellschaft für Naturforschung, LOEWE Cluster for Integrative Fungal Research, Georg-Voigt-Str. 14-16, Frankfurt am Main, Germany.
| |
Collapse
|
32
|
Kessel-Vigelius SK, Wiese J, Schroers MG, Wrobel TJ, Hahn F, Linka N. An engineered plant peroxisome and its application in biotechnology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:232-40. [PMID: 23849130 DOI: 10.1016/j.plantsci.2013.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/08/2013] [Accepted: 06/10/2013] [Indexed: 05/06/2023]
Abstract
Plant metabolic engineering is a promising tool for biotechnological applications. Major goals include enhancing plant fitness for an increased product yield and improving or introducing novel pathways to synthesize industrially relevant products. Plant peroxisomes are favorable targets for metabolic engineering, because they are involved in diverse functions, including primary and secondary metabolism, development, abiotic stress response, and pathogen defense. This review discusses targets for manipulating endogenous peroxisomal pathways, such as fatty acid β-oxidation, or introducing novel pathways, such as the synthesis of biodegradable polymers. Furthermore, strategies to bypass peroxisomal pathways for improved energy efficiency and detoxification of environmental pollutants are discussed. In sum, we highlight the biotechnological potential of plant peroxisomes and indicate future perspectives to exploit peroxisomes as biofactories.
Collapse
Affiliation(s)
- Sarah K Kessel-Vigelius
- Heinrich-Heine University, Plant Biochemistry, Universitätsstrasse 1, Building 26.03.01, D-40225 Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Roelants SL, Saerens KM, Derycke T, Li B, Lin Y, Van de Peer Y, De Maeseneire SL, Van Bogaert IN, Soetaert W. Candida bombicola
as a platform organism for the production of tailor‐made biomolecules. Biotechnol Bioeng 2013; 110:2494-503. [DOI: 10.1002/bit.24895] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/17/2013] [Accepted: 02/20/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Sophie L.K.W. Roelants
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be)Ghent UniversityCoupure Links 6539000 Ghent, Belgium
| | - Karen M.J. Saerens
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be)Ghent UniversityCoupure Links 6539000 Ghent, Belgium
| | - Thibaut Derycke
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be)Ghent UniversityCoupure Links 6539000 Ghent, Belgium
| | - Bing Li
- Department of Plant Biotechnology and BioinformaticsGhent UniversityTechnologiepark 927, 9052Zwijnaarde
| | - Yao‐Cheng Lin
- Department of Plant Systems BiologyVIBTechnologiepark 927, 9052Zwijnaarde
| | - Yves Van de Peer
- Department of Plant Biotechnology and BioinformaticsGhent UniversityTechnologiepark 927, 9052Zwijnaarde
- Department of Plant Systems BiologyVIBTechnologiepark 927, 9052Zwijnaarde
| | - Sofie L. De Maeseneire
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be)Ghent UniversityCoupure Links 6539000 Ghent, Belgium
| | - Inge N.A. Van Bogaert
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be)Ghent UniversityCoupure Links 6539000 Ghent, Belgium
| | - Wim Soetaert
- Faculty of Bioscience Engineering, Centre for Industrial Biotechnology and Biocatalysis (InBio.be)Ghent UniversityCoupure Links 6539000 Ghent, Belgium
| |
Collapse
|
34
|
Ienczak JL, Schmidell W, Aragão GMFD. High-cell-density culture strategies for polyhydroxyalkanoate production: a review. J Ind Microbiol Biotechnol 2013; 40:275-86. [PMID: 23455696 DOI: 10.1007/s10295-013-1236-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/25/2013] [Indexed: 11/30/2022]
Abstract
This article gives an overview of high-cell-density cultures for polyhydroxyalkanoate (PHA) production and their modes of operation for increasing productivity. High cell densities are very important in PHA production mainly because this polymer is an intracellular product accumulated in various microorganisms, so a high cellular content is needed for the polymer production. This review describes relevant results from fed-batch, repeated batch, and continuous modes of operation without and with cell recycle for the production of these polymers by microorganisms. Finally, recombinant microorganisms for PHA production, as well future directions for PHA production, are discussed.
Collapse
Affiliation(s)
- Jaciane Lutz Ienczak
- Brazilian Bioethanol Science and Technology Laboratory, CTBE/CNPEM, Campinas, SP, Brazil
| | | | | |
Collapse
|
35
|
Abstract
Cellular targeting of biosynthetic pathway enzymes is an invaluable technique in metabolic engineering to modify metabolic fluxes towards metabolite of interest. Especially, recombinant carotenoid biosynthesis in yeasts should be balanced with a precursor pathway present in a specific cellular location because yeasts, being eukaryotes, have more defined intracellular location. Here, peroxisomal targeting of lycopene pathway enzymes, CrtE, CrtB, and CrtI, by fusing to peroxisomal targeting sequence 1 (PTS1) in Pichia pastoris X-33 is described.
Collapse
|
36
|
Haddouche R, Poirier Y, Delessert S, Sabirova J, Pagot Y, Neuvéglise C, Nicaud JM. Engineering polyhydroxyalkanoate content and monomer composition in the oleaginous yeast Yarrowia lipolytica by modifying the ß-oxidation multifunctional protein. Appl Microbiol Biotechnol 2011; 91:1327-40. [PMID: 21603933 DOI: 10.1007/s00253-011-3331-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/08/2011] [Accepted: 04/09/2011] [Indexed: 11/30/2022]
Abstract
Recombinant strains of the oleaginous yeast Yarrowia lipolytica expressing the PHA synthase gene (PhaC) from Pseudomonas aeruginosa in the peroxisome were found able to produce polyhydroxyalkanoates (PHA). PHA production yield, but not the monomer composition, was dependent on POX genotype (POX genes encoding acyl-CoA oxidases) (Haddouche et al. FEMS Yeast Res 10:917-927, 2010). In this study of variants of the Y. lipolytica β-oxidation multifunctional enzyme, with deletions or inactivations of the R-3-hydroxyacyl-CoA dehydrogenase domain, we were able to produce hetero-polymers (functional MFE enzyme) or homo-polymers (with no 3-hydroxyacyl-CoA dehydrogenase activity) of PHA consisting principally of 3-hydroxyacid monomers (>80%) of the same length as the external fatty acid used for growth. The redirection of fatty acid flux towards β-oxidation, by deletion of the neutral lipid synthesis pathway (mutant strain Q4 devoid of the acyltransferases encoded by the LRO1, DGA1, DGA2 and ARE1 genes), in combination with variant expressing only the enoyl-CoA hydratase 2 domain, led to a significant increase in PHA levels, to 7.3% of cell dry weight. Finally, the presence of shorter monomers (up to 20% of the monomers) in a mutant strain lacking the peroxisomal 3-hydroxyacyl-CoA dehydrogenase domain provided evidence for the occurrence of partial mitochondrial β-oxidation in Y. lipolytica.
Collapse
|
37
|
Beopoulos A, Nicaud JM, Gaillardin C. An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Appl Microbiol Biotechnol 2011; 90:1193-206. [PMID: 21452033 DOI: 10.1007/s00253-011-3212-8] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 11/24/2022]
Abstract
High energy prices, depletion of crude oil supplies, and price imbalance created by the increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives such as lubricants, adhesives, and plastics have given rise to heated debates on land-use practices and to environmental concerns about oil production strategies. However, commercialization of microbial oils with similar composition and energy value to plant and animal oils could have many advantages, such as being non-competitive with food, having shorter process cycle and being independent of season and climate factors. This review focuses on the ongoing research on different oleaginous yeasts producing high added value lipids and on the prospects of such microbial oils to be used in different biotechnological processes and applications. It covers the basic biochemical mechanisms of lipid synthesis and accumulation in these organisms, along with the latest insights on the metabolic processes involved. The key elements of lipid accumulation, the mechanisms suspected to confer the oleaginous character of the cell, and the potential metabolic routes enhancing lipid production are also extensively discussed.
Collapse
Affiliation(s)
- Athanasios Beopoulos
- AgroParisTech, UMR1319, Micalis, Centre de Biotechnologie Agro-Industrielle, Thiverval-Grignon, France
| | | | | |
Collapse
|
38
|
Sabirova JS, Haddouche R, Van Bogaert IN, Mulaa F, Verstraete W, Timmis KN, Schmidt-Dannert C, Nicaud JM, Soetaert W. The 'LipoYeasts' project: using the oleaginous yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high-value products. Microb Biotechnol 2011; 4:47-54. [PMID: 21255371 PMCID: PMC3815794 DOI: 10.1111/j.1751-7915.2010.00187.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 04/25/2010] [Indexed: 11/28/2022] Open
Abstract
The oleochemical industry is currently still dominated by conventional chemistry, with biotechnology only starting to play a more prominent role, primarily with respect to the biosurfactants or lipases, e.g. as detergents, or for biofuel production. A major bottleneck for all further biotechnological applications is the problem of the initial mobilization of cheap and vastly available lipid and oil substrates, which are then to be transformed into high-value biotechnological, nutritional or pharmacological products. Under the EU-sponsored LipoYeasts project we are developing the oleaginous yeast Yarrowia lipolytica into a versatile and high-throughput microbial factory that, by use of specific enzymatic pathways from hydrocarbonoclastic bacteria, efficiently mobilizes lipids by directing its versatile lipid metabolism towards the production of industrially valuable lipid-derived compounds like wax esters (WE), isoprenoid-derived compounds (carotenoids, polyenic carotenoid ester), polyhydroxyalkanoates (PHAs) and free hydroxylated fatty acids (HFAs). Different lipid stocks (petroleum, alkane, vegetable oil, fatty acid) and combinations thereof are being assessed as substrates in combination with different mutant and recombinant strains of Y. lipolytica, in order to modulate the composition and yields of the produced added-value products.
Collapse
Affiliation(s)
- Julia S Sabirova
- Department of Bioscience and Bioengineering, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Haddouche R, Delessert S, Sabirova J, Neuvéglise C, Poirier Y, Nicaud JM. Roles of multiple acyl-CoA oxidases in the routing of carbon flow towards β-oxidation and polyhydroxyalkanoate biosynthesis in Yarrowia lipolytica. FEMS Yeast Res 2010; 10:917-27. [PMID: 20726896 DOI: 10.1111/j.1567-1364.2010.00670.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The oleaginous yeast Yarrowia lipolytica possesses six acyl-CoA oxidase (Aox) isoenzymes encoded by genes POX1-POX6. The respective roles of these multiple Aox isoenzymes were studied in recombinant Y. lipolytica strains that express heterologous polyhydroxyalkanoate (PHA) synthase (phaC) of Pseudomonas aeruginosa in varying POX genetic backgrounds, thus allowing assessment of the impact of specific Aox enzymes on the routing of carbon flow to β-oxidation or to PHA biosynthesis. Analysis of PHA production yields during growth on fatty acids with different chain lengths has revealed that the POX genotype significantly affects the PHA levels, but not the monomer composition of PHA. Aox3p function was found to be responsible for 90% and 75% of the total PHA produced from either C9:0 or C13:0 fatty acid, respectively, whereas Aox5p encodes the main Aox involved in the biosynthesis of 70% of PHA from C9:0 fatty acid. Other Aoxs, such as Aox1p, Aox2p, Aox4p and Aox6p, were not found to play a significant role in PHA biosynthesis, independent of the chain length of the fatty acid used. Finally, three known models of β-oxidation are discussed and it is shown that a 'leaky-hose pipe model' of the cycle can be applied to Y. lipolytica.
Collapse
|
40
|
|
41
|
|
42
|
|
43
|
Lee PC, Yoon YG, Schmidt-Dannert C. Investigation of cellular targeting of carotenoid pathway enzymes in Pichia pastoris. J Biotechnol 2009; 140:227-33. [DOI: 10.1016/j.jbiotec.2009.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
|
44
|
Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - a review. Biotechnol Adv 2006; 25:148-75. [PMID: 17222526 DOI: 10.1016/j.biotechadv.2006.11.007] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/23/2006] [Accepted: 11/23/2006] [Indexed: 11/18/2022]
Abstract
The increasing effect of non-degradable plastic wastes is a growing concern. Polyhydroxyalkanoates (PHAs), macromolecule-polyesters naturally produced by many species of microorganisms, are being considered as a replacement for conventional plastics. Unlike petroleum-derived plastics that take several decades to degrade, PHAs can be completely bio-degraded within a year by a variety of microorganisms. This biodegradation results in carbon dioxide and water, which return to the environment. Attempts based on various methods have been undertaken for mass production of PHAs. Promising strategies involve genetic engineering of microorganisms and plants to introduce production pathways. This challenge requires the expression of several genes along with optimization of PHA synthesis in the host. Although excellent progress has been made in recombinant hosts, the barriers to obtaining high quantities of PHA at low cost still remain to be solved. The commercially viable production of PHA in crops, however, appears to be a realistic goal for the future.
Collapse
Affiliation(s)
- Pornpa Suriyamongkol
- Plant Biotechnology Unit, Alberta Research Council, Vegreville, Alberta, Canada T9C 1T4
| | | | | | | | | |
Collapse
|
45
|
Carlson R, Srienc F. Effects of recombinant precursor pathway variations on poly[(R)-3-hydroxybutyrate] synthesis in Saccharomyces cerevisiae. J Biotechnol 2006; 124:561-73. [PMID: 16530287 DOI: 10.1016/j.jbiotec.2006.01.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 01/05/2006] [Accepted: 01/16/2006] [Indexed: 11/26/2022]
Abstract
Different recombinant R-3-hydroxybutyryl-CoA (3-HB) synthesis pathways strongly influenced the rate and accumulation of the biopolymer poly[(R)-3-hydroxybutyrate] (PHB) in Saccharomyces cerevisiae. It has been previously shown that expression of the Cupriavidus necator PHB synthase gene leads to PHB accumulation in S. cerevisiae [Leaf, T., Peterson, M., Stoup, S., Somers, D., Srienc, F., 1996. Saccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate. Microbiology 142, 1169-1180]. This finding indicates that native S. cerevisiae expresses genes capable of synthesizing the correct stereochemical substrate for the synthase enzyme. The effects of variations of 3-HB precursor pathways on PHB accumulation were investigated by expressing combinations of C. necator PHB pathway genes. When only the PHB synthase gene was expressed, the cells accumulated biopolymer to approximately 0.2% of their cell dry weight. When the PHB synthase and reductase gene were co-expressed, the PHB levels increased approximately 18 fold to about 3.5% of the cell dry weight. When the beta-ketothiolase, reductase and synthase genes were all expressed, the strain accumulated PHB to approximately 9% of the cell dry weight which is 45 fold higher than in the strain with only the synthase gene. Fluorescent microscopic analysis revealed significant cell-to-cell heterogeneity in biopolymer accumulation. While the population average for the strain expressing three PHB genes was approximately 9% of the cell dry weight, some cells accumulated PHB in excess of 50% of their cell volume. Other cells accumulated no biopolymer. In addition, the recombinant strain was shown to co-produce ethanol and PHB under anaerobic conditions. These results demonstrate that the technologically important organism S. cerevisiae is capable of accumulating PHB aerobically and anaerobically at levels similar to some bacterial systems. The easily assayed PHB system also creates a convenient means of probing in vivo the presence of intracellular metabolites which could be useful for studying the intermediary metabolism of S. cerevisiae.
Collapse
Affiliation(s)
- Ross Carlson
- Department of Chemical Engineering and Materials Science, and BioTechnology Institute, University of Minnesota, Minneapolis/St. Paul, MN 55108, USA
| | | |
Collapse
|
46
|
Zhang B, Carlson R, Srienc F. Engineering the monomer composition of polyhydroxyalkanoates synthesized in Saccharomyces cerevisiae. Appl Environ Microbiol 2006; 72:536-43. [PMID: 16391089 PMCID: PMC1352217 DOI: 10.1128/aem.72.1.536-543.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) have received considerable interest as renewable-resource-based, biodegradable, and biocompatible plastics with a wide range of potential applications. We have engineered the synthesis of PHA polymers composed of monomers ranging from 4 to 14 carbon atoms in either the cytosol or the peroxisome of Saccharomyces cerevisiae by harnessing intermediates of fatty acid metabolism. Cytosolic PHA production was supported by establishing in the cytosol critical beta-oxidation chemistries which are found natively in peroxisomes. This platform was utilized to supply medium-chain (C6 to C14) PHA precursors from both fatty acid degradation and synthesis to a cytosolically expressed medium-chain-length (mcl) polymerase from Pseudomonas oleovorans. Synthesis of short-chain-length PHAs (scl-PHAs) was established in the peroxisome of a wild-type yeast strain by targeting the Ralstonia eutropha scl polymerase to the peroxisome. This strain, harboring a peroxisomally targeted scl-PHA synthase, accumulated PHA up to approximately 7% of its cell dry weight. These results indicate (i) that S. cerevisiae expressing a cytosolic mcl-PHA polymerase or a peroxisomal scl-PHA synthase can use the 3-hydroxyacyl coenzyme A intermediates from fatty acid metabolism to synthesize PHAs and (ii) that fatty acid degradation is also possible in the cytosol as beta-oxidation might not be confined only to the peroxisomes. Polymers of even-numbered, odd-numbered, or a combination of even- and odd-numbered monomers can be controlled by feeding the appropriate substrates. This ability should permit the rational design and synthesis of polymers with desired material properties.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
47
|
Vijayasankaran N, Carlson R, Srienc F. Synthesis of poly[(R)-3-hydroxybutyric acid) in the cytoplasm of Pichia pastoris under oxygen limitation. Biomacromolecules 2005; 6:604-11. [PMID: 15762620 DOI: 10.1021/bm0494141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have constructed a tandem gene expression cassette containing three Ralstonia eutropha poly[(R)-3-hydroxybutyrate] (PHB) synthesis genes under the control of the Pichia pastoris glyceraldehyde-3-phosphate promoter and the green fluorescent protein (Gfp) under the control of the P. pastoris alcohol oxidase promoter. The inducible Gfp reporter protein has been used to rapidly isolate transformed strains with two copies of the entire expression cassette. The isolated strain exhibits Gfp induction kinetics that is twice as fast as that of the strains isolated without cell sorting. In addition, the sorted strains exhibited higher PHB contents in preliminary screening experiments. PHB synthesis was characterized in more detail in the sorted strain and was found to be dependent on culture conditions. It was observed that the specific PHB synthesis rate was dependent on the carbon source utilized and that the conditions of oxygen stress lead to increased fractional PHB content. When this strain is cultivated on glucose under oxygen-limited conditions, the cultures accumulated ethanol during the initial growth phase and then consumed the ethanol for the accumulation of PHB and biomass. While PHB was not synthesized during initial growth on glucose, significant levels of PHB were synthesized when ethanol was subsequently consumed. PHB was also synthesized under aerobic conditions when ethanol was the only carbon source. During growth on ethanol, the specific growth rate of the culture was reduced under oxygen-limited conditions but the specific PHB synthesis rate was relatively unaffected. Thus, the high accumulation of PHB which exceeded 30% of the cell dry weight appears to be the consequence of the decreased biomass growth rate under severe oxygen limitation.
Collapse
Affiliation(s)
- Natarajan Vijayasankaran
- Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0321,USA
| | | | | |
Collapse
|
48
|
Bogdawa H, Delessert S, Poirier Y. Analysis of the contribution of the β-oxidation auxiliary enzymes in the degradation of the dietary conjugated linoleic acid 9-cis-11-trans-octadecadienoic acid in the peroxisomes of Saccharomyces cerevisiae. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1735:204-13. [PMID: 16040271 DOI: 10.1016/j.bbalip.2005.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 05/25/2005] [Accepted: 06/09/2005] [Indexed: 11/16/2022]
Abstract
Beta-oxidation of the conjugated linoleic acid 9-cis,11-trans-octadecadienoic acid (rumenic acid) was analyzed in vivo in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanoate is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxyacyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The amount of polyhydroxyalkanaote synthesized from the degradation of rumenic acid was found to be similar to the amount synthesized from the degradation of 10-trans,12-cis-octadecadienoic acid, oleic acid or 10-cis-heptadecenoic acid. Furthermore, the degradation of 10-cis-heptadecenoic acid was found to be unaffected by the presence of rumenic acid in the media. Efficient degradation of rumenic acid was found to be independent of the Delta(3,5),Delta(2,4)-dienoyl-CoA isomerase but instead relied on the presence of Delta(3),Delta(2)-enoyl-CoA isomerase activity. The presence of the unsaturated monomer 3-hydroxydodecenoic acid in polyhydroxyalkanoate derived from rumenic acid degradation was found to be dependent on the presence of a Delta(3),Delta(2)-enoyl-CoA isomerase activity. Together, these data indicate that rumenic acid is mainly degraded in vivo in S. cerevisiae through a pathway requiring only the participation of the auxiliary enzymes Delta(3),Delta(2)-enoyl-CoA isomerase, along with the enzyme of the core beta-oxidation cycle.
Collapse
Affiliation(s)
- Heique Bogdawa
- Département de Biologie Moléculaire Végétale, Bâtiment de Biologie, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
49
|
Robert J, Marchesini S, Delessert S, Poirier Y. Analysis of the β-oxidation of trans-unsaturated fatty acid in recombinant Saccharomyces cerevisiae expressing a peroxisomal PHA synthase reveals the involvement of a reductase-dependent pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1734:169-77. [PMID: 15904873 DOI: 10.1016/j.bbalip.2005.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 02/24/2005] [Accepted: 02/24/2005] [Indexed: 11/29/2022]
Abstract
The degradation of fatty acids having cis- or trans-unsaturated bond at an even carbon was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanaote is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxy-acyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The synthesis of polyhydroxyalkanoate in cells grown in media containing 10-cis-heptadecenoic acid was dependent on the presence of 2,4-dienoyl-CoA reductase activity as well as on Delta3,Delta2-enoyl-CoA isomerase activity. The synthesis of polyhydroxyalkanoate from 10-trans-heptadecenoic acid in mutants devoid of 2,4-dienoyl-CoA reductase revealed degradation of the trans fatty acid directly via the enoyl-CoA hydratase II activity of the multifunctional enzyme (MFE), although the level of polyhydroxyalkanoate was 10-25% to that of wild type cells. Polyhydroxyalkanoate produced from 10-trans-heptadecenoic acid in wild type cells showed substantial carbon flux through both a reductase-dependent and a direct MFE-dependent pathway. Flux through beta-oxidation was more severely reduced in mutants devoid of Delta3,Delta2-enoyl-CoA isomerase compared to mutants devoid of 2,4-dienoyl-CoA reductase. It is concluded that the intermediate 2-trans,4-trans-dienoyl-CoA is metabolized in vivo in yeast by both the enoyl-CoA hydratase II activity of the multifunctional protein and the 2,4-dienoyl-CoA reductase, and that the synthesis of the intermediate 3-trans-enoyl-CoA in the absence of the Delta3,Delta2-enoyl-CoA isomerase leads to the blockage of the direct MFE-dependent pathway in vivo.
Collapse
Affiliation(s)
- Julien Robert
- Département de Biologie Moléculaire Végétale, Bâtiment de Biologie, Université de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
50
|
Carlson R, Wlaschin A, Srienc F. Kinetic studies and biochemical pathway analysis of anaerobic poly-(R)-3-hydroxybutyric acid synthesis in Escherichia coli. Appl Environ Microbiol 2005; 71:713-20. [PMID: 15691921 PMCID: PMC546825 DOI: 10.1128/aem.71.2.713-720.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poly-(R)-3-hydroxybutyric acid (PHB) was synthesized anaerobically in recombinant Escherichia coli. The host anaerobically accumulated PHB to more than 50% of its cell dry weight during cultivation in either growth or nongrowth medium. The maximum specific PHB production rate during growth-associated synthesis was approximately 2.3 +/- 0.2 mmol of PHB/g of residual cell dry weight/h. The by-product secretion profiles differed significantly between the PHB-synthesizing strain and the control strain. PHB production decreased acetate accumulation for both growth and nongrowth-associated PHB synthesis. For instance under nongrowth cultivation, the PHB-synthesizing culture produced approximately 66% less acetate on a glucose yield basis as compared to a control culture. A theoretical biochemical network model was used to provide a rational basis to interpret the experimental results like the fermentation product secretion profiles and to study E. coli network capabilities under anaerobic conditions. For example, the maximum theoretical carbon yield for anaerobic PHB synthesis in E. coli is 0.8. The presented study is expected to be generally useful for analyzing, interpreting, and engineering cellular metabolisms.
Collapse
Affiliation(s)
- Ross Carlson
- Department of Chemical Engineering and Materials Science and BioTechnology Institute, University of Minnesota, 240 Gortner Laboratory, 1479 Gortner Ave., St. Paul, MN 55108, USA
| | | | | |
Collapse
|