1
|
Su M, Hoang KL, Penley M, Davis MH, Gresham JD, Morran LT, Read TD. Host and antibiotic jointly select for greater virulence in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.610628. [PMID: 39257827 PMCID: PMC11383984 DOI: 10.1101/2024.08.31.610628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Widespread antibiotic usage has resulted in the rapid evolution of drug-resistant bacterial pathogens and poses significant threats to public health. Resolving how pathogens respond to antibiotics under different contexts is critical for understanding disease emergence and evolution going forward. The impact of antibiotics has been demonstrated most directly through in vitro pathogen passaging experiments. Independent from antibiotic selection, interactions with hosts have also altered the evolutionary trajectories and fitness landscapes of pathogens, shaping infectious disease outcomes. However, it is unclear how interactions between hosts and antibiotics impact the evolution of pathogen virulence. Here, we evolved and re-sequenced Staphylococcus aureus, a major bacterial pathogen, varying exposure to host and antibiotics to tease apart the contributions of these selective pressures on pathogen adaptation. After 12 passages, S. aureus evolving in Caenorhabditis elegans nematodes exposed to a sub-minimum inhibitory concentration of antibiotic (oxacillin) became highly virulent, regardless of whether the ancestral pathogen was methicillin-resistant (MRSA) or methicillin-sensitive (MSSA). Host and antibiotic exposure selected for reduced drug susceptibility in MSSA lineages while increasing MRSA total growth outside hosts. We identified mutations in genes involved in complex regulatory networks linking virulence and metabolism, including codY , agr , and gdpP , suggesting that rapid adaptation to infect hosts may have pleiotropic effects. In particular, MSSA populations under selection from host and antibiotic accumulated mutations in the global regulator gene codY , which controls biofilm formation in S. aureus. These populations had indeed evolved more robust biofilms-a trait linked to both virulence and antibiotic resistance-suggesting evolution of one trait can confer multiple adaptive benefits. Despite evolving in similar environments, MRSA and MSSA populations proceeded on divergent evolutionary paths, with MSSA populations exhibiting more similarities across replicate populations. Our results underscore the importance of considering multiple and concurrent selective pressures as drivers of pervasive pathogen traits.
Collapse
|
2
|
Ahator SD, Wenzl K, Hegstad K, Lentz CS, Johannessen M. Comprehensive virulence profiling and evolutionary analysis of specificity determinants in Staphylococcus aureus two-component systems. mSystems 2024; 9:e0013024. [PMID: 38470253 PMCID: PMC11019936 DOI: 10.1128/msystems.00130-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 03/13/2024] Open
Abstract
In the Staphylococcus aureus genome, a set of highly conserved two-component systems (TCSs) composed of histidine kinases (HKs) and their cognate response regulators (RRs) sense and respond to environmental stimuli, which drive the adaptation of the bacteria. This study investigates the complex interplay between TCSs in S. aureus USA300, a predominant methicillin-resistant S. aureus strain, revealing shared and unique virulence regulatory pathways and genetic variations mediating signal specificity within TCSs. Using TCS-related mutants from the Nebraska Transposon Mutant Library, we analyzed the effects of inactivated TCS HKs and RRs on the production of various virulence factors, in vitro infection abilities, and adhesion assays. We found that the TCSs' influence on virulence determinants was not associated with their phylogenetic relationship, indicating divergent functional evolution. Using the co-crystallized structure of the DesK-DesR from Bacillus subtilis and the modeled structures of the four NarL TCSs in S. aureus, we identified interacting residues, revealing specificity determinants and conservation within the same TCS, even from different strain backgrounds. The interacting residues were highly conserved within strains but varied between species due to selection pressures and the coevolution of cognate pairs. This study unveils the complex interplay and divergent functional evolution of TCSs, highlighting their potential for future experimental exploration of phosphotransfer between cognate and non-cognate recombinant HK and RRs.IMPORTANCEGiven the widespread conservation of two-component systems (TCSs) in bacteria and their pivotal role in regulating metabolic and virulence pathways, they present a compelling target for anti-microbial agents, especially in the face of rising multi-drug-resistant infections. Harnessing TCSs therapeutically necessitates a profound understanding of their evolutionary trajectory in signal transduction, as this underlies their unique or shared virulence regulatory pathways. Such insights are critical for effectively targeting TCS components, ensuring an optimized impact on bacterial virulence, and mitigating the risk of resistance emergence via the evolution of alternative pathways. Our research offers an in-depth exploration of virulence determinants controlled by TCSs in S. aureus, shedding light on the evolving specificity determinants that orchestrate interactions between their cognate pairs.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Karoline Wenzl
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Christian S. Lentz
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host-Microbe Interactions, Centre for New Antibacterial Strategies (CANS), Department of Medical Biology, Faculty of Health Sciences, UiT- The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Yang G, Wang G, Li Z, Deng L, Wang N, Wang X, Zhou T, Zhang J, Lei Y, Wang T, Wang Y, Shao H, Chen M, Zhang K, Zhou M, Wang X, Liu X, Ju S. Efficacy and pharmacoeconomic advantages of Fufang Huangbai Fluid hydropathic compress in diabetic foot infections: a comparative clinical study with antimicrobial calcium alginate wound dressing. Front Pharmacol 2024; 15:1285946. [PMID: 38318142 PMCID: PMC10839075 DOI: 10.3389/fphar.2024.1285946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Objective: To compare the intervention effects and pharmacoeconomic advantages of Fufang Huangbai Fluid (FFHB) hydropathic compress versus Antimicrobial Calcium Alginate Wound Dressing (ACAWD) in the treatment of diabetic foot infections (DFI). Methods: Patients with DF who were hospitalized in the peripheral vascular Department of Dongzhimen Hospital of Beijing University of Chinese Medicine from December 2020 to February 2022 and met the inclusion and excluding criteria were allocated into the experimental group and control group through minimization randomization. The experimental group was treated with FFHB hydropathic compress for 2 weeks, while the control group was treated with ACAWD for the same duration. The wound healing of both groups was monitored for 1 month post-discharge. Clinical data from all eligible patients were collected, and differences in various indices between cohorts were analyzed. Results: 22 in the experimental group (including two fell off) and 20 in the control group. After the treatment, the negative rate of wound culture in the experimental group was 30% and that in the control group was 10%, There was no significant difference in the negative rate of wound culture and change trend of minimum inhibitory concentration (MIC) value of drug sensitivity (p > 0.05). The infection control rate of the experimental group was 60%, and that of the control group was 25%. The difference between the two groups was statistically significant (χ2 = 5.013, p = 0.025). The median wound healing rate of the experimental group was 34.4% and that of the control group was 33.3%. There was no significant difference between the two groups (p > 0.05). During the follow-up 1 month later, the wound healing rate in the experimental group was higher, and the difference was statistically significant (p = 0.047). Pharmacoeconomic evaluations indicated that the experimental group had greater cost-effectiveness compared to the control group. Conclusion: In the preliminary study, FFHB demonstrated comparable pathogenic and clinical efficacy to ACAWD in the treatment of mild DF infection, and exhibited superior pharmacoeconomic advantages. With the aid of infection control, the wound healing rate in the FFHB group showed notable improvement. Nevertheless, due to the limited sample size, larger-scale studies are warranted to further validate these findings. Clinical Trial Registration: (https://www.chictr.org.cn/showproj.aspx?proj=66175), identifier (ChiCTR2000041443).
Collapse
Affiliation(s)
- Guangyao Yang
- Beijing Hepingli Hospital, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Gang Wang
- Department of Peripheral Vascular, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenghong Li
- Research Department, Swiss University of Traditional Chinese Medicine, Bad Zurzach, Switzerland
| | - Lijuan Deng
- Beijing University of Chinese Medicine, Beijing, China
| | - Ning Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Xuewan Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Tong Zhou
- Beijing University of Chinese Medicine, Beijing, China
| | | | - Yin Lei
- Beijing Hepingli Hospital, Beijing, China
| | - Tao Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Yue Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Hanying Shao
- Beijing University of Chinese Medicine, Beijing, China
| | - Mingya Chen
- Beijing University of Chinese Medicine, Beijing, China
| | - Keren Zhang
- Beijing University of Chinese Medicine, Beijing, China
| | - Min Zhou
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiangbao Wang
- Department of Interventional Center, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xingfang Liu
- Research Department, Swiss University of Traditional Chinese Medicine, Bad Zurzach, Switzerland
| | - Shang Ju
- Department of Peripheral Vascular, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Viering B, Balogh H, Cox CF, Kirpekar OK, Akers AL, Federico VA, Valenzano GZ, Stempel R, Pickett HL, Lundin PM, Blackledge MS, Miller HB. Loratadine Combats Methicillin-Resistant Staphylococcus aureus by Modulating Virulence, Antibiotic Resistance, and Biofilm Genes. ACS Infect Dis 2024; 10:232-250. [PMID: 38153409 PMCID: PMC10788911 DOI: 10.1021/acsinfecdis.3c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has evolved to become resistant to multiple classes of antibiotics. New antibiotics are costly to develop and deploy, and they have a limited effective lifespan. Antibiotic adjuvants are molecules that potentiate existing antibiotics through nontoxic mechanisms. We previously reported that loratadine, the active ingredient in Claritin, potentiates multiple cell-wall active antibiotics in vitro and disrupts biofilm formation through a hypothesized inhibition of the master regulatory kinase Stk1. Loratadine and oxacillin combined repressed the expression of key antibiotic resistance genes in the bla and mec operons. We hypothesized that additional genes involved in antibiotic resistance, biofilm formation, and other cellular pathways would be modulated when looking transcriptome-wide. To test this, we used RNA-seq to quantify transcript levels and found significant effects in gene expression, including genes controlling virulence, antibiotic resistance, metabolism, transcription (core RNA polymerase subunits and sigma factors), and translation (a plethora of genes encoding ribosomal proteins and elongation factor Tu). We further demonstrated the impacts of these transcriptional effects by investigating loratadine treatment on intracellular ATP levels, persister formation, and biofilm formation and morphology. Loratadine minimized biofilm formation in vitro and enhanced the survival of infected Caenorhabditis elegans. These pleiotropic effects and their demonstrated outcomes on MRSA virulence and survival phenotypes position loratadine as an attractive anti-infective against MRSA.
Collapse
Affiliation(s)
- Brianna
L. Viering
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Halie Balogh
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Chloe F. Cox
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Owee K. Kirpekar
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - A. Luke Akers
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Victoria A. Federico
- Department
of Biology, High Point University, High Point, North Carolina 27268, United States
| | - Gabriel Z. Valenzano
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Robin Stempel
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Hannah L. Pickett
- Department
of Biology, High Point University, High Point, North Carolina 27268, United States
| | - Pamela M. Lundin
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Meghan S. Blackledge
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Heather B. Miller
- Department
of Chemistry, High Point University, High Point, North Carolina 27268, United States
| |
Collapse
|
5
|
Gao P, Wei Y, Hou S, Lai PM, Liu H, Tai SSC, Tang VYM, Prakash PH, Sze KH, Chen JHK, Sun H, Li X, Kao RYT. SaeR as a novel target for antivirulence therapy against Staphylococcus aureus. Emerg Microbes Infect 2023; 12:2254415. [PMID: 37671453 PMCID: PMC10494732 DOI: 10.1080/22221751.2023.2254415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Staphylococcus aureus is a major human pathogen responsible for a wide range of clinical infections. SaeRS is one of the two-component systems in S. aureus that modulate multiple virulence factors. Although SaeR is required for S. aureus to develop an infection, inhibitors have not been reported. Using an in vivo knockdown method, we demonstrated that SaeR is targetable for the discovery of antivirulence agent. HR3744 was discovered through a high-throughput screening utilizing a GFP-Lux dual reporter system driven by saeP1 promoter. The antivirulence efficacy of HR3744 was tested using Western blot, Quantitative Polymerase Chain Reaction, leucotoxicity, and haemolysis tests. In electrophoresis mobility shift assay, HR3744 inhibited SaeR-DNA probe binding. WaterLOGSY-NMR test showed HR3744 directly interacted with SaeR's DNA-binding domain. When SaeR was deleted, HR3744 lost its antivirulence property, validating the target specificity. Virtual docking and mutagenesis were used to confirm the target's specificity. When Glu159 was changed to Asn, the bacteria developed resistance to HR3744. A structure-activity relationship study revealed that a molecule with a slight modification did not inhibit SaeR, indicating the selectivity of HR3744. Interestingly, we found that SAV13, an analogue of HR3744, was four times more potent than HR3744 and demonstrated identical antivirulence properties and target specificity. In a mouse bacteraemia model, both HR3744 and SAV13 exhibited in vivo effectiveness. Collectively, we identified the first SaeR inhibitor, which exhibited in vitro and in vivo antivirulence properties, and proved that SaeR could be a novel target for developing antivirulence drugs against S. aureus infections.
Collapse
Affiliation(s)
- Peng Gao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yuanxin Wei
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Suying Hou
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Pok-Man Lai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Han Liu
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Sherlock Shing Chiu Tai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Victor Yat Man Tang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Pradeep Halebeedu Prakash
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kong-Hung Sze
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jonathan Hon Kwan Chen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Hongzhe Sun
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Xuechen Li
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Richard Yi-Tsun Kao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
6
|
Chen J, Chen J, Wang Z, Chen C, Zheng J, Yu Z, Deng Q, Zhao Y, Wen Z. 20S-ginsenoside Rg3 inhibits the biofilm formation and haemolytic activity of Staphylococcus aureus by inhibiting the SaeR/SaeS two-component system. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction.
Staphylococcus aureus
is a major cause of chronic diseases and biofilm formation is a contributing factor. 20S-ginsenoside Rg3 (Rg3) is a natural product extracted from the traditional Chinese medicine red ginseng.
Gap statement. The effects of Rg3 on biofilm formation and haemolytic activity as well as its antibacterial mechanism against
S. aureus
have not been reported.
Aim. This study aimed to investigate the effects of Rg3 on biofilm formation and haemolytic activity as well as its antibacterial action against clinical
S. aureus
isolates.
Methodology. The effect of Rg3 on biofilm formation of clinical
S. aureus
isolates was studied by crystal violet staining. Haemolytic activity analysis was carried out. Furthermore, the influence of Rg3 on the proteome profile of
S. aureus
was studied by quantitative proteomics to clarify the mechanism underlying its antibacterial action and further verified by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR).
Results. Rg3 significantly inhibited biofilm formation and haemolytic activity in clinical
S. aureus
isolates. A total of 63 with >1.5-fold changes in expression were identified, including 34 upregulated proteins and 29 downregulated proteins. Based on bioinformatics analysis, the expression of several virulence factors and biofilm-related proteins, containing CopZ, CspA, SasG, SaeR/SaeS two-component system and SaeR/SaeS-regulated proteins, including leukocidin-like protein 2, immunoglobulin-binding protein G (Sbi) and fibrinogen-binding protein, in the
S. aureu
s of the Rg3-treated group was downregulated. RT-qPCR confirmed that Rg3 inhibited the regulation of SaeR/SaeS and decreased the transcriptional levels of the biofilm-related genes CopZ, CspA and SasG.
Conclusions. Rg3 reduces the formation of biofilm by reducing cell adhesion and aggregation. Further, Rg3 can inhibit the SaeR/SaeS two-component system, which acts as a crucial signal transduction system for the anti-virulence activity of Rg3 against clinical
S. aureus
isolates.
Collapse
Affiliation(s)
- Junwen Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Jinlian Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Zhanwen Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Chengchun Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Jinxin Zheng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Zhijian Yu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Qiwen Deng
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Yuxi Zhao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Lab of Endogenous Infection, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Bio-medical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, PR China
| |
Collapse
|
7
|
Pendleton A, Yeo WS, Alqahtani S, DiMaggio DA, Stone CJ, Li Z, Singh VK, Montgomery CP, Bae T, Brinsmade SR. Regulation of the Sae Two-Component System by Branched-Chain Fatty Acids in Staphylococcus aureus. mBio 2022; 13:e0147222. [PMID: 36135382 PMCID: PMC9600363 DOI: 10.1128/mbio.01472-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus is a ubiquitous Gram-positive bacterium and an opportunistic human pathogen. S. aureus pathogenesis relies on a complex network of regulatory factors that adjust gene expression. Two important factors in this network are CodY, a repressor protein responsive to nutrient availability, and the SaeRS two-component system (TCS), which responds to neutrophil-produced factors. Our previous work revealed that CodY regulates the secretion of many toxins indirectly via Sae through an unknown mechanism. We report that disruption of codY results in increased levels of phosphorylated SaeR (SaeR~P) and that codY mutant cell membranes contain a higher percentage of branched-chain fatty acids (BCFAs) than do wild-type membranes, prompting us to hypothesize that changes to membrane composition modulate the activity of the SaeS sensor kinase. Disrupting the lpdA gene encoding dihydrolipoyl dehydrogenase, which is critical for BCFA synthesis, significantly reduced the abundance of SaeR, phosphorylated SaeR, and BCFAs in the membrane, resulting in reduced toxin production and attenuated virulence. Lower SaeR levels could be explained in part by reduced stability. Sae activity in the lpdA mutant could be complemented genetically and chemically with exogenous short- or full-length BCFAs. Intriguingly, lack of lpdA also alters the activity of other TCSs, suggesting a specific BCFA requirement managing the basal activity of multiple TCSs. These results reveal a novel method of posttranscriptional virulence regulation via BCFA synthesis, potentially linking CodY activity to multiple virulence regulators in S. aureus. IMPORTANCE Two-component systems (TCSs) are an essential way that bacteria sense and respond to their environment. These systems are usually composed of a membrane-bound histidine kinase that phosphorylates a cytoplasmic response regulator. Because most of the histidine kinases are embedded in the membrane, lipids can allosterically regulate the activity of these sensors. In this study, we reveal that branched-chain fatty acids (BCFAs) are required for the activation of multiple TCSs in Staphylococcus aureus. Using both genetic and biochemical data, we show that the activity of the virulence activator SaeS and the phosphorylation of its response regulator SaeR are reduced in a branched-chain keto-acid dehydrogenase complex mutant and that defects in BCFA synthesis have far-reaching consequences for exotoxin secretion and virulence. Finally, we show that mutation of the global nutritional regulator CodY alters BCFA content in the membrane, revealing a potential mechanism of posttranscriptional regulation of the Sae system by CodY.
Collapse
Affiliation(s)
| | - Won-Sik Yeo
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Shahad Alqahtani
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Carl J. Stone
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Zhaotao Li
- Center for Microbial Pathogenesis, Abigail Wexner Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Vineet K. Singh
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, USA
| | - Christopher P. Montgomery
- Center for Microbial Pathogenesis, Abigail Wexner Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| | | |
Collapse
|
8
|
Gao P, Wei Y, Wan RE, Wong KW, Iu HTV, Tai SSC, Li Y, Yam HCB, Halebeedu Prakash P, Chen JHK, Ho PL, Yuen KY, Davies J, Kao RYT. Subinhibitory Concentrations of Antibiotics Exacerbate Staphylococcal Infection by Inducing Bacterial Virulence. Microbiol Spectr 2022; 10:e0064022. [PMID: 35758685 PMCID: PMC9431598 DOI: 10.1128/spectrum.00640-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/17/2022] [Indexed: 01/24/2023] Open
Abstract
Antibiotics are widely used for the treatment of bacterial infections. However, injudicious use of antibiotics based on an empirical method may lead to the emergence of resistant strains. Despite appropriate administration of antibiotics, their concentrations may remain subinhibitory in the body, due to individual variations in tissue distribution and metabolism rates. This may promote bacterial virulence and complicate the treatment strategies. To investigate whether the administration of certain classes of antibiotics will induce bacterial virulence and worsen the infection under in vivo conditions. Different classes of antibiotics were tested in vitro for their ability to induce virulence in a methicillin-resistant S. aureus strain Mu3 and clinical isolates. Antibiotic-induced pathogenicity was assessed in vivo using mouse peritonitis and bacteremia models. In vitro, β-lactam antibiotics and tetracyclines induced the expression of multiple surface-associated virulence factors as well as the secretion of toxins. In peritonitis and bacteremia models, mice infected with MRSA and treated with ampicillin, ceftazidime, or tetracycline showed enhanced bacterial pathogenicity. The release of induced virulence factors in vivo was confirmed in a histological examination. Subinhibitory concentrations of antibiotics belonging to β-lactam and tetracycline aggravated infection by inducing staphylococcal virulence in vivo. Thus, when antibiotics are required, it is preferable to employ combination therapy and to initiate the appropriate treatment plan, following diagnosis. Our findings emphasize the risks associated with antibiotic-based therapy and underline the need for alternative therapeutic options. IMPORTANCE Antibiotics are widely applied to treat infectious diseases. Empirically treatment with incorrect antibiotics, or even correct antibiotics always falls into subinhibitory concentrations, due to dosing, distribution, or secretion. In this study, we have systematically evaluated in vitro virulence induction effect of antibiotics and in vivo exacerbated infection. The major highlight of this work is to prove the β-lactam and tetracyclines antibiotics exacerbated disease is due to their induction effect on staphylococcal virulence. This phenomenon is common and suggests that if β-lactam antibiotics remain the first line of defense during empirical therapy, we either need to increase patient reliability or the treatment approach may improve in the future when paired with anti-virulence drugs.
Collapse
Affiliation(s)
- Peng Gao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yuanxin Wei
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Rachel Evelyn Wan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ka Wing Wong
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ho Ting Venice Iu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Sherlock Shing Chiu Tai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yongli Li
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hin Cheung Bill Yam
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Pradeep Halebeedu Prakash
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jonathan Hon Kwan Chen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Department of Microbiology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Pak Leung Ho
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Department of Microbiology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases and the Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kwok Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Department of Microbiology, Queen Mary Hospital, Pok Fu Lam, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases and the Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Julian Davies
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard Yi Tsun Kao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- State Key Laboratory of Emerging Infectious Diseases and the Research Centre of Infection and Immunology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
9
|
Dietrich A, Steffens U, Sass P, Bierbaum G. The hypersusceptible antibiotic screening strain Staphylococcus aureus SG511-Berlin harbors multiple mutations in regulatory genes. Int J Med Microbiol 2021; 311:151545. [PMID: 34896903 DOI: 10.1016/j.ijmm.2021.151545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022] Open
Abstract
The genetic plasticity of Staphylococcus aureus has facilitated the evolution of many virulent and drug-resistant strains. Here we present the sequence of the 2.74 Mbp genome of S. aureus SG511-Berlin, which is frequently used for antibiotic screening. Although S. aureus SG511 and the related methicillin-resistant S. aureus MRSA252 share a high similarity in their core genomes, indicated by an average nucleotide identity (ANI) of 99.83%, the accessory genomes of these strains differed, as nearly no mobile elements and resistance determinants were identified in the genome of S. aureus SG511. Susceptibility testing showed that S. aureus SG511 was susceptible to most of the tested antibiotics of different classes. Intriguingly, and in contrast to the standard laboratory strain S. aureus HG001, S. aureus SG511 was even hyper-susceptible towards cell wall and membrane targeting agents, with the exception of the MurA-inhibitor fosfomycin. In depth comparative genome analysis revealed that, in addition to the loss of function mutation in the antibiotic sensor histidine kinase gene graS, further mutations had occurred in the lysyltransferase gene mprF, the structural giant protein gene ebh, and the regulator genes codY and saeR, which might contribute to antibiotic susceptibility. In addition, an insertion element in agrC abolishes Agr-activity in S. aureus SG511, and the spa and sarS genes, which encode the surface protein SpA and its transcriptional regulator, were deleted. Thus, the lack of mobile resistance genes together with multiple mutations affecting cell envelope morphology may render S. aureus SG511 hyper-susceptible towards most cell wall targeting agents.
Collapse
Affiliation(s)
- Alina Dietrich
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Medical Faculty, 53127 Bonn, Germany.
| | - Ursula Steffens
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Medical Faculty, 53127 Bonn, Germany.
| | - Peter Sass
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Medical Faculty, 53127 Bonn, Germany.
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Medical Faculty, 53127 Bonn, Germany.
| |
Collapse
|
10
|
DeMars ZR, Krute CN, Ridder MJ, Gilchrist AK, Menjivar C, Bose JL. Fatty acids can inhibit Staphylococcus aureus SaeS activity at the membrane independent of alterations in respiration. Mol Microbiol 2021; 116:1378-1391. [PMID: 34626146 DOI: 10.1111/mmi.14830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022]
Abstract
In Staphylococcus aureus, the two-component system SaeRS is responsible for regulating various virulence factors essential for the success of this pathogen. SaeRS can be stimulated by neutrophil-derived products but has also recently been shown to be inactivated by the presence of free fatty acids. A mechanism for how fatty acids negatively impacts SaeRS has not been described. We found that unsaturated fatty acids, as well as fatty acids not commonly found in Staphylococcal membranes, prevent the activation of SaeRS at a lower concentration than their saturated counterparts. These fatty acids can negatively impact SaeRS without altering the respiratory capacity of the bacterium. To uncover a potential mechanism for how fatty acids impact SaeRS function/activity, we utilized a naturally occurring point mutation found in S. aureus as well as chimeric SaeS proteins. Using these tools, we identified that the native transmembrane domains of SaeS dictate the transcriptional response to fatty acids in S. aureus. Our data support a model where free fatty acids alter the activity of the two-component system SaeRS directly through the sensor kinase SaeS and is dependent on the transmembrane domains of the protein.
Collapse
Affiliation(s)
- Zachary R DeMars
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Christina N Krute
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Miranda J Ridder
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aubrey K Gilchrist
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Cindy Menjivar
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jeffrey L Bose
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
11
|
Pishchany G, Kolter R. On the possible ecological roles of antimicrobials. Mol Microbiol 2020; 113:580-587. [PMID: 31975454 DOI: 10.1111/mmi.14471] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/29/2022]
Abstract
The Introduction of antibiotics into the clinical use in the middle of the 20th century had a profound impact on modern medicine and human wellbeing. The contribution of these wonder molecules to public health and science is hard to overestimate. Much research has informed our understanding of antibiotic mechanisms of action and resistance at inhibitory concentrations in the lab and in the clinic. Antibiotics, however, are not a human invention as most of them are either natural products produced by soil microorganisms or semisynthetic derivatives of natural products. Because we use antibiotics to inhibit the bacterial growth, it is generally assumed that growth inhibition is also their primary ecological function in the environment. Nevertheless, multiple studies point to diverse nonlethal effects that are exhibited at lower levels of antibiotics. Here we review accumulating evidence of antibiosis and of alternative functions of antibiotics exhibited at subinhibitory concentrations. We also speculate on how these effects might alter phenotypes, fitness, and community composition of microbes in the context of the environment and suggest directions for future research.
Collapse
Affiliation(s)
- Gleb Pishchany
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Roberto Kolter
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Regulation of virulence and antibiotic resistance in Gram-positive microbes in response to cell wall-active antibiotics. Curr Opin Infect Dis 2020; 32:217-222. [PMID: 31021953 DOI: 10.1097/qco.0000000000000542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Antibiotic stress can evoke considerable genotypic and phenotypic changes in Gram-positive bacteria. Here, we review recent studies describing altered virulence expression in response to cell wall-acting antibiotics and discuss mechanisms that coordinate regulation of the antibiotic response. RECENT FINDINGS Pleiotropic effects induced by antibiotic exposure include alterations to bacterial metabolism, cell wall structure and antibiotic resistance. In addition, subinhibitory concentrations of cell wall-active (CWA) antibiotics have increasingly been shown to induce the production of exotoxins and biofilm formation that may influence virulence. Remarkably, phenotypes associated with comparable antibiotic stresses can vary considerably, emphasizing the need to better understand the response to CWA antibiotics. Recent studies support both direct antibiotic recognition and recognition of antibiotic-induced stress to the bacterial cell wall. Specifically, bacterial two-component systems, penicillin-binding protein and serine/threonine kinase-associated kinases and conserved oxidative-stress sensors each contribute to modulating the antibiotic stress response. SUMMARY Bacterial sensory systems and global regulators coordinate signaling in response to CWA antibiotics. Regulation of the antibiotic response is complex and involves integration of signals from multiple response pathways. A better definition of the antibiotic stress response among Gram-positive pathogens may yield novel therapeutic targets to counter antibiotic resistance and virulence factor expression.
Collapse
|
13
|
β-Lactam Antibiotics Enhance the Pathogenicity of Methicillin-Resistant Staphylococcus aureus via SarA-Controlled Lipoprotein-Like Cluster Expression. mBio 2019; 10:mBio.00880-19. [PMID: 31186320 PMCID: PMC6561022 DOI: 10.1128/mbio.00880-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
β-Lactam antibiotics are widely applied to treat infectious diseases. However, certain poor disease outcomes caused by β-lactams remain poorly understood. In this study, we have identified a cluster of lipoprotein-like genes (lpl, sa2275–sa2273) that is upregulated in the major clinically prevalent MRSA clones in response to subinhibitory concentrations of β-lactam induction. The major highlight of this work is that β-lactams stimulate the expression of SarA, which directly binds to the lpl cluster promoter region and upregulates lpl expression in MRSA. Deletion of lpl significantly decreases proinflammatory cytokine levels in vitro and in vivo. The β-lactam-induced Lpls enhance host inflammatory responses by triggering the Toll-like-receptor-2-mediated expressions of interleukin-6 and tumor necrosis factor alpha. The β-lactam-induced Lpls are important virulence factors that enhance MRSA pathogenicity. These data elucidate that subinhibitory concentrations of β-lactams can exacerbate the outcomes of MRSA infection through induction of lpl controlled by the global regulator SarA. Methicillin-resistant Staphylococcus aureus (MRSA) resists nearly all β-lactam antibiotics that have a bactericidal activity. However, whether the empirically used β-lactams enhance MRSA pathogenicity in vivo remains unclear. In this study, we showed that a cluster of lipoprotein-like genes (lpl, sa2275 to sa2273 [sa2275–sa2273]) was upregulated in MRSA in response to subinhibitory concentrations of β-lactam induction. The increasing expression of lpl by β-lactams was directly controlled by the global regulator SarA. The β-lactam-induced Lpls stimulated the production of interleukin-6 and tumor necrosis factor alpha in RAW 264.7 macrophages. The lpl deletion mutants (N315Δlpl and USA300Δlpl) decreased the proinflammatory cytokine levels in vitro and in vivo. Purified lipidated SA2275-his proteins could trigger a Toll-like-receptor-2 (TLR2)-dependent immune response in primary mouse bone marrow-derived macrophages and C57BL/6 mice. The bacterial loads of N315Δlpl in the mouse kidney were lower than those of the wild-type N315. The β-lactam-treated MRSA exacerbated cutaneous infections in both BALB/c and C57BL/6 mice, presenting increased lesion size; destroyed skin structure; and easily promoted abscess formation compared with those of the untreated MRSA. However, the size of abscesses caused by the β-lactam-treated N315 was negligibly different from those caused by the untreated N315Δlpl in C57BL/6 TLR2−/− mice. Our findings suggest that β-lactams must be used carefully because they might aggravate the outcome of MRSA infection compared to inaction in treatment.
Collapse
|
14
|
Saber H, Alwaleed EA, Ebnalwaled K, Sayed A, Salem W. Efficacy of silver nanoparticles mediated by Jania rubens and Sargassum dentifolium macroalgae; Characterization and biomedical applications. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ejbas.2017.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hani Saber
- Botany Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Eman A. Alwaleed
- Botany Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - K.A. Ebnalwaled
- Electronics & Nano Devices Laboratory, Physics Department, Faculty of Science, South Valley University, Qena 83523, Egypt
- Egypt Nanotechnology Center (EGNC), Cairo University Sheikh Zayed Campus, 12588 Giza, Egypt
| | - Asmaa Sayed
- Botany Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Wesam Salem
- Botany Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| |
Collapse
|
15
|
Horn J, Klepsch M, Manger M, Wolz C, Rudel T, Fraunholz M. Long Noncoding RNA SSR42 Controls Staphylococcus aureus Alpha-Toxin Transcription in Response to Environmental Stimuli. J Bacteriol 2018; 200:e00252-18. [PMID: 30150231 PMCID: PMC6199474 DOI: 10.1128/jb.00252-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/22/2018] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus is a human pathogen causing a variety of diseases by versatile expression of a large set of virulence factors that most prominently features the cytotoxic and hemolytic pore-forming alpha-toxin. Expression of alpha-toxin is regulated by an intricate network of transcription factors. These include two-component systems sensing quorum and environmental signals as well as regulators reacting to the nutritional status of the pathogen. We previously identified the repressor of surface proteins (Rsp) as a virulence regulator. Acute cytotoxicity and hemolysis are strongly decreased in rsp mutants, which are characterized by decreased transcription of toxin genes as well as loss of transcription of a 1,232-nucleotide (nt)-long noncoding RNA (ncRNA), SSR42. Here, we show that SSR42 is the effector of Rsp in transcription regulation of the alpha-toxin gene, hla SSR42 transcription is enhanced after exposure of S. aureus to subinhibitory concentrations of oxacillin which thus leads to an SSR42-dependent increase in hemolysis. Aside from Rsp, SSR42 transcription is under the control of additional global regulators, such as CodY, AgrA, CcpE, and σB, but is positioned upstream of the two-component system SaeRS in the regulatory cascade leading to alpha-toxin production. Thus, alpha-toxin expression depends on two long ncRNAs, SSR42 and RNAIII, which control production of the cytolytic toxin on the transcriptional and translational levels, respectively, with SSR42 as an important regulator of SaeRS-dependent S. aureus toxin production in response to environmental and metabolic signals.IMPORTANCEStaphylococcus aureus is a major cause of life-threatening infections. The bacterium expresses alpha-toxin, a hemolysin and cytotoxin responsible for many of the pathologies of S. aureus Alpha-toxin production is enhanced by subinhibitory concentrations of antibiotics. Here, we show that this process is dependent on the long noncoding RNA, SSR42. Further, SSR42 itself is regulated by several global regulators, thereby integrating environmental and nutritional signals that modulate hemolysis of the pathogen.
Collapse
Affiliation(s)
- Jessica Horn
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Maximilian Klepsch
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Michelle Manger
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Thomas Rudel
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| | - Martin Fraunholz
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Nagel A, Michalik S, Debarbouille M, Hertlein T, Gesell Salazar M, Rath H, Msadek T, Ohlsen K, van Dijl JM, Völker U, Mäder U. Inhibition of Rho Activity Increases Expression of SaeRS-Dependent Virulence Factor Genes in Staphylococcus aureus, Showing a Link between Transcription Termination, Antibiotic Action, and Virulence. mBio 2018; 9:e01332-18. [PMID: 30228237 PMCID: PMC6143737 DOI: 10.1128/mbio.01332-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/16/2018] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus causes various diseases ranging from skin and soft tissue infections to life-threatening infections. Adaptation to the different host niches is controlled by a complex network of transcriptional regulators. Global profiling of condition-dependent transcription revealed adaptation of S. aureus HG001 at the levels of transcription initiation and termination. In particular, deletion of the gene encoding the Rho transcription termination factor triggered a remarkable overall increase in antisense transcription and gene expression changes attributable to indirect regulatory effects. The goal of the present study was a detailed comparative analysis of S. aureus HG001 and its isogenic rho deletion mutant. Proteome analysis revealed significant differences in cellular and extracellular protein profiles, most notably increased amounts of the proteins belonging to the SaeR regulon in the Rho-deficient strain. The SaeRS two-component system acts as a major regulator of virulence gene expression in staphylococci. Higher levels of SaeRS-dependent virulence factors such as adhesins, toxins, and immune evasion proteins in the rho mutant resulted in higher virulence in a murine bacteremia model, which was alleviated in a rho complemented strain. Inhibition of Rho activity by bicyclomycin, a specific inhibitor of Rho activity, also induced the expression of SaeRS-dependent genes, at both the mRNA and protein levels, to the same extent as observed in the rho mutant. Taken together, these findings indicate that activation of the Sae system in the absence of Rho is directly linked to Rho's transcription termination activity and establish a new link between antibiotic action and virulence gene expression in S. aureusIMPORTANCE The major human pathogen Staphylococcus aureus is a widespread commensal bacterium but also the most common cause of nosocomial infections. It adapts to the different host niches through a complex gene regulatory network. We show here that the Rho transcription termination factor, which represses pervasive antisense transcription in various bacteria, including S. aureus, plays a role in controlling SaeRS-dependent virulence gene expression. A Rho-deficient strain produces larger amounts of secreted virulence factors in vitro and shows increased virulence in mice. We also show that treatment of S. aureus with the antibiotic bicyclomycin, which inhibits Rho activity and is effective against Gram-negative bacteria, induces the same changes in the proteome as observed in the Rho-deficient strain. Our results reveal for the first time a link between transcription termination and virulence regulation in S. aureus, which implies a novel mechanism by which an antibiotic can modulate the expression of virulence factors.
Collapse
Affiliation(s)
- Anna Nagel
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Michel Debarbouille
- Biology of Gram-Positive Pathogens, Department of Microbiology, Institut Pasteur and CNRS ERL 3526, Paris, France
| | - Tobias Hertlein
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Hermann Rath
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Tarek Msadek
- Biology of Gram-Positive Pathogens, Department of Microbiology, Institut Pasteur and CNRS ERL 3526, Paris, France
| | - Knut Ohlsen
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
17
|
Influence of subinhibitory concentrations of NH125 on biofilm formation & virulence factors of Staphylococcus aureus. Future Med Chem 2018; 10:1319-1331. [PMID: 29846088 DOI: 10.4155/fmc-2017-0286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM l-benzyl-3-cetyl-2-methylimidazolium iodide (NH125) can inhibit Staphylococcus aureus growth. We investigated the effects of sub-MIC concentrations of NH125 on S. aureus biofilm and virulence. Methodology & results: Three strains of S. aureus were tested. Sub-lethal concentrations of NH125 repressed biofilm formation. At partial sub-MICs, NH125 downregulated the expression of most virulence, while strain-dependent effects were found in the production of α-hemolysin, δ-hemolysin, coagulase and nuclease. In Galleria mellonella model, methicillin-resistant S. aureus pre-exposed to NH125 demonstrated significantly lower killing (p = 0.032 for 1/16 and 1/8 MICs; 0.008 for 1/4 MIC; and 0.001 for 1/2 MIC). CONCLUSION Sub-MIC concentrations of NH125 inhibited biofilm formation and virulence of S. aureus. These findings provide further support for evaluating the clinical efficacy of NH125 in staphylococcal infection.
Collapse
|
18
|
Fisher EL, Otto M, Cheung GYC. Basis of Virulence in Enterotoxin-Mediated Staphylococcal Food Poisoning. Front Microbiol 2018; 9:436. [PMID: 29662470 PMCID: PMC5890119 DOI: 10.3389/fmicb.2018.00436] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/26/2018] [Indexed: 12/17/2022] Open
Abstract
The Staphylococcus aureus enterotoxins are a superfamily of secreted virulence factors that share structural and functional similarities and possess potent superantigenic activity causing disruptions in adaptive immunity. The enterotoxins can be separated into two groups; the classical (SEA-SEE) and the newer (SEG-SElY and counting) enterotoxin groups. Many members from both these groups contribute to the pathogenesis of several serious human diseases, including toxic shock syndrome, pneumonia, and sepsis-related infections. Additionally, many members demonstrate emetic activity and are frequently responsible for food poisoning outbreaks. Due to their robust tolerance to denaturing, the enterotoxins retain activity in food contaminated previously with S. aureus. The genes encoding the enterotoxins are found mostly on a variety of different mobile genetic elements. Therefore, the presence of enterotoxins can vary widely among different S. aureus isolates. Additionally, the enterotoxins are regulated by multiple, and often overlapping, regulatory pathways, which are influenced by environmental factors. In this review, we also will focus on the newer enterotoxins (SEG-SElY), which matter for the role of S. aureus as an enteropathogen, and summarize our current knowledge on their prevalence in recent food poisoning outbreaks. Finally, we will review the current literature regarding the key elements that govern the complex regulation of enterotoxins, the molecular mechanisms underlying their enterotoxigenic, superantigenic, and immunomodulatory functions, and discuss how these activities may collectively contribute to the overall manifestation of staphylococcal food poisoning.
Collapse
Affiliation(s)
- Emilie L Fisher
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
19
|
Fatty Acid Supplementation Reverses the Small Colony Variant Phenotype in Triclosan-Adapted Staphylococcus aureus: Genetic, Proteomic and Phenotypic Analyses. Sci Rep 2018; 8:3876. [PMID: 29497096 PMCID: PMC5832852 DOI: 10.1038/s41598-018-21925-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/06/2018] [Indexed: 11/08/2022] Open
Abstract
Staphylococcus aureus can develop a small colony variant (SCV) phenotype in response to sub-lethal exposure to the biocide triclosan. In the current study, whole genome sequencing was performed and changes in virulence were investigated in five Staphylococcus aureus strains following repeated exposure to triclosan. Following exposure, 4/5 formed SCV and exhibited point mutations in the triclosan target gene fabI with 2/4 SCVs showing mutations in both fabI and fabD. The SCV phenotype was in all cases immediately reversed by nutritional supplementation with fatty acids or by repeated growth in the absence of triclosan, although fabI mutations persisted in 3/4 reverted SCVs. Virulence, determined using keratinocyte invasion and Galleria mellonella pathogenicity assays was significantly (p < 0.05) attenuated in 3/4 SCVs and in the non-SCV triclosan-adapted bacterium. Proteomic analysis revealed elevated FabI in 2/3 SCV and down-regulation in a protein associated with virulence in 1/3 SCV. In summary, attenuated keratinocyte invasion and larval virulence in triclosan-induced SCVs was associated with decreases in growth rate and virulence factor expression. Mutation occurred in fabI, which encodes the main triclosan target in all SCVs and the phenotype was reversed by fatty acid supplementation, demonstrating an association between fatty acid metabolism and triclosan-induced SCV.
Collapse
|
20
|
Harper L, Balasubramanian D, Ohneck EA, Sause WE, Chapman J, Mejia-Sosa B, Lhakhang T, Heguy A, Tsirigos A, Ueberheide B, Boyd JM, Lun DS, Torres VJ. Staphylococcus aureus Responds to the Central Metabolite Pyruvate To Regulate Virulence. mBio 2018; 9:e02272-17. [PMID: 29362239 PMCID: PMC5784258 DOI: 10.1128/mbio.02272-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 12/20/2017] [Indexed: 01/08/2023] Open
Abstract
Staphylococcus aureus is a versatile bacterial pathogen that can cause significant disease burden and mortality. Like other pathogens, S. aureus must adapt to its environment to produce virulence factors to survive the immune responses evoked by infection. Despite the importance of environmental signals for S. aureus pathogenicity, only a limited number of these signals have been investigated in detail for their ability to modulate virulence. Here we show that pyruvate, a central metabolite, causes alterations in the overall metabolic flux of S. aureus and enhances its pathogenicity. We demonstrate that pyruvate induces the production of virulence factors such as the pore-forming leucocidins and that this induction results in increased virulence of community-acquired methicillin-resistant S. aureus (CA-MRSA) clone USA300. Specifically, we show that an efficient "pyruvate response" requires the activation of S. aureus master regulators AgrAC and SaeRS as well as the ArlRS two-component system. Altogether, our report further establishes a strong relationship between metabolism and virulence and identifies pyruvate as a novel regulatory signal for the coordination of the S. aureus virulon through intricate regulatory networks.IMPORTANCE Delineation of the influence of host-derived small molecules on the makeup of human pathogens is a growing field in understanding host-pathogen interactions. S. aureus is a prominent pathogen that colonizes up to one-third of the human population and can cause serious infections that result in mortality in ~15% of cases. Here, we show that pyruvate, a key nutrient and central metabolite, causes global changes to the metabolic flux of S. aureus and activates regulatory networks that allow significant increases in the production of leucocidins. These and other virulence factors are critical for S. aureus to infect diverse host niches, initiate infections, and effectively subvert host immune responses. Understanding how environmental signals, particularly ones that are essential to and prominent in the human host, affect virulence will allow us to better understand pathogenicity and consider more-targeted approaches to tackling the current S. aureus epidemic.
Collapse
Affiliation(s)
- Lamia Harper
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, New York, USA
| | - Divya Balasubramanian
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, New York, USA
| | - Elizabeth A Ohneck
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, New York, USA
| | - William E Sause
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, New York, USA
| | - Jessica Chapman
- Proteomics Resource Center, Office of Collaborative Science, NYU School of Medicine, New York, New York, USA
| | - Bryan Mejia-Sosa
- Center for Computational and Integrative Biology and Department of Computer Science, Rutgers University, Camden, New Jersey, USA
| | - Tenzin Lhakhang
- Applied Bioinformatics Center, Office of Collaborative Science, NYU School of Medicine, New York, New York, USA
| | - Adriana Heguy
- Genome Technology Center, Office of Collaborative Science, NYU School of Medicine, New York, New York, USA
| | - Aristotelis Tsirigos
- Applied Bioinformatics Center, Office of Collaborative Science, NYU School of Medicine, New York, New York, USA
| | - Beatrix Ueberheide
- Proteomics Resource Center, Office of Collaborative Science, NYU School of Medicine, New York, New York, USA
| | - Jeffrey M Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, USA
| | - Desmond S Lun
- Center for Computational and Integrative Biology and Department of Computer Science, Rutgers University, Camden, New Jersey, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, Alexandria Center for Life Science, New York, New York, USA
| |
Collapse
|
21
|
Horn J, Stelzner K, Rudel T, Fraunholz M. Inside job: Staphylococcus aureus host-pathogen interactions. Int J Med Microbiol 2017; 308:607-624. [PMID: 29217333 DOI: 10.1016/j.ijmm.2017.11.009] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is a notorious opportunistic pathogen causing a plethora of diseases. Recent research established that once phagocytosed by neutrophils and macrophages, a certain percentage of S. aureus is able to survive within these phagocytes which thereby even may contribute to dissemination of the pathogen. S. aureus further induces its uptake by otherwise non-phagocytic cells and the ensuing intracellular cytotoxicity is suggested to lead to tissue destruction, whereas bacterial persistence within cells is thought to lead to immune evasion and chronicity of infections. We here review recent work on the S. aureus host pathogen interactions with a focus on the intracellular survival of the pathogen.
Collapse
Affiliation(s)
- Jessica Horn
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kathrin Stelzner
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Fraunholz
- Chair of Microbiology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
22
|
Balasubramanian D, Harper L, Shopsin B, Torres VJ. Staphylococcus aureus pathogenesis in diverse host environments. Pathog Dis 2017; 75:ftx005. [PMID: 28104617 DOI: 10.1093/femspd/ftx005] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is an eminent human pathogen that can colonize the human host and cause severe life-threatening illnesses. This bacterium can reside in and infect a wide range of host tissues, ranging from superficial surfaces like the skin to deeper tissues such as in the gastrointestinal tract, heart and bones. Due to its multifaceted lifestyle, S. aureus uses complex regulatory networks to sense diverse signals that enable it to adapt to different environments and modulate virulence. In this minireview, we explore well-characterized environmental and host cues that S. aureus responds to and describe how this pathogen modulates virulence in response to these signals. Lastly, we highlight therapeutic approaches undertaken by several groups to inhibit both signaling and the cognate regulators that sense and transmit these signals downstream.
Collapse
Affiliation(s)
- Divya Balasubramanian
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Lamia Harper
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Bo Shopsin
- Department of Medicine, Division of Infectious Diseases, New York University School of Medicine, New York, NY 10016 USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
23
|
Abstract
Staphylococcus aureus is often involved in severe infections, in which the effects of bacterial virulence factors have great importance. Antistaphylococcal regimens should take into account the different effects of antibacterial agents on the expression of virulence factors and on the host's immune response. A PubMed literature search was performed to select relevant articles on the effects of antibiotics on staphylococcal toxin production and on the host immune response. Information was sorted according to the methods used for data acquisition (bacterial strains, growth models, and antibiotic concentrations) and the assays used for readout generation. The reported mechanisms underlying S. aureus virulence modulation by antibiotics were reviewed. The relevance of in vitro observations is discussed in relation to animal model data and to clinical evidence extracted from case reports and recommendations on the management of toxin-related staphylococcal diseases. Most in vitro data point to a decreased level of virulence expression upon treatment with ribosomally active antibiotics (linezolid and clindamycin), while cell wall-active antibiotics (beta-lactams) mainly increase exotoxin production. In vivo studies confirmed the suppressive effect of clindamycin and linezolid on virulence expression, supporting their utilization as a valuable management strategy to improve patient outcomes in cases of toxin-associated staphylococcal disease.
Collapse
|
24
|
Ericson ME, Subramanian C, Frank MW, Rock CO. Role of Fatty Acid Kinase in Cellular Lipid Homeostasis and SaeRS-Dependent Virulence Factor Expression in Staphylococcus aureus. mBio 2017; 8:e00988-17. [PMID: 28765222 PMCID: PMC5539427 DOI: 10.1128/mbio.00988-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 06/28/2017] [Indexed: 11/21/2022] Open
Abstract
The SaeRS two-component system is a master activator of virulence factor transcription in Staphylococcus aureus, but the cellular factors that control its activity are unknown. Fatty acid (FA) kinase is a two-component enzyme system required for extracellular FA uptake and SaeRS activity. Here, we demonstrate the existence of an intracellular nonesterified FA pool in S. aureus that is elevated in strains lacking FA kinase activity. SaeRS-mediated transcription is restored in FA kinase-negative strains when the intracellular FA pool is reduced either by growth with FA-depleted bovine serum albumin to extract the FA into the medium or by the heterologous expression of Neisseria gonorrhoeae acyl-acyl carrier protein synthetase to activate FA for phospholipid synthesis. These data show that FAs act as negative regulators of SaeRS signaling, and FA kinase activates SaeRS-dependent virulence factor production by lowering inhibitory FA levels. Thus, FA kinase plays a role in cellular lipid homeostasis by activating FA for incorporation into phospholipid, and it indirectly regulates SaeRS signaling by maintaining a low intracellular FA pool.IMPORTANCE The SaeRS two-component system is a master transcriptional activator of virulence factor production in response to the host environment in S. aureus, and strains lacking FA kinase have severely attenuated SaeRS-dependent virulence factor transcription. FA kinase is required for the activation of exogenous FAs, and it plays a role in cellular lipid homeostasis by recycling cellular FAs into the phospholipid biosynthetic pathway. Activation of the sensor kinase, SaeS, is mediated by its membrane anchor domain, and the FAs which accumulate in FA kinase knockout strains are potent inhibitors of SaeS-dependent signaling. This work identifies FAs as physiological effectors for the SaeRS system and reveals a connection between cellular lipid homeostasis and the regulation of virulence factor transcription. FA kinase is widely distributed in Gram-positive bacteria, suggesting similar roles for FA kinase in these organisms.
Collapse
Affiliation(s)
- Megan E Ericson
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Chitra Subramanian
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew W Frank
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles O Rock
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
25
|
Elmasri WA, Zhu R, Peng W, Al-Hariri M, Kobeissy F, Tran P, Hamood AN, Hegazy MF, Paré PW, Mechref Y. Multitargeted Flavonoid Inhibition of the Pathogenic Bacterium Staphylococcus aureus: A Proteomic Characterization. J Proteome Res 2017; 16:2579-2586. [PMID: 28541047 DOI: 10.1021/acs.jproteome.7b00137] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Growth inhibition of the pathogen Staphylococcus aureus with currently available antibiotics is problematic in part due to bacterial biofilm protection. Although recently characterized natural products, including 3',4',5-trihydroxy-6,7-dimethoxy-flavone [1], 3',4',5,6,7-pentahydroxy-flavone [2], and 5-hydroxy-4',7-dimethoxy-flavone [3], exhibit both antibiotic and biofilm inhibitory activities, the mode of action of such hydroxylated flavonoids with respect to S. aureus inhibition is yet to be characterized. Enzymatic digestion and high-resolution MS analysis of differentially expressed proteins from S. aureus with and without exposure to antibiotic flavonoids (1-3) allowed for the characterization of global protein alterations induced by metabolite treatment. A total of 56, 92, and 110 proteins were differentially expressed with bacterial exposure to 1, 2, or 3, respectively. The connectivity of the identified proteins was characterized using a search tool for the retrieval of interacting genes/proteins (STRING) with multitargeted S. aureus inhibition of energy metabolism and biosynthesis by the assayed flavonoids. Identifying the mode of action of natural products as antibacterial agents is expected to provide insight into the potential use of flavonoids alone or in combination with known therapeutic agents to effectively control S. aureus infection.
Collapse
Affiliation(s)
- Wael A Elmasri
- Department of Chemistry & Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Rui Zhu
- Department of Chemistry & Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Wenjing Peng
- Department of Chemistry & Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Moustafa Al-Hariri
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut , Beirut 1107 2020, Lebanon
| | - Firas Kobeissy
- Department of Biochemistry & Molecular Genetics, Faculty of Medicine, American University of Beirut , Beirut 1107 2020, Lebanon
| | | | | | - Mohamed F Hegazy
- Department of Phytochemistry, National Research Centre , Giza 12311, Egypt
| | - Paul W Paré
- Department of Chemistry & Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department of Chemistry & Biochemistry, Texas Tech University , Lubbock, Texas 79409, United States
| |
Collapse
|
26
|
Murray S, Pascoe B, Méric G, Mageiros L, Yahara K, Hitchings MD, Friedmann Y, Wilkinson TS, Gormley FJ, Mack D, Bray JE, Lamble S, Bowden R, Jolley KA, Maiden MCJ, Wendlandt S, Schwarz S, Corander J, Fitzgerald JR, Sheppard SK. Recombination-Mediated Host Adaptation by Avian Staphylococcus aureus. Genome Biol Evol 2017; 9:830-842. [PMID: 28338786 PMCID: PMC5469444 DOI: 10.1093/gbe/evx037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2017] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus are globally disseminated among farmed chickens causing skeletal muscle infections, dermatitis, and septicaemia. The emergence of poultry-associated lineages has involved zoonotic transmission from humans to chickens but questions remain about the specific adaptations that promote proliferation of chicken pathogens. We characterized genetic variation in a population of genome-sequenced S. aureus isolates of poultry and human origin. Genealogical analysis identified a dominant poultry-associated sequence cluster within the CC5 clonal complex. Poultry and human CC5 isolates were significantly distinct from each other and more recombination events were detected in the poultry isolates. We identified 44 recombination events in 33 genes along the branch extending to the poultry-specific CC5 cluster, and 47 genes were found more often in CC5 poultry isolates compared with those from humans. Many of these gene sequences were common in chicken isolates from other clonal complexes suggesting horizontal gene transfer among poultry associated lineages. Consistent with functional predictions for putative poultry-associated genes, poultry isolates showed enhanced growth at 42 °C and greater erythrocyte lysis on chicken blood agar in comparison with human isolates. By combining phenotype information with evolutionary analyses of staphylococcal genomes, we provide evidence of adaptation, following a human-to-poultry host transition. This has important implications for the emergence and dissemination of new pathogenic clones associated with modern agriculture.
Collapse
Affiliation(s)
- Susan Murray
- Swansea University Medical School, Swansea University, United Kingdom
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, United Kingdom.,MRC CLIMB Consortium, United Kingdom
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, United Kingdom
| | | | - Koji Yahara
- Swansea University Medical School, Swansea University, United Kingdom.,The Biostatistics Center, Kurume University, Fukuoka, Japan
| | | | - Yasmin Friedmann
- Swansea University Medical School, Swansea University, United Kingdom
| | | | - Fraser J Gormley
- Brewdog PLC, Balmacassie Industrial Estate, Ellon, Aberdeenshire, United Kingdom
| | - Dietrich Mack
- Bioscientia Labor Ingelheim, Institut für Medizinische Diagnostik GmbH, Ingelheim, Germany
| | - James E Bray
- Department of Zoology, University of Oxford, United Kingdom
| | - Sarah Lamble
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Rory Bowden
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Keith A Jolley
- Department of Zoology, University of Oxford, United Kingdom
| | | | - Sarah Wendlandt
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt, Germany
| | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt, Germany
| | - Jukka Corander
- Department of Mathematics and Statistics, University of Helsinki, Finland.,Department of Biostatistics, University of Oslo, Norway
| | - J Ross Fitzgerald
- The Roslin Institute and Centre for Infectious Diseases, University of Edinburgh, United Kingdom
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, United Kingdom.,MRC CLIMB Consortium, United Kingdom.,Department of Zoology, University of Oxford, United Kingdom
| |
Collapse
|
27
|
VfrB Is a Key Activator of the Staphylococcus aureus SaeRS Two-Component System. J Bacteriol 2017; 199:JB.00828-16. [PMID: 28031278 DOI: 10.1128/jb.00828-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/14/2016] [Indexed: 12/22/2022] Open
Abstract
In previous studies, we identified the fatty acid kinase virulence factor regulator B (VfrB) as a potent regulator of α-hemolysin and other virulence factors in Staphylococcus aureus In this study, we demonstrated that VfrB is a positive activator of the SaeRS two-component regulatory system. Analysis of vfrB, saeR, and saeS mutant strains revealed that VfrB functions in the same pathway as SaeRS. At the transcriptional level, the promoter activities of SaeRS class I (coa) and class II (hla) target genes were downregulated during the exponential growth phase in the vfrB mutant, compared to the wild-type strain. In addition, saePQRS expression was decreased in the vfrB mutant strain, demonstrating a need for this protein in the autoregulation of SaeRS. The requirement for VfrB-mediated activation was circumvented when SaeS was constitutively active due to an SaeS (L18P) substitution. Furthermore, activation of SaeS via human neutrophil peptide 1 (HNP-1) overcame the dependence on VfrB for transcription from class I Sae promoters. Consistent with the role of VfrB in fatty acid metabolism, hla expression was decreased in the vfrB mutant with the addition of exogenous myristic acid. Lastly, we determined that aspartic acid residues D38 and D40, which are predicted to be key to VfrB enzymatic activity, were required for VfrB-mediated α-hemolysin production. Collectively, this study implicates VfrB as a novel accessory protein needed for the activation of SaeRS in S. aureusIMPORTANCE The SaeRS two-component system is a key regulator of virulence determinant production in Staphylococcus aureus Although the regulon of this two-component system is well characterized, the activation mechanisms, including the specific signaling molecules, remain elusive. Elucidating the complex regulatory circuit of SaeRS regulation is important for understanding how the system contributes to disease causation by this pathogen. To this end, we have identified the fatty acid kinase VfrB as a positive regulatory modulator of SaeRS-mediated transcription of virulence factors in S. aureus In addition to describing a new regulatory aspect of SaeRS, this study establishes a link between fatty acid kinase activity and virulence factor regulation.
Collapse
|
28
|
Shi C, Zhang X, Zhao X, Meng R, Liu Z, Chen X, Guo N. Synergistic interactions of nisin in combination with cinnamaldehyde against Staphylococcus aureus in pasteurized milk. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.06.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Krute CN, Krausz KL, Markiewicz MA, Joyner JA, Pokhrel S, Hall PR, Bose JL. Generation of a Stable Plasmid for In Vitro and In Vivo Studies of Staphylococcus Species. Appl Environ Microbiol 2016; 82:6859-6869. [PMID: 27637878 PMCID: PMC5103085 DOI: 10.1128/aem.02370-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/10/2016] [Indexed: 12/31/2022] Open
Abstract
A major shortcoming to plasmid-based genetic tools is the necessity of using antibiotics to ensure plasmid maintenance. While selectable markers are very powerful, their use is not always practical, such as during in vivo models of bacterial infection. During previous studies, it was noted that the uncharacterized LAC-p01 plasmid in Staphylococcus aureus USA300 isolates was stable in the absence of a known selection and therefore could serve as a platform for new genetic tools for Staphylococcus species. LAC-p01 was genetically manipulated into an Escherichia coli-S. aureus shuttle vector that remained stable for at least 100 generations without antibiotic selection. The double- and single-stranded (dso and sso) origins were identified and found to be essential for plasmid replication and maintenance, respectively. In contrast, deletion analyses revealed that none of the four LAC-p01 predicted open reading frames were necessary for stability. Subsequent to this, the shuttle vector was used as a platform to generate two plasmids. The first plasmid, pKK22, contains all genes native to the plasmid for use in S. aureus USA300 strains, while the second, pKK30, lacks the four predicted open reading frames for use in non-USA300 isolates. pKK30 was also determined to be stable in Staphylococcus epidermidis Moreover, pKK22 was maintained for 7 days postinoculation during a murine model of S. aureus systemic infection and successfully complemented an hla mutant in a dermonecrosis model. These plasmids that eliminate the need for antibiotics during both in vitro and in vivo experiments are powerful new tools for studies of StaphylococcusIMPORTANCE Plasmid stability has been problematic in bacterial studies, and historically antibiotics have been used to ensure plasmid maintenance. This has been a major limitation during in vivo studies, where providing antibiotics for plasmid maintenance is difficult and has confounding effects. Here, we have utilized the naturally occurring plasmid LAC-p01 from an S. aureus USA300 strain to construct stable plasmids that obviate antibiotic usage. These newly modified plasmids retain stability over a multitude of generations in vitro and in vivo without antibiotic selection. With these plasmids, studies requiring genetic complementation, protein expression, or genetic reporter systems would not only overcome the burden of antibiotic usage but also eliminate the side effects of these antibiotics. Thus, our plasmids can be used as a powerful genetic tool for studies of Staphylococcus species.
Collapse
Affiliation(s)
- Christina N Krute
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kelsey L Krausz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mary A Markiewicz
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jason A Joyner
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, USA
| | - Srijana Pokhrel
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, USA
| | - Pamela R Hall
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, USA
| | - Jeffrey L Bose
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
30
|
Arora P, Wani ZA, Nalli Y, Ali A, Riyaz-Ul-Hassan S. Antimicrobial Potential of Thiodiketopiperazine Derivatives Produced by Phoma sp., an Endophyte of Glycyrrhiza glabra Linn. MICROBIAL ECOLOGY 2016; 72:802-812. [PMID: 27357141 DOI: 10.1007/s00248-016-0805-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/16/2016] [Indexed: 05/02/2023]
Abstract
During the screening of endophytes obtained from Glycyrrhiza glabra Linn., the extract from a fungal culture designated as GG1F1 showed significant antimicrobial activity. The fungus was identified as a species of the genus Phoma and was most closely related to Phoma cucurbitacearum. The chemical investigation of the GG1F1 extract led to the isolation and characterization of two thiodiketopiperazine derivatives. Both the compounds inhibited the growth of several bacterial pathogens especially that of Staphylococcus aureus and Streptococcus pyogenes, with IC50 values of less than 10 μM. The compounds strongly inhibited biofilm formation in both the pathogens. In vitro time kill kinetics showed efficient bactericidal activity of these compounds. The compounds were found to act synergistically with streptomycin while producing varying effects in combination with ciprofloxacin and ampicillin. The compounds inhibited bacterial transcription/translation in vitro, and also inhibited staphyloxanthin production in S. aureus. Although similar in structure, they differed significantly in some of their properties, particularly the effect on the expression of pathogenecity related genes in S. aureus at sub-lethal concentrations. Keeping in view the antimicrobial potential of these compounds, it would be needful to scale up the production of these compounds through fermentation technology and further explore their potential as antibiotics using in vivo models.
Collapse
Affiliation(s)
- Palak Arora
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Zahoor A Wani
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Yedukondalu Nalli
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India
| | - Asif Ali
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India.
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India.
| | - Syed Riyaz-Ul-Hassan
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India.
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi, 180001, India.
| |
Collapse
|
31
|
Liu Q, Yeo WS, Bae T. The SaeRS Two-Component System of Staphylococcus aureus. Genes (Basel) 2016; 7:genes7100081. [PMID: 27706107 PMCID: PMC5083920 DOI: 10.3390/genes7100081] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022] Open
Abstract
In the Gram-positive pathogenic bacterium Staphylococcus aureus, the SaeRS twocomponent system (TCS) plays a major role in controlling the production of over 20 virulence factors including hemolysins, leukocidins, superantigens, surface proteins, and proteases. The SaeRS TCS is composed of the sensor histidine kinase SaeS, response regulator SaeR, and two auxiliary proteins SaeP and SaeQ. Since its discovery in 1994, the sae locus has been studied extensively, and its contributions to staphylococcal virulence and pathogenesis have been well documented and understood; however, the molecular mechanism by which the SaeRS TCS receives and processes cognate signals is not. In this article, therefore, we review the literature focusing on the signaling mechanism and its interaction with other global regulators.
Collapse
Affiliation(s)
- Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Won-Sik Yeo
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA.
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA.
| |
Collapse
|
32
|
Gao P, Wang Y, Villanueva I, Ho PL, Davies J, Kao RYT. Construction of a Multiplex Promoter Reporter Platform to Monitor Staphylococcus aureus Virulence Gene Expression and the Identification of Usnic Acid as a Potent Suppressor of psm Gene Expression. Front Microbiol 2016; 7:1344. [PMID: 27625639 PMCID: PMC5004274 DOI: 10.3389/fmicb.2016.01344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/15/2016] [Indexed: 12/05/2022] Open
Abstract
As antibiotic resistance becomes phenomenal, alternative therapeutic strategies for bacterial infections such as anti-virulence treatments have been advocated. We have constructed a total of 20 gfp-luxABCDE dual-reporter plasmids with selected promoters from S. aureus virulence-associated genes. The plasmids were introduced into various S. aureus strains to establish a gfp-lux based multiplex promoter reporter platform for monitoring S. aureus virulence gene expressions in real time to identify factors or compounds that may perturb virulence of S. aureus. The gene expression profiles monitored by luminescence correlated well with qRT-PCR results and extrinsic factors including carbon dioxide and some antibiotics were shown to suppress or induce the expression of virulence factors in this platform. Using this platform, sub-inhibitory ampicillin was shown to be a potent inducer for the expression of many virulence factors in S. aureus. Bacterial adherence and invasion assays using mammalian cells were employed to measure S. aureus virulence induced by ampicillin. The platform was used for screening of natural extracts that perturb the virulence of S. aureus and usnic acid was identified to be a potent repressor for the expression of psm.
Collapse
Affiliation(s)
- Peng Gao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong KongHong Kong, Hong Kong; Li Ka Shing Faculty of Medicine, The Research Centre of Infection and Immunology, The University of Hong KongHong Kong, Hong Kong
| | - Yanli Wang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong KongHong Kong, Hong Kong; Li Ka Shing Faculty of Medicine, The Research Centre of Infection and Immunology, The University of Hong KongHong Kong, Hong Kong
| | - Iván Villanueva
- Department of Microbiology and Immunology, The University of British Columbia Vancouver, BC, Canada
| | - Pak Leung Ho
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong KongHong Kong, Hong Kong; Li Ka Shing Faculty of Medicine, The Research Centre of Infection and Immunology, The University of Hong KongHong Kong, Hong Kong; State Key Laboratory for Emerging Infectious Disease, The University of Hong KongHong Kong, Hong Kong
| | - Julian Davies
- Department of Microbiology and Immunology, The University of British Columbia Vancouver, BC, Canada
| | - Richard Yi Tsun Kao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong KongHong Kong, Hong Kong; Li Ka Shing Faculty of Medicine, The Research Centre of Infection and Immunology, The University of Hong KongHong Kong, Hong Kong; State Key Laboratory for Emerging Infectious Disease, The University of Hong KongHong Kong, Hong Kong
| |
Collapse
|
33
|
Transcriptomic Analysis of the Activity of a Novel Polymyxin against Staphylococcus aureus. mSphere 2016; 1:mSphere00119-16. [PMID: 27471750 PMCID: PMC4963539 DOI: 10.1128/msphere.00119-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022] Open
Abstract
S. aureus is currently one of the most pervasive multidrug-resistant pathogens and commonly causes nosocomial infections. Clinicians are faced with a dwindling armamentarium to treat infections caused by S. aureus, as resistance develops to current antibiotics. This accentuates the urgent need for antimicrobial drug discovery. In the present study, we characterized the global gene expression profile of S. aureus treated with FADDI-019, a novel synthetic polymyxin analogue. In contrast to the concentration-dependent killing and rapid regrowth in Gram-negative bacteria treated with polymyxin B and colistin, FADDI-019 killed S. aureus progressively without regrowth at 24 h. Notably, FADDI-019 activated several vancomycin resistance genes and significantly downregulated the expression of a number of virulence determinants and enterotoxin genes. A synergistic combination with sulfamethoxazole was predicted by pathway analysis and demonstrated experimentally. This is the first study revealing the transcriptomics of S. aureus treated with a novel synthetic polymyxin analog. Polymyxin B and colistin are exclusively active against Gram-negative pathogens and have been used in the clinic as a last-line therapy. In this study, we investigated the antimicrobial activity of a novel polymyxin, FADDI-019, against Staphylococcus aureus. MIC and time-kill assays were employed to measure the activity of FADDI-019 against S. aureus ATCC 700699. Cell morphology was examined with scanning electron microscopy (SEM), and cell membrane polarity was measured using flow cytometry. Transcriptome changes caused by FADDI-019 treatment were investigated using transcriptome sequencing (RNA-Seq). Pathway analysis was conducted to examine the mechanism of the antibacterial activity of FADDI-019 and to rationally design a synergistic combination. Polymyxin B and colistin were not active against S. aureus strains with MICs of >128 mg/liter; however, FADDI-019 had a MIC of 16 mg/liter. Time-kill assays revealed that no S. aureus regrowth was observed after 24 h at 2× to 4× MIC of FADDI-019. Scanning electron microscopy (SEM) and flow cytometry results indicated that FADDI-019 treatment had no effect on cell morphology but caused membrane depolarization. The vancomycin resistance genes vraRS, as well as the VraRS regulon, were activated by FADDI-019. Virulence determinants controlled by SaeRS and the expression of enterotoxin genes yent2, sei, sem, and seo were significantly downregulated by FADDI-019. Pathway analysis of transcriptomic data was predictive of a synergistic combination comprising FADDI-019 and sulfamethoxazole. Our study is the first to examine the mechanism of the killing of a novel polymyxin against S. aureus. We also show the potential of transcriptomic and pathway analysis as tools to design synergistic antibiotic combinations. IMPORTANCES. aureus is currently one of the most pervasive multidrug-resistant pathogens and commonly causes nosocomial infections. Clinicians are faced with a dwindling armamentarium to treat infections caused by S. aureus, as resistance develops to current antibiotics. This accentuates the urgent need for antimicrobial drug discovery. In the present study, we characterized the global gene expression profile of S. aureus treated with FADDI-019, a novel synthetic polymyxin analogue. In contrast to the concentration-dependent killing and rapid regrowth in Gram-negative bacteria treated with polymyxin B and colistin, FADDI-019 killed S. aureus progressively without regrowth at 24 h. Notably, FADDI-019 activated several vancomycin resistance genes and significantly downregulated the expression of a number of virulence determinants and enterotoxin genes. A synergistic combination with sulfamethoxazole was predicted by pathway analysis and demonstrated experimentally. This is the first study revealing the transcriptomics of S. aureus treated with a novel synthetic polymyxin analog.
Collapse
|
34
|
Xu Y, Maltesen RG, Larsen LH, Schønheyder HC, Le VQ, Nielsen JL, Nielsen PH, Thomsen TR, Nielsen KL. In vivo gene expression in a Staphylococcus aureus prosthetic joint infection characterized by RNA sequencing and metabolomics: a pilot study. BMC Microbiol 2016; 16:80. [PMID: 27150914 PMCID: PMC4858865 DOI: 10.1186/s12866-016-0695-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/26/2016] [Indexed: 02/01/2023] Open
Abstract
Background Staphylococcus aureus gene expression has been sparsely studied in deep-sited infections in humans. Here, we characterized the staphylococcal transcriptome in vivo and the joint fluid metabolome in a prosthetic joint infection with an acute presentation using deep RNA sequencing and nuclear magnetic resonance spectroscopy, respectively. We compared our findings with the genome, transcriptome and metabolome of the S. aureus joint fluid isolate grown in vitro. Result From the transcriptome analysis we found increased expression of siderophore synthesis genes and multiple known virulence genes. The regulatory pattern of catabolic pathway genes indicated that the bacterial infection was sustained on amino acids, glycans and nucleosides. Upregulation of fermentation genes and the presence of ethanol in joint fluid indicated severe oxygen limitation in vivo. Conclusion This single case study highlights the capacity of combined transcriptome and metabolome analyses for elucidating the pathogenesis of prosthetic infections of major clinical importance. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0695-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yijuan Xu
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark.,The Danish Technological Institute, Life Science Division, Aarhus, Denmark
| | - Raluca Georgiana Maltesen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark
| | - Lone Heimann Larsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark.,Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Carl Schønheyder
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Vang Quy Le
- Section for Molecular Diagnostics, Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Jeppe Lund Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark
| | - Trine Rolighed Thomsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark.,The Danish Technological Institute, Life Science Division, Aarhus, Denmark
| | - Kåre Lehmann Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajersvej 7H, 9220, Aalborg, Denmark.
| |
Collapse
|
35
|
Novel Genes Related to Ceftriaxone Resistance Found among Ceftriaxone-Resistant Neisseria gonorrhoeae Strains Selected In Vitro. Antimicrob Agents Chemother 2016; 60:2043-51. [PMID: 26787702 DOI: 10.1128/aac.00149-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/03/2016] [Indexed: 01/03/2023] Open
Abstract
The emergence of ceftriaxone-resistantNeisseria gonorrhoeaeis currently a global public health concern. However, the mechanism of ceftriaxone resistance is not yet fully understood. To investigate the potential genes related to ceftriaxone resistance inNeisseria gonorrhoeae, we subcultured six gonococcal strains with increasing concentrations of ceftriaxone and isolated the strains that became resistant. After analyzing several frequently reported genes involved in ceftriaxone resistance, we found only a single mutation inpenA(A501V). However, differential analysis of the genomes and transcriptomes between pre- and postselection strains revealed many other mutated genes as well as up- and downregulated genes. Transformation of the mutatedpenAgene into nonresistant strains increased the MIC between 2.0- and 5.3-fold, and transformation of mutatedftsXincreased the MIC between 3.3- and 13.3-fold. Genes encoding the ABC transporters FarB, Tfq, Hfq, and ExbB were overexpressed, whilepilM,pilN, andpilQwere downregulated. Furthermore, the resistant strain developed cross-resistance to penicillin and cefuroxime, had an increased biochemical metabolic rate, and presented fitness defects such as prolonged growth time and downregulated PilMNQ. In conclusion, antimicrobial pressure could result in the emergence of ceftriaxone resistance, and the evolution of resistance ofNeisseria gonorrhoeaeto ceftriaxone is a complicated process at both the pretranscriptional and posttranscriptional levels, involving several resistance mechanisms of increased efflux and decreased entry.
Collapse
|
36
|
Penicillin Binding Protein 1 Is Important in the Compensatory Response of Staphylococcus aureus to Daptomycin-Induced Membrane Damage and Is a Potential Target for β-Lactam-Daptomycin Synergy. Antimicrob Agents Chemother 2015; 60:451-8. [PMID: 26525797 DOI: 10.1128/aac.02071-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/27/2015] [Indexed: 01/26/2023] Open
Abstract
The activity of daptomycin (DAP) against methicillin-resistant Staphylococcus aureus (MRSA) is enhanced in the presence of β-lactam antibiotics. This effect is more pronounced with β-lactam antibiotics that exhibit avid binding to penicillin binding protein 1 (PBP1). Here, we present evidence that PBP1 has a significant role in responding to DAP-induced stress on the cell. Expression of the pbpA transcript, encoding PBP1, was specifically induced by DAP exposure whereas expression of pbpB, pbpC, and pbpD, encoding PBP2, PBP3, and PBP4, respectively, remained unchanged. Using a MRSA COL strain with pbpA under an inducible promoter, increased pbpA transcription was accompanied by reduced susceptibility to, and killing by, DAP in vitro. Exposure to β-lactams that preferentially inactivate PBP1 was not associated with increased DAP binding, suggesting that synergy in the setting of anti-PBP1 pharmacotherapy results from increased DAP potency on a per-molecule basis. Combination exposure in an in vitro pharmacokinetic/pharmacodynamic model system with β-lactams that preferentially inactivate PBP1 (DAP-meropenem [MEM] or DAP-imipenem [IPM]) resulted in more-rapid killing than did combination exposure with DAP-nafcillin (NAF) (nonselective), DAP-ceftriaxone (CRO) or DAP-cefotaxime (CTX) (PBP2 selective), DAP-cefaclor (CEC) (PBP3 selective), or DAP-cefoxitin (FOX) (PBP4 selective). Compared to β-lactams with poor PBP1 binding specificity, exposure of S. aureus to DAP plus PBP1-selective β-lactams resulted in an increased frequency of septation and cell wall abnormalities. These data suggest that PBP1 activity may contribute to survival during DAP-induced metabolic stress. Therefore, targeted inactivation of PBP1 may enhance the antimicrobial efficiency of DAP, supporting the use of DAP-β-lactam combination therapy for serious MRSA infections, particularly when the β-lactam undermines the PBP1-mediated compensatory response.
Collapse
|
37
|
Azizkhani M, Parsaeimehr M. Effects ofCinnamomum zeylanicum and Ocimum basilicumessential oils on the growth ofStaphylococcus aureusATCC 29213 and gene expression of enterotoxins A, C and E. JOURNAL OF ESSENTIAL OIL RESEARCH 2015. [DOI: 10.1080/10412905.2015.1065774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Liu Q, Cho H, Yeo WS, Bae T. The extracytoplasmic linker peptide of the sensor protein SaeS tunes the kinase activity required for staphylococcal virulence in response to host signals. PLoS Pathog 2015; 11:e1004799. [PMID: 25849574 PMCID: PMC4388633 DOI: 10.1371/journal.ppat.1004799] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/11/2015] [Indexed: 11/26/2022] Open
Abstract
Bacterial pathogens often employ two-component systems (TCSs), typically consisting of a sensor kinase and a response regulator, to control expression of a set of virulence genes in response to changing host environments. In Staphylococcus aureus, the SaeRS TCS is essential for in vivo survival of the bacterium. The intramembrane-sensing histidine kinase SaeS contains, along with a C-terminal kinase domain, a simple N-terminal domain composed of two transmembrane helices and a nine amino acid-long extracytoplasmic linker peptide. As a molecular switch, SaeS maintains low but significant basal kinase activity and increases its kinase activity in response to inducing signals such as human neutrophil peptide 1 (HNP1). Here we show that the linker peptide of SaeS controls SaeS’s basal kinase activity and that the amino acid sequence of the linker peptide is highly optimized for its function. Without the linker peptide, SaeS displays aberrantly elevated kinase activity even in the absence of the inducing signal, and does not respond to HNP1. Moreover, SaeS variants with alanine substitution of the linker peptide amino acids exhibit altered basal kinase activity and/or irresponsiveness to HNP1. Biochemical assays reveal that those SaeS variants have altered autokinase and phosphotransferase activities. Finally, animal experiments demonstrate that the linker peptide-mediated fine tuning of SaeS kinase activity is critical for survival of the pathogen. Our results indicate that the function of the linker peptide in SaeS is a highly evolved feature with very optimized amino acid sequences, and we propose that, in other SaeS-like intramembrane sensing histidine kinases, the extracytoplasmic linker peptides actively fine-control their kinases. A bacterial pathogen Staphylococcus aureus uses the SaeRS two-component system to control the production of multiple toxins, resulting in a wide range of diseases in human. The sensor kinase SaeS is a member of the intramembrane-sensing histidine kinases (IM-HKs) that lacks a sensory domain and harbors a simple N-terminal domain with two transmembrane helices and a short linker peptide. It’s been considered that the linker peptide of IM-HKs transmits the external signals into the cytoplasmic catalytic domain to control the HK’s kinase activity. However, it is unclear how the external signal input propagates through the linker to modulate the kinase activity of HKs. Here we show that the linker peptide of SaeS is critical in maintaining the basal kinase activity and functions as a part of a “tripwire” to jumpstart the activation of the SaeRS system upon exposure to the specific host signals. We establish that a single amino acid substitution of the linker peptide alters SaeS’s kinase activity, resulting in different expression levels of the SaeR-activated genes and alteration of the bacterial virulence in mice. Our study provides new molecular insights into how the pathogenic bacterium utilizes the simple protein domain to control its disease-causing potentials in response to host immune signals.
Collapse
Affiliation(s)
- Qian Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest,Gary, Indiana, United States of America
| | - Hoonsik Cho
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest,Gary, Indiana, United States of America
| | - Won-Sik Yeo
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest,Gary, Indiana, United States of America
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest,Gary, Indiana, United States of America
- * E-mail:
| |
Collapse
|
39
|
Hattangady DS, Singh AK, Muthaiyan A, Jayaswal RK, Gustafson JE, Ulanov AV, Li Z, Wilkinson BJ, Pfeltz RF. Genomic, Transcriptomic and Metabolomic Studies of Two Well-Characterized, Laboratory-Derived Vancomycin-Intermediate Staphylococcus aureus Strains Derived from the Same Parent Strain. Antibiotics (Basel) 2015; 4:76-112. [PMID: 27025616 PMCID: PMC4790321 DOI: 10.3390/antibiotics4010076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/20/2014] [Accepted: 12/10/2014] [Indexed: 11/16/2022] Open
Abstract
Complete genome comparisons, transcriptomic and metabolomic studies were performed on two laboratory-selected, well-characterized vancomycin-intermediate Staphylococcus aureus (VISA) derived from the same parent MRSA that have changes in cell wall composition and decreased autolysis. A variety of mutations were found in the VISA, with more in strain 13136p(-)m⁺V20 (vancomycin MIC = 16 µg/mL) than strain 13136p(-)m⁺V5 (MIC = 8 µg/mL). Most of the mutations have not previously been associated with the VISA phenotype; some were associated with cell wall metabolism and many with stress responses, notably relating to DNA damage. The genomes and transcriptomes of the two VISA support the importance of gene expression regulation to the VISA phenotype. Similarities in overall transcriptomic and metabolomic data indicated that the VISA physiologic state includes elements of the stringent response, such as downregulation of protein and nucleotide synthesis, the pentose phosphate pathway and nutrient transport systems. Gene expression for secreted virulence determinants was generally downregulated, but was more variable for surface-associated virulence determinants, although capsule formation was clearly inhibited. The importance of activated stress response elements could be seen across all three analyses, as in the accumulation of osmoprotectant metabolites such as proline and glutamate. Concentrations of potential cell wall precursor amino acids and glucosamine were increased in the VISA strains. Polyamines were decreased in the VISA, which may facilitate the accrual of mutations. Overall, the studies confirm the wide variability in mutations and gene expression patterns that can lead to the VISA phenotype.
Collapse
Affiliation(s)
- Dipti S Hattangady
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Atul K Singh
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Arun Muthaiyan
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | | | - John E Gustafson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Alexander V Ulanov
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61807, USA.
| | - Zhong Li
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61807, USA.
| | - Brian J Wilkinson
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
| | - Richard F Pfeltz
- BD Diagnostic Systems, Microbiology Research and Development, Sparks, MD 21152, USA.
| |
Collapse
|
40
|
Brunelle BW, Bearson BL, Bearson SMD. Chloramphenicol and tetracycline decrease motility and increase invasion and attachment gene expression in specific isolates of multidrug-resistant Salmonella enterica serovar Typhimurium. Front Microbiol 2015; 5:801. [PMID: 25688233 PMCID: PMC4311684 DOI: 10.3389/fmicb.2014.00801] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/28/2014] [Indexed: 01/04/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is one of the most common serovars isolated from humans and livestock, and over 35% of these isolates are resistant to three or more antibiotics. Multidrug-resistant (MDR) Salmonella is a public health concern as it is associated with increased morbidity in patients compared to antibiotic sensitive strains, though it is unknown how the antibiotic resistant isolates lead to a more severe infection. Cellular invasion is temporally regulated in Salmonella and normally occurs during late-log and stationary growth. However, our previous work determined that a 30 min exposure to a sub-inhibitory concentration of tetracycline can induce the full invasion phenotype during early-log growth in certain MDR S. Typhimurium isolates. The current study examined whether sub-inhibitory concentrations of other antibiotics could also induce the invasiveness in the same set of isolates. Ampicillin and streptomycin had no effect on invasion, but certain concentrations of chloramphenicol were found to induce invasion in a subset of isolates. Two of the isolates induced by chloramphenicol were also inducible by tetracycline. RNA-seq analyses demonstrated that chloramphenicol and tetracycline both down-regulated motility gene expression, while up-regulating genes associated with attachment, invasion, and intracellular survival. Eleven fimbrial operons were up-regulated, which is notable as only three fimbrial operons were thought to be inducible in culture; six of these up-regulated operons have been reported to play a role in Salmonella persistence in mice. Overall, these data show that the normal progression of the genetic pathways that regulate invasion can be expedited to occur within 30 min due to antibiotic exposure. This altered invasion process due to antibiotics may play a role in the increased intensity and duration of infection observed in patients with MDR Salmonella.
Collapse
Affiliation(s)
- Brian W Brunelle
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Ames, IA, USA
| | - Bradley L Bearson
- Agroecosystems Management Research Unit, National Laboratory for Agriculture and the Environment, Agricultural Research Service, United States Department of Agriculture Ames, IA, USA
| | - Shawn M D Bearson
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Ames, IA, USA
| |
Collapse
|
41
|
The Role of Two-Component Signal Transduction Systems in Staphylococcus aureus Virulence Regulation. Curr Top Microbiol Immunol 2015; 409:145-198. [PMID: 26728068 DOI: 10.1007/82_2015_5019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Staphylococcus aureus is a versatile, opportunistic human pathogen that can asymptomatically colonize a human host but can also cause a variety of cutaneous and systemic infections. The ability of S. aureus to adapt to such diverse environments is reflected in the presence of complex regulatory networks fine-tuning metabolic and virulence gene expression. One of the most widely distributed mechanisms is the two-component signal transduction system (TCS) which allows a pathogen to alter its gene expression profile in response to environmental stimuli. The simpler TCSs consist of only a transmembrane histidine kinase (HK) and a cytosolic response regulator. S. aureus encodes a total of 16 conserved pairs of TCSs that are involved in diverse signalling cascades ranging from global virulence gene regulation (e.g. quorum sensing by the Agr system), the bacterial response to antimicrobial agents, cell wall metabolism, respiration and nutrient sensing. These regulatory circuits are often interconnected and affect each other's expression, thus fine-tuning staphylococcal gene regulation. This manuscript gives an overview of the current knowledge of staphylococcal environmental sensing by TCS and its influence on virulence gene expression and virulence itself. Understanding bacterial gene regulation by TCS can give major insights into staphylococcal pathogenicity and has important implications for knowledge-based drug design and vaccine formulation.
Collapse
|
42
|
Zhao X, Liu Z, Li W, Li X, Shi C, Meng R, Cheng W, Jin K, Yang Z, Shi X, Guo N, Yu L. In Vitro synergy of nisin and coenzyme Q0 against Staphylococcus aureus. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.05.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Parsaeimehr M, Akhondzadeh Basti A, Misaghi A, Gandomi H, Jebellijavan A. The Effect of Z
ataria multiflora
Boiss. Essential Oil on Gene Expression of Enterotoxin C in S
taphylococcus aureus
ATCC 6538. J FOOD PROCESS PRES 2014. [DOI: 10.1111/jfpp.12401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mahnoosh Parsaeimehr
- Food Hygiene Department; Faculty of Veterinary Medicine; Semnan University; Semnan 35131-19111 Iran
| | | | - Ali Misaghi
- Food Hygiene Department; Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| | - Hassan Gandomi
- Food Hygiene Department; Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| | - Ashkan Jebellijavan
- Food Hygiene Department; Faculty of Veterinary Medicine; Semnan University; Semnan 35131-19111 Iran
| |
Collapse
|
44
|
Dhand A, Sakoulas G. Daptomycin in combination with other antibiotics for the treatment of complicated methicillin-resistant Staphylococcus aureus bacteremia. Clin Ther 2014; 36:1303-16. [PMID: 25444563 DOI: 10.1016/j.clinthera.2014.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 09/09/2014] [Accepted: 09/14/2014] [Indexed: 12/30/2022]
Abstract
PURPOSE Methicillin-resistant Staphylococcus aureus (MRSA) has emerged as one of the most important nosocomial pathogens. Resistance to antibiotic therapy has been known to emerge especially in clinically complex scenarios, resulting in challenges in determining optimal treatment of serious MRSA. Daptomycin, in combination with other antibiotics, has been successfully used in the treatment of these infections, with the aims of resulting in reducing the prevention of antimicrobial resistance and increased killing compared with daptomycin monotherapy. METHODS This article reviews all the published studies that used daptomycin combination therapy for the treatment of bacteremia and associated complicated infections caused by gram-positive organisms, including MRSA. We discuss the rationale of combination antibiotics and the mechanisms that enhance the activity of daptomycin, with special focus on the role of β-lactam antibiotics. FINDINGS There are limited clinical data on the use of daptomycin in combination with other antibiotics. Most of this use was as successful salvage therapy in the setting of failing primary, secondary, or tertiary therapy and/or relapsing infection. Synergy between β-lactams and daptomycin is associated with several characteristics, including increased daptomycin binding and β-lactam-mediated potentiation of innate immunity, but the precise molecular mechanism is unknown. IMPLICATIONS Use of daptomycin in combination with other antibiotics, especially β-lactams, offers a promising treatment option for complicated MRSA bacteremia in which emergence of resistance during treatment may be anticipated. Because it is currently not possible to differentiate complicated from uncomplicated bacteremia at the time of presentation, combination therapy may be considered as first-line therapy, with de-escalation to monotherapy in uncomplicated cases and cases with stable pharmacologic and surgical source control.
Collapse
Affiliation(s)
- Abhay Dhand
- Westchester Medical Center, New York Medical College, Valhalla, New York
| | - George Sakoulas
- University of California, San Diego School of Medicine, La Jolla, California.
| |
Collapse
|
45
|
Li G, Qiao M, Guo Y, Wang X, Xu Y, Xia X. Effect of Subinhibitory Concentrations of Chlorogenic Acid on Reducing the Virulence Factor Production byStaphylococcus aureus. Foodborne Pathog Dis 2014; 11:677-83. [DOI: 10.1089/fpd.2013.1731] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Guanghui Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingyu Qiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yan Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunfeng Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
46
|
Nguyen CT, Le NT, Tran TDH, Kim EH, Park SS, Luong TT, Chung KT, Pyo S, Rhee DK. Streptococcus pneumoniae ClpL modulates adherence to A549 human lung cells through Rap1/Rac1 activation. Infect Immun 2014; 82:3802-10. [PMID: 24980975 PMCID: PMC4187815 DOI: 10.1128/iai.02012-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/12/2014] [Indexed: 11/20/2022] Open
Abstract
Caseinolytic protease L (ClpL) is a member of the HSP100/Clp chaperone family, which is found mainly in Gram-positive bacteria. ClpL is highly expressed during infection for refolding of stress-induced denatured proteins, some of which are important for adherence. However, the role of ClpL in modulating pneumococcal virulence is poorly understood. Here, we show that ClpL impairs pneumococcal adherence to A549 lung cells by inducing and activating Rap1 and Rac1, thus increasing phosphorylation of cofilin (inactive form). Moreover, infection with a clpL mutant (ΔclpL) causes a greater degree of filopodium formation than D39 wild-type (WT) infection. Inhibition of Rap1 and Rac1 impairs filopodium formation and pneumococcal adherence. Therefore, ClpL can reduce pneumococcal adherence to A549 cells, likely via modulation of Rap1- and Rac1-mediated filopodium formation. These results demonstrate a potential role for ClpL in pneumococcal resistance to host cell adherence during infection. This study provides insight into further understanding the interactions between hosts and pathogens.
Collapse
Affiliation(s)
| | - Nhat-Tu Le
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | | | - Eun-Hye Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sang-Sang Park
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | | | - Kyung-Tae Chung
- Department of Clinical Laboratory Science, Dong-Eui University, Busan, South Korea
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
47
|
Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 2014; 12:465-78. [DOI: 10.1038/nrmicro3270] [Citation(s) in RCA: 986] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Audretsch C, Lopez D, Srivastava M, Wolz C, Dandekar T. A semi-quantitative model of Quorum-Sensing in Staphylococcus aureus, approved by microarray meta-analyses and tested by mutation studies. MOLECULAR BIOSYSTEMS 2014; 9:2665-80. [PMID: 23959234 DOI: 10.1039/c3mb70117d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Staphylococcus aureus (SA) causes infections including severe sepsis by antibiotic-resistant strains. It forms biofilms to protect itself from the host and antibiotics. Biofilm and planktonic lifestyle are regulated by a complex quorum sensing system (QS) with the central regulator agr. To study biofilm formation and QS we set up a Boolean node interaction network (94 nodes, 184 edges) that included different two component systems such as agr, sae and arl. Proteins such as sar, rot and sigB were included. Each gene node represents the resulting activity of its gene products (mRNA and protein). Network consistency was tested according to previous knowledge and the literature. Regulator mutation combinations (agr-, sae-, sae-/agr-, sigB+, sigB+/sae-) were tested in silico in the model and compared regarding system changes and responses to experimental gene expression data. High connectivity served as a guide to identify master regulators, and their detailed behaviour was studied both in vitro and in the model. System analysis showed two stable states, biofilm forming versus planktonic, with clearly different sub-networks turned on. Predicted node activity changes from the in silico model were in line with microarray gene expression data of different knockout strains. Additional in silico predictions about node activity and biofilm formation were compared to new in vitro experiments (northern blots and biofilm adherence assays) which confirmed these. Further experiments in silico as well as in vitro showed the sae locus as the central modulator of biofilm production. Sae knockout strains showed stronger biofilms. Wild type phenotype was rescued by sae complementation. The in silico network provides a theoretical model that agrees well with the presented experimental data on how integration of different inputs is achieved in the QS of SA. It faithfully reproduces the behaviour of QS mutants and their biofilm forming ability and allows predictions about mutations and mutation combinations for any node in the network. The model and simulations allow us to study QS and biofilm formation in SA including behaviour of MRSA strains and mutants. The in vitro and in silico evidence stresses the role of sae and agr in fine-tuning biofilm repression and/or SA dissemination.
Collapse
Affiliation(s)
- Christof Audretsch
- Department of Bioinformatics, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany.
| | | | | | | | | |
Collapse
|
49
|
Numata S, Nagata M, Mao H, Sekimizu K, Kaito C. CvfA protein and polynucleotide phosphorylase act in an opposing manner to regulate Staphylococcus aureus virulence. J Biol Chem 2014; 289:8420-31. [PMID: 24492613 DOI: 10.1074/jbc.m114.554329] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously identified CvfA (SA1129) as a Staphylococcus aureus virulence factor using a silkworm infection model. S. aureus cvfA-deleted mutants exhibit decreased expression of the agr locus encoding a positive regulator of hemolysin genes and decreased hemolysin production. CvfA protein hydrolyzes a 2',3'-cyclic phosphodiester bond at the RNA 3' terminus, producing RNA with a 3'-phosphate (3'-phosphorylated RNA, RNA with a 3'-phosphate). Here, we report that the cvfA-deleted mutant phenotype (decreased agr expression and hemolysin production) was suppressed by disrupting pnpA-encoding polynucleotide phosphorylase (PNPase) with 3'- to 5'-exonuclease activity. The suppression was blocked by introducing a pnpA-encoding PNPase with exonuclease activity but not by a pnpA-encoding mutant PNPase without exonuclease activity. Therefore, loss of PNPase exonuclease activity suppressed the cvfA-deleted mutant phenotype. Purified PNPase efficiently degraded RNA with 2',3'-cyclic phosphate at the 3' terminus (2',3'-cyclic RNA), but it inefficiently degraded 3'-phosphorylated RNA. These findings indicate that 3'-phosphorylated RNA production from 2',3'-cyclic RNA by CvfA prevents RNA degradation by PNPase and contributes to the expression of agr and hemolysin genes. We speculate that in the cvfA-deleted mutant, 2',3'-cyclic RNA is not converted to the 3'-phosphorylated form and is efficiently degraded by PNPase, resulting in the loss of RNA essential for expressing agr and hemolysin genes, whereas in the cvfA/pnpA double-disrupted mutant, 2',3'-cyclic RNA is not degraded by PNPase, leading to hemolysin production. These findings suggest that CvfA and PNPase competitively regulate RNA degradation essential for S. aureus virulence.
Collapse
Affiliation(s)
- Shunsuke Numata
- From the Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 3-1, 7-chome, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
50
|
Tetracycline accelerates the temporally-regulated invasion response in specific isolates of multidrug-resistant Salmonella enterica serovar Typhimurium. BMC Microbiol 2013; 13:202. [PMID: 24020473 PMCID: PMC3854800 DOI: 10.1186/1471-2180-13-202] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/02/2013] [Indexed: 12/21/2022] Open
Abstract
Background Multidrug-resistant (MDR) Salmonella isolates are associated with increased morbidity compared to antibiotic-sensitive strains and are an important health and safety concern in both humans and animals. Salmonella enterica serovar Typhimurium is a prevalent cause of foodborne disease, and a considerable number of S. Typhimurium isolates from humans and livestock are resistant to three or more antibiotics. The majority of these MDR S. Typhimurium isolates are resistant to tetracycline, a commonly used and clinically and agriculturally relevant antibiotic. Because exposure of drug-resistant bacteria to antibiotics can affect cellular processes associated with virulence, such as invasion, we investigated the effect tetracycline had on the invasiveness of tetracycline-resistant MDR S. Typhimurium isolates. Results The isolates selected and tested were from two common definitive phage types of S. Typhimurium, DT104 and DT193, and were resistant to tetracycline and at least three other antibiotics. Although Salmonella invasiveness is temporally regulated and normally occurs during late-log growth phase, tetracycline exposure induced the full invasive phenotype in a cell culture assay during early-log growth in several DT193 isolates. No changes in invasiveness due to tetracycline exposure occurred in the DT104 isolates during early-log growth or in any of the isolates during late-log growth. Real-time PCR was used to test expression of the virulence genes hilA, prgH, and invF, and these genes were significantly up-regulated during early-log growth in most isolates due to tetracycline exposure; however, increased virulence gene expression did not always correspond with increased invasion, and therefore was not an accurate indicator of elevated invasiveness. This is the first report to assess DT193 isolates, as well as the early-log growth phase, in response to tetracycline exposure, and it was the combination of both parameters that was necessary to observe the induced invasion phenotype. Conclusions In this report, we demonstrate that the invasiveness of MDR S. Typhimurium can be modulated in the presence of tetracycline, and this effect is dependent on growth phase, antibiotic concentration, and strain background. Identifying the conditions necessary to establish an invasive phenotype is important to elucidate the underlying factors associated with increased virulence of MDR Salmonella.
Collapse
|