1
|
Ghimire B, Gogoi A, Poudel M, Stensvand A, Brurberg MB. Transcriptome analysis of Phytophthora cactorum infecting strawberry identified RXLR effectors that induce cell death when transiently expressed in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2024; 15:1379970. [PMID: 38855473 PMCID: PMC11157022 DOI: 10.3389/fpls.2024.1379970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024]
Abstract
Phytophthora cactorum is a plant pathogenic oomycete that causes crown rot in strawberry leading to significant economic losses every year. To invade the host, P. cactorum secretes an arsenal of effectors that can manipulate host physiology and impair its defense system promoting infection. A transcriptome analysis was conducted on a susceptible wild strawberry genotype (Fragaria vesca) 48 hours post inoculation with P. cactorum to identify effectors expressed during the early infection stage. The analysis revealed 4,668 P. cactorum genes expressed during infection of F. vesca. A total of 539 secreted proteins encoded by transcripts were identified, including 120 carbohydrate-active enzymes, 40 RXLRs, 23 proteolytic enzymes, nine elicitins, seven cysteine rich proteins, seven necrosis inducing proteins and 216 hypothetical proteins with unknown function. Twenty of the 40 RXLR effector candidates were transiently expressed in Nicotiana benthamiana using agroinfiltration and five previously unreported RXLR effector genes (Pc741, Pc8318, Pc10890, Pc20813, and Pc22290) triggered cell death when transiently expressed. The identified cell death inducing RXLR effectors showed 31-66% identity to known RXLR effectors in different Phytophthora species having roles in pathogenicity including both activation and suppression of defense response in the host. Furthermore, homology analysis revealed that these cell death inducing RXLR effectors were highly conserved (82 - 100% identity) across 23 different strains of P. cactorum originating from apple or strawberry.
Collapse
Affiliation(s)
- Bikal Ghimire
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Anupam Gogoi
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Mandeep Poudel
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Arne Stensvand
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - May Bente Brurberg
- Department of Plant Sciences, Faculty of Biosciences (BIOVIT), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| |
Collapse
|
2
|
Shreves KV, Saraiva M, Ruba T, Miller C, Scott EM, McLaggan D, van West P. Specific Phylotypes of Saprolegnia parasitica Associated with Atlantic Salmon Freshwater Aquaculture. J Fungi (Basel) 2024; 10:57. [PMID: 38248966 PMCID: PMC10820671 DOI: 10.3390/jof10010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Saprolegniosis is a major destructive disease in freshwater aquaculture. The destructive economic impact of saprolegniosis on freshwater aquaculture necessitates further study on the range of Saprolegnia species within Atlantic salmon fish farms. This study undertook a thorough analysis of a total of 412 oomycete and fungal isolates that were successfully cultured and sequenced from 14 aquaculture sites in Scotland across a two-year sampling period. An ITS phylogenetic analysis of all isolates was performed according to whether they were isolated from fish or water samples and during enzootic or epizootic periods. Several genera of oomycetes were isolated from sampling sites, including Achlya, Leptolegnia, Phytophthora, and Pythium, but by far the most prevalent was Saprolegnia, accounting for 66% of all oomycetes isolated. An analysis of the ITS region of Saprolegnia parasitica showed five distinct phylotypes (S2-S6); S1 was not isolated from any site. Phylotype S2 was the most common and most widely distributed phylotype, being found at 12 of the 14 sampling sites. S2 was overwhelmingly sampled from fish (93.5%) and made up 91.1% of all S. parasitica phylotypes sampled during epizootics, as well as 67.2% of all Saprolegnia. This study indicates that a single phylotype may be responsible for Saprolegnia outbreaks in Atlantic salmon fish farms, and that water sampling and spore counts alone may be insufficient to predict Saprolegnia outbreaks in freshwater aquaculture.
Collapse
Affiliation(s)
- Kypher Varin Shreves
- International Centre for Aquaculture Research and Development (ICARD), Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.V.S.); (M.S.); (T.R.); (D.M.)
| | - Marcia Saraiva
- International Centre for Aquaculture Research and Development (ICARD), Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.V.S.); (M.S.); (T.R.); (D.M.)
| | - Tahmina Ruba
- International Centre for Aquaculture Research and Development (ICARD), Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.V.S.); (M.S.); (T.R.); (D.M.)
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Claire Miller
- School Mathematics and Statistics, University of Glasgow, Glasgow G12 8TA, UK; (C.M.); (E.M.S.)
| | - E. Marian Scott
- School Mathematics and Statistics, University of Glasgow, Glasgow G12 8TA, UK; (C.M.); (E.M.S.)
| | - Debbie McLaggan
- International Centre for Aquaculture Research and Development (ICARD), Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.V.S.); (M.S.); (T.R.); (D.M.)
| | - Pieter van West
- International Centre for Aquaculture Research and Development (ICARD), Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (K.V.S.); (M.S.); (T.R.); (D.M.)
| |
Collapse
|
3
|
Characterizing the Mechanisms of Metalaxyl, Bronopol and Copper Sulfate against Saprolegnia parasitica Using Modern Transcriptomics. Genes (Basel) 2022; 13:genes13091524. [PMID: 36140692 PMCID: PMC9498376 DOI: 10.3390/genes13091524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Saprolegniasis, which is caused by Saprolegnia parasitica, leads to considerable economic losses. Recently, we showed that metalaxyl, bronopol and copper sulfate are good antimicrobial agents for aquaculture. In the current study, the efficacies of metalaxyl, bronopol and copper sulfate are evaluated by in vitro antimicrobial experiments, and the mechanism of action of these three antimicrobials on S. parasitica is explored using transcriptome technology. Finally, the potential target genes of antimicrobials on S. parasitica are identified by protein–protein interaction network analysis. Copper sulfate had the best inhibitory effect on S. parasitica, followed by bronopol. A total of 1771, 723 and 2118 DEGs upregulated and 1416, 319 and 2161 DEGs downregulated S. parasitica after three drug treatments (metalaxyl, bronopol and copper sulfate), separately. Additionally, KEGG pathway analysis also determined that there were 17, 19 and 13 significantly enriched metabolic pathways. PPI network analysis screened out three important proteins, and their corresponding genes were SPRG_08456, SPRG_03679 and SPRG_10775. Our results indicate that three antimicrobials inhibit S. parasitica growth by affecting multiple biological functions, including protein synthesis, oxidative stress, lipid metabolism and energy metabolism. Additionally, the screened key genes can be used as potential target genes of chemical antimicrobial drugs for S. parasitica.
Collapse
|
4
|
Thakuria D, Khangembam VC, Pant V, Bhat RAH, Tandel RS, C. S, Pande A, Pandey PK. Anti-oomycete Activity of Chlorhexidine Gluconate: Molecular Docking and in vitro Studies. Front Vet Sci 2022; 9:909570. [PMID: 35782554 PMCID: PMC9247576 DOI: 10.3389/fvets.2022.909570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Saprolegniosis is one of the most catastrophic oomycete diseases of freshwater fish caused by the members of the genus Saprolegnia. The disease is responsible for huge economic losses in the aquaculture industry worldwide. Until 2002, Saprolegnia infections were effectively controlled by using malachite green. However, the drug has been banned for use in aquaculture due to its harmful effect. Therefore, it has become important to find an alternate and safe anti-oomycete agent that is effective against Saprolegnia. In this study, we investigated the anti-oomycete activity of chlorhexidine gluconate (CHG) against Saprolegnia. Before in vitro evaluation, molecular docking was carried out to explore the binding of CHG with vital proteins of Saprolegnia, such as S. parasitica host-targeting protein 1 (SpHtp1), plasma membrane ATPase, and TKL protein kinase. In silico studies revealed that CHG binds with these proteins via hydrogen bonds and hydrophobic interactions. In an in vitro study, the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of CHG against S. parasitica were found to be 50 mg/L. Further, it was tested against S. australis, another species of Saprolegnia, and the MIC and MFC were found to be 100 and 200 mg/L, respectively. At 500 mg/L of CHG, there was complete inhibition of the radial growth of Saprolegnia hyphae. In propidium iodide (PI) uptake assay, CHG treated hyphae had bright red fluorescence of PI indicating the disruption of the cell membrane. The results of the present study indicated that CHG could effectively inhibit Saprolegnia and hence can be used for controlling Saprolegniasis in cultured fish.
Collapse
|
5
|
Sarkar P, Stefi Raju V, Kuppusamy G, Rahman MA, Elumalai P, Harikrishnan R, Arshad A, Arockiaraj J. Pathogenic fungi affecting fishes through their virulence molecules. AQUACULTURE 2022; 548:737553. [DOI: 10.1016/j.aquaculture.2021.737553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
|
6
|
Lavrinenko IV, Shulha LV, Peredera ОО, Zhernosik IA, Peredera RV. Efficacy of acriflavin chloride and Melaleuca alternifolia extract against Saprolegnia parasitica infection in Pterophyllum scalare. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The article describes cases of saprolegniosis in Pterophyllum scalare in private aquaristics and assesses the therapeutic efficacy of acriflafin chloride against Saprolegnia parasitica infection. To establish the diagnosis, the clinical signs present in sick fish, the results of mycological and microscopic examinations are taken into account. Some chemical and mycological indices of aquarium water have been studied, and also mycological studies of fish feed have been carried out. It is established that the disease of fish develops against the background of adverse changes in physical, chemical composition and microbiocenosis of aquarium water. Low water temperature, high levels of phosphates and pH, a significant level of organic pollution, compared to the norm, provoke the accumulation of opportunistic microbiota, resulting in imbalance in the parasite-host system and the development of clinical manifestations of saprolegniosis in fish. It was found that 44.4% of the studied feed samples fed to fish were contaminated with epiphytic micromycetes. Micromycetes are represented by the genera Aspergillus, Penicilium, Fusarium, Mucor, Rhizopus. Among the studied feeds, the most affected by fungi were larvae of Chironomus plumosus and dry Daphnia pulex. According to the results of our studies during outbreaks of saprolegniosis, the pH of aquarium water was 8.1 ± 0.7, the content of phosphates – 5.6 ± 1.1 mg/L, micromycetes – 18.0 ± 1.2 CFU/100 cm3. Aspergillus flavus, A. niger and Penicillium canescens were detected in the studied water samples. With saprolegniosis, the angelfish have a reduced appetite, spots, ulcers, white thin threads, and a cotton-like plaque appear on certain areas of the skin, fins, eyes, and gills. It is established that effective means for the treatment of sick fish are external use in the form of a long bath of acriflavine chloride and extract of Melaleuca alternifolia. It is also effective to increase the water temperature to 25–27 °С, to ensure the normative fish-holding density in aquariums and to exclude from the diet fish feed contaminated with micromycetes. After using the drugs for two weeks every other day, water was replaced by 20% of the aquarium volume and aerated. As a result of the treatment, gradual healing of skin lesions and recovery of 65% of fish with signs of lesions of the outer coverings were registered. Thus, the article analyzes the causes of saprolegniosis in angelfish common in private aquariums, describes the clinical signs of the disease and assesses the therapeutic efficacy of acriflavine chloride and Melaleuca alternifolia extract against Saprolegnia parasitica infection. Prospects for further research lie in search of more effective and environmentally friendly means for the treatment of saprolegniosis in aquarium fish.
Collapse
|
7
|
Faber MN, Sojan JM, Saraiva M, van West P, Secombes CJ. Development of a 3D spheroid cell culture system from fish cell lines for in vitro infection studies: Evaluation with Saprolegnia parasitica. JOURNAL OF FISH DISEASES 2021; 44:701-710. [PMID: 33434302 DOI: 10.1111/jfd.13331] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Understanding the ways in which pathogens infect host cells is essential to improve and develop new treatment strategies. This study aimed to generate a novel in vitro infection model by establishing a reproducible 3D spheroid cell culture system that may lead to a reduced need for animals in fish disease research. 2D models (commonly cell lines) cannot replicate many key conditions of in vivo infections, but 3D spheroids have the potential to provide bridging technology between in vivo and in vitro systems. 3D spheroids were generated using cells from rainbow trout (Oncorhynchus mykiss) cell lines, RTG-2 and RTS-11. The RTG-2 spheroids were tested for their potential to be infected upon exposure to Saprolegnia parasitica spores. Positive infiltration of mycelia into the spheroids was verified by confocal microscopy. As a closer analogue of in vivo conditions encountered during infection, the straightforward model developed in this study shows promise as an additional tool that can be used to further our understanding of host-pathogen interactions for Saprolegnia and possibly a variety of other fish pathogens.
Collapse
Affiliation(s)
- Marc N Faber
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Jerry M Sojan
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Marcia Saraiva
- Aberdeen Oomycete Laboratory, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Pieter van West
- Aberdeen Oomycete Laboratory, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
8
|
Ali FF, Al-Taee SK, Al-Jumaa ZM. Isolation, molecular identification, and pathological lesions of Saprolegnia spp. isolated from common carp, Cyprinus carpio in floating cages in Mosul, Iraq. Vet World 2020; 13:2759-2764. [PMID: 33487995 PMCID: PMC7811552 DOI: 10.14202/vetworld.2020.2759-2764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/05/2020] [Indexed: 12/02/2022] Open
Abstract
Background and Aim: Saprolegniasis is a fungal disease that infects freshwater fish. The condition is characterized by a cotton-like appearance in the gills and body. This study aimed to isolate Saprolegnia from common carp, Cyprinus carpio, raised in a floating cage in Wana district, Mosul, Iraq. Materials and Methods: Samples were collected from 15 infected fish and examined microbiologically, molecularly, and histopathologically. Saprolegnia DNA was extracted which was amplified using universal primers give a 540 bp DNA fragment, and gill and muscle tissue were also examined for histopathological changes. Results: Isolated colonies of Saprolegnia were characterized by a circular, white cottony appearance with long hair. Lactophenol staining demonstrated hyphae as branched non-septate, transparent masses. The genomic DNA of isolates was consistent with Saprolegnia spp. The infected tissue samples showed variable pathology in gills. Severe hemorrhage and edema were observed in primary gill filaments with hyperplasia in epithelial cells and infusion in secondary gill filaments. Hyphae of Saprolegnia were seen between necrotic and edematous myofiber with inflammatory cells infiltration. Conclusion: Saprolegnia can cause economic impacts through lethal infection of fish. Clinical signs of Saprolegnia infection were confirmed molecularly and microscopically, and these findings were supported by histopathological lesions in gill and muscle tissues.
Collapse
Affiliation(s)
- Fawwaz Fadhil Ali
- Department of Animal Production, Institute of Mosul, Northern Technical University, Mosul, Iraq
| | - Shahbaa Khalil Al-Taee
- Department of Pathology and poultry diseases, College of Veterinary Medicine, Mosul, Iraq
| | | |
Collapse
|
9
|
Rasoolizadeh A, Santhanam P, Labbé C, Shivaraj SM, Germain H, Bélanger RR. Silicon influences the localization and expression of Phytophthora sojae effectors in interaction with soybean. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6844-6855. [PMID: 32090252 DOI: 10.1093/jxb/eraa101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
In plant-pathogen interactions, expression and localization of effectors in the aqueous apoplastic region play a crucial role in the establishment or suppression of pathogen development. Silicon (Si) has been shown to protect plants in several host-pathogen interactions, but its mode of action remains a source of debate. Its deposition in the apoplastic area of plant cells suggests that it might interfere with receptor-effector recognition. In this study, soybean plants treated or not with Si were inoculated with Phytophthora sojae and differences in the ensuing infection process were assessed through different microscopy techniques, transcript analysis of effector and defense genes, and effector (Avr6) localization through immunolocalization and fluorescence labeling. In plants grown without Si, the results showed the rapid (4 d post-inoculation) host recognition by P. sojae through the development of haustorium-like bodies, followed by expression and release of effectors into the apoplastic region. In contrast, Si treatment resulted in limited pathogen development, and significantly lower expression and presence of Avr6 in the apoplastic region. Based on immunolocalization and quantification of Avr6 through fluorescence labeling, our results suggest that the presence of Si in the apoplast interferes with host recognition and/or limits receptor-effector interactions, which leads to an incompatible interaction.
Collapse
Affiliation(s)
| | | | - Caroline Labbé
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
| | | | - Hugo Germain
- Département de chimie, biochimie et physique, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Richard R Bélanger
- Département de Phytologie, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
10
|
Sarowar MN, Cusack R, Duston J. Saprolegnia molecular phylogeny among farmed teleosts in Nova Scotia, Canada. JOURNAL OF FISH DISEASES 2019; 42:1745-1760. [PMID: 31637741 DOI: 10.1111/jfd.13090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
To identify the pathogens causing saprolegniosis among farmed fish in Nova Scotia, 172 infected tissues and 23 water samples were collected from six species of teleosts: Atlantic salmon (Salmo salar), brown trout (Salmo trutta), Arctic charr (Salvelinus alpinus), brook trout (Salvelinus fontinalis), striped bass (Morone saxatilis) and rainbow trout (Oncorhynchus mykiss) at nine facilities over a 600 km range. Following laboratory culture, 132 isolates were recovered. Six species of oomycetes were identified from analysis of the internal transcribed spacer (ITS) sequence of the nrDNA: Saprolegnia parasitica, Saprolegnia ferax, Saprolegnia diclina, Saprolegnia aenigmatica, Saprolegnia torulosa, Saprolegnia sp. and Pythiopsis cymosa. Further phylogenetic analyses of the ITS and cytochrome c oxidase subunit 1 (Cox1) regions revealed four strains of Saprolegnia parasitica (named here as S1, S2, S3 and S4), of which S1 and S2 were common (37% and 42% of the isolates), and two strains of S. ferax. Among S. parasitica, S2 and S3 are more closely related to each other than to S1 based on the phylogenetic analyses and predicted RNA secondary structure of the ITS region. Sexual structures with a similar morphology were formed by S1 and S3 in vitro, but were not formed by S2.
Collapse
Affiliation(s)
- Mohammad Nasif Sarowar
- Department of Animal Science and Aquaculture, Agricultural Campus, Dalhousie University, Bible Hill, Canada
| | - Roland Cusack
- Nova Scotia Department of Fisheries and Aquaculture, Agricultural Campus, Hancock Veterinary Building, Bible Hill, Canada
| | - James Duston
- Department of Animal Science and Aquaculture, Agricultural Campus, Dalhousie University, Bible Hill, Canada
| |
Collapse
|
11
|
Frenken T, Agha R, Schmeller DS, van West P, Wolinska J. Biological Concepts for the Control of Aquatic Zoosporic Diseases. Trends Parasitol 2019; 35:571-582. [PMID: 31076352 DOI: 10.1016/j.pt.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 12/26/2022]
Abstract
Aquatic zoosporic diseases are threatening global biodiversity and ecosystem services, as well as economic activities. Current means of controlling zoosporic diseases are restricted primarily to chemical treatments, which are usually harmful or likely to be ineffective in the long term. Furthermore, some of these chemicals have been banned due to adverse effects. As a result, there is a need for alternative methods with minimal side-effects on the ecosystem or environment. Here, we integrate existing knowledge of three poorly interconnected areas of disease research - amphibian conservation, aquaculture, and plankton ecology - and arrange it into seven biological concepts to control zoosporic diseases. These strategies may be less harmful and more sustainable than chemical approaches. However, more research is needed before safe application is possible.
Collapse
Affiliation(s)
- Thijs Frenken
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| | - Ramsy Agha
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Dirk S Schmeller
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Pieter van West
- Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
12
|
Hutson KS, Cable J, Grutter AS, Paziewska-Harris A, Barber I. Aquatic Parasite Cultures and Their Applications. Trends Parasitol 2018; 34:1082-1096. [PMID: 30473011 DOI: 10.1016/j.pt.2018.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
In this era of unprecedented growth in aquaculture and trade, aquatic parasite cultures are essential to better understand emerging diseases and their implications for human and animal health. Yet culturing parasites presents multiple challenges, arising from their complex, often multihost life cycles, multiple developmental stages, variable generation times and reproductive modes. Furthermore, the essential environmental requirements of most parasites remain enigmatic. Despite these inherent difficulties, in vivo and in vitro cultures are being developed for a small but growing number of aquatic pathogens. Expanding this resource will facilitate diagnostic capabilities and treatment trials, thus supporting the growth of sustainable aquatic commodities and communities.
Collapse
Affiliation(s)
- Kate S Hutson
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Alexandra S Grutter
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Iain Barber
- School of Animal, Rural and Environmental Sciences, College of Science and Technology, Nottingham Trent University, NG25 0QF, UK
| |
Collapse
|
13
|
Rezinciuc S, Sandoval-Sierra JV, Ruiz-León Y, van West P, Diéguez-Uribeondo J. Specialized attachment structure of the fish pathogenic oomycete Saprolegnia parasitica. PLoS One 2018; 13:e0190361. [PMID: 29342156 PMCID: PMC5771568 DOI: 10.1371/journal.pone.0190361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/13/2017] [Indexed: 12/18/2022] Open
Abstract
The secondary cysts of the fish pathogen oomycete Saprolegnia parasitica possess bundles of long hooked hairs that are characteristic to this economically important pathogenic species. Few studies have been carried out on elucidating their specific role in the S. parasitica life cycle and the role they may have in the infection process. We show here their function by employing several strategies that focus on descriptive, developmental and predictive approaches. The strength of attachment of the secondary cysts of this pathogen was compared to other closely related species where bundles of long hooked hairs are absent. We found that the attachment of the S. parasitica cysts was around three times stronger than that of other species. The time sequence and influence of selected factors on morphology and the number of the bundles of long hooked hairs conducted by scanning electron microscopy study revealed that these are dynamic structures. They are deployed early after encystment, i.e., within 30 sec of zoospore encystment, and the length, but not the number, of the bundles steadily increased over the encystment period. We also observed that the number and length of the bundles was influenced by the type of substrate and encystment treatment applied, suggesting that these structures can adapt to different substrates (glass or fish scales) and can be modulated by different signals (i.e., protein media, 50 mM CaCl2 concentrations, carbon particles). Immunolocalization studies evidenced the presence of an adhesive extracellular matrix. The bioinformatic analyses of the S. parasitica secreted proteins showed that there is a high expression of genes encoding domains of putative proteins related to the attachment process and cell adhesion (fibronectin and thrombospondin) coinciding with the deployment stage of the bundles of long hooked hairs formation. This suggests that the bundles are structures that might contribute to the adhesion of the cysts to the host because they are composed of these adhesive proteins and/or by increasing the surface of attachment of this extracellular matrix.
Collapse
Affiliation(s)
| | | | | | - Pieter van West
- International Centre for Aquaculture Research and Development at the University of Aberdeen, Aberdeen Oomycete Laboratory, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | | |
Collapse
|
14
|
Genomic, Network, and Phylogenetic Analysis of the Oomycete Effector Arsenal. mSphere 2017; 2:mSphere00408-17. [PMID: 29202039 PMCID: PMC5700374 DOI: 10.1128/msphere.00408-17] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023] Open
Abstract
The oomycetes are a class of microscopic, filamentous eukaryotes and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. In this study, we catalogued the number and evolution of effectors in 37 oomycete species whose genomes have been completely sequenced. Large expansions of effector protein families in Phytophthora species, including glycoside hydrolases, pectinases, and necrosis-inducing proteins, were observed. Species-specific expansions were detected, including chitinases in Aphanomyces astaci and Pythium oligandrum. Novel effectors which may be involved in suppressing animal immune responses were identified in Ap. astaci and Py. oligandrum. Type 2 necrosis-inducing proteins with an unusual phylogenetic history were also located. This work represents an up-to-date in silico catalogue of the effector arsenal of the oomycetes based on the 37 genomes currently available. The oomycetes are a class of microscopic, filamentous eukaryotes within the stramenopiles-alveolate-Rhizaria (SAR) supergroup and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. This study investigated the expansion and evolution of effectors in 37 oomycete species in 4 oomycete orders, including Albuginales, Peronosporales, Pythiales, and Saprolegniales species. Our results highlight the large expansions of effector protein families, including glycoside hydrolases, pectinases, and necrosis-inducing proteins, in Phytophthora species. Species-specific expansions, including expansions of chitinases in Aphanomyces astaci and Pythium oligandrum, were detected. Novel effectors which may be involved in suppressing animal immune responses in Ap. astaci and Py. insidiosum were also identified. Type 2 necrosis-inducing proteins with an unusual phylogenetic history were also located in a number of oomycete species. We also investigated the "RxLR" effector complement of all 37 species and, as expected, observed large expansions in Phytophthora species numbers. Our results provide in-depth sequence information on all putative RxLR effectors from all 37 species. This work represents an up-to-date in silico catalogue of the effector arsenal of the oomycetes based on the 37 genomes currently available. IMPORTANCE The oomycetes are a class of microscopic, filamentous eukaryotes and include ecologically significant animal and plant pathogens. Oomycetes secrete large arsenals of effector proteins that degrade host cell components, manipulate host immune responses, and induce necrosis, enabling parasitic colonization. In this study, we catalogued the number and evolution of effectors in 37 oomycete species whose genomes have been completely sequenced. Large expansions of effector protein families in Phytophthora species, including glycoside hydrolases, pectinases, and necrosis-inducing proteins, were observed. Species-specific expansions were detected, including chitinases in Aphanomyces astaci and Pythium oligandrum. Novel effectors which may be involved in suppressing animal immune responses were identified in Ap. astaci and Py. oligandrum. Type 2 necrosis-inducing proteins with an unusual phylogenetic history were also located. This work represents an up-to-date in silico catalogue of the effector arsenal of the oomycetes based on the 37 genomes currently available.
Collapse
|
15
|
Hook, Line and Infection: A Guide to Culturing Parasites, Establishing Infections and Assessing Immune Responses in the Three-Spined Stickleback. ADVANCES IN PARASITOLOGY 2017; 98:39-109. [PMID: 28942772 DOI: 10.1016/bs.apar.2017.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The three-spined stickleback (Gasterosteus aculeatus) is a model organism with an extremely well-characterized ecology, evolutionary history, behavioural repertoire and parasitology that is coupled with published genomic data. These small temperate zone fish therefore provide an ideal experimental system to study common diseases of coldwater fish, including those of aquacultural importance. However, detailed information on the culture of stickleback parasites, the establishment and maintenance of infections and the quantification of host responses is scattered between primary and grey literature resources, some of which is not readily accessible. Our aim is to lay out a framework of techniques based on our experience to inform new and established laboratories about culture techniques and recent advances in the field. Here, essential knowledge on the biology, capture and laboratory maintenance of sticklebacks, and their commonly studied parasites is drawn together, highlighting recent advances in our understanding of the associated immune responses. In compiling this guide on the maintenance of sticklebacks and a range of common, taxonomically diverse parasites in the laboratory, we aim to engage a broader interdisciplinary community to consider this highly tractable model when addressing pressing questions in evolution, infection and aquaculture.
Collapse
|
16
|
Zhu F, Yang Z, Zhang Y, Hu K, Fang W. Transcriptome differences between enrofloxacin-resistant and enrofloxacin-susceptible strains of Aeromonas hydrophila. PLoS One 2017; 12:e0179549. [PMID: 28708867 PMCID: PMC5510800 DOI: 10.1371/journal.pone.0179549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 05/30/2017] [Indexed: 11/19/2022] Open
Abstract
Enrofloxacin is the most commonly used antibiotic to control diseases in aquatic animals caused by A. hydrophila. This study conducted de novo transcriptome sequencing and compared the global transcriptomes of enrofloxacin-resistant and enrofloxacin-susceptible strains. We got a total of 4,714 unigenes were assembled. Of these, 4,122 were annotated. A total of 3,280 unigenes were assigned to GO, 3,388 unigenes were classified into Cluster of Orthologous Groups of proteins (COG) using BLAST and BLAST2GO software, and 2,568 were mapped onto pathways using the Kyoto Encyclopedia of Gene and Genomes Pathway database. Furthermore, 218 unigenes were deemed to be DEGs. After enrofloxacin treatment, 135 genes were upregulated and 83 genes were downregulated. The GO terms biological process (126 genes) and metabolic process (136 genes) were the most enriched, and the terms for protein folding, response to stress, and SOS response were also significantly enriched. This study identified enrofloxacin treatment affects multiple biological functions of A. hydrophila. Enrofloxacin resistance in A. hydrophila is closely related to the reduction of intracellular drug accumulation caused by ABC transporters and increased expression of topoisomerase IV.
Collapse
Affiliation(s)
- Fengjiao Zhu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| | - Zongying Yang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- Nanchang Academy of Agricultural Sciences, Nanchang, China
| | - Yiliu Zhang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
| | - Kun Hu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China
- * E-mail:
| | - Wenhong Fang
- East China Sea Fisheries Research Institute, Shanghai, China
| |
Collapse
|
17
|
Pereira-Torres D, Gonçalves AT, Ulloa V, Martínez R, Carrasco H, Olea AF, Espinoza L, Gallardo-Escárate C, Astuya A. In vitro modulation of Drimys winteri bark extract and the active compound polygodial on Salmo salar immune genes after exposure to Saprolegnia parasitica. FISH & SHELLFISH IMMUNOLOGY 2016; 59:103-108. [PMID: 27777106 DOI: 10.1016/j.fsi.2016.10.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
The rapid development of the aquaculture industry has global concerns with health management and control strategies to prevent and/or treat diseases and increase sustainability standards. Saprolegniosis is a disease caused by Saprolegnia parasitica, and is characterized by promoting an immunosuppression in the host. This study evaluated in vitro the extract and one active compound (polygodial) of Drimys winteri, a Chilean medicinal tree as a potential early immunostimulatory aid in Saprolegniosis control. Atlantic salmon (Salmo salar) head kidney cells (ASK-1) were incubated with both extract and pure polygodial before exposure to S. parasitica mycelium, and the expression of the immune-related genes interleukin 1β (IL-1β), interferon α (IFNα), and major histocompatibility complex II (MHCII) was evaluated. Both evidenced immunomodulatory capacities by increasing gene expressions. This immunomodulation related to a mitigatory action counteracting the immunosuppressing effects of S. parasitica. Despite that most immune-related genes were up-regulated, the down-regulation of MHCII, characteristic of S. parasitica infection, was lessened by pre-incubation with the compounds. This study provides the first insight on the potential of D. winteri bark extract as a possible immunomodulatory and defensive strategy against this oomycete infection in fish.
Collapse
Affiliation(s)
- D Pereira-Torres
- Laboratory of Cell Culture and Marine Genomics, Department of Oceanography and COPAS Sur-Austral, University of Concepción, Casilla 160-C, Concepción, Chile
| | - A T Gonçalves
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Casilla 160-C, Concepción, Chile
| | - V Ulloa
- Laboratory of Cell Culture and Marine Genomics, Department of Oceanography and COPAS Sur-Austral, University of Concepción, Casilla 160-C, Concepción, Chile
| | - R Martínez
- Departamento de Química, Facultad de Ciencias Exactas, Universidad Andrés Bello, Quillota 910, Viña del Mar, Chile
| | - H Carrasco
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux 2801, San Miguel, Santiago, Chile
| | - A F Olea
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux 2801, San Miguel, Santiago, Chile
| | - L Espinoza
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile
| | - C Gallardo-Escárate
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Casilla 160-C, Concepción, Chile
| | - A Astuya
- Laboratory of Cell Culture and Marine Genomics, Department of Oceanography and COPAS Sur-Austral, University of Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
18
|
Songe MM, Willems A, Wiik‐Nielsen J, Thoen E, Evensen Ø, van West P, Skaar I. Saprolegnia diclina IIIA and S. parasitica employ different infection strategies when colonizing eggs of Atlantic salmon, Salmo salar L. JOURNAL OF FISH DISEASES 2016; 39:343-52. [PMID: 25846807 PMCID: PMC4973706 DOI: 10.1111/jfd.12368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/20/2015] [Accepted: 02/09/2015] [Indexed: 05/23/2023]
Abstract
Here, we address the morphological changes of eyed eggs of Atlantic salmon, Salmo salar L. infected with Saprolegnia from a commercial hatchery and after experimental infection. Eyed eggs infected with Saprolegnia spp. from 10 Atlantic salmon females were obtained. Egg pathology was investigated by light and scanning electron microscopy. Eggs from six of ten females were infected with S. parasitica, and two females had infections with S. diclina clade IIIA; two Saprolegnia isolates remained unidentified. Light microscopy showed S. diclina infection resulted in the chorion in some areas being completely destroyed, whereas eggs infected with S. parasitica had an apparently intact chorion with hyphae growing within or beneath the chorion. The same contrasting pathology was found in experimentally infected eggs. Scanning electron microscopy revealed that S. parasitica grew on the egg surface and hyphae were found penetrating the chorion of the egg, and re-emerging on the surface away from the infection site. The two Saprolegnia species employ different infection strategies when colonizing salmon eggs. Saprolegnia diclina infection results in chorion destruction, while S. parasitica penetrates intact chorion. We discuss the possibility these infection mechanisms representing a necrotrophic (S. diclina) vs. a facultative biotrophic strategy (S. parasitica).
Collapse
Affiliation(s)
- M M Songe
- Norwegian Veterinary InstituteOsloNorway
| | - A Willems
- Aberdeen Oomycete LaboratoryCollege of Life Sciencesand Medicine, Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | | | - E Thoen
- Norwegian Veterinary InstituteOsloNorway
| | - Ø Evensen
- Faculty of Veterinary Medicine and BiosciencesNorwegian University of Life SciencesOsloNorway
| | - P van West
- Aberdeen Oomycete LaboratoryCollege of Life Sciencesand Medicine, Institute of Medical SciencesUniversity of AberdeenAberdeenUK
| | - I Skaar
- Norwegian Veterinary InstituteOsloNorway
| |
Collapse
|
19
|
Analysis of Saprolegnia parasitica Transcriptome following Treatment with Copper Sulfate. PLoS One 2016; 11:e0147445. [PMID: 26895329 PMCID: PMC4760756 DOI: 10.1371/journal.pone.0147445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 01/03/2016] [Indexed: 11/19/2022] Open
Abstract
Background Massive infection caused by oomycete fungus Saprolegnia parasitica is detrimental to freshwater fish. Recently, we showed that copper sulfate demonstrated good efficacy for controlling S. parasitica infection in grass carp. In this study, we investigated the mechanism of inhibition of S. parasitica growth by copper sulfate by analyzing the transcriptome of copper sulfate—treated S. parasitica. To examine the mechanism of copper sulfate inhibiting S. parasitica, we utilized RNA-seq technology to compare differential gene expression in S. parasitica treated with or without copper sulfate. Results The total mapped rates of the reads with the reference genome were 90.50% in the control group and 73.50% in the experimental group. In the control group, annotated splice junctions, partial novel splice junctions and complete novel splice junctions were about 83%, 3% and 14%, respectively. In the treatment group, the corresponding values were about 75%, 6% and 19%. Following copper sulfate treatment, a total 310 genes were markedly upregulated and 556 genes were markedly downregulated in S. parasitica. Material metabolism related GO terms including cofactor binding (33 genes), 1,3-beta-D-glucan synthase complex (4 genes), carboxylic acid metabolic process (40 genes) were the most significantly enriched. KEGG pathway analysis also determined that the metabolism-related biological pathways were significantly enriched, including the metabolic pathways (98 genes), biosynthesis of secondary metabolites pathways (42 genes), fatty acid metabolism (13 genes), phenylalanine metabolism (7 genes), starch and sucrose metabolism pathway (12 genes). The qRT-PCR results were largely consistent with the RNA-Seq results. Conclusion Our results indicate that copper sulfate inhibits S. parasitica growth by affecting multiple biological functions, including protein synthesis, energy biogenesis, and metabolism.
Collapse
|
20
|
Sharma R, Xia X, Cano LM, Evangelisti E, Kemen E, Judelson H, Oome S, Sambles C, van den Hoogen DJ, Kitner M, Klein J, Meijer HJG, Spring O, Win J, Zipper R, Bode HB, Govers F, Kamoun S, Schornack S, Studholme DJ, Van den Ackerveken G, Thines M. Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora. BMC Genomics 2015; 16:741. [PMID: 26438312 PMCID: PMC4594904 DOI: 10.1186/s12864-015-1904-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/27/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Downy mildews are the most speciose group of oomycetes and affect crops of great economic importance. So far, there is only a single deeply-sequenced downy mildew genome available, from Hyaloperonospora arabidopsidis. Further genomic resources for downy mildews are required to study their evolution, including pathogenicity effector proteins, such as RxLR effectors. Plasmopara halstedii is a devastating pathogen of sunflower and a potential pathosystem model to study downy mildews, as several Avr-genes and R-genes have been predicted and unlike Arabidopsis downy mildew, large quantities of almost contamination-free material can be obtained easily. RESULTS Here a high-quality draft genome of Plasmopara halstedii is reported and analysed with respect to various aspects, including genome organisation, secondary metabolism, effector proteins and comparative genomics with other sequenced oomycetes. Interestingly, the present analyses revealed further variation of the RxLR motif, suggesting an important role of the conservation of the dEER-motif. Orthology analyses revealed the conservation of 28 RxLR-like core effectors among Phytophthora species. Only six putative RxLR-like effectors were shared by the two sequenced downy mildews, highlighting the fast and largely independent evolution of two of the three major downy mildew lineages. This is seemingly supported by phylogenomic results, in which downy mildews did not appear to be monophyletic. CONCLUSIONS The genome resource will be useful for developing markers for monitoring the pathogen population and might provide the basis for new approaches to fight Phytophthora and downy mildew pathogens by targeting core pathogenicity effectors.
Collapse
Affiliation(s)
- Rahul Sharma
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany. .,Center for Integrative Fungal Research (IPF), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany.
| | - Xiaojuan Xia
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany.
| | - Liliana M Cano
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK. .,Present address: Department of Plant Pathology, North Carolina State University Raleigh, Raleigh, NC, 27695, USA.
| | | | - Eric Kemen
- Max Planck Institute for Plant Breeding Research, Carl von Linne´ Weg 10, Cologne, 50829, Germany.
| | - Howard Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA.
| | - Stan Oome
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands.
| | - Christine Sambles
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - D Johan van den Hoogen
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, NL-6708PB, Wageningen, The Netherlands.
| | - Miloslav Kitner
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 11, 78371, Olomouc, Czech Republic.
| | - Joël Klein
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands.
| | - Harold J G Meijer
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, NL-6708PB, Wageningen, The Netherlands.
| | - Otmar Spring
- University of Hohenheim, Institute of Botany 210, D-70593, Stuttgart, Germany.
| | - Joe Win
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Reinhard Zipper
- University of Hohenheim, Institute of Botany 210, D-70593, Stuttgart, Germany.
| | - Helge B Bode
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, NL-6708PB, Wageningen, The Netherlands.
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK.
| | | | - David J Studholme
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, NL-3584 CH, Utrecht, The Netherlands.
| | - Marco Thines
- Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 9, 60323, Frankfurt (Main), Germany. .,Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt (Main), Germany. .,Center for Integrative Fungal Research (IPF), Georg-Voigt-Str. 14-16, 60325, Frankfurt (Main), Germany. .,Integrative Fungal Research (IPF), Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325, Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Role of pathogen-derived cell wall carbohydrates and prostaglandin E2 in immune response and suppression of fish immunity by the oomycete Saprolegnia parasitica. Infect Immun 2014; 82:4518-29. [PMID: 25114122 DOI: 10.1128/iai.02196-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saprolegnia parasitica is a freshwater oomycete that is capable of infecting several species of fin fish. Saprolegniosis, the disease caused by this microbe, has a substantial impact on Atlantic salmon aquaculture. No sustainable treatment against saprolegniosis is available, and little is known regarding the host response. In this study, we examined the immune response of Atlantic salmon to S. parasitica infection and to its cell wall carbohydrates. Saprolegnia triggers a strong inflammatory response in its host (i.e., induction of interleukin-1β1 [IL-1β1], IL-6, and tumor necrosis factor alpha), while severely suppressing the expression of genes associated with adaptive immunity in fish, through downregulation of T-helper cell cytokines, antigen presentation machinery, and immunoglobulins. Oomycete cell wall carbohydrates were recognized by fish leukocytes, triggering upregulation of genes involved in the inflammatory response, similar to what is observed during infection. Our data suggest that S. parasitica is capable of producing prostaglandin [corrected] E2 (PGE2) in vitro, a metabolite not previously shown to be produced by oomycetes, and two proteins with homology to vertebrate enzymes known to play a role in prostaglandin biosynthesis have been identified in the oomycete genome. Exogenous PGE2 was shown to increase the inflammatory response in fish leukocytes incubated with cell wall carbohydrates while suppressing genes involved in cellular immunity (gamma interferon [IFN-γ] and the IFN-γ-inducible protein [γ-IP]). Inhibition of S. parasitica zoospore germination and mycelial growth by two cyclooxygenase inhibitors (aspirin and indomethacin) also suggests that prostaglandins may be involved in oomycete development.
Collapse
|
22
|
Sarowar MN, van den Berg AH, McLaggan D, Young MR, van West P. Reprint of: Saprolegnia strains isolated from river insects and amphipods are broad spectrum pathogens. Fungal Biol 2014; 118:579-90. [DOI: 10.1016/j.funbio.2014.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/02/2013] [Accepted: 09/10/2013] [Indexed: 11/29/2022]
|
23
|
Minor KL, Anderson VL, Davis KS, Van Den Berg AH, Christie JS, Löbach L, Faruk AR, Wawra S, Secombes CJ, Van West P. A putative serine protease, SpSsp1, from Saprolegnia parasitica is recognised by sera of rainbow trout, Oncorhynchus mykiss. Fungal Biol 2014; 118:630-9. [PMID: 25088077 PMCID: PMC4152625 DOI: 10.1016/j.funbio.2014.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 04/03/2014] [Accepted: 04/14/2014] [Indexed: 11/30/2022]
Abstract
Saprolegniosis, the disease caused by Saprolegnia sp., results in considerable economic losses in aquaculture. Current control methods are inadequate, as they are either largely ineffective or present environmental and fish health concerns. Vaccination of fish presents an attractive alternative to these control methods. Therefore we set out to identify suitable antigens that could help generate a fish vaccine against Saprolegnia parasitica. Unexpectedly, antibodies against S. parasitica were found in serum from healthy rainbow trout, Oncorhynchus mykiss. The antibodies detected a single band in secreted proteins that were run on a one-dimensional SDS-polyacrylamide gel, which corresponded to two protein spots on a two-dimensional gel. The proteins were analysed by liquid chromatography tandem mass spectrometry. Mascot and bioinformatic analysis resulted in the identification of a single secreted protein, SpSsp1, of 481 amino acid residues, containing a subtilisin domain. Expression analysis demonstrated that SpSsp1 is highly expressed in all tested mycelial stages of S. parasitica. Investigation of other non-infected trout from several fish farms in the United Kingdom showed similar activity in their sera towards SpSsp1. Several fish that had no visible saprolegniosis showed an antibody response towards SpSsp1 suggesting that SpSsp1 might be a useful candidate for future vaccination trial experiments. Sera of healthy rainbow trout have antibodies against Saprolegnia parasitica. The sera interact with a single protein from culture filtrate of S. parasitica. The antigenic protein is a secreted subtilisin-like serine protease.
Collapse
Affiliation(s)
- Kirsty L Minor
- Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Victoria L Anderson
- Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Katie S Davis
- Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Albert H Van Den Berg
- Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - James S Christie
- Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Lars Löbach
- Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ali Reza Faruk
- Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK; Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Stephan Wawra
- Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Chris J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, Scotland, UK
| | - Pieter Van West
- Aberdeen Oomycete Laboratory, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
24
|
Saraiva M, de Bruijn I, Grenville-Briggs L, McLaggan D, Willems A, Bulone V, van West P. Functional characterization of a tyrosinase gene from the oomycete Saprolegnia parasitica by RNAi silencing. Fungal Biol 2014; 118:621-9. [PMID: 25088076 PMCID: PMC4152626 DOI: 10.1016/j.funbio.2014.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/17/2014] [Accepted: 01/24/2014] [Indexed: 02/04/2023]
Abstract
Here we describe the first application of transient gene silencing in Saprolegnia parasitica, a pathogenic oomycete that infects a wide range of fish, amphibians, and crustaceans. A gene encoding a putative tyrosinase from S. parasitica, SpTyr, was selected to investigate the suitability of RNA-interference (RNAi) to functionally characterize genes of this economically important pathogen. Tyrosinase is a mono-oxygenase enzyme that catalyses the O-hydroxylation of monophenols and subsequent oxidation of O-diphenols to quinines. These enzymes are widely distributed in nature, and are involved in the melanin biosynthesis. Gene silencing was obtained by delivering in vitro synthesized SpTyr dsRNA into protoplasts. Expression analysis, tyrosinase activity measurements, and melanin content analysis confirmed silencing in individual lines. Silencing of SpTyr resulted in a decrease of tyrosinase activity between 38 % and 60 %, dependent on the level of SpTyr-expression achieved. The SpTyr-silenced lines displayed less pigmentation in developing sporangia and occasionally an altered morphology. Moreover, developing sporangia from individual silenced lines possessed a less electron dense cell wall when compared to control lines, treated with GFP-dsRNA. In conclusion, the tyrosinase gene of S. parasitica is required for melanin formation and transient gene silencing can be used to functionally characterize genes in S. parasitica. Successful transient gene silencing in Saprolegnia parasitica through RNAi. Silencing a tyrosinase in S. parasitica results in reduced melanin formation. Silencing a tyrosinase in S. parasitica results in aberrant sporangia formation.
Collapse
Affiliation(s)
- Marcia Saraiva
- Aberdeen Oomycete Laboratory, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, UK
| | - Irene de Bruijn
- Aberdeen Oomycete Laboratory, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, UK
| | - Laura Grenville-Briggs
- Aberdeen Oomycete Laboratory, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, UK; Division of Glycoscience, School of Biotechnology, KTH - Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Debbie McLaggan
- Aberdeen Oomycete Laboratory, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, UK
| | - Ariane Willems
- Aberdeen Oomycete Laboratory, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, UK
| | - Vincent Bulone
- Division of Glycoscience, School of Biotechnology, KTH - Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Pieter van West
- Aberdeen Oomycete Laboratory, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, UK.
| |
Collapse
|
25
|
Baron OL, van West P, Industri B, Ponchet M, Dubreuil G, Gourbal B, Reichhart JM, Coustau C. Parental transfer of the antimicrobial protein LBP/BPI protects Biomphalaria glabrata eggs against oomycete infections. PLoS Pathog 2013; 9:e1003792. [PMID: 24367257 PMCID: PMC3868517 DOI: 10.1371/journal.ppat.1003792] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/11/2013] [Indexed: 12/20/2022] Open
Abstract
Vertebrate females transfer antibodies via the placenta, colostrum and milk or via the egg yolk to protect their immunologically immature offspring against pathogens. This evolutionarily important transfer of immunity is poorly documented in invertebrates and basic questions remain regarding the nature and extent of parental protection of offspring. In this study, we show that a lipopolysaccharide binding protein/bactericidal permeability increasing protein family member from the invertebrate Biomphalaria glabrata (BgLBP/BPI1) is massively loaded into the eggs of this freshwater snail. Native and recombinant proteins displayed conserved LPS-binding, antibacterial and membrane permeabilizing activities. A broad screening of various pathogens revealed a previously unknown biocidal activity of the protein against pathogenic water molds (oomycetes), which is conserved in human BPI. RNAi-dependent silencing of LBP/BPI in the parent snails resulted in a significant reduction of reproductive success and extensive death of eggs through oomycete infections. This work provides the first functional evidence that a LBP/BPI is involved in the parental immune protection of invertebrate offspring and reveals a novel and conserved biocidal activity for LBP/BPI family members. Vertebrate immune systems not only protect adult organisms against infections but also increase survival of offspring through parental transfer of innate and adaptive immune factors via the placenta, colostrum and milk or via the egg yolk. This maternal transfer of immunity is critical for species survival as embryos and neonates are immunologically immature and unable to fight off infections at early life stages. Parental immune protection is poorly documented in invertebrates and how the estimated 1.3 million of invertebrate species protect their eggs against pathogens remains an intriguing question. Here, we show that a fresh-water snail, Biomphalaria glabrata massively loads its eggs with a lipopolysaccharide binding protein/bactericidal permeability increasing protein (LBP/BPI) displaying expected antibacterial activities. Remarkably, this snail LBP/BPI also displayed a strong biocidal activity against water molds (oomycetes). This yet unsuspected activity is conserved in human BPI. Gene expression knock-down resulted in the reduction of snail reproductive success and massive death of eggs after water mold infections. This work reveals a novel and conserved biocidal activity for LBP/BPI family members and demonstrates that the snail LBP/BPI represents a major fitness-related protein transferred from parents to their clutches and protecting them from widespread and lethal oomycete infections.
Collapse
Affiliation(s)
- Olga Lucia Baron
- Sophia Agrobiotech Institute, INRA-CNRS-UNS, Sophia Antipolis, France
- Institut de Biologie Moléculaire et Cellulaire, UPR9022 CNRS, Strasbourg, France
| | - Pieter van West
- Aberdeen Oomycete Laboratory, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Benoit Industri
- Sophia Agrobiotech Institute, INRA-CNRS-UNS, Sophia Antipolis, France
| | - Michel Ponchet
- Sophia Agrobiotech Institute, INRA-CNRS-UNS, Sophia Antipolis, France
| | | | - Benjamin Gourbal
- Ecologie et Evolution des Interactions, UMR 5244 CNRS, Université de Perpignan Via Domitia, Perpignan, France
| | - Jean-Marc Reichhart
- Institut de Biologie Moléculaire et Cellulaire, UPR9022 CNRS, Strasbourg, France
- * E-mail: (JMR); (CC)
| | - Christine Coustau
- Sophia Agrobiotech Institute, INRA-CNRS-UNS, Sophia Antipolis, France
- * E-mail: (JMR); (CC)
| |
Collapse
|
26
|
Sarowar MN, van den Berg AH, McLaggan D, Young MR, van West P. Saprolegnia strains isolated from river insects and amphipods are broad spectrum pathogens. Fungal Biol 2013; 117:752-63. [DOI: 10.1016/j.funbio.2013.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 09/02/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022]
|
27
|
The impact of the water moulds Saprolegnia diclina and Saprolegnia parasitica on natural ecosystems and the aquaculture industry. FUNGAL BIOL REV 2013. [DOI: 10.1016/j.fbr.2013.05.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Jiang RHY, de Bruijn I, Haas BJ, Belmonte R, Löbach L, Christie J, van den Ackerveken G, Bottin A, Bulone V, Díaz-Moreno SM, Dumas B, Fan L, Gaulin E, Govers F, Grenville-Briggs LJ, Horner NR, Levin JZ, Mammella M, Meijer HJG, Morris P, Nusbaum C, Oome S, Phillips AJ, van Rooyen D, Rzeszutek E, Saraiva M, Secombes CJ, Seidl MF, Snel B, Stassen JHM, Sykes S, Tripathy S, van den Berg H, Vega-Arreguin JC, Wawra S, Young SK, Zeng Q, Dieguez-Uribeondo J, Russ C, Tyler BM, van West P. Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica. PLoS Genet 2013; 9:e1003272. [PMID: 23785293 PMCID: PMC3681718 DOI: 10.1371/journal.pgen.1003272] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/10/2012] [Indexed: 01/31/2023] Open
Abstract
Oomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish pathogen, Saprolegnia parasitica. Approximately 1/3 of the assembled genome exhibits loss of heterozygosity, indicating an efficient mechanism for revealing new variation. Comparison of S. parasitica with plant pathogenic oomycetes suggests that during evolution the host cellular environment has driven distinct patterns of gene expansion and loss in the genomes of plant and animal pathogens. S. parasitica possesses one of the largest repertoires of proteases (270) among eukaryotes that are deployed in waves at different points during infection as determined from RNA-Seq data. In contrast, despite being capable of living saprotrophically, parasitism has led to loss of inorganic nitrogen and sulfur assimilation pathways, strikingly similar to losses in obligate plant pathogenic oomycetes and fungi. The large gene families that are hallmarks of plant pathogenic oomycetes such as Phytophthora appear to be lacking in S. parasitica, including those encoding RXLR effectors, Crinkler's, and Necrosis Inducing-Like Proteins (NLP). S. parasitica also has a very large kinome of 543 kinases, 10% of which is induced upon infection. Moreover, S. parasitica encodes several genes typical of animals or animal-pathogens and lacking from other oomycetes, including disintegrins and galactose-binding lectins, whose expression and evolutionary origins implicate horizontal gene transfer in the evolution of animal pathogenesis in S. parasitica. Fish are an increasingly important source of animal protein globally, with aquaculture production rising dramatically over the past decade. Saprolegnia is a fungal-like oomycete and one of the most destructive fish pathogens, causing millions of dollars in losses to the aquaculture industry annually. Saprolegnia has also been linked to a worldwide decline in wild fish and amphibian populations. Here we describe the genome sequence of the first animal pathogenic oomycete and compare the genome content with the available plant pathogenic oomycetes. We found that Saprolegnia lacks the large effector families that are hallmarks of plant pathogenic oomycetes, showing evolutionary adaptation to the host. Moreover, Saprolegnia harbors pathogenesis-related genes that were derived by lateral gene transfer from the host and other animal pathogens. The retrotransposon LINE family also appears to be acquired from animal lineages. By transcriptome analysis we show a high rate of allelic variation, which reveals rapidly evolving genes and potentially adaptive evolutionary mechanisms coupled to selective pressures exerted by the animal host. The genome and transcriptome data, as well as subsequent biochemical analyses, provided us with insight in the disease process of Saprolegnia at a molecular and cellular level, providing us with targets for sustainable control of Saprolegnia.
Collapse
Affiliation(s)
- Rays H Y Jiang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wawra S, Djamei A, Albert I, Nürnberger T, Kahmann R, van West P. In vitro translocation experiments with RxLR-reporter fusion proteins of Avr1b from Phytophthora sojae and AVR3a from Phytophthora infestans fail to demonstrate specific autonomous uptake in plant and animal cells. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:528-36. [PMID: 23547905 DOI: 10.1094/mpmi-08-12-0200-r] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant-pathogenic oomycetes have a large set of secreted effectors that can be translocated into their host cells during infection. One group of these effectors are the RxLR effectors for which it has been shown, in a few cases, that the RxLR motif is important for their translocation. It has been suggested that the RxLR-leader sequences alone are enough to translocate the respective effectors into eukaryotic cells through binding to surface-exposed phosphoinositol-3-phosphate. These conclusions were primary based on translocation experiments conducted with recombinant fusion proteins whereby the RxLR leader of RxLR effectors (i.e., Avr1b from Phytophthora sojae) were fused to the green fluorescent protein reporter-protein. However, we failed to observe specific cellular uptake for a comparable fusion protein where the RxLR leader of the P. infestans AVR3a was fused to monomeric red fluorescent protein. Therefore, we reexamined the ability of the reported P. sojae AVR1b RxLR leader to enter eukaryotic cells. Different relevant experiments were performed in three independent laboratories, using fluorescent reporter fusion constructs of AVR3a and Avr1b proteins in a side-by-side comparative study on plant tissue and human and animal cells. We report that we were unable to obtain conclusive evidence for specific RxLR-mediated translocation.
Collapse
|
30
|
Sun F, Kale SD, Azurmendi HF, Li D, Tyler BM, Capelluto DGS. Structural basis for interactions of the Phytophthora sojae RxLR effector Avh5 with phosphatidylinositol 3-phosphate and for host cell entry. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:330-44. [PMID: 23075041 DOI: 10.1094/mpmi-07-12-0184-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Oomycetes such as Phytophthora sojae employ effector proteins that enter plant cells to facilitate infection. Entry of some effector proteins is mediated by RxLR motifs in the effectors and phosphoinositides (PIP) resident in the host plasma membrane such as phosphatidylinositol 3-phosphate (PtdIns(3)P). Recent reports differ regarding the regions on RxLR effectors involved in PIP recognition. We have structurally and functionally characterized the P. sojae effector, avirulence homolog-5 (Avh5). Using nuclear magnetic resonance (NMR) spectroscopy, we demonstrate that Avh5 is helical in nature, with a long N-terminal disordered region. NMR titrations of Avh5 with the PtdIns(3)P head group, inositol 1,3-bisphosphate, directly identified the ligand-binding residues. A C-terminal lysine-rich helical region (helix 2) was the principal lipid-binding site, with the N-terminal RxLR (RFLR) motif playing a more minor role. Mutations in the RFLR motif affected PtdIns(3)P binding, while mutations in the basic helix almost abolished it. Mutations in the RFLR motif or in the basic region both significantly reduced protein entry into plant and human cells. Both regions independently mediated cell entry via a PtdIns(3)P-dependent mechanism. Based on these findings, we propose a model where Avh5 interacts with PtdIns(3)P through its C terminus, and by binding of the RFLR motif, which promotes host cell entry.
Collapse
Affiliation(s)
- Furong Sun
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | | | | | | | | |
Collapse
|
31
|
Grenville-Briggs LJ, Horner NR, Phillips AJ, Beakes GW, van West P. A family of small tyrosine rich proteins is essential for oogonial and oospore cell wall development of the mycoparasitic oomycete Pythium oligandrum. Fungal Biol 2013; 117:163-72. [PMID: 23537873 DOI: 10.1016/j.funbio.2013.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/31/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
The mycoparasitic oomycete Pythium oligandrum is homothallic, producing an abundance of thick-walled spiny oospores in culture. After mining a cDNA sequence dataset, we identified a family of genes that code for small tyrosine rich (Pythium oligandrumsmall tyrosine rich (PoStr)) proteins. Sequence analysis identified similarity between the PoStr proteins and putative glycine-rich cell wall proteins from the related plant pathogenic oomycete Pythium ultimum, and mating-induced genes from the oomycete Phytophthora infestans. Expression analysis showed that PoStr transcripts accumulate during oospore production in culture and immunolocalisation indicates the presence of these proteins in oogonial and oospore cell walls. PoStr protein abundance correlated positively with production of oogonia as determined by antibiotic-mediated oogonia suppression. To further characterise the role of PoStr proteins in P. oligandrum oospore production, we silenced this gene family using homology-dependent gene silencing. This represents the first characterisation of genes using gene silencing in a Pythium species. Oospores from silenced strains displayed major ultrastructural changes and were sensitive to degradative enzyme treatment. Oogonia of silenced strains either appeared to be arrested at the mature oosphere stage of development or in around 40 % of the structures, showed a complete suppression of oospore formation. Suppressed oogonia were highly vacuolated and the oogonium wall was thickened by a new inner wall layer. Our data suggest PoStr proteins are probably integral structural components of the normal oospore cell wall and play a key role in oospore formation.
Collapse
Affiliation(s)
- Laura J Grenville-Briggs
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm SE-106 91, Sweden
| | | | | | | | | |
Collapse
|
32
|
Wawra S, Belmonte R, Löbach L, Saraiva M, Willems A, van West P. Secretion, delivery and function of oomycete effector proteins. Curr Opin Microbiol 2012. [DOI: 10.1016/j.mib.2012.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
de Bruijn I, Belmonte R, Anderson VL, Saraiva M, Wang T, van West P, Secombes CJ. Immune gene expression in trout cell lines infected with the fish pathogenic oomycete Saprolegnia parasitica. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:44-54. [PMID: 22522286 DOI: 10.1016/j.dci.2012.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 03/30/2012] [Accepted: 03/30/2012] [Indexed: 05/31/2023]
Abstract
The oomycete Saprolegnia parasitica causes significant losses in the aquaculture industry, mainly affecting salmon, trout and catfish. Since the ban of malachite green, effective control measures are currently not available prompting a re-evaluation of the potential for immunological intervention. In this study, the immune response of salmonid cells is investigated at the transcript level, by analysis of a large set of immune response genes in four different rainbow trout cell lines (RTG-2, RTGill, RTL and RTS11) upon infection with S. parasitica. Proinflammatory cytokine transcripts were induced in all four cell lines, including IL-1β1, IL-8, IL-11, TNF-α2, as well as other components of the innate defences, including COX-2, the acute phase protein serum amyloid A and C-type lectin CD209a and CD209b. However, differences between the four cell lines were found. For example, the fold change of induction was much higher in the epithelial RTL and macrophage-like RTS11 cell lines compared to the fibroblast cell lines RTG-2 and RTGill. Several antimicrobial peptides (AMPs) were also up-regulated in response to Saprolegnia infection, including hepcidin and cathelicidin 1 (rtCATH1) and 2 (rtCATH2). An rtCATH2 peptide was synthesised and tested for activity and whilst it showed no killing activity for zoospores, it was able to delay sporulation of S. parasitica. These results demonstrate that particular immune genes are up-regulated in response to S. parasitica infection and that AMPs may play a crucial role in the first line of defence against oomycetes in fish.
Collapse
Affiliation(s)
- Irene de Bruijn
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Oomycete and fungal symbionts have significant impacts on most commercially important crop and forest species, and on natural ecosystems, both negatively as pathogens and positively as mutualists. Symbiosis may be facilitated through the secretion of effector proteins, some of which modulate a variety of host defense mechanisms. A subset of these secreted proteins are able to translocate into host cells. In the oomycete pathogens, two conserved N-terminal motifs, RXLR and dEER, mediate translocation of effector proteins into host cells independent of any pathogen-encoded machinery. An expanded 'RXLR-like' motif [R/K/H]X[L/M/I/F/Y/W]X has been used to identify functional translocation motifs in host-cell-entering fungal effector proteins from pathogens and a mutualist. The RXLR-like translocation motifs were required for the fungal effectors to enter host cells in the absence of any pathogen-encoded machinery. Oomycete and fungal effectors with RXLR and RXLR-like motifs can bind phospholipids, specifically phosphatidylinositol-3-phosphate (PtdIns-3-P). Effector-PtdIns-3-P binding appears to mediate cell entry via lipid raft-mediated endocytosis, and could be blocked by sequestering cell surface PtdIns-3-P or by utilizing inositides that competitively inhibit effector binding to PtdIns-3-P. These findings suggest that effector blocking technologies could be developed and utilized in a variety of important crop species against a broad spectrum of plant pathogens.
Collapse
Affiliation(s)
- Shiv D Kale
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
35
|
Host-targeting protein 1 (SpHtp1) from the oomycete Saprolegnia parasitica translocates specifically into fish cells in a tyrosine-O-sulphate-dependent manner. Proc Natl Acad Sci U S A 2012; 109:2096-101. [PMID: 22308362 DOI: 10.1073/pnas.1113775109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic oomycetes, or water molds, contain several species that are devastating pathogens of plants and animals. During infection, oomycetes translocate effector proteins into host cells, where they interfere with host-defense responses. For several oomycete effectors (i.e., the RxLR-effectors) it has been shown that their N-terminal polypeptides are important for the delivery into the host. Here we demonstrate that the putative RxLR-like effector, host-targeting protein 1 (SpHtp1), from the fish pathogen Saprolegnia parasitica translocates specifically inside host cells. We further demonstrate that cell-surface binding and uptake of this effector protein is mediated by an interaction with tyrosine-O-sulfate-modified cell-surface molecules and not via phospholipids, as has been reported for RxLR-effectors from plant pathogenic oomycetes. These results reveal an effector translocation route based on tyrosine-O-sulfate binding, which could be highly relevant for a wide range of host-microbe interactions.
Collapse
|
36
|
Horner NR, Grenville-Briggs LJ, van West P. The oomycete Pythium oligandrum expresses putative effectors during mycoparasitism of Phytophthora infestans and is amenable to transformation. Fungal Biol 2011; 116:24-41. [PMID: 22208599 DOI: 10.1016/j.funbio.2011.09.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 01/22/2023]
Abstract
The oomycete Pythium oligandrum is a mycoparasitic biocontrol agent that is able to antagonise several plant pathogens, and can promote plant growth. In order to test the potential usefulness of P. oligandrum as a biocontrol agent against late blight disease caused by the oomycete Phytophthora infestans, we investigated the interaction between P. oligandrum and Ph. infestans using the green fluorescent protein (GFP) as a reporter gene. A CaCl(2) and polyethylene-glycol-based DNA transformation protocol was developed for P. oligandrum and transformants constitutively expressing GFP were produced. Up to 56 % of P. oligandrum transformants showed both antibiotic resistance and fluorescence. Mycoparasitic interactions, including coiling of P. oligandrum hyphae around Ph. infestans hyphae, were observed with fluorescent microscopy. To gain further insights into the nature of P. oligandrum mycoparasitism, we sequenced 2376 clones from cDNA libraries of P. oligandrum mycelium grown in vitro, or on heat-killed Ph. infestans mycelium as the sole nutrient source. 1219 consensus sequences were obtained including transcripts encoding glucanases, proteases, protease inhibitors, putative effectors and elicitors, which may play a role in mycoparasitism. This represents the first published expressed sequence tag (EST) resource for P. oligandrum and provides a platform for further molecular studies and comparative analysis in the Pythiales.
Collapse
Affiliation(s)
- Neil R Horner
- Aberdeen Oomycete Laboratory, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, UK
| | | | | |
Collapse
|
37
|
Grenville-Briggs L, Gachon CMM, Strittmatter M, Sterck L, Küpper FC, van West P. A molecular insight into algal-oomycete warfare: cDNA analysis of Ectocarpus siliculosus infected with the basal oomycete Eurychasma dicksonii. PLoS One 2011; 6:e24500. [PMID: 21935414 PMCID: PMC3174193 DOI: 10.1371/journal.pone.0024500] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 08/11/2011] [Indexed: 02/01/2023] Open
Abstract
Brown algae are the predominant primary producers in coastal habitats, and like land plants are subject to disease and parasitism. Eurychasma dicksonii is an abundant, and probably cosmopolitan, obligate biotrophic oomycete pathogen of marine brown algae. Oomycetes (or water moulds) are pathogenic or saprophytic non-photosynthetic Stramenopiles, mostly known for causing devastating agricultural and aquacultural diseases. Whilst molecular knowledge is restricted to crop pathogens, pathogenic oomycetes actually infect hosts from most eukaryotic lineages. Molecular evidence indicates that Eu. dicksonii belongs to the most early-branching oomycete clade known so far. Therefore Eu. dicksonii is of considerable interest due to its presumed environmental impact and phylogenetic position. Here we report the first large scale functional molecular data acquired on the most basal oomycete to date. 9873 unigenes, totalling over 3.5 Mb of sequence data, were produced from Sanger-sequenced and pyrosequenced EST libraries of infected Ectocarpus siliculosus. 6787 unigenes (70%) were of algal origin, and 3086 (30%) oomycete origin. 57% of Eu. dicksonii sequences had no similarity to published sequence data, indicating that this dataset is largely unique. We were unable to positively identify sequences belonging to the RXLR and CRN groups of oomycete effectors identified in higher oomycetes, however we uncovered other unique pathogenicity factors. These included putative algal cell wall degrading enzymes, cell surface proteins, and cyclophilin-like proteins. A first look at the host response to infection has also revealed movement of the host nucleus to the site of infection as well as expression of genes responsible for strengthening the cell wall, and secretion of proteins such as protease inhibitors. We also found evidence of transcriptional reprogramming of E. siliculosus transposable elements and of a viral gene inserted in the host genome.
Collapse
|
38
|
Abstract
Fungal and oomycete pathogens cause many destructive diseases of plants and important diseases of humans and other animals. Fungal and oomycete plant pathogens secrete numerous effector proteins that can enter inside host cells to condition susceptibility. Until recently it has been unknown if these effectors enter via pathogen-encoded translocons or via pathogen-independent mechanisms. Here we review recent evidence that many fungal and oomycete effectors enter via receptor-mediated endocytosis, and can do so in the absence of the pathogen. Surprisingly, a large number of these effectors utilize cell surface phosphatidyinositol-3-phosphate (PI-3-P) as a receptor, a molecule previously known only inside cells. Binding of effectors to PI-3-P appears to be mediated by the cell entry motif RXLR in oomycetes, and by diverse RXLR-like variants in fungi. PI-3-P appears to be present on the surface of animal cells also, suggesting that it may mediate entry of effectors of fungal and oomycete animal pathogens, for example, RXLR effectors found in the oomycete fish pathogen, Saprolegnia parasitica. Reagents that can block PI-3-P-mediated entry have been identified, suggesting new therapeutic strategies.
Collapse
Affiliation(s)
- Shiv D Kale
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA 24061-0477, USA
| | | |
Collapse
|
39
|
Plett JM, Kemppainen M, Kale SD, Kohler A, Legué V, Brun A, Tyler BM, Pardo AG, Martin F. A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr Biol 2011; 21:1197-203. [PMID: 21757352 DOI: 10.1016/j.cub.2011.05.033] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/05/2011] [Accepted: 05/17/2011] [Indexed: 12/11/2022]
Abstract
Soil-borne mutualistic fungi, such as the ectomycorrhizal fungi, have helped shape forest communities worldwide over the last 180 million years through a mutualistic relationship with tree roots in which the fungal partner provides a large array of nutrients to the plant host in return for photosynthetically derived sugars. This exchange is essential for continued growth and productivity of forest trees, especially in nutrient-poor soils. To date, the signals from the two partners that mediate this symbiosis have remained uncharacterized. Here we demonstrate that MYCORRHIZAL iNDUCED SMALL SECRETED PROTEIN 7 (MiSSP7), the most highly symbiosis-upregulated gene from the ectomycorrhizal fungus Laccaria bicolor, encodes an effector protein indispensible for the establishment of mutualism. MiSSP7 is secreted by the fungus upon receipt of diffusible signals from plant roots, imported into the plant cell via phosphatidylinositol 3-phosphate-mediated endocytosis, and targeted to the plant nucleus where it alters the transcriptome of the plant cell. L. bicolor transformants with reduced expression of MiSSP7 do not enter into symbiosis with poplar roots. MiSSP7 resembles effectors of pathogenic fungi, nematodes, and bacteria that are similarly targeted to the plant nucleus to promote colonization of the plant tissues and thus can be considered a mutualism effector.
Collapse
Affiliation(s)
- Jonathan M Plett
- UMR INRA/UHP 1136, Interactions Arbres/Micro-organismes, Centre INRA de Nancy, 54280 Champenoux, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|