1
|
Thomas CM, Kumar D, Scheel RA, Ramarao B, Nomura CT. Production of Medium Chain Length polyhydroxyalkanoate copolymers from agro-industrial waste streams. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Gao Q, Yang H, Wang C, Xie XY, Liu KX, Lin Y, Han SY, Zhu M, Neureiter M, Lin Y, Ye JW. Advances and trends in microbial production of polyhydroxyalkanoates and their building blocks. Front Bioeng Biotechnol 2022; 10:966598. [PMID: 35928942 PMCID: PMC9343942 DOI: 10.3389/fbioe.2022.966598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
With the rapid development of synthetic biology, a variety of biopolymers can be obtained by recombinant microorganisms. Polyhydroxyalkanoates (PHA) is one of the most popular one with promising material properties, such as biodegradability and biocompatibility against the petrol-based plastics. This study reviews the recent studies focusing on the microbial synthesis of PHA, including chassis engineering, pathways engineering for various substrates utilization and PHA monomer synthesis, and PHA synthase modification. In particular, advances in metabolic engineering of dominant workhorses, for example Halomonas, Ralstonia eutropha, Escherichia coli and Pseudomonas, with outstanding PHA accumulation capability, were summarized and discussed, providing a full landscape of diverse PHA biosynthesis. Meanwhile, we also introduced the recent efforts focusing on structural analysis and mutagenesis of PHA synthase, which significantly determines the polymerization activity of varied monomer structures and PHA molecular weight. Besides, perspectives and solutions were thus proposed for achieving scale-up PHA of low cost with customized material property in the coming future.
Collapse
Affiliation(s)
- Qiang Gao
- Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, QH, China
| | - Hao Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Chi Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xin-Ying Xie
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Kai-Xuan Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Mingjun Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Markus Neureiter
- Institute for Environmental Biotechnology, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Tulln, Austria
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| | - Yina Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| |
Collapse
|
3
|
Lhamo P, Behera SK, Mahanty B. Process optimization, metabolic engineering interventions and commercialization of microbial polyhydroxyalkanoates production - A state-of-the art review. Biotechnol J 2021; 16:e2100136. [PMID: 34132046 DOI: 10.1002/biot.202100136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022]
Abstract
Microbial polyhydroxyalkanoates (PHAs) produced using renewable resources could be the best alternative for conventional plastics. Despite their incredible potential, commercial production of PHAs remains very low. Nevertheless, sincere attempts have been made by researchers to improve the yield and economic viability of PHA production by utilizing low-cost agricultural or industrial wastes. In this context, the use of efficient microbial culture or consortia, adoption of experimental design to trace ideal growth conditions, nutritional requirements, and intervention of metabolic engineering tools have gained significant attention. This review has been structured to highlight the important microbial sources for PHA production, use of conventional and non-conventional substrates, product optimization using experimental design, metabolic engineering strategies, and global players in the commercialization of PHA in the past two decades. The challenges about PHA recovery and analysis have also been discussed which possess indirect hurdle while expanding the horizon of PHA-based bioplastics. Selection of appropriate microorganism and substrate plays a vital role in improving the productivity and characteristics of PHAs. Experimental design-based bioprocess, use of metabolic engineering tools, and optimal product recovery techniques are invaluable in this dimension. Optimization strategies, which are being explored in isolation, need to be logically integrated for the successful commercialization of microbial PHAs.
Collapse
Affiliation(s)
- Pema Lhamo
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - Shishir Kumar Behera
- Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Biswanath Mahanty
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| |
Collapse
|
4
|
Mezzina MP, Manoli MT, Prieto MA, Nikel PI. Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates. Biotechnol J 2020; 16:e2000165. [PMID: 33085217 DOI: 10.1002/biot.202000165] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/16/2020] [Indexed: 12/16/2022]
Abstract
Growing environmental concern sparks renewed interest in the sustainable production of (bio)materials that can replace oil-derived goods. Polyhydroxyalkanoates (PHAs) are isotactic polymers that play a critical role in the central metabolism of producer bacteria, as they act as dynamic reservoirs of carbon and reducing equivalents. PHAs continue to attract industrial attention as a starting point toward renewable, biodegradable, biocompatible, and versatile thermoplastic and elastomeric materials. Pseudomonas species have been known for long as efficient biopolymer producers, especially for medium-chain-length PHAs. The surge of synthetic biology and metabolic engineering approaches in recent years offers the possibility of exploiting the untapped potential of Pseudomonas cell factories for the production of tailored PHAs. In this article, an overview of the metabolic and regulatory circuits that rule PHA accumulation in Pseudomonas putida is provided, and approaches leading to the biosynthesis of novel polymers (e.g., PHAs including nonbiological chemical elements in their structures) are discussed. The potential of novel PHAs to disrupt existing and future market segments is closer to realization than ever before. The review is concluded by pinpointing challenges that currently hinder the wide adoption of bio-based PHAs, and strategies toward programmable polymer biosynthesis from alternative substrates in engineered P. putida strains are proposed.
Collapse
Affiliation(s)
- Mariela P Mezzina
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| | - María Tsampika Manoli
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - M Auxiliadora Prieto
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - Pablo I Nikel
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| |
Collapse
|
5
|
Zikmanis P, Kolesovs S, Semjonovs P. Production of biodegradable microbial polymers from whey. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00326-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
6
|
Escherichia coli as a host for metabolic engineering. Metab Eng 2018; 50:16-46. [DOI: 10.1016/j.ymben.2018.04.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
|
7
|
Impallomeni G, Ballistreri A, Carnemolla GM, Rizzo MG, Nicolò MS, Guglielmino SP. Biosynthesis and structural characterization of polyhydroxyalkanoates produced by Pseudomonas aeruginosa ATCC 27853 from long odd-chain fatty acids. Int J Biol Macromol 2018; 108:608-614. [DOI: 10.1016/j.ijbiomac.2017.12.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/17/2017] [Accepted: 12/05/2017] [Indexed: 11/29/2022]
|
8
|
Molecular Identification and Typing of Putative Probiotic Indigenous Lactobacillus plantarum Strain Lp91 of Human Origin by Specific Primed-PCR Assays. Probiotics Antimicrob Proteins 2016; 3:186-93. [PMID: 26781679 DOI: 10.1007/s12602-011-9083-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In the present scenario, it is now well documented that probiotics confer health benefits to the host and the purported probiotic effects are highly strain specific. Hence, accurate genotypic identification is extremely important to link the strain to the specific health effect. With this aim, specific primed-PCR assays were developed and explored for the molecular identification and typing of a putative indigenous probiotic isolate Lp91 of human faecal origin. PCR with specific primers targeting 23S rRNA gene of genus Lactobacillus and 16S rRNA gene of species L. plantarum resulted positive for Lp91. In addition, BLAST analysis of 16S rRNA gene sequence of Lp91 and multiple sequence alignment of 16S rRNA gene variable (V2-V3) regions along with the reference sequences revealed it as L. plantarum with a sequence identity of more than 99%. Furthermore, resolution of 16S rRNA gene sequences was sufficient to infer a phylogenetic relationship amongst Lactobacillus species. In order to determine strain-level variations, randomly amplified polymorphic DNA (RAPD) banding profiles of Lp91 obtained with OPAA-01, OPAP-01 and OPBB-01 primers were compared with those of reference strains of Lactobacillus spp., and Lp91 could be delineated as a distinct strain. Apart from this, presence of probiotic markers viz. bile salt hydrolase (bsh) and collagen-binding protein (cbp) encoding genes in Lp91 genome could be attributed to its exploitation as a potential probiotic adjunct in the development of indigenous functional foods. Lactobacillus isolates/or strains from the gastrointestinal system, fermented products and other environmental niches could be identified and characterized by employing the PCR methods developed in this study; they are rapid, reproducible and more accurate than the conventional methods based on the fermentation profiles.
Collapse
|
9
|
Oh YH, Eom GT, Kang KH, Joo JC, Jang YA, Choi JW, Song BK, Lee SH, Park SJ. Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii. Bioprocess Biosyst Eng 2016; 39:555-63. [DOI: 10.1007/s00449-016-1537-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/05/2016] [Indexed: 02/08/2023]
|
10
|
Impallomeni G, Ballistreri A, Carnemolla GM, Franco D, Guglielmino SPP. Matrix-assisted laser desorption/ionization time-of-flight vs. fast-atom bombardment and electrospray ionization mass spectrometry in the structural characterization of bacterial poly(3-hydroxyalkanoates). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:811-820. [PMID: 26377009 DOI: 10.1002/rcm.7168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Bacterial poly(3-hydroxyalkanoates) (PHAs) are an emergent class of plastic materials available from renewable resources. Their properties are strictly correlated with the comonomeric composition and sequence, which may be determined by various mass spectrometry approaches. In this paper we compare fast-atom bombardment (FAB) and electrospray ionization (ESI) to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) of partially pyrolyzed samples. METHODS We determined the compositions and sequences of the medium-chain-length PHAs (mcl-PHAs) prepared by bacterial fermentation of Pseudomonas aeruginosa ATCC 27853 cultured in media containing fatty acids with 8, 12, 14, 18, and 20 carbon atoms as carbon sources by means of MALDI-TOFMS of pyrolyzates, and compared the results with those obtained by FAB- and ESI-MS in previous studies. MALDI matrices used were 9-aminoacridine (9-AA) and indoleacrylic acid (IAA). RESULTS MALDI-TOFMS was carried out in negative ion mode when using 9-AA as a matrix, giving a semi-quantitative estimation of the 3-hydroxyacids constituting the PHAs, and in positive mode when using IAA, allowing us, through statistical analysis of the relative intensity of the oligomers generated by pyrolysis, to establish that the polymers obtained are true random copolyesters and not a mixture of homopolymers or copolymers. CONCLUSIONS MALDI-TOFMS in 9-AA and IAA of partial pyrolyzates of mcl-PHAs represents a powerful method for the structural analysis of these materials. In comparison with FAB and ESI, MALDI provided an extended mass range with better sensitivity at higher mass and a faster method of analysis.
Collapse
Affiliation(s)
- Giuseppe Impallomeni
- Istituto per i Polimeri, Biomateriali e Compositi, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126, Catania, Italy
| | - Alberto Ballistreri
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale A. Doria 6, 95125, Catania, Italy
| | | | - Domenico Franco
- Dipartimento di Scienze Biologiche ed Ambientali, Università di Messina, sal. Sperone 31, Vll. S. Agata, 98166, Messina, Italy
| | - Salvatore P P Guglielmino
- Dipartimento di Scienze Biologiche ed Ambientali, Università di Messina, sal. Sperone 31, Vll. S. Agata, 98166, Messina, Italy
| |
Collapse
|
11
|
Park SJ, Lee SH, Oh YH, Lee SY. Establishment of a biosynthesis pathway for (R)-3-hydroxyalkanoates in recombinant Escherichia coli. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-014-0240-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Janßen HJ, Steinbüchel A. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:7. [PMID: 24405789 PMCID: PMC3896788 DOI: 10.1186/1754-6834-7-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/24/2013] [Indexed: 05/04/2023]
Abstract
The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are examples, since their production relies mainly on plant material. However, it has become apparent that crop derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of research has focused on the production of next generation biofuels. A major subject of these investigations has been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia coli has been chosen as producer in many of these studies and several reviews have been published in the fields of E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and potential of fatty acid-based biofuels will be discussed.
Collapse
Affiliation(s)
- Helge Jans Janßen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
13
|
Cintolesi A, Rodríguez-Moyá M, Gonzalez R. Fatty acid oxidation: systems analysis and applications. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:575-85. [DOI: 10.1002/wsbm.1226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/26/2013] [Accepted: 03/29/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Angela Cintolesi
- Department of Chemical and Biomolecular Engineering; Rice University; Houston TX USA
| | - María Rodríguez-Moyá
- Department of Chemical and Biomolecular Engineering; Rice University; Houston TX USA
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering; Rice University; Houston TX USA
- Department of Bioengineering; Rice University; Houston TX USA
| |
Collapse
|
14
|
Park SJ, Kim EY, Noh W, Oh YH, Kim HY, Song BK, Cho KM, Hong SH, Lee SH, Jegal J. Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess Biosyst Eng 2012; 36:885-92. [PMID: 23010721 DOI: 10.1007/s00449-012-0821-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/28/2012] [Indexed: 11/28/2022]
Abstract
In this study, we developed recombinant Escherichia coli strains expressing Lactococcus lactis subsp. lactis Il1403 glutamate decarboxylase (GadB) for the production of GABA from glutamate monosodium salt (MSG). Syntheses of GABA from MSG were examined by employing recombinant E. coli XL1-Blue as a whole cell biocatalyst in buffer solution. By increasing the concentration of E. coli XL1-Blue expressing GadB from the OD₆₀₀ of 2-10, the concentration and conversion yield of GABA produced from 10 g/L of MSG could be increased from 4.3 to 4.8 g/L and from 70 to 78 %, respectively. Furthermore, E. coli XL1-Blue expressing GadB highly concentrated to the OD₆₀₀ of 100 produced 76.2 g/L of GABA from 200 g/L of MSG with 62.4 % of GABA yield. Finally, nylon 4 could be synthesized by the bulk polymerization using 2-pyrrolidone that was prepared from microbially synthesized GABA by the reaction with Al₂O₃ as catalyst in toluene with the yield of 96 %.
Collapse
Affiliation(s)
- Si Jae Park
- Department of Environmental Engineering and Energy-Undergraduate Program, Myongji University, San 38-2, Nam-dong, Cheoin-gu, Yongin-si, Gyeonggido 449-728, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dellomonaco C, Rivera C, Campbell P, Gonzalez R. Engineered respiro-fermentative metabolism for the production of biofuels and biochemicals from fatty acid-rich feedstocks. Appl Environ Microbiol 2010; 76:5067-78. [PMID: 20525863 PMCID: PMC2916504 DOI: 10.1128/aem.00046-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/25/2010] [Indexed: 01/08/2023] Open
Abstract
Although lignocellulosic sugars have been proposed as the primary feedstock for the biological production of renewable fuels and chemicals, the availability of fatty acid (FA)-rich feedstocks and recent progress in the development of oil-accumulating organisms make FAs an attractive alternative. In addition to their abundance, the metabolism of FAs is very efficient and could support product yields significantly higher than those obtained from lignocellulosic sugars. However, FAs are metabolized only under respiratory conditions, a metabolic mode that does not support the synthesis of fermentation products. In the work reported here we engineered several native and heterologous fermentative pathways to function in Escherichia coli under aerobic conditions, thus creating a respiro-fermentative metabolic mode that enables the efficient synthesis of fuels and chemicals from FAs. Representative biofuels (ethanol and butanol) and biochemicals (acetate, acetone, isopropanol, succinate, and propionate) were chosen as target products to illustrate the feasibility of the proposed platform. The yields of ethanol, acetate, and acetone in the engineered strains exceeded those reported in the literature for their production from sugars, and in the cases of ethanol and acetate they also surpassed the maximum theoretical values that can be achieved from lignocellulosic sugars. Butanol was produced at yields and titers that were between 2- and 3-fold higher than those reported for its production from sugars in previously engineered microorganisms. Moreover, our work demonstrates production of propionate, a compound previously thought to be synthesized only by propionibacteria, in E. coli. Finally, the synthesis of isopropanol and succinate was also demonstrated. The work reported here represents the first effort toward engineering microorganisms for the conversion of FAs to the aforementioned products.
Collapse
Affiliation(s)
- Clementina Dellomonaco
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas 77005, Glycos Biotechnologies Inc., 711 Leverkuhn St., Houston, Texas 77007, Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005
| | - Carlos Rivera
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas 77005, Glycos Biotechnologies Inc., 711 Leverkuhn St., Houston, Texas 77007, Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005
| | - Paul Campbell
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas 77005, Glycos Biotechnologies Inc., 711 Leverkuhn St., Houston, Texas 77007, Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005
| | - Ramon Gonzalez
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas 77005, Glycos Biotechnologies Inc., 711 Leverkuhn St., Houston, Texas 77007, Department of Bioengineering, Rice University, 6100 Main St., Houston, Texas 77005
| |
Collapse
|
16
|
|
17
|
Yang TH, Kim TW, Kang HO, Lee SH, Lee EJ, Lim SC, Oh SO, Song AJ, Park SJ, Lee SY. Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol Bioeng 2010; 105:150-60. [DOI: 10.1002/bit.22547] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
|
19
|
Silva-Queiroz S, Silva L, Pradella J, Pereira E, Gomez J. PHAMCL biosynthesis systems in Pseudomonas aeruginosa and Pseudomonas putida strains show differences on monomer specificities. J Biotechnol 2009; 143:111-8. [DOI: 10.1016/j.jbiotec.2009.06.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 06/10/2009] [Accepted: 06/15/2009] [Indexed: 11/25/2022]
|
20
|
Martin CH, Prather KLJ. High-titer production of monomeric hydroxyvalerates from levulinic acid in Pseudomonas putida. J Biotechnol 2009; 139:61-7. [DOI: 10.1016/j.jbiotec.2008.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 09/03/2008] [Accepted: 09/15/2008] [Indexed: 10/21/2022]
|
21
|
Vo MT, Lee KW, Jung YM, Lee YH. Comparative effect of overexpressed phaJ and fabG genes supplementing (R)-3-hydroxyalkanoate monomer units on biosynthesis of mcl-polyhydroxyalkanoate in Pseudomonas putida KCTC1639. J Biosci Bioeng 2008; 106:95-8. [DOI: 10.1263/jbb.106.95] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 04/04/2008] [Indexed: 11/17/2022]
|
22
|
Moon SY, Hong SH, Kim TY, Lee SY. Metabolic engineering of Escherichia coli for the production of malic acid. Biochem Eng J 2008. [DOI: 10.1016/j.bej.2008.01.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Davis R, Chandrashekar A, Shamala TR. Role of (R)-specific enoyl coenzyme A hydratases of Pseudomonas sp in the production of polyhydroxyalkanoates. Antonie van Leeuwenhoek 2007; 93:285-96. [PMID: 17906975 DOI: 10.1007/s10482-007-9203-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 09/13/2007] [Indexed: 10/22/2022]
Abstract
Four (R)-specific enoyl CoA hydratases (PhaJ) interconnect the beta-oxidation pathway with PHA biosynthesis in Pseudomonas aeruginosa. The use of antisense technique and over-expression to delineate the role of two of these enzymes, PhaJ1 and PhaJ4 forms the basis of this study. It has been observed that P. aeruginosa recombinant with phaJ1 antisense construct, fed with different fatty acids, produces PHA with less hydroxy octanoate (7-11% reduction) and a proportionate increase in other monomer fractions, compared to that of the control. Recombinants bearing phaJ4 antisense construct are found to contain less hydroxy decanoate (10-11% reduction) and more or less equal amount of hydroxy octanoate, compared to that of the control. P. aeruginosa has produced PHA with more hydroxy octanoate and decanoate (6-17% increase), respectively, when PhaJ1 and PhaJ4 have been over-expressed individually or along with PhaC1. PhaJ1 and PhaJ4 are found to be involved mainly in the production of hydroxy octanoyl CoA and hydroxy decanoyl CoA, respectively, in P. aeruginosa. The strongest accumulation of hydroxy octanoate and hydroxy decanoate has been observed along with hydroxy butyrate, in PHA, produced by E. coli, when PhaC1 has been co-expressed with PhaJ1 and PhaJ4, respectively. We have demonstrated, for the first time, the polymerization of hydroxy butyryl CoA monomers in recombinant E. coli by PhaC1 of P. aeruginosa.
Collapse
Affiliation(s)
- Reeta Davis
- Department of Plant Cell Biotechnology, Central Food Technological Research Institute, Mysore, India.
| | | | | |
Collapse
|
24
|
Li R, Zhang H, Qi Q. The production of polyhydroxyalkanoates in recombinant Escherichia coli. BIORESOURCE TECHNOLOGY 2007; 98:2313-20. [PMID: 17097289 DOI: 10.1016/j.biortech.2006.09.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 08/25/2006] [Accepted: 09/05/2006] [Indexed: 05/06/2023]
Abstract
Polyhydroxyalkanoates, the natural polyester that many microorganisms accumulate to store carbon and reducing equivalents, have been considered as a future alternative of traditional plastic due to their special properties. In Escherichia coli, a previous non-polyhydroxyalkanoates producer, pathway engineering has been developed as a very powerful approach to set up microbial production process through the introduction of direct genetic changes by recombinant DNA technology. Various metabolic pathways leading to the polyhydroxyalkanoates accumulation with desirable properties at low-cost and high-productivity have been developed. At the same time, high density fermentation technology of E. coli provides an efficient polyhydroxyalkanoates production strategy. This review focused on metabolic engineering, fermentation and downstream process aiming to polyhydroxyalkanoates production in E. coli.
Collapse
Affiliation(s)
- Rui Li
- State Key Lab of Microbial Technology, Life Science School, Shandong University, 250100 Jinan, PR China
| | | | | |
Collapse
|
25
|
Vo MT, Lee KW, Kim TK, Lee YH. Utilization of fadA knockout mutant Pseudomonas putida for overproduction of medium chain-length-polyhydroxyalkanoate. Biotechnol Lett 2007; 29:1915-20. [PMID: 17653511 DOI: 10.1007/s10529-007-9476-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 11/24/2022]
Abstract
The fadBA operon in the fatty acid beta-oxidation pathway of P. putida KCTC1639 was blocked to induce a metabolic flux of the intermediates to the biosynthesis of medium chain-length PHA (mcl-PHA). Succinate at 150 mg l(-1) stimulated cell growth and also the biosynthesis of medium chain-length-polyhydroxyalkanoate. pH-stat fed-batch cultivation of the fadA knockout mutant P. putida KCTC1639 was carried out for 60 h, in which mcl-PHA reached 8 g l(-1) with a cell dry weight of 10.3 g l(-1).
Collapse
Affiliation(s)
- Minh Tri Vo
- Department of Genetic Engineering, College of Natural Sciences, Kyungpook National University, Daegu, 702-701, South Korea
| | | | | | | |
Collapse
|
26
|
Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - a review. Biotechnol Adv 2006; 25:148-75. [PMID: 17222526 DOI: 10.1016/j.biotechadv.2006.11.007] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 11/23/2006] [Accepted: 11/23/2006] [Indexed: 11/18/2022]
Abstract
The increasing effect of non-degradable plastic wastes is a growing concern. Polyhydroxyalkanoates (PHAs), macromolecule-polyesters naturally produced by many species of microorganisms, are being considered as a replacement for conventional plastics. Unlike petroleum-derived plastics that take several decades to degrade, PHAs can be completely bio-degraded within a year by a variety of microorganisms. This biodegradation results in carbon dioxide and water, which return to the environment. Attempts based on various methods have been undertaken for mass production of PHAs. Promising strategies involve genetic engineering of microorganisms and plants to introduce production pathways. This challenge requires the expression of several genes along with optimization of PHA synthesis in the host. Although excellent progress has been made in recombinant hosts, the barriers to obtaining high quantities of PHA at low cost still remain to be solved. The commercially viable production of PHA in crops, however, appears to be a realistic goal for the future.
Collapse
Affiliation(s)
- Pornpa Suriyamongkol
- Plant Biotechnology Unit, Alberta Research Council, Vegreville, Alberta, Canada T9C 1T4
| | | | | | | | | |
Collapse
|
27
|
Lee SE, Li QX, Yu J. Proteomic examination of Ralstonia eutropha in cellular responses to formic acid. Proteomics 2006; 6:4259-68. [PMID: 16807942 DOI: 10.1002/pmic.200500824] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, Ralstonia eutropha was used to elucidate protein changes in response to formic acid. Sixty-three differentially expressed proteins in relation to formic acid in R. eutropha were found with 1-D PAGE and nano-LC-MS/MS. Among the proteins with decreased expression, four were involved in the shikimate pathway and three proteins in the pyrimidine biosynthesis pathway. With the increased expression of proteins, a dramatic change occurred in the induction of ion transporters in relation to maintenance of the acid-base balance. A detoxification process of formic acid in the bacteria might be related to a membrane enzyme, formate hydrogenylase. Three proteins in polyhydroxyalkanoate synthesis were enhanced and five proteins in glutathione biosynthesis increased in response to formic acid. Three enzymes in mevalonate biosynthesis and heat shock proteins were also elevated in the cells. Therefore, formic acid might have an inhibitory effect on aromatic amino acid production and pyrimidine biosynthesis in R. eutropha. R. eutropha cells seemed to attempt to overcome the effects of formic acid by increasing ion transporters and proteins that metabolized formic acid.
Collapse
Affiliation(s)
- Sung-Eun Lee
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, USA
| | | | | |
Collapse
|
28
|
Nomura CT, Taguchi K, Gan Z, Kuwabara K, Tanaka T, Takase K, Doi Y. Expression of 3-ketoacyl-acyl carrier protein reductase (fabG) genes enhances production of polyhydroxyalkanoate copolymer from glucose in recombinant Escherichia coli JM109. Appl Environ Microbiol 2005; 71:4297-306. [PMID: 16085817 PMCID: PMC1183366 DOI: 10.1128/aem.71.8.4297-4306.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are biologically produced polyesters that have potential application as biodegradable plastics. Especially important are the short-chain-length-medium-chain-length (SCL-MCL) PHA copolymers, which have properties ranging from thermoplastic to elastomeric, depending on the ratio of SCL to MCL monomers incorporated into the copolymer. Because of the potential wide range of applications for SCL-MCL PHA copolymers, it is important to develop and characterize metabolic pathways for SCL-MCL PHA production. In previous studies, coexpression of PHA synthase genes and the 3-ketoacyl-acyl carrier protein reductase gene (fabG) in recombinant Escherichia coli has been shown to enhance PHA production from related carbon sources such as fatty acids. In this study, a new fabG gene from Pseudomonas sp. 61-3 was cloned and its gene product characterized. Results indicate that the Pseudomonas sp. 61-3 and E. coli FabG proteins have different substrate specificities in vitro. The current study also presents the first evidence that coexpression of fabG genes from either E. coli or Pseudomonas sp. 61-3 with fabH(F87T) and PHA synthase genes can enhance the production of SCL-MCL PHA copolymers from nonrelated carbon sources. Differences in the substrate specificities of the FabG proteins were reflected in the monomer composition of the polymers produced by recombinant E. coli. SCL-MCL PHA copolymer isolated from a recombinant E. coli strain had improved physical properties compared to the SCL homopolymer poly-3-hydroxybutyrate. This study defines a pathway to produce SCL-MCL PHA copolymer from the fatty acid biosynthesis that may impact on PHA production in recombinant organisms.
Collapse
Affiliation(s)
- Christopher T Nomura
- Polymer Chemistry Laboratory, RIKEN Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Park SJ, Choi JI, Lee SY. Engineering of Escherichia coli fatty acid metabolism for the production of polyhydroxyalkanoates. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2004.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Nomura CT, Taguchi K, Taguchi S, Doi Y. Coexpression of genetically engineered 3-ketoacyl-ACP synthase III (fabH) and polyhydroxyalkanoate synthase (phaC) genes leads to short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production from glucose in Escherichia coli JM109. Appl Environ Microbiol 2004; 70:999-1007. [PMID: 14766582 PMCID: PMC348927 DOI: 10.1128/aem.70.2.999-1007.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) can be divided into three main types based on the sizes of the monomers incorporated into the polymer. Short-chain-length (SCL) PHAs consist of monomer units of C3 to C5, medium-chain-length (MCL) PHAs consist of monomer units of C6 to C14, and SCL-MCL PHAs consist of monomers ranging in size from C4 to C14. Although previous studies using recombinant Escherichia coli have shown that either SCL or MCL PHA polymers could be produced from glucose, this study presents the first evidence that an SCL-MCL PHA copolymer can be made from glucose in recombinant E. coli. The 3-ketoacyl-acyl carrier protein synthase III gene (fabH) from E. coli was modified by saturation point mutagenesis at the codon encoding amino acid 87 of the FabH protein sequence, and the resulting plasmids were cotransformed with either the pAPAC plasmid, which harbors the Aeromonas caviae PHA synthase gene (phaC), or the pPPAC plasmid, which harbors the Pseudomonas sp. strain 61-3 PHA synthase gene (phaC1), and the abilities of these strains to accumulate PHA from glucose were assessed. It was found that overexpression of several of the mutant fabH genes enabled recombinant E. coli to induce the production of monomers of C4 to C10 and subsequently to produce unusual PHA copolymers containing SCL and MCL units. The results indicate that the composition of PHA copolymers may be controlled by the monomer-supplying enzyme and further reinforce the idea that fatty acid biosynthesis may be used to supply monomers for PHA production.
Collapse
Affiliation(s)
- Christopher T Nomura
- Polymer Chemistry Laboratory, RIKEN Institute, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | |
Collapse
|
31
|
Lai CY, Cronan JE. Isolation and characterization of beta-ketoacyl-acyl carrier protein reductase (fabG) mutants of Escherichia coli and Salmonella enterica serovar Typhimurium. J Bacteriol 2004; 186:1869-78. [PMID: 14996818 PMCID: PMC355975 DOI: 10.1128/jb.186.6.1869-1878.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FabG, beta-ketoacyl-acyl carrier protein (ACP) reductase, performs the NADPH-dependent reduction of beta-ketoacyl-ACP substrates to beta-hydroxyacyl-ACP products, the first reductive step in the elongation cycle of fatty acid biosynthesis. We report the first documented fabG mutants and their characterization. By chemical mutagenesis followed by a tritium suicide procedure, we obtained three conditionally lethal temperature-sensitive fabG mutants. The Escherichia coli [fabG (Ts)] mutant contains two point mutations: A154T and E233K. The beta-ketoacyl-ACP reductase activity of this mutant was extremely thermolabile, and the rate of fatty acid synthesis measured in vivo was inhibited upon shift to the nonpermissive temperature. Moreover, synthesis of the acyl-ACP intermediates of the pathway was inhibited upon shift of mutant cultures to the nonpermissive temperature, indicating blockage of the synthetic cycle. Similar results were observed for in vitro fatty acid synthesis. Complementation analysis revealed that only the E233K mutation was required to give the temperature-sensitive growth phenotype. In the two Salmonella enterica serovar Typhimurium fabG(Ts) mutants one strain had a single point mutation, S224F, whereas the second strain contained two mutations (M125I and A223T). All of the altered residues of the FabG mutant proteins are located on or near the twofold axes of symmetry at the dimer interfaces in this homotetrameric protein, suggesting that the quaternary structures of the mutant FabG proteins may be disrupted at the nonpermissive temperature.
Collapse
Affiliation(s)
- Chiou-Yan Lai
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
32
|
Han MJ, Jeong KJ, Yoo JS, Lee SY. Engineering Escherichia coli for increased productivity of serine-rich proteins based on proteome profiling. Appl Environ Microbiol 2004; 69:5772-81. [PMID: 14532024 PMCID: PMC201230 DOI: 10.1128/aem.69.10.5772-5781.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Variations in proteome profiles of Escherichia coli in response to the overproduction of human leptin, a serine-rich (11.6% of total amino acids) protein, were examined by two-dimensional gel electrophoresis. The levels of heat shock proteins increased, while those of protein elongation factors, 30S ribosomal protein, and some enzymes involved in amino acid biosynthesis decreased, after leptin overproduction. Most notably, the levels of enzymes involved in the biosynthesis of serine family amino acids significantly decreased. Based on this information, we designed a strategy to enhance the leptin productivity by manipulating the cysK gene, encoding cysteine synthase A. By coexpression of the cysK gene, we were able to increase the cell growth rate by approximately twofold. Also, the specific leptin productivity could be increased by fourfold. In addition, we found that cysK coexpression can improve the production of another serine-rich protein, interleukin-12 beta chain, suggesting that this strategy may be useful for the production of other serine-rich proteins as well. The approach taken in this study should be useful in designing a strategy for improving recombinant protein production.
Collapse
Affiliation(s)
- Mee-Jung Han
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | | | | | | |
Collapse
|
33
|
Park SJ, Yup Lee S. New fadB homologous enzymes and their use in enhanced biosynthesis of medium-chain-length polyhydroxyalkanoates infadB mutantEscherichia coli. Biotechnol Bioeng 2004; 86:681-6. [PMID: 15137080 DOI: 10.1002/bit.20065] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recombinant Escherichia coli harboring the medium-chain-length (MCL) polyhydroxyalkanoate (PHA) synthase gene has been shown to accumulate MCL-PHAs from fatty acids when FadB is inactive. However, the enzymes in fadB mutant E. coli responsible for channeling the beta-oxidation intermediates to PHA biosynthesis have not been fully elucidated. Only recently, two enzymes encoded by yfcX and maoC have been found to be partially responsible for this. In this study, we identified five new FadB homologous enzymes in E. coli: PaaG, PaaF, BhbD, SceH, and YdbU, by protein database search, and examined their roles in the biosynthesis of MCL-PHAs in an fadB mutant E. coli strain. Coexpression of each of these genes along with the Pseudomonas sp. 61-3 phaC2 gene did not allow synthesis of MCL-PHA from fatty acid in recombinant E. coli W3110, which has a fully functional beta-oxidation pathway, but allowed MCL-PHA accumulation in an fadB mutant E. coli WB101. In particular, coexpression of the paaG, paaF, and ydbU genes resulted in a MCL-PHA production up to 0.37, 0.25, and 0.33 g/L, respectively, from 2 g/L of sodium decanoate, which is more than twice higher than that obtained with E. coli WB101 expressing only the phaC2 gene (0.16 g/L). These results suggest that the newly found FadB homologous enzymes, or at least the paaG, paaF, and ydbU genes, are involved in MCL-PHA biosynthesis in an fadB mutant E. coli strain and can be employed for the enhanced production of MCL-PHA.
Collapse
Affiliation(s)
- Si Jae Park
- Department of Chemical & Biomolecular Engineering and BioProcess Engineering Research Center, Daejeon 305-701, Republic of Korea
| | | |
Collapse
|
34
|
Abstract
Nature produces an astonishing wealth of secondary metabolites with important biological functions. To access this diversity of structurally complex chemical compounds for industrial and biomedical applications, cells have been engineered to produce higher levels and/or novel compounds that were previously inaccessible. Recent examples of metabolic and combinatorial engineering illustrate different strategies for the production of secondary metabolites in microbial cells.
Collapse
Affiliation(s)
- Benjamin N Mijts
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, 140 Gortner Laboratory, Saint Paul, MN 55108, USA
| | | |
Collapse
|
35
|
Rehm BHA. Polyester synthases: natural catalysts for plastics. Biochem J 2003; 376:15-33. [PMID: 12954080 PMCID: PMC1223765 DOI: 10.1042/bj20031254] [Citation(s) in RCA: 470] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Accepted: 09/04/2003] [Indexed: 11/17/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with a conserved cysteine residue as catalytic nucleophile. This review provides a survey of the known biochemical features of these unique enzymes and their proposed catalytic mechanism.
Collapse
Affiliation(s)
- Bernd H A Rehm
- Institut für Molekulare Mikrobiologie und Biotechnologie der Westfälischen Wilhelms-Universität Münster, Corrensstrasse 3, 48149 Münster, Germany.
| |
Collapse
|
36
|
Hong SH, Park SJ, Moon SY, Park JP, Lee SY. In silico prediction and validation of the importance of the Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli. Biotechnol Bioeng 2003; 83:854-63. [PMID: 12889025 DOI: 10.1002/bit.10733] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The metabolic network of Escherichia coli was constructed and was used to simulate the distribution of metabolic fluxes in wild-type E. coli and recombinant E. coli producing poly(3-hydroxybutyrate) [P(3HB)]. The flux of acetyl-CoA into the tricarboxylic acid (TCA) cycle, which competes with the P(3HB) biosynthesis pathway, decreased significantly during P(3HB) production. It was notable to find from in silico analysis that the Entner-Doudoroff (ED) pathway flux increased significantly under P(3HB)-accumulating conditions. To prove the role of ED pathway on P(3HB) production, a mutant E. coli strain, KEDA, which is defective in the activity of 2-keto-3-deoxy-6-phosphogluconate aldolase (Eda), was examined as a host strain for the production of P(3HB) by transforming it with pJC4, a plasmid containing the Alcaligenes latus P(3HB) biosynthesis operon. The P(3HB) content obtained with KEDA (pJC4) was lower than that obtained with its parent strain KS272 (pJC4). The reduced P(3HB) biosynthetic capacity of KEDA (pJC4) could be restored by the co-expression of the E. coli eda gene, which proves the important role of ED pathway on P(3HB) synthesis in recombinant E. coli as predicted by metabolic flux analysis.
Collapse
Affiliation(s)
- Soon Ho Hong
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | | | | | |
Collapse
|
37
|
Park SJ, Lee SY. Identification and characterization of a new enoyl coenzyme A hydratase involved in biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli. J Bacteriol 2003; 185:5391-7. [PMID: 12949091 PMCID: PMC193764 DOI: 10.1128/jb.185.18.5391-5397.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biosynthetic pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHAs) from fatty acids has been established in fadB mutant Escherichia coli strain by expressing the MCL-PHA synthase gene. However, the enzymes that are responsible for the generation of (R)-3-hydroxyacyl coenzyme A (R3HA-CoAs), the substrates for PHA synthase, have not been thoroughly elucidated. Escherichia coli MaoC, which is homologous to Pseudomonas aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1), was identified and found to be important for PHA biosynthesis in a fadB mutant E. coli strain. When the MCL-PHA synthase gene was introduced, the fadB maoC double-mutant E. coli WB108, which is a derivative of E. coli W3110, accumulated 43% less amount of MCL-PHA from fatty acid compared with the fadB mutant E. coli WB101. The PHA biosynthetic capacity could be restored by plasmid-based expression of the maoCEc gene in E. coli WB108. Also, E. coli W3110 possessing fully functional beta-oxidation pathway could produce MCL-PHA from fatty acid by the coexpression of the maoCEc gene and the MCL-PHA synthase gene. For the enzymatic analysis, MaoC fused with His6-Tag at its C-terminal was expressed in E. coli and purified. Enzymatic analysis of tagged MaoC showed that MaoC has enoyl-CoA hydratase activity toward crotonyl-CoA. These results suggest that MaoC is a new enoyl-CoA hydratase involved in supplying (R)-3-hydroxyacyl-CoA from the beta-oxidation pathway to PHA biosynthetic pathway in the fadB mutant E. coli strain.
Collapse
Affiliation(s)
- Si Jae Park
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | | |
Collapse
|
38
|
Park SJ, Park JP, Lee SY, Doi Y. Enrichment of specific monomer in medium-chain-length poly(3-hydroxyalkanoates) by amplification of fadD and fadE genes in recombinant Escherichia coli. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00093-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|