1
|
Martins BR, Radl V, Treder K, Michałowska D, Pritsch K, Schloter M. The rhizosphere microbiome of 51 potato cultivars with diverse plant growth characteristics. FEMS Microbiol Ecol 2024; 100:fiae088. [PMID: 38839598 PMCID: PMC11242454 DOI: 10.1093/femsec/fiae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024] Open
Abstract
Rhizosphere microbial communities play a substantial role in plant productivity. We studied the rhizosphere bacteria and fungi of 51 distinct potato cultivars grown under similar greenhouse conditions using a metabarcoding approach. As expected, individual cultivars were the most important determining factor of the rhizosphere microbial composition; however, differences were also obtained when grouping cultivars according to their growth characteristics. We showed that plant growth characteristics were related to deterministic and stochastic assembly processes of bacterial and fungal communities, respectively. The bacterial genera Arthrobacter and Massilia (known to produce indole acetic acid and siderophores) exhibited greater relative abundance in high- and medium-performing cultivars. Bacterial co-occurrence networks were larger in the rhizosphere of these cultivars and were characterized by a distinctive combination of plant beneficial Proteobacteria and Actinobacteria along with a module of diazotrophs namely Azospira, Azoarcus, and Azohydromonas. Conversely, the network within low-performing cultivars revealed the lowest nodes, hub taxa, edges density, robustness, and the highest average path length resulting in reduced microbial associations, which may potentially limit their effectiveness in promoting plant growth. Our findings established a clear pattern between plant productivity and the rhizosphere microbiome composition and structure for the investigated potato cultivars, offering insights for future management practices.
Collapse
Affiliation(s)
- Benoit Renaud Martins
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Viviane Radl
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Krzysztof Treder
- Plant Breeding and Acclimatization Institute – National Research Institute in Radzików, Bonin Division, Department of Potato Protection and Seed Science at Bonin, Bonin Str 3, 76-009 Bonin, Poland
| | - Dorota Michałowska
- Plant Breeding and Acclimatization Institute – National Research Institute in Radzików, Bonin Division, Department of Potato Protection and Seed Science at Bonin, Bonin Str 3, 76-009 Bonin, Poland
| | - Karin Pritsch
- Research Unit for Environmental Simulation (EUS), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair for Environmental Microbiology, Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Alte Akademie 8, 85354 Freising, Germany
| |
Collapse
|
2
|
Dietrich M, Panhölzl C, Angel R, Giguere AT, Randi D, Hausmann B, Herbold CW, Pötsch EM, Schaumberger A, Eichorst SA, Woebken D. Plant roots affect free-living diazotroph communities in temperate grassland soils despite decades of fertilization. Commun Biol 2024; 7:846. [PMID: 38987659 PMCID: PMC11237082 DOI: 10.1038/s42003-024-06522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Fixation of atmospheric N2 by free-living diazotrophs accounts for an important proportion of nitrogen naturally introduced to temperate grasslands. The effect of plants or fertilization on the general microbial community has been extensively studied, yet an understanding of the potential combinatorial effects on the community structure and activity of free-living diazotrophs is lacking. In this study we provide a multilevel assessment of the single and interactive effects of different long-term fertilization treatments, plant species and vicinity to roots on the free-living diazotroph community in relation to the general microbial community in grassland soils. We sequenced the dinitrogenase reductase (nifH) and the 16S rRNA genes of bulk soil and root-associated compartments (rhizosphere soil, rhizoplane and root) of two grass species (Arrhenatherum elatius and Anthoxanthum odoratum) and two herb species (Galium album and Plantago lanceolata) growing in Austrian grassland soils treated with different fertilizers (N, P, NPK) since 1960. Overall, fertilization has the strongest effect on the diazotroph and general microbial community structure, however with vicinity to the root, the plant effect increases. Despite the long-term fertilization, plants strongly influence the diazotroph communities emphasizing the complexity of soil microbial communities' responses to changing nutrient conditions in temperate grasslands.
Collapse
Affiliation(s)
- Marlies Dietrich
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Christopher Panhölzl
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Roey Angel
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, České Budějovice, Czechia
| | - Andrew T Giguere
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Dania Randi
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Division of Clinical Microbiology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Craig W Herbold
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Te Kura Pūtaiao Koiora, School of Biological Sciences, Te Whare Wānanga o Waitaha, University of Canterbury, Christchurch, New Zealand
| | - Erich M Pötsch
- Institute of Plant Production and Cultural Landscape, Agricultural Research and Education Centre, Raumberg-Gumpenstein, Austria
| | - Andreas Schaumberger
- Institute of Plant Production and Cultural Landscape, Agricultural Research and Education Centre, Raumberg-Gumpenstein, Austria
| | - Stephanie A Eichorst
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Dagmar Woebken
- Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Ren B, Ma X, Li D, Bai L, Li J, Yu J, Meng M, Li H. Nitrogen-cycling microbial communities respond differently to nitrogen addition under two contrasting grassland soil types. Front Microbiol 2024; 15:1290248. [PMID: 38873145 PMCID: PMC11169941 DOI: 10.3389/fmicb.2024.1290248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction The impact of nitrogen (N) deposition on the soil N-transforming process in grasslands necessitates further investigation into how N input influences the structural composition and diversity of soil N-cycling microbial communities across different grassland types. Methods In this study, we selected two types of grassland soils in northwest Liaoning, temperate steppe and warm-temperate shrub, and conducted short-term N addition experiments using organic N, ammonium N, and nitrate N as sources with three concentration gradients to simulate N deposition. Illumina MiSeq sequencing technology was employed to sequence genes associated with N-cycling microbes including N-fixing, ammonia-oxidizing and denitrifying bacteria, and ammonia-oxidizing archaea. Results and discussion The results revealed significant alterations in the structural composition and diversity of the N-cycling microbial community due to N addition, but the response of soil microorganisms varied inconsistent among different grassland types. Ammonium transformation rates had a greater impact on soils from temperate steppes while nitrification rates were more influential for soils from warm-temperate shrubs. Furthermore, the influence of the type of N source on soil N-cycling microorganisms outweighed that of its quantity applied. The ammonium type of nitrogen source is considered the most influential driving factor affecting changes in the structure of the microbial community involved in nitrogen transformation, while the amount of low nitrogen applied primarily determines the composition of soil bacterial communities engaged in nitrogen fixation and nitrification. Different groups of N-cycling microorganisms exhibited distinct responses to varying levels of nitrogen addition with a positive correlation observed between their composition, diversity, and environmental factors examined. Overall findings suggest that short-term nitrogen deposition may sustain dominant processes such as soil-N fixation within grasslands over an extended period without causing significant negative effects on northwestern Liaoning's grassland ecosystems within the next decade.
Collapse
|
4
|
Guo DJ, Li DP, Yang B, Verma KK, Singh RK, Singh P, Khan Q, Sharma A, Qin Y, Zhang BQ, Song XP, Li YR. Effect of endophytic diazotroph Enterobacter roggenkampii ED5 on nitrogen-metabolism-related microecology in the sugarcane rhizosphere at different nitrogen levels. Front Microbiol 2023; 14:1132016. [PMID: 37649627 PMCID: PMC10464614 DOI: 10.3389/fmicb.2023.1132016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/26/2023] [Indexed: 09/01/2023] Open
Abstract
Sugarcane is an important sugar and energy crop worldwide, requiring a large amount of nitrogen (N). However, excessive application of synthetic N fertilizer causes environmental pollution in farmland. Endophytic nitrogen-fixing bacteria (ENFB) provide N nutrition for plants through biological N fixation, thus reducing the need for chemical fertilizers. The present study investigated the effect of the N-fixing endophytic strain Enterobacter roggenkampii ED5 on phytohormone indole-3-acetic acid (IAA), N-metabolism enzyme activities, microbial community compositions, and N cycle genes in sugarcane rhizosphere soil at different N levels. Three levels of 15N-urea, such as low N (0 kg/ha), medium N (150 kg/ha), and high N (300 kg/ha), were applied. The results showed that, after inoculating strain ED5, the IAA content in sugarcane leaves was significantly increased by 68.82% under low N condition at the seedling stage (60 days). The nitrate reductase (NR) activity showed a downward trend. However, the glutamine synthase (GS) and NADH-glutamate dehydrogenase (NADH-GDH) activities were significantly enhanced compared to the control under the high N condition, and the GS and NR genes had the highest expression at 180 and 120 days, respectively, at the low N level. The total N content in the roots, stems, and leaves of sugarcane was higher than the control. The 15N atom % excess of sugarcane decreased significantly under medium N condition, indicating that the medium N level was conducive to N fixation in strain ED5. Metagenome analysis of sugarcane rhizosphere soil exhibited that the abundance of N-metabolizing microbial richness was increased under low and high N conditions after inoculation of strain ED5 at the genus level, while it was increased at the phylum level only under the low N condition. The LefSe (LDA > 2, p < 0.05) found that the N-metabolism-related differential microorganisms under the high N condition were higher than those under medium and low N conditions. It was also shown that the abundance of nifDHK genes was significantly increased after inoculation of ED5 at the medium N level, and other N cycle genes had high abundance at the high N level after inoculation of strain ED5. The results of this study provided a scientific reference for N fertilization in actual sugarcane production.
Collapse
Affiliation(s)
- Dao-Jun Guo
- College of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Dong-Ping Li
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Bin Yang
- College of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Qaisar Khan
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Ying Qin
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Bao-Qing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| |
Collapse
|
5
|
Bahulikar RA. Prevalence of Deltaproteobacterial sequences in nifH gene pools associated with the rhizosphere of native switchgrass from Tall Grass Prairie (Oklahoma, USA). 3 Biotech 2023; 13:210. [PMID: 37251732 PMCID: PMC10209375 DOI: 10.1007/s13205-023-03640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
The potential nitrogen-fixing bacterial diversity in the rhizospheric soil of the native switchgrass (Panicum virgatum L.) from Tall Grass Prairies of Northern Oklahoma was studied using a partial region of nitrogenase structural gene-nifH. Eleven clone libraries constructed from nifH amplicons gave 407 good-quality sequences. More than 70% of sequences showed similarity of nifH with uncultured bacteria (< 98%). The dominance of sequences affiliated with Deltaproteobacterial nifH was observed, followed by Betaproteobacterial nifH sequences. The nifH gene library was dominated by the genera Geobacter, Rhizobacter, Paenibacillus, and Azoarcus. Sequences affiliated with rhizobia, such as Bradyrhizobium, Methylocystis, Ensifer, etc., were also in the rhizosphere in small numbers. From Deltaproteobacteria, five genera, namely Geobacter, Pelobacter, Geomonas, Desulfovibrio, and Anaeromyxobacter, contributed to 48% of the total sequences suggesting the dominance of group Deltaproteobacteria in the rhizosphere of native switchgrass. Considering the percent similarity of the nifH sequences with cultivated bacteria, this study demonstrated the presence of novel bacterial species in switchgrass rhizospheric soil from Tall Grass Prairie.
Collapse
Affiliation(s)
- Rahul A. Bahulikar
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
- Present Address: BAIF Development Research Foundation, Central Research Station, Urali Kanchan, Pune, 412 202 India
| |
Collapse
|
6
|
Guo K, Yang J, Yu N, Luo L, Wang E. Biological nitrogen fixation in cereal crops: Progress, strategies, and perspectives. PLANT COMMUNICATIONS 2023; 4:100499. [PMID: 36447432 PMCID: PMC10030364 DOI: 10.1016/j.xplc.2022.100499] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/07/2022] [Accepted: 11/28/2022] [Indexed: 05/04/2023]
Abstract
Nitrogen is abundant in the atmosphere but is generally the most limiting nutrient for plants. The inability of many crop plants, such as cereals, to directly utilize freely available atmospheric nitrogen gas means that their growth and production often rely heavily on the application of chemical fertilizers, which leads to greenhouse gas emissions and the eutrophication of water. By contrast, legumes gain access to nitrogen through symbiotic association with rhizobia. These bacteria convert nitrogen gas into biologically available ammonia in nodules through a process termed symbiotic biological nitrogen fixation, which plays a decisive role in ecosystem functioning. Engineering cereal crops that can fix nitrogen like legumes or associate with nitrogen-fixing microbiomes could help to avoid the problems caused by the overuse of synthetic nitrogen fertilizer. With the development of synthetic biology, various efforts have been undertaken with the aim of creating so-called "N-self-fertilizing" crops capable of performing autonomous nitrogen fixation to avoid the need for chemical fertilizers. In this review, we briefly summarize the history and current status of engineering N-self-fertilizing crops. We also propose several potential biotechnological approaches for incorporating biological nitrogen fixation capacity into non-legume plants.
Collapse
Affiliation(s)
- Kaiyan Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Li Luo
- School of Life Sciences, Shanghai Key Laboratory of Bioenergy Crops, Shanghai University, Shanghai 200444, China.
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
7
|
Ma H, Li P, Xiao N, Xia T. Poly-γ-glutamic acid promoted maize root development by affecting auxin signaling pathway and the abundance and diversity of rhizosphere microbial community. BMC PLANT BIOLOGY 2022; 22:521. [PMID: 36352394 PMCID: PMC9647955 DOI: 10.1186/s12870-022-03908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The root systems of higher plants play an important role in plant growth and development. In our present study, it was found that poly-γ-glutamic acid (γ-PGA), an environmentally friendly biomacromolecule, significantly improved root development in maize. RESULTS After treatment with γ-PGA for 7 days, the fresh weight of maize roots was significantly increased and the differences between γ-PGA treated group and control group were mainly caused by the number (higher by 71.87% compared to the control) and length of lateral roots. RNAseq and RT-PCR analyses showed that γ-PGA treatment upregulated the expression of genes related to the synthesis of auxins and auxin signal in maize roots. In addition, γ-PGA promoted the accumulation of plant growth-promoting bacteria, such as Azospirillum, Azohydromonas, Ramlibacter, and Sphingobium (Proteobacteria), Streptomyces (Actinobacteria), Parasegetibacter (Bacteroidetes), and Gemmatimonas (Gemmatimonadetes) in rhizosphere soil and the secretion of auxins. The results of this study deepened our understanding of the effects and mechanism of γ-PGA on maize root development, and as well as highlighted the possibility of using γ-PGA to improve crop growth and soil environment. CONCLUSIONS γ-PGA promotes early growth and development of maize roots by inducing the secretion and accumulation of auxin in roots and in rhizosphere soil, and increasing the abundance of plant growth promoting bacteria.
Collapse
Affiliation(s)
- Haizhen Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China
| | - Panpan Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China
| | - Ning Xiao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China
| | - Tao Xia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, PR China.
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, PR China.
| |
Collapse
|
8
|
Sun M, Liu X, Shi K, Peng F, Xiao Y. Effects of Root Zone Aeration on Soil Microbes Species in a Peach Tree Rhizosphere and Root Growth. Microorganisms 2022; 10:1879. [PMID: 36296156 PMCID: PMC9611397 DOI: 10.3390/microorganisms10101879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 09/16/2023] Open
Abstract
The oxygen content in the root zone considerably affects the growth and development of peach trees. However, few studies have been conducted on the effects of the oxygen content in the root zones of peach trees on soil microbes and root growth. Four-year-old Ruiguang 33/Prunus persica (L.) Batsch trees were used to study the effects of root-zone aeration on soil microbes in a peach orchard, as well as on the soil nutrient contents, peach tree root systems, and plant potassium-to-nitrogen ratios. The results showed that the root-zone aeration substantially increased the soil oxygen content in the root zone and changed the soil microbial community structure. Compared with the control, the relative abundances of soil nitrogen-fixing microorganisms (Beta proteobacteria and Bradyrhizobium elkanii) and potassium-solubilizing microorganisms (Bacillus circulans) under the root-zone aeration conditions were greatly enhanced. Root-zone aeration increased the soil's alkaline nitrogen content, available potassium content, and organic matter content, as well as the number and thickness of new white roots of peach trees, and root activity was increased significantly. At the same time, root-zone aeration changed the relative contents of total potassium and total nitrogen in the plants and considerably increased the potassium-nitrogen ratio in the shoots. The results indicate that aeration in the root zone can change the soil microbial community structure, increase the abundances of nitrogen-fixing and potassium-solubilizing microorganisms, and increase the plant potassium-to-nitrogen ratio, which are conducive to peach fruit quality.
Collapse
Affiliation(s)
| | | | | | - Futian Peng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Yuansong Xiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
9
|
Makino A, Nakai R, Yoneda Y, Toyama T, Tanaka Y, Meng XY, Mori K, Ike M, Morikawa M, Kamagata Y, Tamaki H. Isolation of Aquatic Plant Growth-Promoting Bacteria for the Floating Plant Duckweed (Lemna minor). Microorganisms 2022; 10:microorganisms10081564. [PMID: 36013982 PMCID: PMC9416352 DOI: 10.3390/microorganisms10081564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) can exert beneficial growth effects on their host plants. Little is known about the phylogeny and growth-promoting mechanisms of PGPB associated with aquatic plants, although those of terrestrial PGPB have been well-studied. Here, we report four novel aquatic PGPB strains, MRB1–4 (NITE P-01645–P-01648), for duckweed Lemna minor from our rhizobacterial collection isolated from Lythrum anceps. The number of L. minor fronds during 14 days co-culture with the strains MRB1–4 increased by 2.1–3.8-fold, compared with an uninoculated control; the plant biomass and chlorophyll content in co-cultures also increased. Moreover, all strains possessed an indole-3-acetic acid production trait in common with a plant growth-promoting trait of terrestrial PGPB. Phylogenetic analysis showed that three strains, MRB-1, -3, and -4, were affiliated with known proteobacterial genera (Bradyrhizobium and Pelomonas); this report is the first to describe a plant-growth promoting activity of Pelomonas members. The gammaproteobacterial strain MRB2 was suggested to be phylogenetically novel at the genus level. Under microscopic observation, the Pelomonas strain MRB3 was epiphytic and adhered to both the root surfaces and fronds of duckweed. The duckweed PGPB obtained here could serve as a new model for understanding unforeseen mechanisms behind aquatic plant-microbe interactions.
Collapse
Affiliation(s)
- Ayaka Makino
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Hokkaido, Japan; (A.M.); (R.N.)
| | - Ryosuke Nakai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Hokkaido, Japan; (A.M.); (R.N.)
| | - Yasuko Yoneda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (X.-Y.M.); (Y.K.)
| | - Tadashi Toyama
- Graduate School of Engineering, University of Yamanashi, Kofu 400-8511, Yamanashi, Japan; (T.T.); (K.M.)
| | - Yasuhiro Tanaka
- Graduate School of Life and Environmental Sciences, University of Yamanashi, Kofu 400-8510, Yamanashi, Japan;
| | - Xian-Ying Meng
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (X.-Y.M.); (Y.K.)
| | - Kazuhiro Mori
- Graduate School of Engineering, University of Yamanashi, Kofu 400-8511, Yamanashi, Japan; (T.T.); (K.M.)
| | - Michihiko Ike
- Graduate School of Engineering, Osaka University, Suita 565-0871, Osaka, Japan;
| | - Masaaki Morikawa
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan;
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (X.-Y.M.); (Y.K.)
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Ibaraki, Japan; (Y.Y.); (X.-Y.M.); (Y.K.)
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan
- Biotechnology Research Center, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
- Correspondence: ; Tel.: +81-29-861-6592
| |
Collapse
|
10
|
Xiao Z, Jiang Q, Li Y, Zhou J, Chen D, Xia T. Enhanced microbial nitrate reduction using natural manganese oxide ore as an electron donor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114497. [PMID: 35038669 DOI: 10.1016/j.jenvman.2022.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Nitrate contamination of groundwater is a global problem. Enhanced biological nitrate reduction by liquid organics combined with low-cost natural materials (as electron donors) can cost-effectively remove nitrate from groundwater. Dissolved Mn(II) as an electron donor has been thoroughly investigated to support microbial nitrate reduction. However, most Mn in soil and sediments is in solid form, and the ability of solid-phase natural manganese oxide ore (NMO) as electron donor and for supporting microbial nitrate reduction is unknown. Therefore, a microcosm experiment was conducted to bridge this gap in knowledge. The results demonstrated that microbial nitrate reduction (mainly converted to nitrite) was enhanced by NMO (rich in cryptomelane). The electrochemical and X-ray photoelectron spectroscopy analyses suggested that NMO may be oxidized by microbial metabolism. Illumina Miseq sequencing results indicated that Acidovorax spp. played a crucial role in NMO-supported nitrate reduction. Further Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analyses indicated that bacterial extracellular electron transfer may be one of the mechanisms for the microbial NMO oxidation. The results of our study highlight the potential importance of NMO in nitrate reduction in the natural environment and may pave the way for NMO-assisted technology for nitrate removal from groundwater with less usage of organic electron donors.
Collapse
Affiliation(s)
- Zhixing Xiao
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Qitao Jiang
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Yi Li
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Jun Zhou
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| | - Dan Chen
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China.
| | - Ting Xia
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, PR China
| |
Collapse
|
11
|
Mogro EG, Cafiero JH, Lozano MJ, Draghi WO. The phylogeny of the genus Azohydromonas supports its transfer to the family Comamonadaceae. Int J Syst Evol Microbiol 2022; 72. [PMID: 35138242 DOI: 10.1099/ijsem.0.005234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Azohydromonas encompasses five validly described species belonging to the betaproteobacterial class. Recognized for their potential biotechnological uses, they were first described as belonging to the genus Alcaligenes. The phylogeny of the 16S rRNA gene of the original strains as well as newly described species led to a description of these strains within a new bacterial genus, Azohydromonas. However, the phylogenetic position of this genus remains described as part of the family Alcaligenaceae, even those some authors have placed it within the order Burkholderiales. To unravel the precise position of the genus Azohydromonas, a wide phylogenomic analysis was performed. The results of 16S rRNA gene phylogeny, as well as those obtained by the multilocus analysis of homologous proteins and overall genome relatedness indices, support the reclassification of Azohydromonas in the Rubrivivax-Ideonella lineage of the family Comamonadaceae, so the transfer of this genus is proposed.
Collapse
Affiliation(s)
- Ezequiel Gerardo Mogro
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CCT La Plata, La Plata, Argentina
| | - Juan Hilario Cafiero
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CCT La Plata, La Plata, Argentina
| | - Mauricio Javier Lozano
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CCT La Plata, La Plata, Argentina
| | - Walter Omar Draghi
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CCT La Plata, La Plata, Argentina
| |
Collapse
|
12
|
Ma X, Song Y, Song C, Wang X, Wang N, Gao S, Cheng X, Liu Z, Gao J, Du Y. Effect of Nitrogen Addition on Soil Microbial Functional Gene Abundance and Community Diversity in Permafrost Peatland. Microorganisms 2021; 9:2498. [PMID: 34946100 PMCID: PMC8707234 DOI: 10.3390/microorganisms9122498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/03/2022] Open
Abstract
Nitrogen is the limiting nutrient for plant growth in peatland ecosystems. Nitrogen addition significantly affects the plant biomass, diversity and community structure in peatlands. However, the response of belowground microbe to nitrogen addition in peatland ecosystems remains largely unknown. In this study, we performed long-term nitrogen addition experiments in a permafrost peatland in the northwest slope of the Great Xing'an Mountains. The four nitrogen addition treatments applied in this study were 0 g N·m-2·year-1 (CK), 6 g N·m-2·year-1 (N1), 12 g N·m-2·year-1 (N2), and 24 g N·m-2·year-1 (N3). Effects of nitrogen addition over a period of nine growing seasons on the soil microbial abundance and community diversity in permafrost peatland were analyzed. The results showed that the abundances of soil bacteria, fungi, archaea, nitrogen-cycling genes (nifH and b-amoA), and mcrA increased in N1, N2, and N3 treatments compared to CK. This indicated that nitrogen addition promoted microbial decomposition of soil organic matter, nitrogen fixation, ammonia oxidation, nitrification, and methane production. Moreover, nitrogen addition altered the microbial community composition. At the phylum level, the relative abundance of Proteobacteria increased significantly in the N2 treatment. However, the relative abundances of Actinobacteria and Verrucifera in the N2 treatment and Patescibacteria in the N1 treatment decreased significantly. The heatmap showed that the dominant order composition of soil bacteria in N1, N2, and N3 treatments and the CK treatment were different, and the dominant order composition of soil fungi in CK and N3 treatments were different. The N1 treatment showed a significant increase in the Ace and Chao indices of bacteria and Simpson index of fungi. The outcomes of this study suggest that nitrogen addition altered the soil microbial abundance, community structure, and diversity, affecting the soil microbial carbon and nitrogen cycling in permafrost peatland. The results are helpful to understand the microbial mediation on ecological processes in response to N addition.
Collapse
Affiliation(s)
- Xiuyan Ma
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.M.); (C.S.); (X.W.); (N.W.); (S.G.); (X.C.); (Z.L.); (J.G.); (Y.D.)
| | - Yanyu Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.M.); (C.S.); (X.W.); (N.W.); (S.G.); (X.C.); (Z.L.); (J.G.); (Y.D.)
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.M.); (C.S.); (X.W.); (N.W.); (S.G.); (X.C.); (Z.L.); (J.G.); (Y.D.)
| | - Xianwei Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.M.); (C.S.); (X.W.); (N.W.); (S.G.); (X.C.); (Z.L.); (J.G.); (Y.D.)
| | - Nannan Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.M.); (C.S.); (X.W.); (N.W.); (S.G.); (X.C.); (Z.L.); (J.G.); (Y.D.)
| | - Siqi Gao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.M.); (C.S.); (X.W.); (N.W.); (S.G.); (X.C.); (Z.L.); (J.G.); (Y.D.)
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Xiaofeng Cheng
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.M.); (C.S.); (X.W.); (N.W.); (S.G.); (X.C.); (Z.L.); (J.G.); (Y.D.)
- Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial Information Service in Cold Regions, Harbin Normal University, Harbin 150025, China
| | - Zhendi Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.M.); (C.S.); (X.W.); (N.W.); (S.G.); (X.C.); (Z.L.); (J.G.); (Y.D.)
- University of Chinese Academy Sciences, Beijing 100049, China
| | - Jinli Gao
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.M.); (C.S.); (X.W.); (N.W.); (S.G.); (X.C.); (Z.L.); (J.G.); (Y.D.)
| | - Yu Du
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (X.M.); (C.S.); (X.W.); (N.W.); (S.G.); (X.C.); (Z.L.); (J.G.); (Y.D.)
| |
Collapse
|
13
|
Hu Y, Zhao W, Li X, Feng J, Li C, Yang X, Guo Q, Wang L, Chen S, Li Y, Yang Y. Integrated biocontrol of tobacco bacterial wilt by antagonistic bacteria and marigold. Sci Rep 2021; 11:16360. [PMID: 34381095 PMCID: PMC8357815 DOI: 10.1038/s41598-021-95741-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
Tobacco bacterial wilt (TBW) is seriously damages the growth of tobacco. There is an urgent need to find a safer and more effective measure to control TBW. In this study, B. amyloliquefaciens ZM9 and marigold powder were applied to the tobacco roots alone or in combination, and the potential inhibition of TBW was assessed. On the other hand, the effects of these treatments on soil physicochemical properties, rhizosphere microbial community and soil metabolites were also evaluated. The results showed that the application of B. amyloliquefaciens ZM9 or marigold powder alone significantly reduced the abundance of R. solanacearum in rhizosphere soil, while the integrated treatment showed the strongest inhibitory effect. Moreover, the integrated treatment can inhibit the secretion of chemoattractants, and affect the change of rhizosphere soil microbial composition. In conclusion, the combination of antagonistic bacteria agent B. amyloliquefaciens ZM9 with marigold powder can enhance the suppression of TBW. Furthermore, B. amyloliquefaciens ZM9 and marigold have synergistic effects on suppressing TBW by regulation soil physicochemical properties, soil metabolites and microbial structure. This study provide a promising strategy for TBW control by integrated applying of B. amyloliquefaciens ZM9 and marigold powder.
Collapse
Affiliation(s)
- Yun Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Wan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Xihong Li
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China
| | - Ji Feng
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China
| | - Chunli Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Xiaoqiong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Qingqing Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Lin Wang
- Hubei Tobacco Industry Co., Ltd., Wuhan, 430040, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Yanyan Li
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, China.
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
14
|
de Matos GF, Rouws LFM, Simões-Araújo JL, Baldani JI. Evolution and function of nitrogen fixation gene clusters in sugarcane associated Bradyrhizobium strains. Environ Microbiol 2021; 23:6148-6162. [PMID: 33928743 DOI: 10.1111/1462-2920.15533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 12/01/2022]
Abstract
Bradyrhizobium spp. are well known to mediate biological nitrogen fixation (BNF) as microsymbionts inhabiting nodules on leguminous plants. However, they may also contribute to plant growth via free-living N2 fixation (FLNF) in association with non-legumes. Notably, several Bradyrhizobium strains from sugarcane roots display FLNF activity. Among them, Bradyrhizobium sacchari is a legume symbiotic species, whereas strains AG48 and M12 are non-symbiotic. In the present study, a phylogenomic approach was applied to study peculiarities of these and other Bradyrhizobium strains with respect to N fixation (nif) gene content in order to reveal genetic features that enable FNLF in Bradyrhizobium spp. All FLNF strains carry an ancestral 'non-symbiotic' nif-gene cluster (NSC). B. sacchari also contains a second 'symbiotic' nif-gene cluster (SC), a characteristic observed in only three of 156 evaluated genomes. B. sacchari stood out and presented a high level of sequence divergence between individual nif-gene homologues and we discuss scenarios for the evolutionary origin of these clusters. The transcript level of NSC nifH gene increased during FLNF, when compared to symbiotic conditions. The data suggest that sugarcane roots harbor diverse Bradyrhizobium spp. that are genetically adapted to a dynamic environment where leguminous and non-leguminous host plants are alternately available.
Collapse
Affiliation(s)
- Gustavo Feitosa de Matos
- Curso de Pós-graduação em Fitotecnia, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465 km 7, Seropédica, RJ, 23891-000, Brazil
| | | | | | - José Ivo Baldani
- Embrapa Agrobiologia, Rodovia BR 465 km 7, Seropédica, RJ, 23891-000, Brazil
| |
Collapse
|
15
|
Chen H, Zheng C, Qiao Y, Du S, Li W, Zhang X, Zhao Z, Cao C, Zhang W. Long-term organic and inorganic fertilization alters the diazotrophic abundance, community structure, and co-occurrence patterns in a vertisol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142441. [PMID: 33097271 DOI: 10.1016/j.scitotenv.2020.142441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Diazotrophs play a critical role in converting air-inactive nitrogen to bio-available nitrogen. Assessing the influences of different fertilization regimes on diazotrophs is essential for a better understanding of their maintenance of soil fertility and agricultural sustainability. In this study, we targeted the nifH gene to investigate the effects of different long-term fertilization on the diazotrophic community in a vertisol, using real-time quantitative polymerase chain reaction (PCR) and MiSeq sequencing. Five fertilization regimes were tested: no fertilizer (CK), chemical nitrogen, phosphorus, and potassium fertilizer (NPK), organic fertilizer (O), chemical NPK plus organic fertilizer with an equivalent application rate of nitrogen (NPKO), and chemical NPK plus organic fertilizer with a high application rate of nitrogen (HNPKO). Our results showed that fertilization significantly affected the diazotrophic activity, abundance and composition. NPK tended to reduce the activity, abundance, operational taxonomic units (OTU)-richness and alpha-diversity of the diazotrophs, while O had the opposite effect. The effects of inorganic and organic fertilization on the diazotrophs depended on the N application rate, showing that the diazotrophic activity, abundance, and alpha-diversity in NPKO were higher than that of HNPKO. For the diazotrophic community structure, CK, O, and NPKO were grouped and separated from NPK and HNPKO. The diazotrophic community structure strongly correlated with the soil pH, electrical conductivity (EC), total carbon content (TC), and total nitrogen content (TN), among which pH was the major factor shaping the diazotrophic community structure. Different network patterns were observed between the long-term organic and non-organic fertilizers, suggesting that the organic amendment resulted in a more complicated diazotrophic community than the non-organic amendments. Rhizobium was the most important hub connecting members in the community. These results indicated that organic amendments are beneficial to diazotrophic activity, abundance, OTU richness, alpha-diversity, and the diazotrophic communities' potential interactions, which may enhance biological nitrogen fixation in vertisols.
Collapse
Affiliation(s)
- Huan Chen
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengyan Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqiang Qiao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shizhou Du
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Wei Li
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiangqian Zhang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhu Zhao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Chengfu Cao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Weijian Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
16
|
Nitrogen has a greater influence than phosphorus on the diazotrophic community in two successive crop seasons in Northeast China. Sci Rep 2021; 11:6303. [PMID: 33737649 PMCID: PMC7973567 DOI: 10.1038/s41598-021-85829-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/08/2021] [Indexed: 12/01/2022] Open
Abstract
Fertilizer-induced changes in soil nutrients regulate nitrogen (N) fixation in the terrestrial biosphere, but the influences of N and phosphorus (P) fertilization on the diazotroph communities in successive crop seasons were unclear. In this study, we assessed the effects of N and P (high vs. low doses) on the abundance and structure of N2-fixation communities after wheat and soybean harvest in a long-term (34 and 35 years) fertilization experiment. In both seasons, long-term N addition significantly decreased the abundance of nifH genes and 16S rDNA; in addition, high doses of N and P fertilizer decreased the richness of diazotrophs, whereas low doses did not. The proportion of the dominant genus, Bradyrhizobium, in the soybean season (86.0%) was higher than that in the wheat season (47.9%). Fertilization decreased diazotroph diversity and the relative abundance of Bradyrhizobium in the wheat season, but had insignificant effects in the soybean season. The addition of N, but not P, significantly changed the communities of both diazotrophs (at the genus level) and rhizobia (at the species level) in the two seasons. Soil pH was positively associated with nifH abundance and diazotrophic richness; soil NO3− content was negatively correlated with diazotrophic richness and positively correlated with diversity. Soil pH and NO3− content were the two main drivers shaping the soil diazotrophic community. Overall, long-term inorganic N had a greater influence than P on both diazotrophic abundance and community composition, and diazotrophic diversity was more clearly affected by fertilization in the wheat season than in the soybean season.
Collapse
|
17
|
Sharma R, Shrivas VL, Sharma S. Effect of substitution of chemical fertilizer by bioinoculants on plant performance and rhizospheric bacterial community: case study with Cajanus cajan. Braz J Microbiol 2021; 52:373-386. [PMID: 33415718 DOI: 10.1007/s42770-020-00418-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/22/2020] [Indexed: 11/29/2022] Open
Abstract
Improper nutrient management is one of the major limitations linked with cultivation of Cajanus cajan. This calls for an urgent need for a promising alternative, employing both bioinoculants and chemical fertilizer. Present study attempted to understand the impact of bioinoculants {Azotobacter chroococcum, Bacillus megaterium, and Pseudomonas fluorescens (ABP)} as their mono-inoculations, triple-inoculation, and their combination with different doses of fertilizer on (a) plant parameters, (b) soil nitrogen (N) economy, (c) resident bacterial community, (d) genes and transcripts involved in N cycle, and to evaluate the extent to which fertilizer could be replaced by ABP without compromising on grain yield. Bradyrhizobium sp. was used in all the treatments (as it was recommended for C. cajan). Combined application of bioinoculants and 75% of recommended dose of fertilizer (RDF) led to 1.28-fold enhancement in grain yield as compared to RDF alone. Apart from exerting a positive impact on grain yield, the combined application of ABP and fertilizer led to an improvement in soil fertility, and modified the culturable rhizospheric bacterial community involved in N cycle. Integrated use of bioinoculants and fertilizer led to better N substrate utilization and hence, metabolic diversity when compared with application of fertilizer alone. An increase in the transcripts of nifH gene at the harvest stage in the soil treated with ABP alone and its combination with fertilizer, over individual treatment with fertilizer was observed. The combined use of ABP and fertilizer shaped the resident bacterial community towards a more beneficial community, which helped in increasing soil nitrogen turnover and hence, soil fertility as a whole.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Vijay Laxmi Shrivas
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
18
|
Effect of soil chemical fertilization on the diversity and composition of the tomato endophytic diazotrophic community at different stages of growth. Braz J Microbiol 2020; 51:1965-1975. [PMID: 32895888 DOI: 10.1007/s42770-020-00373-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022] Open
Abstract
The aim of this work was to gain a more comprehensive and perspicacious view of the endophytic diazotrophic community (EDC) of tomato plant bacteria and assess the effects of chemical fertilization and the plant phenologic stage on the status of those microbes. When the EDC of stem and roots from tomato plants grown in a greenhouse with and without exogenous chemical fertilization was examined by pyrosequencing the nifH gene during the growth cycle, a high taxonomic and phylogenetic diversity was observed. The abundant taxa were related to ubiquitous endophytes such as Rhizobium or Burkholderia but also involved anaerobic members usually restricted to flooded plant tissues, such as Clostridium, Geobacter, and Desulfovibrio. The EDC composition appeared to be dynamic during the growth phase of the tomato, with the structure of the community at the early stages of growth displaying major differences from the late stages. Inorganic fertilization negatively affected the diversity and modified the profile of the predominant components of the EDC in the different growth stages. Populations such as Burkholderia and Geobacter plus the Cyanobacteria appeared particularly affected by fertilization.Our work demonstrates an extensive endophytic diazotrophic diversity, suggesting a high potential for nitrogen fixation. The effect of the phenologic stage and inorganic-chemical soil fertilization on the community structure indicated a dynamic community that responded to environmental changes. These findings contribute to a better understanding of endophytic associations that could be helpful in assisting to shape the endomicrobiome that provides essential benefits to crops.
Collapse
|
19
|
Garcia-Lemos AM, Gobbi A, Nicolaisen MH, Hansen LH, Roitsch T, Veierskov B, Nybroe O. Under the Christmas Tree: Belowground Bacterial Associations With Abies nordmanniana Across Production Systems and Plant Development. Front Microbiol 2020; 11:198. [PMID: 32194515 PMCID: PMC7064441 DOI: 10.3389/fmicb.2020.00198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/28/2020] [Indexed: 01/01/2023] Open
Abstract
Abies nordmanniana is an economically important tree crop widely used for Christmas tree production. After initial growth in nurseries, seedlings are transplanted to the field. Rhizosphere bacterial communities generally impact the growth and health of the host plant. However, the dynamics of these communities during A. nordmanniana growth in nurseries, and during transplanting, has not previously been addressed. By a 16S rRNA gene amplicon sequencing approach, we characterized the composition and dynamics of bacterial communities in the rhizosphere during early plant growth in field and greenhouse nurseries and for plants transplanted from the greenhouse to the field. Moreover, the N-cycling potential of rhizosphere bacteria across plant age was addressed in both nurseries. Overall, a rhizosphere core microbiome of A. nordmanniana, comprising 19.9% of the taxa at genus level, was maintained across plant age, nursery production systems, and even during the transplantation of plants from the greenhouse to the field. The core microbiome included the bacterial genera Bradyrhizobium, Burkholderia, Flavobacterium, Pseudomonas, Rhizobium, Rhodanobacter, and Sphingomonas, which harbor several N-fixing and plant growth–promoting taxa. Nevertheless, both plant age and production system caused significant changes in the rhizosphere bacterial communities. Concerning community composition, the relative abundance of Rhizobiales (genera Rhizobium, Bradyrhizobium, and Devosia) was higher in the rhizosphere of field-grown A. nordmanniana, whereas the relative abundance of Enterobacteriales and Pseudomonadales (genus Pseudomonas) was higher in the greenhouse. Analysis of community dynamics across plant age showed that in the field nursery, the most abundant bacterial orders showed more dynamic changes in their relative abundance in the rhizosphere than in the bulk soil. In the greenhouse, age-dependent dynamics even occurred but affected different taxa than for the field-grown plants. The N-cycling potential of rhizosphere bacterial communities showed an increase of the relative abundance of genes involved in nitrogen fixation and denitrification by plant age. Similarly, the relative abundance of reported nitrogen-fixing or denitrifying bacteria increased by plant age. However, different community structures seemed to lead to an increased potential for nitrogen fixation and denitrification in the field versus greenhouse nurseries.
Collapse
Affiliation(s)
- Adriana M Garcia-Lemos
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Alex Gobbi
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Mette Haubjerg Nicolaisen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Lars H Hansen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.,Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, Brno, Czechia
| | - Bjarke Veierskov
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Ole Nybroe
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
20
|
Bioinoculants play a significant role in shaping the rhizospheric microbial community: a field study with Cajanus cajan. World J Microbiol Biotechnol 2020; 36:44. [PMID: 32130544 DOI: 10.1007/s11274-020-02818-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/22/2020] [Indexed: 12/11/2022]
Abstract
The present study is an attempt to understand the impact of bioinoculants, Azotobacter chroococcum (A), Bacillus megaterium (B), Pseudomonas fluorescens (P), on (a) soil and plant nutrient status, (b) total resident and active bacterial communities, and (c) genes and transcripts involved in nitrogen cycle, during cultivation of Cajanus cajan. In terms of available macro- and micro-nutrients, triple inoculation of the bioinoculants (ABP) competed well with chemical fertilizer (CF). Their 'non-target' effects were assessed in terms of the abundance and activity of the resident bacterial community by employing denaturing gradient gel electrophoresis (DGGE). The resident bacterial community (16S rRNA gene) was stable, while the active fraction (16S rRNA transcripts) was influenced (in terms of abundance) by the treatments. Quantification of the genes and transcripts involved in N cycle by qPCR revealed an increase in the transcripts of nifH in the soil treated with ABP over CF, with an enhancement of 3.36- and 1.57- fold at flowering and maturity stages of plant growth, respectively. The bioinoculants shaped the resident microflora towards a more beneficial community, which helped in increasing soil N turnover and hence, soil fertility as a whole.
Collapse
|
21
|
Yoneyama T, Terakado-Tonooka J, Bao Z, Minamisawa K. Molecular Analyses of the Distribution and Function of Diazotrophic Rhizobia and Methanotrophs in the Tissues and Rhizosphere of Non-Leguminous Plants. PLANTS 2019; 8:plants8100408. [PMID: 31614562 PMCID: PMC6843303 DOI: 10.3390/plants8100408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/26/2019] [Accepted: 10/10/2019] [Indexed: 01/16/2023]
Abstract
Biological nitrogen fixation (BNF) by plants and its bacterial associations represent an important natural system for capturing atmospheric dinitrogen (N2) and processing it into a reactive form of nitrogen through enzymatic reduction. The study of BNF in non-leguminous plants has been difficult compared to nodule-localized BNF in leguminous plants because of the diverse sites of N2 fixation in non-leguminous plants. Identification of the involved N2-fixing bacteria has also been difficult because the major nitrogen fixers were often lost during isolation attempts. The past 20 years of molecular analyses has led to the identification of N2 fixation sites and active nitrogen fixers in tissues and the rhizosphere of non-leguminous plants. Here, we examined BNF hotspots in six reported non-leguminous plants. Novel rhizobia and methanotrophs were found to be abundantly present in the free-living state at sites where carbon and energy sources were predominantly available. In the carbon-rich apoplasts of plant tissues, rhizobia such as Bradyrhizobium spp. microaerobically fix N2. In paddy rice fields, methane molecules generated under anoxia are oxidized by xylem aerenchyma-transported oxygen with the simultaneous fixation of N2 by methane-oxidizing methanotrophs. We discuss the effective functions of the rhizobia and methanotrophs in non-legumes for the acquisition of fixed nitrogen in addition to research perspectives.
Collapse
Affiliation(s)
- Tadakatsu Yoneyama
- Department of Applied Biological Chemistry, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
- National Agriculture and Food Research Organization, Kannondai 3-1-1, Tsukuba, Ibaraki 305-8666, Japan.
| | - Junko Terakado-Tonooka
- National Agriculture and Food Research Organization, Kannondai 3-1-1, Tsukuba, Ibaraki 305-8666, Japan.
| | - Zhihua Bao
- School of Ecology and Environment, Inner Mongolia University, 235 West University Blvd., Hohhot 010021, Inner Mongolia, China.
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| |
Collapse
|
22
|
Hara S, Morikawa T, Wasai S, Kasahara Y, Koshiba T, Yamazaki K, Fujiwara T, Tokunaga T, Minamisawa K. Identification of Nitrogen-Fixing Bradyrhizobium Associated With Roots of Field-Grown Sorghum by Metagenome and Proteome Analyses. Front Microbiol 2019; 10:407. [PMID: 30915047 PMCID: PMC6422874 DOI: 10.3389/fmicb.2019.00407] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/15/2019] [Indexed: 02/04/2023] Open
Abstract
Sorghum (Sorghum bicolor) is cultivated worldwide for food, bioethanol, and fodder production. Although nitrogen fixation in sorghum has been studied since the 1970s, N2-fixing bacteria have not been widely examined in field-grown sorghum plants because the identification of functional diazotrophs depends on the culture method used. The aim of this study was to identify functional N2-fixing bacteria associated with field-grown sorghum by using “omics” approaches. Four lines of sorghum (KM1, KM2, KM4, and KM5) were grown in a field in Fukushima, Japan. The nitrogen-fixing activities of the roots, leaves, and stems were evaluated by acetylene reduction and 15N2-feeding assays. The highest nitrogen-fixing activities were detected in the roots of lines KM1 and KM2 at the late growth stage. Bacterial cells extracted from KM1 and KM2 roots were analyzed by metagenome, proteome, and isolation approaches and their DNA was isolated and sequenced. Nitrogenase structural gene sequences in the metagenome sequences were retrieved using two nitrogenase databases. Most sequences were assigned to nifHDK of Bradyrhizobium species, including non-nodulating Bradyrhizobium sp. S23321 and photosynthetic B. oligotrophicum S58T. Amplicon sequence and metagenome analysis revealed a relatively higher abundance (2.9–3.6%) of Bradyrhizobium in the roots. Proteome analysis indicated that three NifHDK proteins of Bradyrhizobium species were consistently detected across sample replicates. By using oligotrophic media, we purified eight bradyrhizobial isolates. Among them, two bradyrhizobial isolates possessed 16S rRNA and nif genes similar to those in S23321 and S58T which were predicted as functional diazotrophs by omics approaches. Both free-living cells of the isolates expressed N2-fixing activity in a semi-solid medium according to an acetylene reduction assay. These results suggest that major functional N2-fixing bacteria in sorghum roots are unique bradyrhizobia that resemble photosynthetic B. oligotrophicum S58T and non-nodulating Bradyrhizobium sp. S23321. Based on our findings, we discuss the N2-fixing activity level of sorghum plants, phylogenetic and genomic comparison with diazotrophic bacteria in other crops, and Bradyrhizobium diversity in N2 fixation and nodulation.
Collapse
Affiliation(s)
- Shintaro Hara
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takashi Morikawa
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Sawa Wasai
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yasuhiro Kasahara
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | | | - Kiyoshi Yamazaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
23
|
Sheflin AM, Chiniquy D, Yuan C, Goren E, Kumar I, Braud M, Brutnell T, Eveland AL, Tringe S, Liu P, Kresovich S, Marsh EL, Schachtman DP, Prenni JE. Metabolomics of sorghum roots during nitrogen stress reveals compromised metabolic capacity for salicylic acid biosynthesis. PLANT DIRECT 2019; 3:e00122. [PMID: 31245765 PMCID: PMC6508800 DOI: 10.1002/pld3.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/31/2019] [Accepted: 02/10/2019] [Indexed: 05/13/2023]
Abstract
Sorghum (Sorghum bicolor [L.] Moench) is the fifth most productive cereal crop worldwide with some hybrids having high biomass yield traits making it promising for sustainable, economical biofuel production. To maximize biofuel feedstock yields, a more complete understanding of metabolic responses to low nitrogen (N) will be useful for incorporation in crop improvement efforts. In this study, 10 diverse sorghum entries (including inbreds and hybrids) were field-grown under low and full N conditions and roots were sampled at two time points for metabolomics and 16S amplicon sequencing. Roots of plants grown under low N showed altered metabolic profiles at both sampling dates including metabolites important in N storage and synthesis of aromatic amino acids. Complementary investigation of the rhizosphere microbiome revealed dominance by a single operational taxonomic unit (OTU) in an early sampling that was taxonomically assigned to the genus Pseudomonas. Abundance of this Pseudomonas OTU was significantly greater under low N in July and was decreased dramatically in September. Correlation of Pseudomonas abundance with root metabolites revealed a strong negative association with the defense hormone salicylic acid (SA) under full N but not under low N, suggesting reduced defense response. Roots from plants with N stress also contained reduced phenylalanine, a precursor for SA, providing further evidence for compromised metabolic capacity for defense response under low N conditions. Our findings suggest that interactions between biotic and abiotic stresses may affect metabolic capacity for plant defense and need to be concurrently prioritized as breeding programs become established for biofuels production on marginal soils.
Collapse
Affiliation(s)
- Amy M. Sheflin
- Department of Horticulture and Landscape ArchitectureColorado State UniversityFort CollinsColorado
| | - Dawn Chiniquy
- Joint Genome InstituteDepartment of EnergyWalnut CreekCalifornia
| | - Chaohui Yuan
- Bioinformatics & Computational BiologyIowa State UniversityAmesIowa
| | - Emily Goren
- Bioinformatics & Computational BiologyIowa State UniversityAmesIowa
| | | | - Max Braud
- Donald Danforth Plant Science CenterSt. LouisMissouri
| | | | | | - Susannah Tringe
- Joint Genome InstituteDepartment of EnergyWalnut CreekCalifornia
| | - Peng Liu
- Bioinformatics & Computational BiologyIowa State UniversityAmesIowa
| | - Stephen Kresovich
- Plant and Environmental Genetics and Biochemistry DepartmentsClemson UniversityClemsonSouth Carolina
| | - Ellen L. Marsh
- Center for BiotechnologyUniversity of Nebraska‐LincolnLincolnNebraska
| | | | - Jessica E. Prenni
- Department of Horticulture and Landscape ArchitectureColorado State UniversityFort CollinsColorado
| |
Collapse
|
24
|
The Endophytic Bacterial Microbiota Associated with Sweet Sorghum ( Sorghum bicolor) Is Modulated by the Application of Chemical N Fertilizer to the Field. Int J Genomics 2018; 2018:7403670. [PMID: 30363992 PMCID: PMC6186372 DOI: 10.1155/2018/7403670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/16/2018] [Indexed: 11/17/2022] Open
Abstract
Sweet sorghum (Sorghum bicolor) is a multipurpose crop used as a feedstock to produce bioethanol, sugar, energy, and animal feed. However, it requires high levels of N fertilizer application to achieve the optimal growth, which causes environmental degradation. Bacterial endophytes, which live inside plant tissues, play a key role in the health and productivity of their host. This particular community may be influenced by different agronomical practices. The aim of the work was to evaluate the effects of N fertilization on the structure, diversity, abundance, and composition of endophytic and diazotrophic bacterial community associated with field-grown sweet sorghum. PCR-DGGE, quantitative PCR, and high-throughput sequencing were performed based on the amplification of rrs and nifH genes. The level of N fertilization affected the structure and abundance but not the diversity of the endophytic bacterial communities associated with sweet sorghum plants. This effect was pronounced in the roots of both bacterial communities analyzed and may depend on the physiological state of the plants. Specific bacterial classes and genera increased or decreased when the fertilizer was applied. The data obtained here contribute to a better understanding on the effects of agronomical practices on the microbiota associated with this important crop, with the aim to improve its sustainability.
Collapse
|
25
|
Rosenblueth M, Ormeño-Orrillo E, López-López A, Rogel MA, Reyes-Hernández BJ, Martínez-Romero JC, Reddy PM, Martínez-Romero E. Nitrogen Fixation in Cereals. Front Microbiol 2018; 9:1794. [PMID: 30140262 PMCID: PMC6095057 DOI: 10.3389/fmicb.2018.01794] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/17/2018] [Indexed: 01/30/2023] Open
Abstract
Cereals such as maize, rice, wheat and sorghum are the most important crops for human nutrition. Like other plants, cereals associate with diverse bacteria (including nitrogen-fixing bacteria called diazotrophs) and fungi. As large amounts of chemical fertilizers are used in cereals, it has always been desirable to promote biological nitrogen fixation in such crops. The quest for nitrogen fixation in cereals started long ago with the isolation of nitrogen-fixing bacteria from different plants. The sources of diazotrophs in cereals may be seeds, soils, and even irrigation water and diazotrophs have been found on roots or as endophytes. Recently, culture-independent molecular approaches have revealed that some rhizobia are found in cereal plants and that bacterial nitrogenase genes are expressed in plants. Since the levels of nitrogen-fixation attained with nitrogen-fixing bacteria in cereals are not high enough to support the plant’s needs and never as good as those obtained with chemical fertilizers or with rhizobium in symbiosis with legumes, it has been the aim of different studies to increase nitrogen-fixation in cereals. In many cases, these efforts have not been successful. However, new diazotroph mutants with enhanced capabilities to excrete ammonium are being successfully used to promote plant growth as commensal bacteria. In addition, there are ambitious projects supported by different funding agencies that are trying to genetically modify maize and other cereals to enhance diazotroph colonization or to fix nitrogen or to form nodules with nitrogen-fixing symbiotic rhizobia.
Collapse
Affiliation(s)
- Mónica Rosenblueth
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ernesto Ormeño-Orrillo
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | - Aline López-López
- Centro de Investigación en Genética y Ambiente, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Marco A Rogel
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | | | - Pallavolu M Reddy
- The Energy and Resources Institute, India Habitat Centre, New Delhi, India
| | | |
Collapse
|
26
|
Dashti N, Ali N, Salamah S, Khanafer M, Al-Shamy G, Al-Awadhi H, Radwan SS. Culture-independent analysis of hydrocarbonoclastic bacterial communities in environmental samples during oil-bioremediation. Microbiologyopen 2018; 8:e00630. [PMID: 29656601 PMCID: PMC6391274 DOI: 10.1002/mbo3.630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/14/2018] [Accepted: 02/28/2018] [Indexed: 11/09/2022] Open
Abstract
To analyze microbial communities in environmental samples, this study combined Denaturing Gradient Gel Electrophoresis of amplified 16S rRNA-genes in total genomic DNA extracts from those samples with gene sequencing. The environmental samples studied were oily seawater and soil samples, that had been bioaugmented with natural materials rich in hydrocarbonoclastic bacteria. This molecular approach revealed much more diverse bacterial taxa than the culture-dependent method we had used in an earlier study for the analysis of the same samples. The study described the dynamics of bacterial communities during bioremediation. The main limitation associated with this molecular approach, namely of not distinguishing hydrocarbonoclastic taxa from others, was overcome by consulting the literature for the hydrocarbonoclastic potential of taxa related to those identified in this study. By doing so, it was concluded that the hydrocarbonoclastic bacterial taxa were much more diverse than those captured by the culture-dependent approach. The molecular analysis also revealed the frequent occurrence of nifH-genes in the total genomic DNA extracts of all the studied environmental samples, which reflects a nitrogen-fixation potential. Nitrogen fertilization is long known to enhance microbial oil-bioremediation. The study revealed that bioaugmentation using plant rhizospheres or soil with long history of oil-pollution was more effective in oil-removal in the desert soil than in seawater microcosms.
Collapse
Affiliation(s)
- Narjes Dashti
- Microbiology program, Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Nedaa Ali
- Microbiology program, Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Samar Salamah
- Microbiology program, Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Majida Khanafer
- Microbiology program, Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Ghada Al-Shamy
- Microbiology program, Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Husain Al-Awadhi
- Microbiology program, Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Samir S Radwan
- Microbiology program, Department of Biological Sciences, Faculty of Science, Kuwait University, Safat, Kuwait
| |
Collapse
|
27
|
Wang Q, Wang J, Li Y, Chen D, Ao J, Zhou W, Shen D, Li Q, Huang Z, Jiang Y. Influence of nitrogen and phosphorus additions on N 2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1530-1537. [PMID: 29129329 DOI: 10.1016/j.scitotenv.2017.10.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/19/2017] [Accepted: 10/08/2017] [Indexed: 05/22/2023]
Abstract
Although biological nitrogen (N) fixation (BNF) is an important N input process in subtropical forest ecosystems, how the diazotrophic communities related to this process respond to N and phosphorus (P) inputs is largely unknown. We investigated the effects of exogenous N and/or P inputs on N2-fixation activity, diazotrophic abundance and community composition using a continuous application of fertilizers over 5years experiment in a Chinese fir plantation. The fertilization regimes included control (CK), P treatment (P), low N addition treatment (N1), high N addition treatment (N2), low N and P addition treatment (N1P) and high N with P addition treatment (N2P). N2-fixation activity was determined using the acetylene reduction assay (ARA). Quantitative PCR and Illumina Miseq sequencing of nifH gene were performed to analyze diazotrophic abundance and community composition, respectively. Our results showed that P addition increased N2-fixation activity and nifH gene abundance by 189.07nmol C2H4 and 1.02×107copiesg-1 dry soil, respectively, while were reduced by 1.19nmol C2H4 and 2.04×106copiesg-1 dry soil when N was added. The application of P with low N (N1P) effectively alleviated the inhibitory effect of N input on N2-fixation activity. N-related treatments resulted in significant decreases in operational taxonomic unit (OTU) richness and shifts in diazotrophic community structure. N2-fixation activity and nifH gene abundance were strongly and positively correlated with soil pH and negatively correlated with mineral N (NH4+-N and NO3--N) contents, while mineral N concentrations rather than soil pH appeared to be the main factor altering diazotrophic community structure. These results revealed that P addition played a positive role in regulating biological nitrogen fixation in subtropical forest ecosystems.
Collapse
Affiliation(s)
- Qing Wang
- Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangzhou 510316, China
| | - Jianlei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuanzheng Li
- School of Resources and Environment, Henan University of Economics and Law, Zhengzhou 450046, China
| | - Diwen Chen
- Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangzhou 510316, China
| | - Junhua Ao
- Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangzhou 510316, China
| | - Wenling Zhou
- Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangzhou 510316, China
| | - Dachun Shen
- Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangzhou 510316, China
| | - Qiwei Li
- Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangzhou 510316, China
| | - Zhenrui Huang
- Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangzhou 510316, China
| | - Yong Jiang
- Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Key Laboratory of Sugarcane Improvement and Biorefinery, Guangzhou 510316, China.
| |
Collapse
|
28
|
Gaby JC, Rishishwar L, Valderrama-Aguirre LC, Green SJ, Valderrama-Aguirre A, Jordan IK, Kostka JE. Diazotroph Community Characterization via a High-Throughput nifH Amplicon Sequencing and Analysis Pipeline. Appl Environ Microbiol 2018; 84:e01512-17. [PMID: 29180374 PMCID: PMC5795091 DOI: 10.1128/aem.01512-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/21/2017] [Indexed: 11/20/2022] Open
Abstract
The dinitrogenase reductase gene (nifH) is the most widely established molecular marker for the study of nitrogen-fixing prokaryotes in nature. A large number of PCR primer sets have been developed for nifH amplification, and the effective deployment of these approaches should be guided by a rapid, easy-to-use analysis protocol. Bioinformatic analysis of marker gene sequences also requires considerable expertise. In this study, we advance the state of the art for nifH analysis by evaluating nifH primer set performance, developing an improved amplicon sequencing workflow, and implementing a user-friendly bioinformatics pipeline. The developed amplicon sequencing workflow is a three-stage PCR-based approach that uses established technologies for incorporating sample-specific barcode sequences and sequencing adapters. Based on our primer evaluation, we recommend the Ando primer set be used with a modified annealing temperature of 58°C, as this approach captured the largest diversity of nifH templates, including paralog cluster IV/V sequences. To improve nifH sequence analysis, we developed a computational pipeline which infers taxonomy and optionally filters out paralog sequences. In addition, we employed an empirical model to derive optimal operational taxonomic unit (OTU) cutoffs for the nifH gene at the species, genus, and family levels. A comprehensive workflow script named TaxADivA (TAXonomy Assignment and DIVersity Assessment) is provided to ease processing and analysis of nifH amplicons. Our approach is then validated through characterization of diazotroph communities across environmental gradients in beach sands impacted by the Deepwater Horizon oil spill in the Gulf of Mexico, in a peat moss-dominated wetland, and in various plant compartments of a sugarcane field.IMPORTANCE Nitrogen availability often limits ecosystem productivity, and nitrogen fixation, exclusive to prokaryotes, comprises a major source of nitrogen input that sustains food webs. The nifH gene, which codes for the iron protein of the nitrogenase enzyme, is the most widely established molecular marker for the study of nitrogen-fixing microorganisms (diazotrophs) in nature. In this study, a flexible sequencing/analysis pipeline, named TaxADivA, was developed for nifH amplicons produced by Illumina paired-end sequencing, and it enables an inference of taxonomy, performs clustering, and produces output in formats that may be used by programs that facilitate data exploration and analysis. Diazotroph diversity and community composition are linked to ecosystem functioning, and our results advance the phylogenetic characterization of diazotroph communities by providing empirically derived nifH similarity cutoffs for species, genus, and family levels. The utility of our pipeline is validated for diazotroph communities in a variety of ecosystems, including contaminated beach sands, peatland ecosystems, living plant tissues, and rhizosphere soil.
Collapse
Affiliation(s)
- John Christian Gaby
- School of Biology, The Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Lavanya Rishishwar
- School of Biology, The Georgia Institute of Technology, Atlanta, Georgia, USA
- Applied Bioinformatics Laboratory, Atlanta, Georgia, USA
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| | - Lina C Valderrama-Aguirre
- Laboratory of Microorganismal Production (Bioinoculums), Department of Field Research in Sugarcane, Incauca S.A.S, Cali, Valle del Cauca, Colombia
- School of Natural Resources and Environmental Engineering, PhD Program in Sanitary and Environmental Engineering, Universidad del Valle, Cali, Valle del Cauca, Colombia
| | - Stefan J Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Augusto Valderrama-Aguirre
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
- Biomedical Research Institute, Universidad Libre, Cali, Valle del Cauca, Colombia
- Regenerar, Center of Excellence for Regenerative and Personalized Medicine, Valle del Cauca, Colombia
| | - I King Jordan
- School of Biology, The Georgia Institute of Technology, Atlanta, Georgia, USA
- Applied Bioinformatics Laboratory, Atlanta, Georgia, USA
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| | - Joel E Kostka
- School of Biology, The Georgia Institute of Technology, Atlanta, Georgia, USA
- PanAmerican Bioinformatics Institute, Cali, Valle del Cauca, Colombia
| |
Collapse
|
29
|
Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods. PLoS One 2016; 11:e0154697. [PMID: 27140199 PMCID: PMC4854452 DOI: 10.1371/journal.pone.0154697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 04/18/2016] [Indexed: 11/22/2022] Open
Abstract
In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen cycle was used to study Azotobacter species, nitrifiers, and denitrifiers in the soils from steppe grasslands and croplands abandoned for 2, 6, and 26 years. Except for nitrifying archaea and nitrous oxide-reducing bacteria, the relative genotypic abundance of microbial communities involved in nitrogen metabolism differed by approximately 2- to 10-fold between abandoned cropland and steppe grassland soils. Although nitrogen-cycle gene abundances varied with abandonment time, the abundance patterns of nitrogen-cycle genes separated distinctly into abandoned cropland versus light-grazing steppe grassland, despite the lack of any cultivation for over a quarter-century. Plant biomass and plant diversity exerted a significant effect on the abundance of microbial communities that mediate the nitrogen cycle (P < 0.002 and P < 0.03, respectively). The present study elucidates the ecology of bacteria that mediate the nitrogen cycle in recently abandoned croplands.
Collapse
|
30
|
Suyal DC, Yadav A, Shouche Y, Goel R. Diversified diazotrophs associated with the rhizosphere of Western Indian Himalayan native red kidney beans (Phaseolus vulgaris L.). 3 Biotech 2015; 5:433-441. [PMID: 28324543 PMCID: PMC4522724 DOI: 10.1007/s13205-014-0238-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/30/2014] [Indexed: 12/17/2022] Open
Abstract
Red kidney beans (RKBs) are one of the major components in the human diet of Western Indian Himalaya (WIH). Their cultivation in these habitats is strongly influenced by various biotic and abiotic stresses and therefore, there must be a selection of RKB associated microorganisms that are adapted to these harsh conditions. Seven cold adaptive diazotrophs from the same rhizosphere were isolated in our previous study to reveal the low-temperature associated proteins and mechanisms. However, the diversity and phylogenetic affiliations of these rhizosphere diazotrophs are still unknown. In this study, RKB rhizospheric soil from two different agro-ecosystems of WIH namely S1 (Chhiplakot, 30.70°N/80.30°E) and S2 (Munsyari, 30.60°N/80.20°E) were explored for the assessment of nitrogenase reductase gene (nifH) diversity by plating respective clone libraries SN1 and SN2. The RKB rhizosphere diazotroph assemblage was very diverse and apparently consists mainly of the genera Rhizobium, followed by unknown diazotrophic microorganisms. Deduced amino acid sequence analysis revealed the presence of diverse nifH sequences, affiliated with a wide range of taxa, encompassing members of the Proteobacteria, Actinobacteria and Firmicutes. Members of cyanobacteria, methanotrophs and archaea were also detected. To the best of our knowledge, this is the first major metagenomic effort that revealed the presence of diverse nitrogen-fixing microbial assemblages in indigenous RKB rhizospheric soil which can further be explored for improved crop yield/productivity.
Collapse
Affiliation(s)
- Deep Chandra Suyal
- Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Amit Yadav
- Microbial Culture Collection, National Centre for Cell Science, Pune University Campus, Ganeshkhind, 411 007, Pune, India
| | - Yogesh Shouche
- Microbial Culture Collection, National Centre for Cell Science, Pune University Campus, Ganeshkhind, 411 007, Pune, India
| | - Reeta Goel
- Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India.
| |
Collapse
|
31
|
Effect of Agricultural Amendments on Cajanus cajan (Pigeon Pea) and Its Rhizospheric Microbial Communities--A Comparison between Chemical Fertilizers and Bioinoculants. PLoS One 2015; 10:e0132770. [PMID: 26231030 PMCID: PMC4521884 DOI: 10.1371/journal.pone.0132770] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/19/2015] [Indexed: 11/19/2022] Open
Abstract
Inoculation of leguminous seeds with bioinoculants has been practiced in agriculture for decades to ameliorate grain yield by enhanced growth parameters and soil fertility. However, effective enhancement of plant growth parameters results not only from the direct effects these bioinoculants impose on them but also from their non-target effects. The ability of bioinoculants to reduce the application of chemicals for obtaining optimum yield of legume appears to be of great ecological and economic importance. In the present study, we compared the influence of seed inoculation of Cajanus cajan with a microbial consortium, comprising Bacillus megaterium, Pseudomonas fluorescens and Trichoderma harzianum, with that of application of chemical fertilizers on plant's growth parameters and its rhizospheric microbial communities. Real-time PCR assay was carried out to target the structure (16S rRNA) and function (nitrogen cycle) of rhizospheric microbiota, using both DNA and RNA as markers. The results showed that the microbial consortium was the most efficient in increasing grain yield (2.5-fold), even better than the recommended dose of chemical fertilizers (by 1.2-fold) and showed enhancement in nifH and amoA transcripts by 2.7- and 2.0-fold, respectively. No adverse effects of bioinoculants' application were observed over the rhizospheric microbial community, rendering the consortium to be safe for release in agricultural fields.
Collapse
|
32
|
Wang ZG, Hu YL, Xu WH, Liu S, Hu Y, Zhang Y. Impacts of dimethyl phthalate on the bacterial community and functions in black soils. Front Microbiol 2015; 6:405. [PMID: 25999932 PMCID: PMC4419729 DOI: 10.3389/fmicb.2015.00405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/18/2015] [Indexed: 11/13/2022] Open
Abstract
Dimethyl phthalate (DMP), a known endocrine disruptor and one of the phthalate esters (PAEs), is a ubiquitous pollutant. Its impacts on living organisms have aroused great concern. In this study, the impacts of DMP contamination on bacterial communities and functions were tested by using microcosm model in black soils. The results showed that the operational taxonomic unit (OTUs) richness and bacterial diversity were reduced by DMP contamination. The relative percentages of some genera associated with nitrogen metabolism were increased by DMP contamination, while the relative percentages of some other genera that were extremely beneficial to soil health were decreased by DMP contamination. Further, the relative percentages of some genera that possessed the capability to degrade DMP were increased by the DMP treatment at low concentrations (5, 10, and 20 mg/kg), but were decreased by the high concentration DMP treatment (40 mg/kg). Clearly, DMP contamination changed the bacterial community structure and disturbed the metabolic activity and functional diversity of the microbes in black soils. Our results suggest that DMP pollution can alter the metabolism and biodiversity of black soil microorganisms, thereby directly impact fertility and ecosystem functions.
Collapse
Affiliation(s)
- Zhi-Gang Wang
- Department of Biotechnology, Institute of Life Science and Agriculture and Forestry, Qiqihar University Qiqihar, China ; Department of Environmental Science and Engineering, Institute of Municipal Environment and Engineering, Harbin Industry University Harbin, China
| | - Yun-Long Hu
- Department of Biotechnology, Institute of Life Science and Agriculture and Forestry, Qiqihar University Qiqihar, China
| | - Wei-Hui Xu
- Department of Biotechnology, Institute of Life Science and Agriculture and Forestry, Qiqihar University Qiqihar, China
| | - Shuai Liu
- Department of Biotechnology, Institute of Life Science and Agriculture and Forestry, Qiqihar University Qiqihar, China
| | - Ying Hu
- Department of Biotechnology, Institute of Life Science and Agriculture and Forestry, Qiqihar University Qiqihar, China
| | - Ying Zhang
- Department of Environmental Science, Institute of Resources and Environment, Northeast Agricultural University Harbin, China
| |
Collapse
|
33
|
Kennedy NM, Robertson SJ, Green DS, Scholefield SR, Arocena JM, Tackaberry LE, Massicotte HB, Egger KN. Site properties have a stronger influence than fire severity on ectomycorrhizal fungi and associated N-cycling bacteria in regenerating post-beetle-killed lodgepole pine forests. Folia Microbiol (Praha) 2014; 60:399-410. [DOI: 10.1007/s12223-014-0374-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
|
34
|
da Silva MDCS, Paula TDA, Moreira BC, Carolino M, Cruz C, Bazzolli DMS, Silva CC, Kasuya MCM. Nitrogen-fixing bacteria in Eucalyptus globulus plantations. PLoS One 2014; 9:e111313. [PMID: 25340502 PMCID: PMC4207822 DOI: 10.1371/journal.pone.0111313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/23/2014] [Indexed: 11/23/2022] Open
Abstract
Eucalypt cultivation is an important economic activity worldwide. In Portugal, Eucalyptus globulus plantations account for one-third of the total forested area. The nutritional requirements of this crop have been well studied, and nitrogen (N) is one of the most important elements required for vegetal growth. N dynamics in soils are influenced by microorganisms, such as diazotrophic bacteria (DB) that are responsible for biological nitrogen fixation (BNF), so the aim of this study was to evaluate and identity the main groups of DB in E. globulus plantations. Samples of soil and root systems were collected in winter and summer from three different Portuguese regions (Penafiel, Gavião and Odemira). We observed that DB communities were affected by season, N fertilization and moisture. Furthermore Bradyrhizobium and Burkholderia were the most prevalent genera in these three regions. This is the first study describing the dynamic of these bacteria in E. globulus plantations, and these data will likely contribute to a better understanding of the nutritional requirements of eucalypt cultivation and associated organic matter turnover.
Collapse
Affiliation(s)
| | | | - Bruno Coutinho Moreira
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Manuela Carolino
- Faculdade de Ciências da Universidade de Lisboa, Centro de Biologia Ambiental, Lisboa, Campo Grande, Portugal
| | - Cristina Cruz
- Faculdade de Ciências da Universidade de Lisboa, Centro de Biologia Ambiental, Lisboa, Campo Grande, Portugal
| | | | - Cynthia Canedo Silva
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | |
Collapse
|
35
|
Yousuf B, Kumar R, Mishra A, Jha B. Differential distribution and abundance of diazotrophic bacterial communities across different soil niches using a gene-targeted clone library approach. FEMS Microbiol Lett 2014; 360:117-25. [PMID: 25196726 DOI: 10.1111/1574-6968.12593] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/27/2014] [Accepted: 08/31/2014] [Indexed: 11/30/2022] Open
Abstract
Diazotrophs are key players of the globally important biogeochemical nitrogen cycle, having a significant role in maintaining ecosystem sustainability. Saline soils are pristine and unexplored habitats representing intriguing ecosystems expected to harbour potential diazotrophs capable of adapting in extreme conditions, and these implicated organisms are largely obscure. Differential occurrence of diazotrophs was studied by the nifH gene-targeted clone library approach. Four nifH gene clone libraries were constructed from different soil niches, that is saline soils (low and high salinity; EC 3.8 and 7.1 ds m(-1) ), and agricultural and rhizosphere soil. Additionally, the abundance of diazotrophic community members was assessed using quantitative PCR. Results showed environment-dependent metabolic versatility and the presence of nitrogen-fixing bacteria affiliated with a range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Cyanobacteria and Firmicutes. The analyses unveiled the dominance of Alphaproteobacteria and Gammaproteobacteria (Pseudomonas, Halorhodospira, Ectothiorhodospira, Bradyrhizobium, Agrobacterium, Amorphomonas) as nitrogen fixers in coastal-saline soil ecosystems, and Alphaproteobacteria and Betaproteobacteria (Bradyrhizobium, Azohydromonas, Azospirillum, Ideonella) in agricultural/rhizosphere ecosystems. The results revealed a repertoire of novel nitrogen-fixing bacterial guilds particularly in saline soil ecosystems.
Collapse
Affiliation(s)
- Basit Yousuf
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, India
| | | | | | | |
Collapse
|
36
|
Effect of abandonment on diversity and abundance of free-living nitrogen-fixing bacteria and total bacteria in the cropland soils of Hulun Buir, Inner Mongolia. PLoS One 2014; 9:e106714. [PMID: 25268844 PMCID: PMC4182089 DOI: 10.1371/journal.pone.0106714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 08/09/2014] [Indexed: 11/19/2022] Open
Abstract
In Inner Mongolia, steppe grasslands face desertification or degradation because of human over activity. One of the reasons for this condition is that croplands have been abandoned after inappropriate agricultural management. The soils in these croplands present heterogeneous environments in which conditions affecting microbial growth and diversity fluctuate widely in space and time. In this study, we assessed the molecular ecology of total and free-living nitrogen-fixing bacterial communities in soils from steppe grasslands and croplands that were abandoned for different periods (1, 5, and 25 years) and compared the degree of recovery. The abandoned croplands included in the study were natural restoration areas without human activity. Denaturing gradient gel electrophoresis and quantitative PCR (qPCR) were used to analyze the nifH and 16S rRNA genes to study free-living diazotrophs and the total bacterial community, respectively. The diversities of free-living nitrogen fixers and total bacteria were significantly different between each site (P<0.001). Neither the total bacteria nor nifH gene community structure of a cropland abandoned for 25 years was significantly different from those of steppe grasslands. In contrast, results of qPCR analysis of free-living nitrogen fixers and total bacteria showed significantly high abundance levels in steppe grassland (P<0.01 and P<0.03, respectively). In this study, the microbial communities and their gene abundances were assessed in croplands that had been abandoned for different periods. An understanding of how environmental factors and changes in microbial communities affect abandoned croplands could aid in appropriate soil management to optimize the structures of soil microorganisms.
Collapse
|
37
|
Paver SF, Hayek KR, Gano KA, Fagen JR, Brown CT, Davis-Richardson AG, Crabb DB, Rosario-Passapera R, Giongo A, Triplett EW, Kent AD. Interactions between specific phytoplankton and bacteria affect lake bacterial community succession. Environ Microbiol 2013; 15:2489-504. [DOI: 10.1111/1462-2920.12131] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/22/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Sara F. Paver
- Program in Ecology, Evolution, and Conservation Biology; University of Illinois; Urbana; IL; USA
| | - Kevin R. Hayek
- School of Integrative Biology; University of Illinois; Urbana; IL; USA
| | - Kelsey A. Gano
- Department of Microbiology and Cell Science; University of Florida; Gainesville; FL; USA
| | - Jennie R. Fagen
- Department of Microbiology and Cell Science; University of Florida; Gainesville; FL; USA
| | - Christopher T. Brown
- Department of Microbiology and Cell Science; University of Florida; Gainesville; FL; USA
| | | | - David B. Crabb
- Department of Microbiology and Cell Science; University of Florida; Gainesville; FL; USA
| | | | - Adriana Giongo
- Department of Microbiology and Cell Science; University of Florida; Gainesville; FL; USA
| | - Eric W. Triplett
- Department of Microbiology and Cell Science; University of Florida; Gainesville; FL; USA
| | | |
Collapse
|
38
|
Impacts of organic and conventional crop management on diversity and activity of free-living nitrogen fixing bacteria and total bacteria are subsidiary to temporal effects. PLoS One 2012; 7:e52891. [PMID: 23285218 PMCID: PMC3532110 DOI: 10.1371/journal.pone.0052891] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/22/2012] [Indexed: 11/19/2022] Open
Abstract
A three year field study (2007–2009) of the diversity and numbers of the total and metabolically active free-living diazotophic bacteria and total bacterial communities in organic and conventionally managed agricultural soil was conducted using the Nafferton Factorial Systems Comparison (NFSC) study, in northeast England. Fertility management appeared to have little impact on both diazotrophic and total bacterial communities. However, copy numbers of the nifH gene did appear to be negatively impacted by conventional crop protection measures across all years suggesting diazotrophs may be particularly sensitive to pesticides. Impacts of crop management were greatly overshadowed by the influence of temporal effects with diazotrophic communities changing on a year by year basis and from season to season. Quantitative analyses using qPCR of each community indicated that metabolically active diazotrophs were highest in year 1 but the population significantly declined in year 2 before recovering somewhat in the final year. The total bacterial population in contrast increased significantly each year. It appeared that the dominant drivers of qualitative and quantitative changes in both communities were annual and seasonal effects. Moreover, regression analyses showed activity of both communities was significantly affected by soil temperature and climatic conditions.
Collapse
|
39
|
Yousuf B, Sanadhya P, Keshri J, Jha B. Comparative molecular analysis of chemolithoautotrophic bacterial diversity and community structure from coastal saline soils, Gujarat, India. BMC Microbiol 2012; 12:150. [PMID: 22834535 PMCID: PMC3438102 DOI: 10.1186/1471-2180-12-150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 07/06/2012] [Indexed: 11/10/2022] Open
Abstract
Background Soils harbour high diversity of obligate as well as facultative chemolithoautotrophic bacteria that contribute significantly to CO2 dynamics in soil. In this study, we used culture dependent and independent methods to assess the community structure and diversity of chemolithoautotrophs in agricultural and coastal barren saline soils (low and high salinity). We studied the composition and distribution of chemolithoautotrophs by means of functional marker gene cbbL encoding large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and a phylogenetic marker 16S rRNA gene. The cbbL form IA and IC genes associated with carbon fixation were analyzed to gain insight into metabolic potential of chemolithoautotrophs in three soil types of coastal ecosystems which had a very different salt load and sulphur content. Results In cbbL libraries, the cbbL form IA was retrieved only from high saline soil whereas form IC was found in all three soil types. The form IC cbbL was also amplified from bacterial isolates obtained from all soil types. A number of novel monophyletic lineages affiliated with form IA and IC phylogenetic trees were found. These were distantly related to the known cbbL sequences from agroecosystem, volcanic ashes and marine environments. In 16S rRNA clone libraries, the agricultural soil was dominated by chemolithoautotrophs (Betaproteobacteria) whereas photoautotrophic Chloroflexi and sulphide oxidizers dominated saline ecosystems. Environmental specificity was apparently visible at both higher taxonomic levels (phylum) and lower taxonomic levels (genus and species). The differentiation in community structure and diversity in three soil ecosystems was supported by LIBSHUFF (P = 0.001) and UniFrac. Conclusion This study may provide fundamentally new insights into the role of chemolithoautotrophic and photoautotrophic bacterial diversity in biochemical carbon cycling in barren saline soils. The bacterial communities varied greatly among the three sites, probably because of differences in salinity, carbon and sulphur contents. The cbbL form IA-containing sulphide-oxidizing chemolithotrophs were found only in high saline soil clone library, thus giving the indication of sulphide availability in this soil ecosystem. This is the first comparative study of the community structure and diversity of chemolithoautotrophic bacteria in coastal agricultural and saline barren soils using functional (cbbL) and phylogenetic (16S rDNA) marker genes.
Collapse
Affiliation(s)
- Basit Yousuf
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, GB Marg, Bhavnagar, Gujarat, India
| | | | | | | |
Collapse
|
40
|
Meng X, Wang L, Long X, Liu Z, Zhang Z, Zed R. Influence of nitrogen fertilization on diazotrophic communities in the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.). Res Microbiol 2012; 163:349-56. [PMID: 22564556 DOI: 10.1016/j.resmic.2012.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 03/28/2012] [Indexed: 11/28/2022]
Abstract
Diazotrophs in the soil may be influenced by plant factors as well as nitrogen (N) fertilization. In this study, we investigated potential diazotrophic communities in the rhizosphere of the Jerusalem artichoke (Helianthus tuberosus L.) supplied with differing amounts of N. The community structure of N(2)-fixing bacteria was profiled using the length heterogeneity polymerase chain reaction (LH-PCR) and terminal restriction fragment length polymorphism (T-RFLP) based on a variation in the nifH gene. Higher numbers of diazotrophs were detected by T-RFLP compared to LH-PCR. The lowest number of N(2)-fixing bacteria was observed in the rhizosphere soil with high N fertilization. T-RFLP was a better method than LH-PCR for profiling microbial diversity of diazotrophs using multidimensional scaling (MDS) and analysis of similarity (ANOSIM) of fingerprints as well as diversity measures. The supply of N fertilizer appeared to negatively influence the abundance of diazotrophs in the rhizophere of the Jerusalem artichoke.
Collapse
Affiliation(s)
- Xianfa Meng
- Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | | | | | | | | | | |
Collapse
|
41
|
Liu J, Peng M, Li Y. Phylogenetic diversity of nitrogen-fixing bacteria and the nifH gene from mangrove rhizosphere soil. Can J Microbiol 2012; 58:531-9. [PMID: 22455729 DOI: 10.1139/w2012-016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nine types of nitrogen-fixing bacterial strains were isolated from 3 rhizosphere soil samples taken from mangrove plants in the Dongzhaigang National Mangrove Nature Reserve of China. Most isolates belonged to Gammaproteobacteria Pseudomonas, showing that these environments constituted favorable niches for such abundant nitrogen-fixing bacteria. New members of the diazotrophs were also found. Using a soil DNA extraction and PCR-cloning-sequencing approach, 135 clones were analyzed by restriction fragment length polymorphism (RFLP) analysis, and 27 unique nifH sequence phylotypes were identified, most of which were closely related to sequences from uncultured bacteria. The diversity of nitrogen-fixing bacteria was assessed by constructing nifH phylogenetic trees from sequences of all isolates and clones in this work, together with related nifH sequences from other mangrove ecosystems in GenBank. The nifH diversity varied among soil samples, with distinct biogeochemical properties within a mangrove ecosystem. When comparing different mangrove ecosystems, the nifH gene sequences from a specific site tended to cluster as individual groups. The results provided interesting data and novel information on our understanding of diazotroph community diversity in the mangrove ecosystems.
Collapse
Affiliation(s)
- Jianyin Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | |
Collapse
|
42
|
Sato A, Watanabe T, Unno Y, Purnomo E, Osaki M, Shinano T. Analysis of diversity of diazotrophic bacteria associated with the rhizosphere of a tropical Arbor, Melastoma malabathricum L. Microbes Environ 2011; 24:81-7. [PMID: 21566359 DOI: 10.1264/jsme2.me08565] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The diversity of diazotrophic bacteria in the rhizosphere of Melastoma malabathricum L. was investigated by cloning-sequencing of the nifH gene directly amplified from DNA extracted from soil. Samples were obtained from the rhizosphere and bulk soil of M. malabathricum growing in three different soil types (acid sulfate, peat and sandy clay soils) located very close to each other in south Kalimantan, Indonesia. Six clone libraries were constructed, generated from bulk and rhizosphere soil samples, and 300 nifH clones were produced, then assembled into 29 operational taxonomic units (OTUs) based on percent identity values. Our results suggested that nifH gene diversity is mainly dependent on soil properties, and did not differ remarkably between the rhizosphere and bulk soil of M. malabathricum except in acid sulfate soil. In acid sulfate soil, as the Shannon diversity index was lower in rhizosphere than in bulk soil, it is suggested that particular bacterial species might accumulate in the rhizosphere.
Collapse
Affiliation(s)
- Atsuya Sato
- Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kitaku, Sapporo 060-8589, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Abundance and diversity of nitrogen-fixing bacteria in rhizosphere and bulk paddy soil under different duration of organic management. World J Microbiol Biotechnol 2011; 28:493-503. [DOI: 10.1007/s11274-011-0840-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
|
44
|
Zhan J, Sun Q. Diversity of free-living nitrogen-fixing microorganisms in the rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings. Microbiol Res 2011; 167:157-65. [PMID: 21665448 DOI: 10.1016/j.micres.2011.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 05/15/2011] [Accepted: 05/22/2011] [Indexed: 11/17/2022]
Abstract
The composition of free-living nitrogen-fixing microbial communities in rhizosphere and non-rhizosphere of pioneer plants growing on wastelands of copper mine tailings was studied by the presence of nifH genes using Polymerase Chain Reaction-Denatured Gradient Gel Electrophoresis (PCR-DGGE) approach. Eleven rhizosphere tailing samples and nine non-rhizosphere tailing samples from six plant communities were collected from two wastelands with different discarded periods. The nested PCR method was used to amplify the nifH genes from environmental DNA extracted from tailing samples. Twenty-two of 37 nifH gene sequences retrieved from DGGE gels clustered in Proteobacteria (α-Proteobacteria and β-Proteobacteria) and 15 nifH gene sequences in Cyanobacteria. Most nifH gene fragments sequenced were closely related to uncultured bacteria and cyanobacteria and exhibited less than 90% nucleotide acid identity with bacteria in the database, suggesting that the nifH gene fragments detected in copper mine tailings may represent novel sequences of nitrogen-fixers. Our results indicated that the non-rhizosphere tailings generally presented higher diversity of nitrogen-fixers than rhizosphere tailings and the diversity of free-living nitrogen-fixers in tailing samples was mainly affected by the physico-chemical properties of the wastelands and plant species, especially the changes of nutrient and heavy metal contents caused by the colonization of plant community.
Collapse
Affiliation(s)
- Jing Zhan
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui 230601, PR China.
| | | |
Collapse
|
45
|
Burbano CS, Liu Y, Rösner KL, Reis VM, Caballero-Mellado J, Reinhold-Hurek B, Hurek T. Predominant nifH transcript phylotypes related to Rhizobium rosettiformans in field-grown sugarcane plants and in Norway spruce. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:383-9. [PMID: 23761284 DOI: 10.1111/j.1758-2229.2010.00238.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Although some sugarcane cultivars may benefit substantially from biological nitrogen fixation (BNF), the responsible bacteria have been not identified yet. Here, we examined the active diazotrophic bacterial community in sugarcane roots from Africa and America by reverse transcription (RT)-PCR using broad-range nifH-specific primers. Denaturing gradient gel electrophoresis (DGGE) profiles obtained from sugarcane showed a low diversity at all sample locations with one phylotype amounting up to 100% of the nifH transcripts. This major phylotype has 93.9-99.6% DNA identity to the partial nifH sequence from a strain affiliated with Rhizobium rosettiformans. In addition, nifH transcripts of this phylotype were also detected in spruce roots sampled in Germany, where they made up 91% of nifH transcripts detected. In contrast, in control soil or shoot samples two distinct nifH transcript sequences distantly related to nifH from Sulfurospirillum multivorans or Bradyrhizobium elkanii, respectively, were predominant. These results suggest that R. rosettiformans is involved in root-associated nitrogen fixation with sugarcane and spruce, plants that do not form root-nodule symbioses.
Collapse
Affiliation(s)
- Claudia Sofía Burbano
- Lab of General Microbiology, Center for Biomolecular Interactions Bremen (CBIB), University of Bremen, D-28359 Bremen, Germany. Embrapa Agrobiologia, km 447, Estrada Antiga Rio-São Paulo, Seropédica, 23890-000, Rio de Janeiro, Brazil. Centro de Ciencias Genomicas, UNAM, Apdo. Postal No. 565-A, Cuernavaca, Mor., México
| | | | | | | | | | | | | |
Collapse
|
46
|
Pereira e Silva MC, Semenov AV, van Elsas JD, Salles JF. Seasonal variations in the diversity and abundance of diazotrophic communities across soils. FEMS Microbiol Ecol 2011; 77:57-68. [PMID: 21385188 DOI: 10.1111/j.1574-6941.2011.01081.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The nitrogen (N)-fixing community is a key functional community in soil, as it replenishes the pool of biologically available N that is lost to the atmosphere via anaerobic ammonium oxidation and denitrification. We characterized the structure and dynamic changes in diazotrophic communities, based on the nifH gene, across eight different representative Dutch soils during one complete growing season, to evaluate the amplitude of the natural variation in abundance and diversity, and identify possible relationships with abiotic factors. Overall, our results indicate that soil type is the main factor influencing the N-fixing communities, which were more abundant and diverse in the clay soils (n=4) than in the sandy soils (n=4). On average, the amplitude of variation in community size as well as the range-weighted richness were also found to be higher in the clay soils. These results indicate that N-fixing communities associated with sandy and clay soil show a distinct amplitude of variation under field conditions, and suggest that the diazotrophic communities associated with clay soil might be more sensitive to fluctuations associated with the season and agricultural practices. Moreover, soil characteristics such as ammonium content, pH and texture most strongly correlated with the variations observed in the diversity, size and structure of N-fixing communities, whose relative importance was determined across a temporal and spatial scale.
Collapse
Affiliation(s)
- Michele C Pereira e Silva
- Department of Microbial Ecology, Centre for Life Sciences, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
47
|
Zhan J, Sun Q. Diversity of free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings during the process of natural ecological restoration. J Environ Sci (China) 2011; 23:476-487. [PMID: 21520818 DOI: 10.1016/s1001-0742(10)60433-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Biological nitrogen fixing is an important source of nitrogen input in the natural ecological restoration of mine wastelands. The diversity of nifH genes in tailings samples under different plant communities in Yangshanchong and Tongguanshan wastelands in Tongling, was analyzed using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) approach. The nitrogen-fixing microorganism community in the upper layer of tailings of Tongguanshan wasteland discarded in 1980 showed higher Shannon-Wiener diversity index than that in Yangshanchong wasteland discarded in 1991. The diversity of nifH genes in Yangshanchong wasteland of copper mine tailings did not display a consistent successional tendency with development of plant communities during the process of natural ecological restoration. Phylogenetic analysis of 25 sequences of nifH gene fragments retrieved from the DGGE gels indicated that there were mainly two taxa of free-living nitrogen-fixing microorganisms, Proteobacteria and Cyanobacteria living in the wastelands investigated, most of which were unique and uncultured. Canonical correspondence analysis (CCA) based on the relationship between band patterns of DGGE profile and physico-chemical properties of tailings samples showed that the diversity of nifH genes in different tailing samples was mainly affected by loss of ignition, water content, pH and available Zn contents of wastelands. The dominant plant species and development period of plant communities by ameliorating pH, reducing the toxicity of heavy metals, increasing organic matter and water content affected the diversity and structure of the free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings.
Collapse
Affiliation(s)
- Jing Zhan
- School of Life Science, Anhui University, Hefei 230039, China.
| | | |
Collapse
|
48
|
Diversity and activity of free-living nitrogen-fixing bacteria and total bacteria in organic and conventionally managed soils. Appl Environ Microbiol 2010; 77:911-9. [PMID: 21131514 DOI: 10.1128/aem.01250-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agricultural soils are heterogeneous environments in which conditions affecting microbial growth and diversity fluctuate widely in space and time. In this study, the molecular ecology of the total bacterial and free-living nitrogen-fixing communities in soils from the Nafferton Factorial Systems Comparison (NFSC) study in northeast England were examined. The field experiment was factorial in design, with organic versus conventional crop rotation, crop protection, and fertility management factors. Soils were sampled on three dates (March, June, and September) in 2007. Total RNA was extracted from all soil samples and reverse transcribed. Denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) were used to analyze nifH and 16S rRNA genes in order to study free-living diazotrophs and the total bacterial community, respectively. Crop rotation was shown to have a significant effect on total bacterial diversity (and that of free-living N fixers) (P ≤ 0.001). On all three dates, nifH activity was higher in the conventional crop rotation. In contrast, qPCR analysis of free-living N fixers indicated significantly higher levels of activity in conventionally fertilized plots in June (P = 0.0324) and in plots with organic crop protection in September (P = 0.0143). To our knowledge, the effects of organic and conventional farming systems on free-living diazotrophs have never been studied. An increased understanding of the impacts of management practices on free-living N fixers could allow modifications in soil management practices to optimize the activity of these organisms.
Collapse
|
49
|
Morel MA, Ubalde MC, Braña V, Castro-Sowinski S. Delftia sp. JD2: a potential Cr(VI)-reducing agent with plant growth-promoting activity. Arch Microbiol 2010; 193:63-8. [DOI: 10.1007/s00203-010-0632-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 08/02/2010] [Accepted: 09/04/2010] [Indexed: 10/19/2022]
|
50
|
Moseman-Valtierra SM, Armaiz-Nolla K, Levin LA. Wetland response to sedimentation and nitrogen loading: diversification and inhibition of nitrogen-fixing microbes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2010; 20:1556-1568. [PMID: 20945759 DOI: 10.1890/08-1881.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Anthropogenic inputs of nutrients and sediment simultaneously impact coastal ecosystems, such as wetlands, especially during storms. Independent and combined effects of sediment and ammonium nitrate loading on nitrogen fixation rates and diversity of microbes that fix nitrogen (diazotrophs) were tested via field manipulations in Spartina foliosa and unvegetated zones at Tijuana Estuary (California, USA). This estuary is subject to episodic nitrogen enrichment and sedimentation associated with rain-driven flooding and slope instabilities, the latter of which may worsen as the Triple Border Fence is constructed along the U.S.-Mexico border. Responses of diazotrophs were assessed over 17 days using acetylene reduction assays and genetic fingerprinting (terminal restriction fragment length polymorphism [T-RFLP]) of nifH, which codes for dinitrogenase reductase. Sulfate-reducing bacteria performed approximately 70% of nitrogen fixation in Spartina foliosa rhizospheres in the absence of nitrogen loading, based on sodium molybdate inhibitions in the laboratory. Following nutrient additions, richness (number of T-RFs [terminal restriction fragments]) and evenness (relative T-RF fluorescence) of diazotrophs in surface sediments increased, but nitrogen fixation rates decreased significantly within 17 days. These responses illustrate, within a microbial community, conformance to a more general ecological pattern of high function among assemblages of low diversity. Diazotroph community composition (T-RF profiles) and rhizosphere diversity were not affected. Pore water ammonium concentrations were higher and more persistent for 17 days in plots receiving sediment additions (1 cm deep), suggesting that recovery of diazotroph functions may be delayed by the combination of sediment and nutrient inputs. Nitrogen fixation constitutes a mechanism for rapid transfer of fixed N to S. foliosa roots and a variety of primary consumers (within 3 and 8 days, respectively), as determined via 15N2 enrichment studies with in situ microcosms of intact marsh sediment. Thus, long-term declines in nitrogen fixation rates in response to increasingly frequent nutrient loading and sedimentation may potentially alter nitrogen sources for vascular plants as well as trophic pathways in wetland ecosystems.
Collapse
Affiliation(s)
- S M Moseman-Valtierra
- Boston College, Biology Department, 140 Commonwealth Avenue, Chestnut Hill, Massachusetts 02467, USA.
| | | | | |
Collapse
|