1
|
Suganthan B, Rogers AM, Crippen CS, Asadi H, Zolti O, Szymanski CM, Ramasamy RP. A Bacteriophage Protein-Based Impedimetric Electrochemical Biosensor for the Detection of Campylobacter jejuni. BIOSENSORS 2024; 14:402. [PMID: 39194631 DOI: 10.3390/bios14080402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Campylobacter jejuni is a common foodborne pathogen found in poultry that can cause severe life-threatening illnesses in humans. It is important to detect this pathogen in food to manage foodborne outbreaks. This study reports a novel impedimetric phage protein-based biosensor to detect C. jejuni NCTC 11168 at 100 CFU/mL concentrations using a genetically engineered receptor-binding phage protein, FlaGrab, as a bioreceptor. The electrochemical impedance spectroscopy (EIS) technique was employed to measure changes in resistance upon interaction with C. jejuni. The sensitivity of the phage protein-immobilized electrode was assessed using the various concentrations of C. jejuni NCTC 11168 ranging from 102-109 colony forming units (CFU)/mL). The change transfer resistance of the biosensor increased with increasing numbers of C. jejuni NCTC 11168 cells. The detection limit was determined to be approximately 103 CFU/mL in the buffer and 102 CFU/mL in the ex vivo samples. Salmonella enterica subsp. enterica serotype Typhimurium-291RH and Listeria monocytogenes Scott A were used as nontarget bacterial cells to assess the specificity of the developed biosensor. Results showed that the developed biosensor was highly specific toward the target C. jejuni NCTC 11168, as no signal was observed for the nontarget bacterial cells.
Collapse
Affiliation(s)
- Baviththira Suganthan
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Ashley M Rogers
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Clay S Crippen
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Hamid Asadi
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Or Zolti
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Christine M Szymanski
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Ramaraja P Ramasamy
- Nano Electrochemistry Laboratory, School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Paredes-López DM, Robles-Huaynate RA, Soto-Vásquez MR, Perales-Camacho RA, Morales-Cauti SM, Beteta-Blas X, Aldava-Pardave U. Modulation of Gut Microbiota, and Morphometry, Blood Profiles and performance of Broiler Chickens Supplemented with Piper aduncum, Morinda citrifolia, and Artocarpus altilis leaves Ethanolic Extracts. Front Vet Sci 2024; 11:1286152. [PMID: 38511194 PMCID: PMC10953691 DOI: 10.3389/fvets.2024.1286152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Bioactive plants such as P. aduncum, M. citrifolia, and A. altilis might improve intestinal health as an alternative to antibiotic growth promoters. The objective of this study was to determine the effect of the ethanolic extracts (EEs) of these plants on the intestinal health of broiler chickens. Cobb 500 chickens (n = 352) were distributed into eight treatments with four replicates and 11 chickens each. T1 received a base diet, and T2 received a base diet with 0.005% zinc bacitracin. T3, T5, and T7 were supplemented with 0.005% of P. aduncum, M. citrifolia, and A. altilis EE in the diet while T4, T6, and T8 with 0.01% of the extract. The EEs were supplemented with drinking water from 1 to 26 days of age. The following parameters were evaluated: hematological profiles at 28 days of age, blood metabolites profiles at 14, 21, and 28 days; Escherichia coli, Staphylococcus aureus, and Lactobacillus sp. abundance in the ileum mucosa and content at 21 and 28 days, and histomorphometry of the duodenum, jejunum, and ileum mucosa at 14, 21, and 28 d. Final weight (FW), weight gain (WG), feed intake (FI), and feed conversion rate (FCR) were evaluated at seven, 21, and 33 days of age. M. citrifolia and A. altilis EE at 0.01% increased blood glucose levels at 21 and 28 days of age, respectively, and P. aduncum and M. citrifolia EE at 0.01% increased triglycerides at 28 days of age; in addition, this EE did not have any effect on the AST and ALT profiles. The depths of the Lieberkühn crypts and the villi length to the crypt's depth ratio increased with age on supplementation with 0.01% M. citrifolia and A. altilis EE at 21 days of age (p < 0.05). In addition, the depth of the crypts increased at 28 days of age (p < 0.05) in chickens supplemented with 0.01% A. altilis EE. The 0.01% M. citrifolia EE in diet decreased in the Staphylococcus aureus population in the ileal microbiota (p < 0.05). The FW and WG during the fattening and in the three stages overall increased, and the FCR decreased; however, the FI and the carcass yield did not change in the broiler chickens supplemented with 0.01% M. citrifolia EE (p < 0.05). Conclusively, the M. citrifolia EE at 0.01% of the diet improved intestinal health and thus the performance indices of the broiler chickens and did not have a detrimental effect on any of the parameters evaluated, so it is postulated as a potential alternative to AGP in poultry.
Collapse
Affiliation(s)
| | - R. A. Robles-Huaynate
- Department of Animal Science, Universidad Nacional Agraria de la Selva, Tingo María, Peru
| | | | - Rosa Amelia Perales-Camacho
- Department of Animal and Public Health, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Siever Miguel Morales-Cauti
- Department of Animal and Public Health, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Xiomara Beteta-Blas
- Posgraduate School, Universidad Nacional Agraria de la Selva, Tingo María, Peru
| | | |
Collapse
|
3
|
Ribeiro J, Silva V, Monteiro A, Vieira-Pinto M, Igrejas G, Reis FS, Barros L, Poeta P. Antibiotic Resistance among Gastrointestinal Bacteria in Broilers: A Review Focused on Enterococcus spp. and Escherichia coli. Animals (Basel) 2023; 13:1362. [PMID: 37106925 PMCID: PMC10135345 DOI: 10.3390/ani13081362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Chickens can acquire bacteria at different stages, and bacterial diversity can occur due to production practices, diet, and environment. The changes in consumer trends have led to increased animal production, and chicken meat is one of the most consumed meats. To ensure high levels of production, antimicrobials have been used in livestock for therapeutic purposes, disease prevention, and growth promotion, contributing to the development of antimicrobial resistance across the resident microbiota. Enterococcus spp. and Escherichia coli are normal inhabitants of the gastrointestinal microbiota of chickens that can develop strains capable of causing a wide range of diseases, i.e., opportunistic pathogens. Enterococcus spp. isolated from broilers have shown resistance to at least seven classes of antibiotics, while E. coli have shown resistance to at least four. Furthermore, some clonal lineages, such as ST16, ST194, and ST195 in Enterococcus spp. and ST117 in E. coli, have been identified in humans and animals. These data suggest that consuming contaminated animal-source food, direct contact with animals, or environmental exposure can lead to the transmission of antimicrobial-resistant bacteria. Therefore, this review focused on Enterococcus spp. and E. coli from the broiler industry to better understand how antibiotic-resistant strains have emerged, which antibiotic-resistant genes are most common, what clonal lineages are shared between broilers and humans, and their impact through a One Health perspective.
Collapse
Affiliation(s)
- Jessica Ribeiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Andreia Monteiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Madalena Vieira-Pinto
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Filipa S. Reis
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
4
|
Effect of feeding a diet containing housefly (Musca domestica) larvae extracts on growth performance in broiler chickens. CZECH JOURNAL OF ANIMAL SCIENCE 2023. [DOI: 10.17221/168/2022-cjas] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
5
|
Lee MD, Pedroso AA, Maurer JJ. Bacterial composition of a competitive exclusion product and its correlation with product efficacy at reducing Salmonella in poultry. Front Physiol 2023; 13:1043383. [PMID: 36699689 PMCID: PMC9868637 DOI: 10.3389/fphys.2022.1043383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
The mature intestinal microbiome is a formidable barrier to pathogen colonization. Day-old chicks seeded with cecal contents of adult hens are resistant to colonization with Salmonella, the basis of competitive exclusion. Competitive exclusion products can include individual microbes but are commonly undefined intestinal communities taken from adult animals and in commercial production is amplified in fermentator and sold commercially in freeze dried lots. While superior to single and multiple species probiotics, reducing Salmonella colonization by multiple logs, undefined products have limited acceptance because of their uncharacterized status. In this study, the bacterial composition of the master stock, preproduction seed stocks and commercial lots of a poultry competitive exclusion product, was defined by 16S rRNA sequence analysis, targeting the 16S rRNA variable region (V1-V3). The samples contained a diversity of genera (22-52 distinct genera) however, the commercial lots displayed less diversity compared to the seeds and the master stock. Community composition varied between seeds and the master stock and was not a good predictor of potency, in terms of log10 reduction in Salmonella abundance. While there was significant correlation in composition between seeds and their commercial lots, this too was a not a good predictor of potency. There was linear correlation between unclassified Actinobacteria, Peptococcus, and unclassified Erysipelotrichaceae, and Salmonella abundance (r 2 > .75) for commercial seeds. However, upon review of the literature, these three genera were not consistently observed across studies or between trials that examined the correlation between intestinal community composition and Salmonella prevalence or abundance.
Collapse
Affiliation(s)
- Margie D. Lee
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States,*Correspondence: Margie D. Lee,
| | - Adriana A. Pedroso
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States
| | - John J. Maurer
- Poultry Diagnostic and Research Center, College of Veterinary Medicine, The University of Georgia, Athens, GA, United States,School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
6
|
Hankel J, Kittler S, Chuppava B, Galvez E, Strowig T, Becker A, von Köckritz-Blickwede M, Plötz M, Visscher C. Luminal and mucosa-associated caecal microbiota of chickens after experimental Campylobacter jejuni infection in the absence of Campylobacter-specific phages of group II and III. Microb Genom 2022; 8. [PMID: 36190827 DOI: 10.1099/mgen.0.000874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Campylobacteriosis is still the most commonly reported zoonosis in the European Union causing gastrointestinal disease in humans. One of the most common sources for these food-borne infections is broiler meat. Interactions between Campylobacter (C.) jejuni and the intestinal microbiota might influence Campylobacter colonization in chickens. The aim of the present study was to gain further knowledge about exclusive interactions of the host microbiota with C. jejuni in Campylobacter-specific phage-free chickens under standardized conditions and special biosafety precautions.Therefore, 12 artificially infected (C. jejuni inoculum with a challenge dose of 7.64 log10 c.f.u.) and 12 control chickens of the breed Ross 308 were kept under special biosafety measures in an animal facility. At day 42 of life, microbiota studies were performed on samples of caecal digesta and mucus. No Campylobacter-specific phages were detected by real-time PCR analysis of caecal digesta of control or artificially infected chickens. Amplification of the 16S rRNA gene was performed within the hypervariable region V4 and subsequently sequenced with Illumina MiSeq platform. R (version 4.0.2) was used to compare the microbiota between C. jejuni-negative and C. jejuni-positive chickens. The factor chickens' infection status contributed significantly to the differences in microbial composition of mucosal samples, explaining 10.6 % of the microbiota variation (P=0.007) and in digesta samples, explaining 9.69 % of the microbiota variation (P=0.015). The strongest difference between C. jejuni-non-infected and C. jejuni-infected birds was observed for the family Peptococcaceae whose presence in C. jejuni-infected birds could not be demonstrated. Further, several genera of the family Ruminococcaceae appeared to be depressed in its abundance due to Campylobacter infection. A negative correlation was found between Christensenellaceae R-7 group and Campylobacter in C. jejuni-colonised chickens, both genera potentially competing for substrate. This makes Christensenellaceae R-7 group highly interesting for further studies that aim to find control options for Campylobacter infections and assess the relevance of this finding for chicken health and Campylobacter colonization.
Collapse
Affiliation(s)
- Julia Hankel
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D 30173 Hannover, Germany
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D 30173 Hannover, Germany
| | - Bussarakam Chuppava
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D 30173 Hannover, Germany
| | - Eric Galvez
- Helmholtz Center for Infection Research, Inhoffenstraße 7, D 38124 Braunschweig, Germany.,Hannover Medical School, Carl-Neuberg-Straße 1, D 30625 Hannover, Germany
| | - Till Strowig
- Helmholtz Center for Infection Research, Inhoffenstraße 7, D 38124 Braunschweig, Germany.,Hannover Medical School, Carl-Neuberg-Straße 1, D 30625 Hannover, Germany
| | - André Becker
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D 30173 Hannover, Germany
| | - Maren von Köckritz-Blickwede
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, D 30559 Hannover, Germany
| | - Madeleine Plötz
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D 30173 Hannover, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D 30173 Hannover, Germany
| |
Collapse
|
7
|
Lee MD, Ipharraguerre IR, Arsenault RJ, Lyte M, Lyte JM, Humphrey B, Angel R, Korver DR. Informal nutrition symposium: leveraging the microbiome (and the metabolome) for poultry production. Poult Sci 2022; 101:101588. [PMID: 34933222 PMCID: PMC8703059 DOI: 10.1016/j.psj.2021.101588] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 01/07/2023] Open
Abstract
Knowledge of gut microbiology of poultry has advanced from a limited ability to culture relatively few microbial species, to attempting to understand the complex interactions between the bird and its microbiome. The Informal Nutrition Symposium 2021 was intended to help poultry scientists to make sense of the implications of the vast amounts of information being generated by researchers. This paper represents a compilation of the talks given at the symposium by leading international researchers in this field. The symposium began with an overview of the historical developments in the field of intestinal microbiology and microbiome research in poultry. Next, the systemic effects of the microbiome on health in the context of the interplay between the intestinal microbiota and the immune system were presented. Because the microbiome and the host communicate and influence each other, the novel field of kinomics (the study of protein phosphorylation) as used in the study of the poultry microbiome was discussed. Protein phosphorylation is a rapid response to the complex of signals among the microbiome, intestinal lumen metabolites, and the host. Then, a description of why an understanding of the role of microbial endocrinology in poultry production can lead to new understanding of the mechanisms by which the gut microbiota and the host can interact in defined mechanisms that ultimately determine health, pathogenesis of infectious disease, and behavior was given. Finally, a view forward was presented underscoring the importance of understanding mechanisms in microbiomes in other organ systems and other species. Additionally, the importance of the development of new -omics platforms and data management tools to more completely understand host microbiomes was stressed.
Collapse
Affiliation(s)
- Margie D Lee
- Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | | | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA 19716
| | - Mark Lyte
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Joshua M Lyte
- Poultry Production and Product Safety Research Unit, Agricultural Research Service, United States Department of Agriculture, Fayetteville, AR 72701, USA
| | | | - Roselina Angel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Douglas R Korver
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5.
| |
Collapse
|
8
|
Bindari YR, Gerber PF. Centennial Review: Factors affecting the chicken gastrointestinal microbial composition and their association with gut health and productive performance. Poult Sci 2021; 101:101612. [PMID: 34872745 PMCID: PMC8713025 DOI: 10.1016/j.psj.2021.101612] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Maintenance of "gut health" is considered a priority in commercial chicken farms, although a precise definition of what constitutes gut health and how to evaluate it is still lacking. In research settings, monitoring of gut microbiota has gained great attention as shifts in microbial community composition have been associated with gut health and productive performance. However, microbial signatures associated with productivity remain elusive because of the high variability of the microbiota of individual birds resulting in multiple and sometimes contradictory profiles associated with poor or high performance. The high costs associated with the testing and the need for the terminal sampling of a large number of birds for the collection of gut contents also make this tool of limited use in commercial settings. This review highlights the existing literature on the chicken digestive system and associated microbiota; factors affecting the gut microbiota and emergence of the major chicken enteric diseases coccidiosis and necrotic enteritis; methods to evaluate gut health and their association with performance; main issues in investigating chicken microbial populations; and the relationship of microbial profiles and production outcomes. Emphasis is given to emerging noninvasive and easy-to-collect sampling methods that could be used to monitor gut health and microbiological changes in commercial flocks.
Collapse
Affiliation(s)
- Yugal Raj Bindari
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Priscilla F Gerber
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia.
| |
Collapse
|
9
|
Aruwa CE, Pillay C, Nyaga MM, Sabiu S. Poultry gut health - microbiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies. J Anim Sci Biotechnol 2021; 12:119. [PMID: 34857055 PMCID: PMC8638651 DOI: 10.1186/s40104-021-00640-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract (GIT) health impacts animal productivity. The poultry microbiome has functions which range from protection against pathogens and nutrients production, to host immune system maturation. Fluctuations in the microbiome have also been linked to prevailing environmental conditions. Healthy poultry birds possess a natural resistance to infection. However, the exploration of environmental impacts and other relevant factors on poultry growth and health have been underplayed. Since good performance and growth rate are central to animal production, the host-microbiome relationship remains integral. Prior to the emergence of metagenomic techniques, conventional methods for poultry microbiome studies were used and were low-throughput and associated with insufficient genomic data and high cost of sequencing. Fortunately, the advent of high-throughput sequencing platforms have circumvented some of these shortfalls and paved the way for increased studies on the poultry gut microbiome diversity and functions. Here, we give an up-to-date review on the impact of varied environments on microbiome profile, as well as microbiome engineering and microbiome technology advancements. It is hoped that this paper will provide invaluable information that could guide and inspire further studies on the lingering pertinent questions about the poultry microbiome.
Collapse
Affiliation(s)
- Christiana Eleojo Aruwa
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Charlene Pillay
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Martin M Nyaga
- Next Generation Sequencing Unit, Division of Virology, Faculty of Heath Sciences, University of the Free State, Bloemfontein, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
10
|
Bindari YR, Moore RJ, Van TTH, Hilliar M, Wu SB, Walkden-Brown SW, Gerber PF. Microbial communities of poultry house dust, excreta and litter are partially representative of microbiota of chicken caecum and ileum. PLoS One 2021; 16:e0255633. [PMID: 34351989 PMCID: PMC8341621 DOI: 10.1371/journal.pone.0255633] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/20/2021] [Indexed: 12/26/2022] Open
Abstract
Traditional sampling methods for the study of poultry gut microbiota preclude longitudinal studies as they require euthanasia of birds for the collection of caecal and ileal contents. Some recent research has investigated alternative sampling methods to overcome this issue. The main goal of this study was to assess to what extent the microbial composition of non-invasive samples (excreta, litter and poultry dust) are representative of invasive samples (caecal and ileal contents). The microbiota of excreta, dust, litter, caecal and ileal contents (n = 110) was assessed using 16S ribosomal RNA gene amplicon sequencing. Of the operational taxonomic units (OTUs) detected in caecal contents, 99.7% were also detected in dust, 98.6% in litter and 100% in excreta. Of the OTUs detected in ileal contents, 99.8% were detected in dust, 99.3% in litter and 95.3% in excreta. Although the majority of the OTUs found in invasive samples were detected in non-invasive samples, the relative abundance of members of the microbial communities of these groups were different, as shown by beta diversity measures. Under the conditions of this study, correlation analysis showed that dust could be used as a proxy for ileal and caecal contents to detect the abundance of the phylum Firmicutes, and excreta as a proxy of caecal contents for the detection of Tenericutes. Similarly, litter could be used as a proxy for caecal contents to detect the abundance of Firmicutes and Tenericutes. However, none of the non-invasive samples could be used to infer the overall abundance of OTUs observed in invasive samples. In conclusion, non-invasive samples could be used to detect the presence and absence of the majority of the OTUs found in invasive samples, but could not accurately reflect the microbial community structure of invasive samples.
Collapse
Affiliation(s)
- Yugal R. Bindari
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Robert J. Moore
- School of Science, RMIT University, Bundoora West Campus, Bundoora, Victoria, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora West Campus, Bundoora, Victoria, Australia
| | - Matthew Hilliar
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Shu-Biao Wu
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Stephen W. Walkden-Brown
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| | - Priscilla F. Gerber
- Animal Science, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
11
|
Han X, Liu H, Hu L, Zhao N, Xu S, Lin Z, Chen Y. Bacterial Community Characteristics in the Gastrointestinal Tract of Yak ( Bos grunniens) Fully Grazed on Pasture of the Qinghai-Tibetan Plateau of China. Animals (Basel) 2021; 11:ani11082243. [PMID: 34438701 PMCID: PMC8388508 DOI: 10.3390/ani11082243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The Qinghai–Tibetan plateau is considered as the third Pole of the world and is characterized by low oxygen, high altitude, extreme cold weather and strong ultraviolet radiation. Yak, as the main domestic animals raised on the plateau, play various roles in local herdsmen’s lives by supplying necessities such as meat, milk and fuel. Yak are adapted to the harsh environment on the plateau; microbiota in gut equip the hosts with special abilities including adaptability, as illustrated by numerous research projects. Accordingly, the microbes in the gastrointestinal tract of yak must be characteristically profiled as a strategy to adapt to the environment. However, little is known about the microbial community in whole tract of yak; almost all of reported researches focused on rumen. Therefore, in the current study the bacterial community in the gastrointestinal tract of yak was explored using 16S rDNA amplicon sequencing technology, and the community profiling characteristic in each section was clearly elucidated. Abstract In the current research, samples of yak gastrointestinal tracts (GITs) were used to profile the bacterial compositional characteristics using high through-put sequencing technology of 16S RNA amplicon. A total of 6959 OTUs was obtained from 20,799,614 effective tags, among which 751 OTUs were shared by ten sections. A total of 16 known phyla were obtained in all samples—the most abundant phyla were Firmicutes (34.58%), Bacteroidetes (33.96%) and Verrucomicrobia (11.70%). At the genus level, a total of 66 genera were obtained—Rikenellaceae_RC9_gut_group (7.24%), Akkermansia (6.32%) and Ruminococcaceae_UCG-005 (6.14%) were the most abundant. Species of Observed (Sob), Shannon and Chao values of the Stomach were the greatest, followed by the large intestine, while small intestine had the lowest diversity (p < 0.05). Bacteroidete were more abundant in sections from rumen to duodenum; while Firmicutes were the most abundant in sections from jejunum. ABC transporters (7.82%), Aminoacyl-tRNA biosynthesis (4.85%) and Purine metabolism (3.77%) were the most abundant level-3 pathways in all samples. The results of associated correlation analysis indicated that rectum samples might be used as an estimator of rumen bacterial communities and fermentation. The results of this research enrich the current knowledge about the unique animals of the QTP and extend our insight into GITs microecology of various animals.
Collapse
Affiliation(s)
- Xueping Han
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Technology Extension Service of Animal Husbandry of Qinghai, Xining 810001, China; (Z.L.); (Y.C.)
- Correspondence: (X.H.); (S.X.)
| | - Hongjin Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linyong Hu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (H.L.); (L.H.); (N.Z.)
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (X.H.); (S.X.)
| | - Zhijia Lin
- Technology Extension Service of Animal Husbandry of Qinghai, Xining 810001, China; (Z.L.); (Y.C.)
| | - Yongwei Chen
- Technology Extension Service of Animal Husbandry of Qinghai, Xining 810001, China; (Z.L.); (Y.C.)
| |
Collapse
|
12
|
Acetate differentially regulates IgA reactivity to commensal bacteria. Nature 2021; 595:560-564. [PMID: 34262176 DOI: 10.1038/s41586-021-03727-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/15/2021] [Indexed: 12/22/2022]
Abstract
The balance between bacterial colonization and its containment in the intestine is indispensable for the symbiotic relationship between humans and their bacteria. One component to maintain homeostasis at the mucosal surfaces is immunoglobulin A (IgA), the most abundant immunoglobulin in mammals1,2. Several studies have revealed important characteristics of poly-reactive IgA3,4, which is produced naturally without commensal bacteria. Considering the dynamic changes within the gut environment, however, it remains uncertain how the commensal-reactive IgA pool is shaped and how such IgA affects the microbial community. Here we show that acetate-one of the major gut microbial metabolites-not only increases the production of IgA in the colon, but also alters the capacity of the IgA pool to bind to specific microorganisms including Enterobacterales. Induction of commensal-reactive IgA and changes in the IgA repertoire by acetate were observed in mice monocolonized with Escherichia coli, which belongs to Enterobacterales, but not with the major commensal Bacteroides thetaiotaomicron, which suggests that acetate directs selective IgA binding to certain microorganisms. Mechanistically, acetate orchestrated the interactions between epithelial and immune cells, induced microbially stimulated CD4 T cells to support T-cell-dependent IgA production and, as a consequence, altered the localization of these bacteria within the colon. Collectively, we identified a role for gut microbial metabolites in the regulation of differential IgA production to maintain mucosal homeostasis.
Collapse
|
13
|
Pedroso AA, Lee MD, Maurer JJ. Strength Lies in Diversity: How Community Diversity Limits Salmonella Abundance in the Chicken Intestine. Front Microbiol 2021; 12:694215. [PMID: 34211451 PMCID: PMC8239400 DOI: 10.3389/fmicb.2021.694215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The transfer of the intestinal microbiota from adult to juvenile animals reduces Salmonella prevalence and abundance. The mechanism behind this exclusion is unknown, however, certain member species may exclude or promote pathogen colonization and Salmonella abundance in chickens correlates with intestinal community composition. In this study, newly hatched chicks were colonized with Salmonella Typhimurium and 16S rRNA libraries were generated from the cecal bacterial community at 21, 28, 35, and 42 days of age. Salmonella was quantified by real-time PCR. Operational taxonomic units (OTUs) were assigned, and taxonomic assignments were made, using the Ribosomal Database Project. Bacterial diversity was inversely proportional to the Salmonella abundance in the chicken cecum (p < 0.01). In addition, cecal communities with no detectable Salmonella (exclusive community) displayed an increase in the abundance of OTUs related to specific clostridial families (Ruminococcaceae, Eubacteriaceae, and Oscillospiraceae), genera (Faecalibacterium and Turicibacter) and member species (Ethanoligenens harbinense, Oscillibacter ruminantium, and Faecalibacterium prausnitzii). For cecal communities with high Salmonella abundance (permissive community), there was a positive correlation with the presence of unclassified Lachnospiraceae, clostridial genera Blautia and clostridial species Roseburia hominis, Eubacterium biforme, and Robinsoniella peoriensis. These findings strongly support the link between the intestinal bacterial species diversity and the presence of specific member species with Salmonella abundance in the chicken ceca. Exclusive bacterial species could prove effective as direct-fed microbials for reducing Salmonella in poultry while permissive species could be used to predict which birds will be super-shedders.
Collapse
Affiliation(s)
- Adriana A Pedroso
- Department of Population Health, University of Georgia, Athens, GA, United States
| | - Margie D Lee
- Department of Population Health, University of Georgia, Athens, GA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - John J Maurer
- Department of Population Health, University of Georgia, Athens, GA, United States.,Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
14
|
Characterization of Cecal Smooth Muscle Contraction in Laying Hens. Vet Sci 2021; 8:vetsci8060091. [PMID: 34073160 PMCID: PMC8226868 DOI: 10.3390/vetsci8060091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/24/2022] Open
Abstract
The ceca play an important role in the physiology of the gastrointestinal tract in chickens. Nevertheless, there is a gap of knowledge regarding the functionality of the ceca in poultry, especially with respect to physiological cecal smooth muscle contraction. The aim of the current study is the ex vivo characterization of cecal smooth muscle contraction in laying hens. Muscle strips of circular cecal smooth muscle from eleven hens are prepared to investigate their contraction ex vivo. Contraction is detected using an isometric force transducer, determining its frequency, height and intensity. Spontaneous contraction of the chicken cecal smooth muscle and the influence of buffers (calcium-free buffer and potassium-enriched buffer) and drugs (carbachol, nitroprusside, isoprenaline and Verapamil) affecting smooth muscle contraction at different levels are characterized. A decrease in smooth muscle contraction is observed when a calcium-free buffer is used. Carbachol causes an increase in smooth muscle contraction, whereas atropine inhibits contraction. Nitroprusside, isoprenaline and Verapamil result in a depression of smooth muscle contraction. In conclusion, the present results confirm a similar contraction behavior of cecal smooth muscles in laying hens as shown previously in other species.
Collapse
|
15
|
Yu C, Zhou C, Tan Z, Cai X, Wang S. Effects of Enteromorpha polysaccharide dietary addition on the diversity and relative abundance of ileum flora in laying hens. Microb Pathog 2021; 158:105004. [PMID: 34044050 DOI: 10.1016/j.micpath.2021.105004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
This experiment explored the effects of different levels of Enteromorpha polysaccharide dietary addition on the intestinal flora structure in laying hens. A total of 300 Hy-line brown laying hens aged 280 days old were selected according to the principle of equal weight and egg production rate. Group 1 was the blank control group fed with basic diet, Group 2 was the antibiotic control group supplemented with bacitracin zinc (0.005%) and basic diet, and Groups 3-5 were the experimental groups that received 0.1%, 0.2%, and 0.4% Enteromorpha polysaccharides in their diets, respectively. Four replicates per group and 15 repeats per replicate were prepared. The pretrial period was 10 days, and the normal trial period was 42 days. The ileum contents of laying hens were collected aseptically toward the end of the test to detect the diversity and relative abundance of the flora. Results were as follows. (1) Bacterial abundance (ACE and Chao1) and diversity (Simpson and Shannon) indexes were not significantly different between the control and test groups (P > 0.05). (2) Compared with that in group 1, the relative abundance of Firmicutes in groups 4 and 5 significantly increased by 14.13% (P < 0.05) and 13.70% (P < 0.05), respectively. The relative abundance of Bacilli in group 4 was significantly increased by 11.94% (P < 0.05) and 12.86% (P < 0.05) compared with those in groups 1 and 3, respectively. The relative abundance of Lactobacillales in group 4 was significantly increased by 27.02% (P < 0.05) compared with that in group 1. The relative abundance of Lactobacillaceae in group 4 was significantly increased by 22.92% (P < 0.05) and 11.4% (P < 0.05) compared with those in groups 1 and 3, respectively. The relative abundance of Lactobacillus in groups 4 and 5 was increased by 19.75% (P < 0.05) and 18.54% (P < 0.05), respectively. CONCLUSION: The dietary addition of 0.2% Enteromorpha polysaccharides can remarkably increase the relative abundance of Firmicutes phylum, Bacilli class, Lactobacillales order, Lactobacillaceae family, and Lactobacillus genus in the ileum of laying hens. This effect was equivalent to the action of bacitracin zinc and had no substantial influence on the diversity of ileum flora.
Collapse
Affiliation(s)
- Chao Yu
- Qingdao Agricultural University College of Animal Science and Technology, Shandong Qingdao 266109, China
| | - Chuanfeng Zhou
- Qingdao Agricultural University College of Animal Science and Technology, Shandong Qingdao 266109, China
| | - Zichao Tan
- Qingdao Agricultural University College of Animal Science and Technology, Shandong Qingdao 266109, China
| | - Xiulei Cai
- Qingdao Agricultural University College of Animal Science and Technology, Shandong Qingdao 266109, China
| | - Shubai Wang
- Qingdao Agricultural University College of Animal Science and Technology, Shandong Qingdao 266109, China.
| |
Collapse
|
16
|
Giacobbo FCN, Eyng C, Nunes RV, de Souza C, Teixeira LV, Pilla R, Suchodolski JS, Bortoluzzi C. Influence of Enzyme Supplementation in the Diets of Broiler Chickens Formulated with Different Corn Hybrids Dried at Various Temperatures. Animals (Basel) 2021; 11:ani11030643. [PMID: 33671022 PMCID: PMC7997286 DOI: 10.3390/ani11030643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 01/04/2023] Open
Abstract
Simple Summary The use of exogenous enzymes is a common nutrition strategy of the poultry industry. However, the influence of this additive on the microbiota and its efficiency when the diets are formulated with different hybrids of corn dried under high temperature are still unclear. From a practical point of view, evaluating the mode of action of enzymes in different situations is crucial to ensure competitive performance results with low production costs. The current study confirmed that regardless of corn hybrids and drying temperature, dietary supplementation with amylase, xylanase, and protease was beneficial for intestinal morphology and allowed a modulation of the cecal microbiota. This influence may have changed the digestive process and use of nutrients by the broilers, resulting in better animal performance. Abstract We evaluated the influence of enzymatic supplementation on the growth performance and cecal microbiota of broilers. A total of 2160 1-day-old male chicks were used in a 3 × 2 × 2 factorial arrangement (three corn hybrids, two drying temperatures −80 and 110 °C, with or without the inclusion of an enzymatic blend (amylase, xylanase, and protease) (20 birds/pen, n = 9). For all performance and digestibility parameters, we observed, in general, isolated effects of the corn hybrids and drying temperature. Birds that received the enzymatic blend in the diet showed better weight gain from 1 to 21 days (d) and better digestibility coefficients of nutrients at 42 d. Birds fed diets with corn dried at 80 °C showed a better feed conversion ratio from 1 to 42 d. At 21 d of age, enzymatic supplementation had positive effects on jejunum morphology. Enzyme supplementation increased the abundance of the phylum Tenericutes, class Bacilli and Mollicutes, reduced Clostridia, and increased the abundances of the families Lactobacillaceae, Anaeroplasmataceae, and O_RF39;F. In conclusion, the addition of amylase, xylanase, and protease led to a better nutrient digestibility, performance, and intestinal morphology. In addition, enzyme supplementation changed the diversity, composition, and predicted function of the cecal microbiota at d 21.
Collapse
Affiliation(s)
- Franciele C. N. Giacobbo
- Ciências Agrárias, Universidade Estadual do Oeste do Paraná, 85960-000 Mal. C. Rondon, Brazil; (F.C.N.G.); (R.V.N.); (C.d.S.)
| | - Cinthia Eyng
- Ciências Agrárias, Universidade Estadual do Oeste do Paraná, 85960-000 Mal. C. Rondon, Brazil; (F.C.N.G.); (R.V.N.); (C.d.S.)
- Correspondence: ; Tel.: +55-45-99800-0893
| | - Ricardo V. Nunes
- Ciências Agrárias, Universidade Estadual do Oeste do Paraná, 85960-000 Mal. C. Rondon, Brazil; (F.C.N.G.); (R.V.N.); (C.d.S.)
| | - Cleison de Souza
- Ciências Agrárias, Universidade Estadual do Oeste do Paraná, 85960-000 Mal. C. Rondon, Brazil; (F.C.N.G.); (R.V.N.); (C.d.S.)
| | | | - Rachel Pilla
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (R.P.); (J.S.S.)
| | - Jan S. Suchodolski
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (R.P.); (J.S.S.)
| | - Cristiano Bortoluzzi
- Department of Poultry Science, Texas A&M University, College Station, TX 77845, USA;
| |
Collapse
|
17
|
Evaluation of Commercial Disinfectants against Staphylococcus lentus and Micrococcus spp. of Poultry Origin. Vet Med Int 2020; 2020:8811540. [PMID: 33062244 PMCID: PMC7533021 DOI: 10.1155/2020/8811540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Effective sanitation strategies for poultry farms require an appropriate selection of the disinfectant based on the contaminants present and their sensitivity to the disinfectants. Aim The current study investigated the prevalence of streptococci/micrococci in poultry farms of Bangladesh and the efficacy of commercial disinfectants (Savlon, Lysol, Quatovet, Virkon S, and Virocid) along with alcohol against these pathogens to adopt appropriate strategies. Materials and Methods Conventional approaches and the 16S rRNA gene sequencing were performed to confirm the isolates at the species level along with microtiter biofilm assay to determine their biofilm-forming ability. Efficacy of the disinfectants was tested against those isolates using agar well diffusion and minimum inhibitory concentration (MIC) test by broth dilution method using different dilutions of the disinfectants. Results Staphylococcus lentus (n = 32), Micrococcus luteus (n = 7), and Micrococcus aloeverae (n = 4) were confirmed among 102 presumptively screened streptococci/micrococci isolates from 43 samples. No single disinfectant showed equally high efficacy against all three bacterial species in agar well diffusion test, although Virocid showed the lowest MIC against all three of them. Lysol was least effective among the commercial disinfectants by both MIC and diffusion method, although each commercial disinfectant was more effective than alcohol. Considering both the average diameter of the inhibition zones and the MIC values, efficacy can be interpreted as Virocid > Quatovet > Savlon > Virkon S > Lysol. Although the efficacy decreased with decreasing concentration, the disinfectants retained a satisfactory level of efficacy at 50% concentration. Among test pathogens, M. aloeverae was the most sensitive to the disinfectants and the weakest biofilm producers, whereas 4/14 S. lentus and 1/5 M. luteus were strong biofilm producers, which may cause more reduction in the efficacy in environmental conditions. Conclusion As no ideal disinfectant was found in the study, the efficacy of the disinfectants should be routinely evaluated and validated to ensure the sanitation standards in the poultry sector.
Collapse
|
18
|
Meftaul IM, Venkateswarlu K, Dharmarajan R, Annamalai P, Asaduzzaman M, Parven A, Megharaj M. Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114372. [PMID: 32203845 DOI: 10.1016/j.envpol.2020.114372] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/09/2020] [Accepted: 03/12/2020] [Indexed: 05/27/2023]
Abstract
Glyphosate, introduced by Monsanto Company under the commercial name Roundup in 1974, became the extensively used herbicide worldwide in the last few decades. Glyphosate has excellent properties of fast sorption in soil, biodegradation and less toxicity to nontarget organisms. However, glyphosate has been reported to increase the risk of cancer, endocrine-disruption, celiac disease, autism, effect on erythrocytes, leaky-gut syndrome, etc. The reclassification of glyphosate in 2015 as 'probably carcinogenic' under Group 2A by the International Agency for Research on Cancer has been broadly circulated by anti-chemical and environmental advocacy groups claiming for restricted use or ban of glyphosate. In contrast, some comprehensive epidemiological studies involving farmers with long-time exposure to glyphosate in USA and elsewhere coupled with available toxicological data showed no correlation with any kind of carcinogenic or genotoxic threat to humans. Moreover, several investigations confirmed that the surfactant, polyethoxylated tallow amine (POEA), contained in the formulations of glyphosate like Roundup, is responsible for the established adverse impacts on human and ecological health. Subsequent to the evolution of genetically modified glyphosate-resistant crops and the extensive use of glyphosate over the last 45 years, about 38 weed species developed resistance to this herbicide. Consequently, its use in the recent years has been either restricted or banned in 20 countries. This critical review on glyphosate provides an overview of its behaviour, fate, detrimental impacts on ecological and human health, and the development of resistance in weeds and pathogens. Thus, the ultimate objective is to help the authorities and agencies concerned in resolving the existing controversies and in providing the necessary regulations for safer use of the herbicide. In our opinion, glyphosate can be judiciously used in agriculture with the inclusion of safer surfactants in commercial formulations sine POEA, which is toxic by itself is likely to increase the toxicity of glyphosate.
Collapse
Affiliation(s)
- Islam Md Meftaul
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, India
| | - Rajarathnam Dharmarajan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Prasath Annamalai
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Md Asaduzzaman
- NSW Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW 2650, Australia
| | - Aney Parven
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Agricultural Chemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
19
|
Bereded NK, Curto M, Domig KJ, Abebe GB, Fanta SW, Waidbacher H, Meimberg H. Metabarcoding Analyses of Gut Microbiota of Nile Tilapia ( Oreochromis niloticus) from Lake Awassa and Lake Chamo, Ethiopia. Microorganisms 2020; 8:microorganisms8071040. [PMID: 32668725 PMCID: PMC7409238 DOI: 10.3390/microorganisms8071040] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 11/16/2022] Open
Abstract
The Nile tilapia (Oreochromis niloticus) gut harbors a diverse microbial community; however, their variation across gut regions, lumen and mucosa is not fully elucidated. In this study, gut microbiota of all samples across gut regions and sample types (luminal content and mucosa) were analyzed and compared from two Ethiopian lakes. Microbiota were characterized using 16S rRNA Illumina MiSeq platform sequencing. A total of 2061 operational taxonomic units (OTUs) were obtained and the results indicated that Nile tilapia from Lake Chamo harbored a much more diversified gut microbiota than Lake Awassa. In addition, the gut microbiota diversity varied significantly across the gut region based on the Chao1, Shannon and Simpson index. The microbiome analyses of all samples in the midgut region showed significantly higher values for alpha diversity (Chao 1, Shannon and Simpson). Beta diversity analysis revealed a clear separation of samples according to sampling areas and gut regions. The most abundant genera were Clostridium_sensu_stricto and Clostridium_XI genera across all samples. Between the two sampling lakes, two phyla, Phylum Fusobacteria and Cyanobacteria, were found to be significantly different. On the other hand, six phyla (Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria and Cyanobacteria) were significantly different across gut regions. In this study, we found that all samples shared a large core microbiota, comprising a relatively large number of OTUs, which was dominated by Proteobacteria, Firmicutes, Cyanobacteria, Fusobacteria and Actinobacteria. This study has established the bases for future large-scale investigations of gut microbiota of fishes in Ethiopian lakes.
Collapse
Affiliation(s)
- Negash Kabtimer Bereded
- Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), 1090 Vienna, Austria;
- Department of Biology, Bahir Dar University, Bahir Dar 6000, Ethiopia;
- Correspondence:
| | - Manuel Curto
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), 1090 Vienna, Austria; (M.C.); (H.M.)
- MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Konrad J. Domig
- Institute of Food Science, University of Natural Resources and Life Sciences Vienna (BOKU), 1090 Vienna, Austria;
| | | | - Solomon Workneh Fanta
- School of Food and Chemical Engineering, Bahir Dar University, Bahir Dar 6000, Ethiopia;
| | - Herwig Waidbacher
- Institute for Hydrobiology and Aquatic Ecosystems Management, University of Natural Resources and Life Sciences Vienna (BOKU), 1090 Vienna, Austria;
| | - Harald Meimberg
- Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences Vienna (BOKU), 1090 Vienna, Austria; (M.C.); (H.M.)
| |
Collapse
|
20
|
Akinyemi FT, Ding J, Zhou H, Xu K, He C, Han C, Zheng Y, Luo H, Yang K, Gu C, Huang Q, Meng H. Dynamic distribution of gut microbiota during embryonic development in chicken. Poult Sci 2020; 99:5079-5090. [PMID: 32988546 PMCID: PMC7598139 DOI: 10.1016/j.psj.2020.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
The gut microbiota is a complex ecological community and widely recognized in many aspects of research, but little is known on the relation between gut microbiota and embryonic development in chickens. The aim of this study was to explore the dynamic distribution of gut microbiota in chickens' embryos during stages of developments (chicken embryos that had incubated until day 3 [E3], day 12 [E12], and day 19 [E19]). Here, 16S rRNA gene sequencing was performed on the gut microbiota in chicken embryos across different developmental stages. Twenty-one phyla and 601 genera were present in chicken embryos, and 96 genera such as Ochrobactrum, Phyllobacterium, and Amycolatopsis were the core microbiota in the 3 stages of development. Second, 94 genera of microbes were found to change significantly between E3 and E12, and 143 genera significantly differed between E12 and E19 in chicken embryos (P < 0.05). Ochrobactrum and Amycolatopsis decreased with growth changes: E3 (30.4%), E12 (25.1%), and E19 (13.6%) and E3 (11.5%), E12 (7.4%), and E19 (5.6%), respectively. Contrarily, Phyllobacterium increased to 47.9% at E19, indicating the growing trend of microbial diversity among the embryos' development. Moreover, the principal component analysis showed a high level of similarities between E3 and E12 compared with E19, whereas the alpha analysis showed more diversity of gut microbiota at E19. Furthermore, the functional predictions showed that metabolic pathways such as energy metabolism and genetic information processing were significantly enriched on day 3 and day 12 in our study, suggesting their strong influence on growth, development, and immunity of chicken embryos. Our findings provide insights into the understanding of dynamic shifts of gut microbiota during chicken embryonic growth.
Collapse
Affiliation(s)
- Fisayo T Akinyemi
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinmei Ding
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Zhou
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ke Xu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuan He
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengxiao Han
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuming Zheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huaixi Luo
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaixuan Yang
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Caiju Gu
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Qizhong Huang
- Animal Husbandry and Veterinary Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - He Meng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
21
|
Al-Marzooqi W, Al-Maskari ZA, Al-Kharousi K, Johnson EH, El Tahir Y. Diversity of Intestinal Bacterial Microbiota of Indigenous and Commercial Strains of Chickens Using 16S rDNA-Based Analysis. Animals (Basel) 2020; 10:E391. [PMID: 32121097 PMCID: PMC7143395 DOI: 10.3390/ani10030391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 11/25/2022] Open
Abstract
The objective of this study was to assess the relative abundance of bacteria microflora in different segments of the gastrointestinal tract (duodenum, jejunum, ilium, and cecum) of indigenous (local Omani) and commercial (Cobb 500) chicken strains. Birds were raised under an intensive management system fed a nonmedicated corn-soybean meal diet from Day 0-35 days of age. Using 16S rDNA-based analysis the study showed that in both breeds of birds Bacilli were the most abundant class of bacteria in the duodenum, jejunum, and ileum. Local Omani chickens had significantly higher numbers of Clostridia at most time periods. Actinobacteria were found in higher numbers and reached 54.9% of the bacteria in the jejunum at Day 35 in Cobb 500 versus only 5.42% in the Omani chickens. The bacterial microbiota relative abundance differed significantly (p < 0.05) across different intestinal segments of the two strains, suggesting that each region developed its own bacterial community and the relative abundances of these were quite different.
Collapse
Affiliation(s)
- Waleed Al-Marzooqi
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khoud 123, Oman (K.A.-K.); (E.H.J.); (Y.E.T.)
| | - Zeyana A.S. Al-Maskari
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khoud 123, Oman (K.A.-K.); (E.H.J.); (Y.E.T.)
| | - Kaadhia Al-Kharousi
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khoud 123, Oman (K.A.-K.); (E.H.J.); (Y.E.T.)
| | - Eugene H. Johnson
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khoud 123, Oman (K.A.-K.); (E.H.J.); (Y.E.T.)
| | - Yasmin El Tahir
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khoud 123, Oman (K.A.-K.); (E.H.J.); (Y.E.T.)
| |
Collapse
|
22
|
Feye KM, Baxter MFA, Tellez-Isaias G, Kogut MH, Ricke SC. Influential factors on the composition of the conventionally raised broiler gastrointestinal microbiomes. Poult Sci 2020; 99:653-659. [PMID: 32029151 PMCID: PMC7587711 DOI: 10.1016/j.psj.2019.12.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The microbiome has entered the vernacular of the consumer as well as broiler production and is, therefore, becoming increasingly important to poultry producers to understand. The microbiome is, by definition, compositional and relates to how the microbiological organisms within the gut inhabit that ecological niche. The gut is diverse, flexible, and data acquired requires a greater understanding of the host-microbiome axes, as well as advanced bioinformatics and ecology. There are numerous microbial populations that define the gut microbiome; however, there are even more effects that can influence its composition. As management practices vary between producers, documenting these influences is an essential component of beginning to understand the microbiome. This review targets broiler production and concatenates the currently understood compositional ecology of the broiler gastrointestinal tract microbiome as well as its influences.
Collapse
Affiliation(s)
- K M Feye
- Southern Plains Agricultural Research Service, ARS-USDA, College Station, TX 77845, USA
| | - M F A Baxter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - G Tellez-Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| | - M H Kogut
- Southern Plains Agricultural Research Service, ARS-USDA, College Station, TX 77845, USA
| | - S C Ricke
- Department of Food Science, Center for Food Safety, University of Arkansas, Fayetteville, AR 72704, USA.
| |
Collapse
|
23
|
The Application of Pollen as a Functional Food and Feed Ingredient-The Present and Perspectives. Biomolecules 2020; 10:biom10010084. [PMID: 31948037 PMCID: PMC7023195 DOI: 10.3390/biom10010084] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022] Open
Abstract
Pollen is recognized as an excellent dietary supplement for human nutrition, which is why it can be found in different forms on the market (granules, capsules, tablets, pellets, and powders). But, the digestibility of pollen’s nutrients is strongly affected by the presence of a pollen shell, which can decrease the bioavailability of nutrients by 50% and more. Since consumers have become more aware of the benefits of a healthy diet and the necessity to improve pollen digestibility, different pollen-based functional food products have been developed and extensive studies were done to estimate the beneficial effects of pollen-based feed on animal growth, health, and rigor mortise stage. Considering the positive effects of pollen nutrients and phytometabolites on human and animal health, the aim of this paper was to give an overview of recent achievements in the application of pollen in the formulation of functional food and animal diets. Special attention was paid to the effects of pollen’s addition on the nutritional, functional, techno-functional, and sensory properties of the new formulated food products. Anti-nutritional properties of pollen were also discussed. This review points out the benefits of pollen addition to food and feed and the possible directions in the further development of functional food and feed for the wellbeing of everyone.
Collapse
|
24
|
Kumar H, Park W, Lim D, Srikanth K, Kim JM, Jia XZ, Han JL, Hanotte O, Park JE, Oyola SO. Whole metagenome sequencing of cecum microbiomes in Ethiopian indigenous chickens from two different altitudes reveals antibiotic resistance genes. Genomics 2019; 112:1988-1999. [PMID: 31759120 DOI: 10.1016/j.ygeno.2019.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/11/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022]
Abstract
We analyzed the whole genomes of cecum microbiomes of Ethiopian indigenous chickens from two distinct geographical zones: Afar (AF) district (Dulecha, 730 m above sea level) and Amhara (AM) district (Menz Gera Midir, 3300 m). Through metagenomic analysis we found that microbial populations were mainly dominated by Bacteroidetes and Firmicutes. We identified 2210 common genes in the two groups. LEfSe showed that the distribution of Coprobacter, Geobacter, Cronobacter, Alloprevotella, and Dysgonomonas were more abundant in AF than AM. Analyses using KEGG, eggNOG, and CAZy databases indicated that the pathways of metabolism, genetic information processing, environmental information processing, and cellular process were significantly enriched. Functional abundance was found to be associated with the nutrient absorption and microbial localization of indigenous chickens. We also investigated antibiotic resistant genes and found antibiotics like LSM, cephalosporin, and tetracycline were significantly more abundant in AF than AM.
Collapse
Affiliation(s)
- Himansu Kumar
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Republic of Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Republic of Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Republic of Korea
| | - Krishnamoorthy Srikanth
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Xin-Zheng Jia
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, PR China; International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, PR China; International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Olivier Hanotte
- International Livestock Research Institute (ILRI), Nairobi, Kenya; Faculty of Medicine & Health Sciences, University of Nottingham, UK; International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Republic of Korea.
| | - Samuel O Oyola
- International Livestock Research Institute (ILRI), Nairobi, Kenya.
| |
Collapse
|
25
|
Clinically important microbial diversity and its antibiotic resistance pattern towards various drugs. J Infect Public Health 2019; 12:783-788. [DOI: 10.1016/j.jiph.2019.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/03/2019] [Accepted: 08/20/2019] [Indexed: 10/26/2022] Open
|
26
|
Dong X, Hu B, Wan W, Gong Y, Feng Y. Effects of husbandry systems and Chinese indigenous chicken strain on cecum microbial diversity. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:1610-1616. [PMID: 32054216 PMCID: PMC7463085 DOI: 10.5713/ajas.19.0157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 10/10/2019] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study was to evaluate the effect of husbandry systems and strains on cecum microbial diversity of Jingyang chickens under the same dietary conditions. METHODS A total of 320 laying hens (body weight, 1.70±0.15 kg; 47 weeks old) were randomly allocated to one of the four treatments: i) Silver-feathered hens in enrichment cages (SEC) with an individual cage (70×60×75 cm), ii) Silver-feathered hens in free range (SFR) with the stocking density of 1.5 chickens per ten square meters, iii) Gold-feathered hens in enrichment cages (GEC), iv) Gold-feathered hens in free range (GFR). The experiment lasted 8 weeks and the cecum fecal samples were collected for 16S rDNA high throughput sequencing at the end of experiment. RESULTS i) The core microbiota was composed of Bacteroidetes (49% to 60%), Firmicutes (21% to 32%) and Proteobacteria (2% to 4%) at the phylum level. ii) The core bacteria were Bacteroides (26% to 31%), Rikenellaceae (9% to 16%), Parabacteroides (2% to 5%) and Lachnoclostridium (2% to 6%) at the genus level. iii) The indexes of operational taxonomic unit, Shannon, Simpson and observed species were all higher in SFR group than in SEC group while in GEC group than in GFR group, with SFR group showing the greatest diversity of cecum microorganisms among the four groups. iv) The clustering result was consistent with the strain classification, with a similar composition of cecum bacteria in the two strains of laying hens. CONCLUSION The core microbiota were not altered by husbandry systems or strains. The free-range system increased the diversity of cecal microbes only for silver feathered hens. However, the cecum microbial composition was similar in two strain treatments under the same dietary conditions.
Collapse
Affiliation(s)
- Xiuxue Dong
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bing Hu
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenlong Wan
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanzhang Gong
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanping Feng
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
27
|
Lan Y, Verstegen M, Tamminga S, Williams B. The role of the commensal gut microbial community in broiler chickens. WORLD POULTRY SCI J 2019. [DOI: 10.1079/wps200445] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Y. Lan
- Animal Nutrition Group, Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - M.W.A. Verstegen
- Animal Nutrition Group, Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - S. Tamminga
- Animal Nutrition Group, Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - B.A. Williams
- Animal Nutrition Group, Institute of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
28
|
Examination of the Expression of Immunity Genes and Bacterial Profiles in the Caecum of Growing Chickens Infected with Salmonella Enteritidis and Fed a Phytobiotic. Animals (Basel) 2019; 9:ani9090615. [PMID: 31462004 PMCID: PMC6770741 DOI: 10.3390/ani9090615] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/05/2019] [Accepted: 08/10/2019] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Salmonellosis is among the most common infectious poultry diseases that also represent a high risk to human health. The pathological process caused by Salmonella enterica serovar Enteritidis (SE) triggers in the caecum the expression of certain genes, e.g., avian β-defensins (gallinacins), cytokines (interleukins), etc. On the other hand, gut microbiota influences the infection potential of pathogens. The present study aimed at revealing the differential expression of genes associated with the immune system and changes in the bacterial communities in the intestine of growing chickens in response to SE infection. We also tested a feed additive, essential oils-based phytobiotic Intebio, as a potential alternative to antibiotics and showed effects of its administration on the caecal microbiome composition and the expression of some genes related to immunity. The phytobiotic showed its efficiency for application in poultry rearing and production. Abstract This study was performed to investigate the differential expression of eight immunity genes and the bacterial profiles in the caecum of growing chickens challenged with Salmonella enterica serovar Enteritidis (SE) at 1 and 23 days post inoculation (dpi) in response to SE infection at 19 days of age and administration of the phytobiotic Intebio. Following infection, the genes CASP6 and IRF7 were upregulated by greater than twofold. Chicks fed Intebio showed at 1 dpi upregulation of AvBD10, IL6, IL8L2, CASP6 and IRF7. At 23 dpi, expression of AvBD11, IL6, IL8L2, CASP6 and IRF7 lowered in the experiment subgroups as compared with the control. Examination of the caecal contents at 1 dpi demonstrated a significant decrease in the microbial biodiversity in the infected subgroup fed normal diet. Bacterial content of Lactobacillus and Bacillus declined, while that of Enterobacteriaceae rose. In the infected subgroup fed Intebio, a pronounced change in composition of the microflora was not observed. In the early infection stages, the phytobiotic seemed to promote response to infection. Subsequently, an earlier suppression of the inflammatory reaction took place in chickens fed Intebio. Thus, use of Intebio as a drug with phytobiotic activity in chickens, including those infected with Salmonella, proved to be promising.
Collapse
|
29
|
Mountzouris KC, Palamidi I, Paraskeuas V, Griela E, Fegeros K. Dietary probiotic form modulates broiler gut microbiota indices and expression of gut barrier genes including essential components for gut homeostasis. J Anim Physiol Anim Nutr (Berl) 2019; 103:1143-1159. [PMID: 31087706 DOI: 10.1111/jpn.13112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/28/2022]
Abstract
The probiotic form (PF) type and its dietary administration in combination or not with avilamycin (AV) were investigated for their effects on broiler gut microbiota and expression of genes relevant for gut barrier and gut homeostasis. Depending on PF type (i.e. no addition, viable, inactivated) and AV addition (no/yes), 450 one-day-old Cobb male broilers were allocated in 6 treatments (CON, CON + A, ViP, ViP + A, InP and InP + A) according to a 3 × 2 factorial arrangement with 5 replicates of 15 broilers each for 42 days. Significant interactions (PPF × AV ≤ 0.05) between PF and AV administration were shown for the ileal mucosa-associated bacteria, the caecal digesta Lactobacillus spp., the molar ratio of the sum of valeric, hexanoic and heptanoic acids and the gene expressions of ileal and caecal IgA and ileal claudin 1. Avilamycin suppressed ileal digesta Lactobacillus spp. (PAV < 0.001) and caecal digesta Clostridium perfringens subgroup (PAV = 0.018) and modulated the intestinal fermentation intensity and pattern. The viable PF had the higher levels of ileal digesta Bacteroides spp. (PPF = 0.021) and caecal digesta Lactobacillus spp. (PPF = 0.038) compared with the other two PF. Probiotic form modulated the microbial metabolic activity in the ileum and caeca with the viable PF being the most noteworthy in terms of effects regarded as beneficial. Furthermore, the viable PF resulted in reduced expression of caecal Toll-like receptors TLR2B (PPF = 0.026) and TLR4 (PPF = 0.011) and transcription factor NFΚΒ1 (PPF = 0.002), which could be considered as essential for limiting inflammation and preserving gut homeostasis. In conclusion, under non-challenge conditions, probiotic function was shown to depend on PF type and to a lesser degree on co-administration with AV. The importance of probiotic viability for the beneficial modulation of important gut components towards a reduced state of physiological inflammation has been highlighted.
Collapse
Affiliation(s)
| | - Irida Palamidi
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Athens, Greece
| | - Vasileios Paraskeuas
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Athens, Greece
| | - Eirini Griela
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Athens, Greece
| | - Konstantinos Fegeros
- Department of Nutritional Physiology and Feeding, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
30
|
Micciche AC, Feye KM, Rubinelli PM, Wages JA, Knueven CJ, Ricke SC. The Implementation and Food Safety Issues Associated With Poultry Processing Reuse Water for Conventional Poultry Production Systems in the United States. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2018. [DOI: 10.3389/fsufs.2018.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Dittoe DK, Ricke SC, Kiess AS. Organic Acids and Potential for Modifying the Avian Gastrointestinal Tract and Reducing Pathogens and Disease. Front Vet Sci 2018; 5:216. [PMID: 30238011 PMCID: PMC6136276 DOI: 10.3389/fvets.2018.00216] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/16/2018] [Indexed: 11/21/2022] Open
Abstract
Recently, antibiotics have been withdrawn from some poultry diets; leaving the birds at risk for increased incidence of dysbacteriosis and disease. Furthermore, mortalities occurring from disease contribute between 10 to 20% of production cost in developed countries. Currently, numerous feed supplements are being proposed as effective antibiotic alternatives in poultry diets, such as prebiotics, probiotics, acidic compounds, competitive exclusion products, herbs, essential oils, and bacteriophages. However, acidic compounds consisting of organic acids show promise as antibiotic alternatives. Organic acids have demonstrated the capability to enhance poultry performance by altering the pH of the gastrointestinal tract (GIT) and consequently changing the composition of the microbiome. In addition, organic acids, by altering the composition of the microbiome, protect poultry from pH-sensitive pathogens. Protection is further provided to poultry by the ability of organic acids to potentially enhance the morphology and physiology of the GIT and the immune system. Thus, the objective of the current review is to provide an understanding of the effects organic acids have on the microbiome of poultry and the effect those changes have on the prevalence of pathogens and diseases in poultry. From data reviewed, it can be concluded that the efficacy of organic acids on shifting microbiome composition is limited to the time of administration, the composition of the organic acid product, and the current health conditions of poultry.
Collapse
Affiliation(s)
- Dana K. Dittoe
- Department of Food Science and Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Department of Food Science and Center for Food Safety, University of Arkansas, Fayetteville, AR, United States
| | - Aaron S. Kiess
- Department of Poultry Science, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
32
|
Gou ZY, Li L, Fan QL, Lin XJ, Jiang ZY, Zheng CT, Ding FY, Jiang SQ. Effects of oxidative stress induced by high dosage of dietary iron ingested on intestinal damage and caecal microbiota in Chinese Yellow broilers. J Anim Physiol Anim Nutr (Berl) 2018; 102:924-932. [PMID: 29572975 DOI: 10.1111/jpn.12885] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 02/22/2018] [Indexed: 12/16/2022]
Abstract
The objective of this trial was to test the effects of oxidative stress induced by a high dosage of dietary iron on intestinal lesion and the microbiological compositions in caecum in Chinese Yellow broilers. A total of 450 1-day-old male chicks were randomly allotted into three groups. Supplemental iron (0, 700 and 1,400 mg/kg) was added to the basal diet resulting in three treatments containing 245, 908 and 1,651 mg/kg Fe (measured value) in diet respectively. Each treatment consisted of six replicate pens with 25 birds per pen. Jejunal enterocyte ultrastructure was observed by transmission electron microscopy. The results showed that a high dosage of dietary iron induced oxidative stress in broilers. Dilated endoplasmic reticulum (ER), autophagosome formation of jejunal enterocytes and decreased villi were caused by this oxidative stress. Compared to the control, concentration of the malondialdehyde (MDA) in jejunal mucosa in the 908 and 1,651 mg/kg Fe groups increased by 180% (p < .01) and 155% respectively (p < .01); activity of copper-zinc superoxide dismutase (Cu/ZnSOD) increased in jejunum (p < .01); and the concentration of plasma reduced glutathione (GSH) decreased by 34.9% (p < .01) in birds fed 1,651 mg/kg Fe. Gene expression of nuclear factor, erythroid-derived 2-like 2 (Nrf2) and zonula occludens-1 (ZO-1), in the higher dietary Fe groups was enhanced (p < .05). Species of microbial flora in caecum increased caused by oxidative stress. The PCR-DGGE (denaturing gradient gel electrophoresis) dendrograms revealed different microbiota (65% similarity coefficient) between the control and iron-supplemented groups (p < .05). These data suggest high dosage of iron supplement in feed diet can induce oxidative stress in Chinese Yellow broilers, and composition of microbiota in the caecum changed. It implied there should be no addition of excess iron when formulating diets in Chinese Yellow broilers.
Collapse
Affiliation(s)
- Z Y Gou
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - L Li
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Q L Fan
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - X J Lin
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Z Y Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - C T Zheng
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - F Y Ding
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - S Q Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
33
|
Hu J, Chen H, Cheng HW. Effect of Direct-fed Microbials, Bacillus subtilis, on Production Performance, Serotonin Concentrations and Behavioral Parameters in a Selected Dominant Strain of White Leghorn Hens. ACTA ACUST UNITED AC 2018. [DOI: 10.3923/ijps.2018.106.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Kumar S, Chen C, Indugu N, Werlang GO, Singh M, Kim WK, Thippareddi H. Effect of antibiotic withdrawal in feed on chicken gut microbial dynamics, immunity, growth performance and prevalence of foodborne pathogens. PLoS One 2018; 13:e0192450. [PMID: 29444134 PMCID: PMC5812630 DOI: 10.1371/journal.pone.0192450] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/23/2018] [Indexed: 02/03/2023] Open
Abstract
Development of antibiotic resistance in foodborne pathogens, Salmonella spp. and Campylobacter, is a public health concern. Public demand to reduce the use of sub-therapeutic antibiotic growth promoters (AGP) in poultry feeding has resulted in greater adoption of antibiotic-free poultry production systems. There is a need to understand the effects of AGP removal from poultry feed on gut microbiota and its impact on prevalence of foodborne pathogens. The effect of antibiotic withdrawal from poultry feed on gut microbial community, host performance and immunity, and prevalence of Salmonella and Campylobacter was evaluated. Birds were raised on three phase diets (starter [d0-22], grower [d23-35] and finisher [d36-42]) with and without bacitracin dimethyl salicyclate (BMD). At early growth stage, bird performance was improved (P ≤ 0.05) with BMD treatment, whereas performance was better (P ≤ 0.05) in control group (no BMD in the feed) at the time of commercial processing. Acetate and butyrate production was affected (P ≤ 0.05) by age, whereas propionate production was affected (P ≤ 0.05) by both the treatment and age. The bacterial communities in the cecum were more diverse (P ≤ 0.001) and rich compared to the ileal communities, and they shifted in parallel to one another as the chicks matured. Differences in diversity and species richness were not observed (P > 0.05) between the BMD-fed and control groups. Comparing all ages, treatments and diets, the composition of cecal and ileal bacterial communities was different (P ≤ 0.001). Inclusion of BMD in the feed did not affect the bacterial phyla. However, predictable shift in the ileal and cecal bacterial population at lower taxonomic level was observed in control vs BMD-fed group. Cytokines gene expression (IL-10, IL-4, IFN-γ, beta-defensin, and TLR-4) was affected (P≤ 0.05) in the BMD-fed group at early stages of growth. The prevalence of foodborne pathogens, Campylobacter spp. and Salmonella spp. showed higher abundance in the ilea of BMD-fed chicks compared to control group. Overall, this study provided insight of the impact of AGP supplementation in the feed on gut microbial modulations, bird performance, host immunity and pathogen prevalence. This information can assist in designing alternative strategies to replace antibiotics in modern poultry production and for food safety.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Poultry Science, University of Georgia, Athens, GA, United States of America
| | - Chongxiao Chen
- Department of Poultry Science, University of Georgia, Athens, GA, United States of America
| | - Nagaraju Indugu
- New Bolton Center, University of Pennsylvania, Kennett Square, PA, United States of America
| | | | - Manpreet Singh
- Department of Poultry Science, University of Georgia, Athens, GA, United States of America
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States of America
| | | |
Collapse
|
35
|
Zhang F, Zheng W, Guo R, Yao W. Effect of dietary copper level on the gut microbiota and its correlation with serum inflammatory cytokines in Sprague-Dawley rats. J Microbiol 2017; 55:694-702. [PMID: 28865069 DOI: 10.1007/s12275-017-6627-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 06/28/2017] [Accepted: 07/13/2017] [Indexed: 12/19/2022]
Abstract
In China's swine industry, copper is generally supplemented above the National Research Council (NRC) requirement (2012) because of its antimicrobial properties and the potential for growth promotion. Yet few are concerned about whether this excess supplementation is necessary. In this study, the 16S rRNA pyrosequencing was designed and used to investigate the effect of dietary copper level on the diversity of the fecal microbial community and the correlation of copper level with the serum level of inflammatory cytokines in Sprague-Dawley rat models. The results showed that the diet containing a high level of Cu (120 and 240 mg/kg) changed the microbial richness and diversity of rat feces associated with the increased copper content in the rat ileac and colonic digesta. Furthermore, a Pearson's correlation analysis indicated that an accumulation of unabsorbed copper in the chyme was correlated with the microbial composition of the rat feces, which was linked with TNF-α in serum. The results suggest that dietary copper level may have a direct impact on circulating inflammatory cytokines in the serum, perhaps inducing an inflammatory response by altering the microbial composition of rat feces. Serum TNF-α could be the chief responder to excessive copper exposure.
Collapse
Affiliation(s)
- Feng Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Rong Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, P. R. China. .,Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing, P. R. China.
| |
Collapse
|
36
|
Adhikari B, Kwon YM. Characterization of the Culturable Subpopulations of Lactobacillus in the Chicken Intestinal Tract as a Resource for Probiotic Development. Front Microbiol 2017; 8:1389. [PMID: 28798730 PMCID: PMC5526839 DOI: 10.3389/fmicb.2017.01389] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/10/2017] [Indexed: 01/29/2023] Open
Abstract
To gain better understanding of the distributions of the culturable Lactobacillus species in the chicken intestinal tract, we collected ceca, and distal ileum from 10 3-weeks-old broiler chickens. Lactobacillus strains from cecal lumen contents (M-CL), and those associated with mucosa of ceca (M-CM) and ileum (M-IM) were recovered on de Man, Rogosa and Sharpe (MRS) agar plates, and used for microbiota analysis. The total cecal content (T-CL) was also used directly for microbiota analysis. We purposefully focused on MRS-recovered populations to gain understanding of the culturable subpopulations of Lactobacillus, since the culturability is an important phenotype in order to exploit the chicken gut microbiota as a resource for development of probiotics. The V1–V3 regions of 16S rRNA gene was amplified from genomic DNA samples, and the pooled amplicons were analyzed by MiSeq sequencing with paired-end read 300 cycle option. Among MRS groups, Firmicutes were significantly higher in M-IM and M-CL as compared to M-CM, whereas Proteobacteria were significantly higher in M-CM as compared to M-IM and M-CL at p < 0.05. Among Lactobacillus, L. salivarius (36%) and L. johnsonii (21%) were higher in M-IM as compared to M-CL (L. salivarius, 28%; L. johnsonii, 15%), and M-CM (L. salivarius, 20%; L. johnsonii, 11%). L. crispatus was found significantly higher in M-CL as compared to M-IM (p < 0.01) whereas L. gasseri was found significantly higher in M-IM as compared to M-CM (p < 0.05). L. aviarius, and L. fornicalis were only observed in T-CL. In summary, Lactobacillus populations recovered on MRS vary with different regions and locations in chicken GIT, which might indicate their distinct functional roles in different gastrointestinal tract (GIT) niches, and some species of Lactobacillus are not culturable on MRS agar media. This study is the first attempt to define culturable Lactobacillus subpopulations in the chicken intestinal tract comprehensively using 16S rRNA gene profiling, and the findings of this study will be used as a platform to develop a new strategy for isolation of effective Lactobacillus probiotic candidates based on comparative analyses of chicken gut microbiota.
Collapse
Affiliation(s)
- Bishnu Adhikari
- Department of Poultry Science, College of Agricultural, Food and Life Sciences, University of Arkansas, FayettevilleAR, United States
| | - Young M Kwon
- Department of Poultry Science, College of Agricultural, Food and Life Sciences, University of Arkansas, FayettevilleAR, United States.,Cell and Molecular Biology Program, University of Arkansas, FayettevilleAR, United States
| |
Collapse
|
37
|
De Cesare A, Sirri F, Manfreda G, Moniaci P, Giardini A, Zampiga M, Meluzzi A. Effect of dietary supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) on caecum microbioma and productive performance in broiler chickens. PLoS One 2017; 12:e0176309. [PMID: 28472118 PMCID: PMC5417446 DOI: 10.1371/journal.pone.0176309] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/07/2017] [Indexed: 12/15/2022] Open
Abstract
This study examines the effects of the dietary supplementation with Lactobacillus acidophilus D2/CSL (CECT 4529) (LA) on productive performances, incidence of foot pad dermatitis and caecum microbioma in broiler chickens. A total of 1,100 one-day old male Ross 308 chicks were divided into 2 groups of 16 replicates with 25 birds each and reared from 1–41 d. One group was fed a basal diet (CON) and the other group the same diet supplemented with LA. Caecum contents were collected from 4 selected birds at day one and 5 selected birds at the end of the rearing period. Then, they were submitted to DNA extraction and whole DNA shotgun metagenomic sequencing. Overall, the LA supplementation produced a significant beneficial effect on body weight gain between 15–28 d and improved feed conversion rate in the overall period. On the contrary, litter moisture, pH and incidence of the foot pad lesions were not affected by LA. Birds treated with LA showed a lower occurrence of pasty vent at both 14 and 28 d. At the end of the rearing period, Lachanospiraceae were significantly higher in LA birds in comparison to CON (17.07 vs 14.39%; P = 0.036). Moreover, Ruminococcus obeum, Clostridium clostridioforme, Roseburia intestinalis, Lachnospiraceae bacterium 14-2T and Coprococcus eutactus were significantly higher in LA birds in comparison to CON. The relative abundance of Lactobacillus acidophilus was comparable between LA and CON groups. However, a positive effect was observed in relation to the metabolic functions in the treated group, with particular reference to the higher abundance of β-glucosidase. In conclusion, the LA supplementation improved broiler productive performances and metabolic functions promoting animal health.
Collapse
Affiliation(s)
- Alessandra De Cesare
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell’Emilia, Bologna, Italy
- * E-mail:
| | - Gerardo Manfreda
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| | - Paola Moniaci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| | | | - Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano dell’Emilia, Bologna, Italy
| |
Collapse
|
38
|
Park S, Kim W. Effects of betaine on biological functions in meat-type ducks exposed to heat stress. Poult Sci 2017; 96:1212-1218. [DOI: 10.3382/ps/pew359] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/29/2016] [Indexed: 11/20/2022] Open
|
39
|
Park BS, Park SO. Effects of feeding time with betaine diet on growth performance, blood markers, and short chain fatty acids in meat ducks exposed to heat stress. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Blajman JE, Zbrun MV, Signorini ML, Zimmermann JA, Rossler E, Berisvil AP, Scharpen AR, Astesana DM, Soto LP, Frizzo LS. Development of cecal-predominant microbiota in broilers during a complete rearing using denaturing gradient gel electrophoresis. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Understanding of the intestinal microbiota is crucial to enhance intestinal health and performance parameters in animals. A more exhaustive research of the intestinal microbiota of broilers could be of interest to implement appropriate intervention measures. The aim of the present study was to investigate the development of the predominant cecal microbiota in broilers that were fed a Lactobacillus salivarius DSPV 001P strain during a complete rearing using denaturing gradient gel electrophoresis (DGGE). Bacterial DNA from cecal samples of 24 broilers at different ages were amplified by PCR and analysed by DGGE. A total of 35 DGGE products were excised and sequenced. Distinctive differences in bacterial communities were observed in the caecum as broilers age. At early stages, identified bacteria within the caecum of broilers were predominantly Clostridium-related species. Also, some sequences had the closest match to the genus Escherichia/Shigella. Furthermore, the caecum was a reservoir rich in uncultured bacteria. The major difference observed in our study was an increase of potentially beneficial Lactobacillus at Day 45. These results may be attributed to modulation of the microbiota by the probiotic supplementation. The obtained data could be relevant for future studies related to the influence of the microbiota resulting from probiotic supplementation on the performance and the immunological parameters of broilers.
Collapse
|
41
|
Katukurunda K, Buddhika HAAY, Gamage MKW, Dissanayake P, Senaratna D. A quality enhancement green strategy for broiler meat by application of turmeric (Curcuma longa) powder as litter amendment to affect microbes, ammonia emission, pH and moisture. POTRAVINARSTVO 2016. [DOI: 10.5219/577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In multi-cultural Sri Lankan conditions, poultry meat is paramount importance in ensuring food security and improving nutrition. Issues as contact dermatitis and ammonia emission in broiler industry which caused by diminished litter parameters cause reduction of meat quality, profits and environmental conditions. Therefore use of Turmeric (Curcuma longa) (TM) powder as an antiseptic litter amendment at several application levels to enhance litter parameters with microbial demolition was attempted. Three months old broiler litter (2 kg) sample was taken and initial pH and moisture was determined. Turmeric was used to mix at levels of 0%, 1%, 3%, 5% and 8% (w/w). After mixing, 150 g of mixed litter was placed in container for each level of the 4 replicates, incubated for 5h and analyzed for Total Plate Count (TPC), Yeast and Mold Count (YMC), total Nematode Count (NC), ammonia emission, pH and moisture. Significant reduction (p <0.05) of total bacteria was seen (20%, 46%, 95% and 96%) when 1%, 3%, 5% and 8% applications of TM. The YMC reduction was also significant (p <0.05) (34%, 41%, 55% and 65%). Total nematode reduction (p <0.05) was 22%, 45%, 62.5% and 70%. A significant (p <0.05) pH reduction with increment of TM also seen (0.1, 2, 3 and 3%). Moisture (%) was increased (p <0.05) (6, 0.78, 19 and 1%). Ammonia emission was significantly decreased (p <0.05) by increased TM (64, 68, 73 and 84%) against control. It was concluded that the bacterial, fungal, nematode counts, pH and Ammonia emission of broiler litter can be significantly reduced with the application of 8% (w/w) of turmeric powder.
Collapse
|
42
|
Fisinin VI, Il’ina LA, Iyldyrym EA, Nikonov IN, Filippova VA, Laptev GY, Novikova NI, Grozina AA, Lenkova TN, Manukyan VA, Egorov IA. Broiler chicken cecal microbiocenoses depending on mixed fodder. Microbiology (Reading) 2016. [DOI: 10.1134/s0026261716040056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
Wang X, Farnell Y, Peebles E, Kiess A, Wamsley K, Zhai W. Effects of prebiotics, probiotics, and their combination on growth performance, small intestine morphology, and resident Lactobacillus of male broilers. Poult Sci 2016; 95:1332-40. [DOI: 10.3382/ps/pew030] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/22/2015] [Indexed: 11/20/2022] Open
|
44
|
Crisol-Martínez E, Moreno-Moyano LT, Wilkinson N, Prasai T, Brown PH, Moore RJ, Stanley D. A low dose of an organophosphate insecticide causes dysbiosis and sex-dependent responses in the intestinal microbiota of the Japanese quail (Coturnix japonica). PeerJ 2016; 4:e2002. [PMID: 27168998 PMCID: PMC4860294 DOI: 10.7717/peerj.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/12/2016] [Indexed: 12/26/2022] Open
Abstract
Organophosphate insecticides have been directly or indirectly implicated in avian populations declining worldwide. Birds in agricultural environments are commonly exposed to these insecticides, mainly through ingestion of invertebrates after insecticide application. Despite insecticide exposure in birds occurring mostly by ingestion, the impact of organophosphates on the avian digestive system has been poorly researched. In this work we used the Japanese quail (Coturnix japonica) as an avian model to study short-term microbial community responses to a single dose of trichlorfon at low concentration in three sample origins of the gastrointestinal tract (GIT): caecum, large intestine and faeces. Using next-generation sequencing of 16S rRNA gene amplicons as bacterial markers, the study showed that ingestion of insecticide caused significant changes in the GIT microbiome. Specifically, microbiota composition and diversity differed between treated and untreated quail. Insecticide-associated responses in the caecum showed differences between sexes which did not occur with the other sample types. In caecal microbiota, only treated females showed significant shifts in a number of genera within the Lachnospiraceae and the Enterobacteriaceae families. The major responses in the large intestine were a significant reduction in the genus Lactobacillus and increases in abundance of a number of Proteobacteria genera. All microbial shifts in faeces occurred in phylotypes that were represented at low relative abundances. In general, changes in microbiota possibly resulted from contrasting responses towards the insecticide, either positive (e.g., biodegrading bacteria) or negative (e.g., insecticide-susceptible bacteria). This study demonstrates the significant impact that organophosphate insecticides have on the avian gut microbiota; showing that a single small dose of trichlorfon caused dysbiosis in the GIT of the Japanese quail. Further research is necessary to understand the implications on birds’ health, especially in females.
Collapse
Affiliation(s)
- Eduardo Crisol-Martínez
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia; Current affiliation: Central Queensland University, Melbourne, Victoria, Australia
| | | | - Ngare Wilkinson
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia; Institute for Future Farming Systems, Central Queensland University, Rockhampton, Queensland, Australia; Poultry Cooperative Research Centre, University of New England, Armidale, New South Wales, Australia
| | - Tanka Prasai
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia; Institute for Future Farming Systems, Central Queensland University, Rockhampton, Queensland, Australia
| | - Philip H Brown
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia; Institute for Future Farming Systems, Central Queensland University, Rockhampton, Queensland, Australia
| | - Robert J Moore
- Poultry Cooperative Research Centre, University of New England, Armidale, New South Wales, Australia; School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Dragana Stanley
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia; Institute for Future Farming Systems, Central Queensland University, Rockhampton, Queensland, Australia; Poultry Cooperative Research Centre, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
45
|
Bucław M. The use of inulin in poultry feeding: a review. J Anim Physiol Anim Nutr (Berl) 2016; 100:1015-1022. [DOI: 10.1111/jpn.12484] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/05/2016] [Indexed: 12/23/2022]
Affiliation(s)
- M. Bucław
- Department of Poultry and Ornamental Birds Breeding; Western Pomeranian University of Technology in Szczecin; Szczecin Poland
| |
Collapse
|
46
|
Casagrande Proietti P, Dal Bosco A, Hilbert F, Franciosini MP, Castellini C. Evaluation of intestinal bacterial flora of conventional and organic broilers using culture-based methods. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2009.51] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Chinivasagam HN, Estella W, Rodrigues H, Mayer DG, Weyand C, Tran T, Onysk A, Diallo I. On-farm Campylobacter and Escherichia coli in commercial broiler chickens: Re-used bedding does not influence Campylobacter emergence and levels across sequential farming cycles. Poult Sci 2016; 95:1105-15. [PMID: 26908887 PMCID: PMC4957531 DOI: 10.3382/ps/pew003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022] Open
Abstract
Limitations in quality bedding material have resulted in the growing need to re-use litter during broiler farming in some countries, which can be of concern from a food-safety perspective. The aim of this study was to compare the Campylobacter levels in ceca and litter across three litter treatments under commercial farming conditions. The litter treatments were (a) the use of new litter after each farming cycle; (b) an Australian partial litter re-use practice; and (c) a full litter re-use practice. The study was carried out on two farms over two years (Farm 1, from 2009–2010 and Farm 2, from 2010–2011), across three sheds (35,000 to 40,000 chickens/shed) on each farm, adopting three different litter treatments across six commercial cycles. A random sampling design was adopted to test litter and ceca for Campylobacter and Escherichia coli, prior to commercial first thin-out and final pick-up. Campylobacter levels varied little across litter practices and farming cycles on each farm and were in the range of log 8.0–9.0 CFU/g in ceca and log 4.0–6.0 MPN/g for litter. Similarly the E. coli in ceca were ∼log 7.0 CFU/g. At first thin-out and final pick-up, the statistical analysis for both litter and ceca showed that the three-way interaction (treatments by farms by times) was highly significant (P < 0.01), indicating that the patterns of Campylobacter emergence/presence across time vary between the farms, cycles and pickups. The emergence and levels of both organisms were not influenced by litter treatments across the six farming cycles on both farms. Either C. jejuni or C. coli could be the dominant species across litter and ceca, and this phenomenon could not be attributed to specific litter treatments. Irrespective of the litter treatments in place, cycle 2 on Farm 2 remained Campylobacter-free. These outcomes suggest that litter treatments did not directly influence the time of emergence and levels of Campylobacter and E. coli during commercial farming.
Collapse
Affiliation(s)
- H N Chinivasagam
- EcoSciences Precinct, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - W Estella
- EcoSciences Precinct, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - H Rodrigues
- EcoSciences Precinct, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - D G Mayer
- EcoSciences Precinct, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - C Weyand
- EcoSciences Precinct, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - T Tran
- EcoSciences Precinct, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - A Onysk
- EcoSciences Precinct, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - I Diallo
- Biosecurity Sciences Laboratory, Health and Food Sciences Precinct, Department of Agriculture and Fisheries, PO Box 156 Archerfield BC 4108, Queensland, Australia
| |
Collapse
|
48
|
Munyaka PM, Nandha NK, Kiarie E, Nyachoti CM, Khafipour E. Impact of combined β-glucanase and xylanase enzymes on growth performance, nutrients utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. Poult Sci 2015; 95:528-40. [PMID: 26574039 DOI: 10.3382/ps/pev333] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/03/2015] [Indexed: 12/20/2022] Open
Abstract
The effects of a xylanase and β-glucanase (XB) blend (2,500 U of xylanase and 250 U of β-glucanase per kg of complete feed) on growth performance, nutrients utilization and digesta microbiota in broiler chickens were investigated. A total of 140 day-old male Ross 308 broiler chicks were randomly assigned to 7 replicate cages and fed experimental diets. Diets were based on either corn or wheat without or with supplemental XB. Performance was monitored weekly and excreta were collected from d 17 to 20 for nutrients digestibility and AMEn measurements. On d 21, jejunal contents were collected for viscosity determination whereas ileal and cecal contents were obtained for microbial analysis by Illumina sequencing. Microbial data were analyzed using QIIME and PLS-DA whilst other data were analyzed using SAS. Birds fed wheat diets had higher (P < 0.001) BWG (3.4%) than birds fed corn-based diet whilst birds fed XB had better BWG (4%) and FCR (7%) than birds fed non-XB diets. Birds fed wheat diet had higher (P < 0.001) NDF (46.5%) and less (P = 0.01) CP (-5.4%) digestibility compared to birds fed corn-based diet. XB reduced (P < 0.001) jejunal digesta viscosity to a greater extent in wheat diet (-31%) than in corn-based diet (-10%). Birds fed wheat-based diet with XB had higher (3.5%) starch digestibility than birds fed this diet without XB. Janthinobacterium was associated with non-XB corn-based diet, whereas Ruminococcus, Lachnospiraceae, Lactobacillaceae, Peptostreptococcaceae, Clostridiales, Acidovorax and Blautia were associated with XB corn-based diet in the ileum. A relatively similar microbiome clustering was observed in wheat-based treatments in the cecum. There were no significant (P ≥ 0.05) correlations between selected ileal or cecal bacterial taxa and AMEn. Diet impacted growth performance but XB was efficacious across diet types, implying that degradation of dietary fibrous components by feed enzymes may stimulate performance in young birds. Data provided significant insight on ileal and cecal microbial profile associated with the dietary types and XB; however their functional roles require further investigations.
Collapse
Affiliation(s)
- P M Munyaka
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - N K Nandha
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - E Kiarie
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2 DuPont Industrial Biosciences-Danisco Animal Nutrition, Marlborough, United Kingdom SN8 Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1
| | - C M Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | - E Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| |
Collapse
|
49
|
Quinteiro-Filho WM, Brisbin JT, Hodgins DC, Sharif S. Lactobacillus and Lactobacillus cell-free culture supernatants modulate chicken macrophage activities. Res Vet Sci 2015; 103:170-5. [PMID: 26679813 DOI: 10.1016/j.rvsc.2015.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/09/2015] [Accepted: 10/17/2015] [Indexed: 12/17/2022]
Abstract
Lactobacilli are commensal microbes that reside in the intestines of several species, including chickens. Structural constituents of lactobacilli are able to stimulate the host immune system. Macrophages are crucial players in both innate and adaptive immune systems. Here, we investigated the effects of Lactobacillus acidophilus, Lactobacillus reuteri, Lactobacillus salivarius and their cell-free culture supernatants on the pro-inflammatory gene expression profile, nitric oxide (NO) production and phagocytosis by chicken macrophages. Substantial differences were found among Lactobacillus strains in their capacity to induce pro-inflammatory cytokines. L. acidophilus only up-regulated interferon (IFN)-γ, while L. reuteri and L. salivarius up-regulated interleukin (IL)-1β, IL-6, IL-8 and IL-12 expression. Supernatant of L. salivarius up-regulated IL-1β, IL-8 and IFN-γ expression, while the other cell-free supernatants did not induce significant changes. Moreover, L. reuteri and L. salivarius increased macrophage phagocytosis, but all cell-free supernatants increased macrophage NO production and did not change phagocytosis activity.
Collapse
Affiliation(s)
- W M Quinteiro-Filho
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - J T Brisbin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - D C Hodgins
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - S Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
50
|
Walugembe M, Hsieh J, Koszewski N, Lamont S, Persia M, Rothschild M. Effects of dietary fiber on cecal short-chain fatty acid and cecal microbiota of broiler and laying-hen chicks. Poult Sci 2015; 94:2351-9. [DOI: 10.3382/ps/pev242] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/05/2015] [Indexed: 01/14/2023] Open
|