1
|
Langat BK, Ochwedo KO, Borlang J, Osiowy C, Mutai A, Okoth F, Muge E, Andonov A, Maritim ES. Genetic diversity, haplotype analysis, and prevalence of Hepatitis B virus MHR mutations among isolates from Kenyan blood donors. PLoS One 2023; 18:e0291378. [PMID: 37963165 PMCID: PMC10645356 DOI: 10.1371/journal.pone.0291378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/28/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND The rapid spread of HBV has resulted in the emergence of new variants. These viral genotypes and variants, in addition to carcinogenic risk, can be key predictors of therapy response and outcomes. As a result, a better knowledge of these emerging HBV traits will aid in the development of a treatment for HBV infection. However, many Sub-Saharan African nations, including Kenya, have insufficient molecular data on HBV strains circulating locally. This study conducted a population-genetics analysis to evaluate the genetic diversity of HBV among Kenyan blood donors. In addition, within the same cohort, the incidence and features of immune-associated escape mutations and stop-codons in Hepatitis B surface antigen (HBsAg) were determined. METHODS In September 2015 to October 2016, 194 serum samples were obtained from HBsAg-positive blood donors residing in eleven different Kenyan counties: Kisumu, Machakos, Uasin Gishu, Nairobi, Nakuru, Embu, Garissa, Kisii, Mombasa, Nyeri, and Turkana. For the HBV surface (S) gene, HBV DNA was isolated, amplified, and sequenced. The sequences obtained were utilized to investigate the genetic and haplotype diversity within the S genes. RESULTS Among the blood donors, 74.74% were male, and the overall mean age was 25.36 years. HBV genotype A1 (88.14%) was the most common, followed by genotype D (10.82%), genotype C (0.52%), and HBV genotype E (0.52%). The phylogenetic analysis revealed twelve major clades, with cluster III comprising solely of 68 blood donor isolates (68/194-35.05%). A high haplotype diversity (Hd = 0.94) and low nucleotide diversity (π = 0.02) were observed. Kisumu county had high number of haplotypes (22), but low haplotype (gene) diversity (Hd = 0.90). Generally, a total of 90 haplotypes with some consisting of more than one sequence were observed. The gene exhibited negative values for Tajima's D (-2.04, p<0.05) and Fu's Fs (-88.84). Several mutations were found in 139 isolates, either within or outside the Major Hydrophilic Area (MHR). There were 29 mutations found, with 37.9% of them situated inside the "a" determinant. The most common mutations in this research were T143M and K122R. Escape mutations linked to diagnostic failure, vaccination and immunoglobulin treatment evasion were also discovered. Also, one stop-codon, W163STP, inside the MHR, was found in one sample from genotype A. CONCLUSION In Kenya, HBV/A1 is still the most common genotype. Despite limited genetic and nucleotide diversity, haplotype network analysis revealed haplotype variance among HBV genotypes from Kenyan blood donors. The virological properties of immune escape, which may be the source of viral replication endurance, were discovered in the viral strains studied and included immune-escape mutations and stop-codon. The discovery of HBsAg mutations in MHR in all isolates highlighted the need of monitoring MHR mutations in Kenya.
Collapse
Affiliation(s)
| | - Kevin Omondi Ochwedo
- Department of Biology, Faculty of Science and Technology, University of Nairobi, Nairobi, Kenya
| | | | - Carla Osiowy
- National Microbiology Laboratory, Winnipeg, Canada
| | - Alex Mutai
- Kenya National Blood Transfusion Services, Nairobi, Kenya
| | - Fredrick Okoth
- Centre for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Edward Muge
- Department of Medical Biochemistry, University of Nairobi, Nairobi, Kenya
| | | | | |
Collapse
|
2
|
Travers-Cook TJ, Jokela J, Buser CC. The evolutionary ecology of fungal killer phenotypes. Proc Biol Sci 2023; 290:20231108. [PMID: 37583325 PMCID: PMC10427833 DOI: 10.1098/rspb.2023.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Ecological interactions influence evolutionary dynamics by selecting upon fitness variation within species. Antagonistic interactions often promote genetic and species diversity, despite the inherently suppressive effect they can have on the species experiencing them. A central aim of evolutionary ecology is to understand how diversity is maintained in systems experiencing antagonism. In this review, we address how certain single-celled and dimorphic fungi have evolved allelopathic killer phenotypes that engage in antagonistic interactions. We discuss the evolutionary pathways to the production of lethal toxins, the functions of killer phenotypes and the consequences of competition for toxin producers, their competitors and toxin-encoding endosymbionts. Killer phenotypes are powerful models because many appear to have evolved independently, enabling across-phylogeny comparisons of the origins, functions and consequences of allelopathic antagonism. Killer phenotypes can eliminate host competitors and influence evolutionary dynamics, yet the evolutionary ecology of killer phenotypes remains largely unknown. We discuss what is known and what remains to be ascertained about killer phenotype ecology and evolution, while bringing their model system properties to the reader's attention.
Collapse
Affiliation(s)
- Thomas J. Travers-Cook
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Jukka Jokela
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Claudia C. Buser
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| |
Collapse
|
3
|
Greenrod STE, Stoycheva M, Elphinstone J, Friman VP. Influence of insertion sequences on population structure of phytopathogenic bacteria in the Ralstonia solanacearum species complex. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001364. [PMID: 37458734 PMCID: PMC10433421 DOI: 10.1099/mic.0.001364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/08/2023] [Indexed: 07/20/2023]
Abstract
Ralstonia solanacearum species complex (RSSC) is a destructive group of plant pathogenic bacteria and the causative agent of bacterial wilt disease. Experimental studies have attributed RSSC virulence to insertion sequences (IS), transposable genetic elements which can both disrupt and activate host genes. Yet, the global diversity and distribution of RSSC IS are unknown. In this study, IS were bioinformatically identified in a diverse collection of 356 RSSC isolates representing five phylogenetic lineages and their diversity investigated based on genetic distance measures and comparisons with the ISFinder database. IS phylogenetic associations were determined based on their distribution across the RSSC phylogeny. Moreover, IS positions within genomes were characterised and their potential gene disruptions determined based on IS proximity to coding sequences. In total, we found 24732 IS belonging to eleven IS families and 26 IS subgroups with over half of the IS found in the megaplasmid. While IS families were generally widespread across the RSSC phylogeny, IS subgroups showed strong lineage-specific distributions and genetically similar bacterial isolates had similar IS contents. Similar associations with bacterial host genetic background were also observed with IS insertion positions which were highly conserved in closely related bacterial isolates. Finally, IS were found to disrupt genes with predicted functions in virulence, stress tolerance, and metabolism suggesting that they might be adaptive. This study highlights that RSSC insertion sequences track the evolution of their bacterial hosts potentially contributing to both intra- and inter-lineage genetic diversity.
Collapse
Affiliation(s)
- Samuel T. E. Greenrod
- Department of Biology, University of York, York, UK
- Present address: Department of Biology, University of Oxford, Oxford, UK
| | | | - John Elphinstone
- Fera Science Ltd, National Agri-Food Innovation Campus, Sand Hutton, York, UK
| | - Ville-Petri Friman
- Department of Biology, University of York, York, UK
- Present address: Department of Microbiology, University of Helsinki, 00014, Helsinki, Finland
| |
Collapse
|
4
|
Genetic Biodiversity and Posttranslational Modifications of Protease Serine Endopeptidase in Different Strains of Sordaria fimicola. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2088988. [PMID: 36814796 PMCID: PMC9940969 DOI: 10.1155/2023/2088988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Genetic variations (mutation, crossing over, and recombination) act as a source for the gradual alternation in phenotype along a geographic transect where the environment changes. Posttranslational modifications (PTMs) predicted modifications successfully in different and the same species of living organisms. Protein diversity of living organisms is predicted by PTMs. Environmental stresses change nucleotides to produce alternations in protein structures, and these alternations have been examined through bioinformatics tools. The goal of the current study is to search the diversity of genes and posttranslational modifications of protease serine endopeptidase in various strains of Sordaria fimicola. The S. fimicola's genomic DNA was utilized to magnify the protease serine endopeptidase (SP2) gene; the size of the product was 700 and 1400 base pairs. Neurospora crassa was taken as the reference strain for studying the multiple sequence alignment of the nucleotide sequence. Six polymorphic sites of six strains of S. fimicola with respect to N. crassa were under observation. Different bioinformatics tools, i.e., NetPhos 3.1, NetNES 1.1 Server, YinOYang1.2, and Mod Pred, to search phosphorylation sites, acetylation, nuclear export signals, O-glycosylation, and methylation, respectively, were used to predict PTMs. The findings of the current study were 35 phosphorylation sites on the residues of serine for protease SP2 in SFS and NFS strains of S. fimicola and N. crassa. The current study supported us to get the reality of genes involved in protease production in experimental fungi. Our study examined the genetic biodiversity in six strains of S. fimicola which were caused by stressful environments, and these variations are a strong reason for evolution. In this manuscript, we predicted posttranslational modifications of protease serine endopeptidase in S. fimicola obtained from different sites, for the first time, to see the effect of environmental stress on nucleotides, amino acids, and proteases and to study PTMs by using various bioinformatics tools. This research confirmed the genetic biodiversity and PTMs in six strains of S. fimicola, and the designed primers also provided strong evidence for the presence of protease serine endopeptidase in each strain of S. fimicola.
Collapse
|
5
|
Choudhary P, Waseem M, Kumar S, Subbarao N, Srivastava S, Chakdar H. Y12F mutation in Pseudomonas plecoglossicida S7 lipase enhances its thermal and pH stability for industrial applications: a combination of in silico and in vitro study. World J Microbiol Biotechnol 2023; 39:75. [PMID: 36637534 DOI: 10.1007/s11274-023-03518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
Appropriate amino acid substitutions are critical for protein engineering to redesign catalytic properties of industrially important enzymes like lipases. The present study aimed for improving the environmental stability of lipase from Pseudomonas plecoglossicida S7 through site-directed mutagenesis driven by computational studies. lipA gene was amplified and sequenced. Both wild type (WT) and mutant type (MT) lipase genes were expressed into the pET SUMO system. The expressed proteins were purified and characterized for pH and thermostability. The lipase gene belonged to subfamily I.1 lipase. Molecular dynamics revealed that Y12F-palmitic acid complex had a greater binding affinity (-6.3 Kcal/mol) than WT (-6.0 Kcal/mol) complex. Interestingly, MDS showed that the binding affinity of WT-complex (-130.314 ± 15.11 KJ/mol) was more than mutant complex (-108.405 ± 69.376 KJ/mol) with a marked increase in the electrostatic energy of mutant (-26.969 ± 12.646 KJ/mol) as compared to WT (-15.082 ± 13.802 KJ/mol). Y12F mutant yielded 1.27 folds increase in lipase activity at 55 °C as compared to the purified WT protein. Also, Y12F mutant showed increased activity (~ 1.2 folds each) at both pH 6 and 10. P. plecoglossicida S7. Y12F mutation altered the kinetic parameters of MT (Km- 1.38 mM, Vmax- 22.32 µM/min) as compared to WT (Km- 1.52 mM, Vmax- 29.76 µM/min) thus increasing the binding affinity of mutant lipase. Y12F mutant lipase with better pH and thermal stability can be used in biocatalysis.
Collapse
Affiliation(s)
- Prassan Choudhary
- Microbial Technology Unit-II, ICAR-National Bureau of Agriculturally Important Microorganisms, 275103, Maunath Bhanjan, India
- Amity Institute of Biotechnology, Amity University, 226010, Lucknow, India
| | - Mohd Waseem
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, 110012, New Delhi, India
| | - Sunil Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute (IASRI), Library Avenue, 110012, Pusa, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, 110012, New Delhi, India
| | - Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University, 226010, Lucknow, India
| | - Hillol Chakdar
- Microbial Technology Unit-II, ICAR-National Bureau of Agriculturally Important Microorganisms, 275103, Maunath Bhanjan, India.
| |
Collapse
|
6
|
Dordet-Frisoni E, Vandecasteele C, Contarin R, Sagné E, Baranowski E, Klopp C, Nouvel LX, Citti C. Impacts of Mycoplasma agalactiae restriction-modification systems on pan-epigenome dynamics and genome plasticity. Microb Genom 2022; 8:mgen000829. [PMID: 35576144 PMCID: PMC9465063 DOI: 10.1099/mgen.0.000829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylations play an important role in the biology of bacteria. Often associated with restriction modification (RM) systems, they are important drivers of bacterial evolution interfering in horizontal gene transfer events by providing a defence against foreign DNA invasion or by favouring genetic transfer through production of recombinogenic DNA ends. Little is known regarding the methylome of the Mycoplasma genus, which encompasses several pathogenic species with small genomes. Here, genome-wide detection of DNA methylations was conducted using single molecule real-time (SMRT) and bisulphite sequencing in several strains of Mycoplasma agalactiae, an important ruminant pathogen and a model organism. Combined with whole-genome analysis, this allowed the identification of 19 methylated motifs associated with three orphan methyltransferases (MTases) and eight RM systems. All systems had a homolog in at least one phylogenetically distinct Mycoplasma spp. Our study also revealed that several superimposed genetic events may participate in the M. agalactiae dynamic epigenomic landscape. These included (i) DNA shuffling and frameshift mutations that affect the MTase and restriction endonuclease content of a clonal population and (ii) gene duplication, erosion, and horizontal transfer that modulate MTase and RM repertoires of the species. Some of these systems were experimentally shown to play a major role in mycoplasma conjugative, horizontal DNA transfer. While the versatility of DNA methylation may contribute to regulating essential biological functions at cell and population levels, RM systems may be key in mycoplasma genome evolution and adaptation by controlling horizontal gene transfers.
Collapse
Affiliation(s)
- Emilie Dordet-Frisoni
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
- Present address: INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | | | - Eveline Sagné
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Christophe Klopp
- INRAE, UR875 MIAT, Sigenae, BioInfo Genotoul, BioInfoMics, F-31326 Auzeville, France
| | | | | |
Collapse
|
7
|
Sithamparam M, Satthiyasilan N, Chen C, Jia TZ, Chandru K. A material-based panspermia hypothesis: The potential of polymer gels and membraneless droplets. Biopolymers 2022; 113:e23486. [PMID: 35148427 DOI: 10.1002/bip.23486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
The Panspermia hypothesis posits that either life's building blocks (molecular Panspermia) or life itself (organism-based Panspermia) may have been interplanetarily transferred to facilitate the origins of life (OoL) on a given planet, complementing several current OoL frameworks. Although many spaceflight experiments were performed in the past to test for potential terrestrial organisms as Panspermia seeds, it is uncertain whether such organisms will likely "seed" a new planet even if they are able to survive spaceflight. Therefore, rather than using organisms, using abiotic chemicals as seeds has been proposed as part of the molecular Panspermia hypothesis. Here, as an extension of this hypothesis, we introduce and review the plausibility of a polymeric material-based Panspermia seed (M-BPS) as a theoretical concept, where the type of polymeric material that can function as a M-BPS must be able to: (1) survive spaceflight and (2) "function", i.e., contingently drive chemical evolution toward some form of abiogenesis once arriving on a foreign planet. We use polymeric gels as a model example of a potential M-BPS. Polymeric gels that can be prebiotically synthesized on one planet (such as polyester gels) could be transferred to another planet via meteoritic transfer, where upon landing on a liquid bearing planet, can assemble into structures containing cellular-like characteristics and functionalities. Such features presupposed that these gels can assemble into compartments through phase separation to accomplish relevant functions such as encapsulation of primitive metabolic, genetic and catalytic materials, exchange of these materials, motion, coalescence, and evolution. All of these functions can result in the gels' capability to alter local geochemical niches on other planets, thereby allowing chemical evolution to lead to OoL events.
Collapse
Affiliation(s)
- Mahendran Sithamparam
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nirmell Satthiyasilan
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
8
|
Mohammed MA, Salim MTA, Anwer BE, Aboshanab KM, Aboulwafa MM. Impact of target site mutations and plasmid associated resistance genes acquisition on resistance of Acinetobacter baumannii to fluoroquinolones. Sci Rep 2021; 11:20136. [PMID: 34635692 PMCID: PMC8505613 DOI: 10.1038/s41598-021-99230-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/21/2021] [Indexed: 01/16/2023] Open
Abstract
Among bacterial species implicated in hospital-acquired infections are the emerging Pan-Drug Resistant (PDR) and Extensively Drug-Resistant (XDR) Acinetobacter (A.) baumannii strains as they are difficult to eradicate. From 1600 clinical specimens, only 100 A. baumannii isolates could be recovered. A high prevalence of ≥ 78% resistant isolates was recorded for the recovered isolates against a total of 19 tested antimicrobial agents. These isolates could be divided into 12 profiles according to the number of antimicrobial agents to which they were resistant. The isolates were assorted as XDR (68; 68%), Multi-Drug Resistant (MDR: 30; 30%), and PDR (2; 2%). Genotypically, the isolates showed three major clusters with similarities ranging from 10.5 to 97.8% as revealed by ERIC-PCR technique. As a resistance mechanism to fluoroquinolones (FQs), target site mutation analyses in gyrA and parC genes amplified from twelve selected A. baumannii isolates and subjected to sequencing showed 12 profiles. The selected isolates included two CIP-susceptible ones, these showed the wild-type profile of being have no mutations. For the ten selected CIP-resistant isolates, 9 of them (9/10; 90%) had 1 gyrA/1 parC mutations (Ser 81 → Leu mutation for gyrA gene and Ser 84 → Leu mutation for parC gene). The remaining CIP-resistant isolate (1/10; 10%) had 0 gyrA/1 parC mutation (Ser 84 → Leu mutation for parC gene). Detection of plasmid-associated resistance genes revealed that the 86 ciprofloxacin-resistant isolates carry qnrA (66.27%; 57/86), qnrS (70.93%; 61/86), aac (6')-Ib-cr (52.32%; 45/86), oqxA (73.25%; 63/86) and oqxB (39.53%; 34/86), while qepA and qnrB were undetected in these isolates. Different isolates were selected from profiles 1, 2, and 3 and qnrS, acc(6,)-ib-cr, oqxA, and oqxB genes harbored by these isolates were amplified and sequenced. The BLAST results revealed that the oqxA and oqxB sequences were not identified previously in A. baumannii but they were identified in Klebsiella aerogenes strain NCTC9793 and Klebsiella pneumoniae, respectively. On the other hand, the sequence of qnrS, and acc(6,)-ib-cr showed homology to those of A. baumannii. MDR, XDR, and PDR A. baumannii isolates are becoming prevalent in certain hospitals. Chromosomal mutations in the sequences of GyrA and ParC encoding genes and acquisition of PAFQR encoding genes (up to five genes per isolate) are demonstrated to be resistance mechanisms exhibited by fluoroquinolones resistant A. baumannii isolates. It is advisable to monitor the antimicrobial resistance profiles of pathogens causing nosocomial infections and properly apply and update antibiotic stewardship in hospitals and outpatients to control infectious diseases and prevent development of the microbial resistance to antimicrobial agents.
Collapse
Affiliation(s)
- Mostafa Ahmed Mohammed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71526, Egypt
| | - Mohammed T A Salim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71526, Egypt
| | - Bahaa E Anwer
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al Azhar University, Assiut Branch, Assiut, 71526, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Ma'moun St., Abbassia, Cairo, Egypt
| | - Mohammad M Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Al Khalifa Al Ma'moun St., Abbassia, Cairo, Egypt.
- Faculty of Pharmacy, King Salman International University, Ras Sedr, South Sinai, Egypt.
| |
Collapse
|
9
|
Buitrago SP, Garzón-Ospina D. Genetic diversity of SARS-CoV-2 in South America: demographic history and structuration signals. Arch Virol 2021; 166:3357-3371. [PMID: 34604926 PMCID: PMC8487618 DOI: 10.1007/s00705-021-05258-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022]
Abstract
In 2020, the emergence of SARS-CoV-2 caused a global public health crisis with significant mortality rates and a large socioeconomic burden. The rapid spread of this new virus has led to the appearance of new variants, making the characterization and monitoring of genetic diversity necessary to understand the population dynamics and evolution of the virus. Here, a population-genetics-based study was performed starting with South American genome sequences available in the GISAID database to investigate the genetic diversity of SARS-CoV-2 on this continent and the evolutionary mechanisms that modulate it.
Collapse
Affiliation(s)
- Sindy P Buitrago
- PGAME-Population Genetics and Molecular Evolution, Fundación Scient, Tunja, Boyacá, Colombia. .,GEBIMOL, School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Tunja, Boyacá, Colombia. .,GEO, School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Tunja, Boyacá, Colombia.
| | - Diego Garzón-Ospina
- PGAME-Population Genetics and Molecular Evolution, Fundación Scient, Tunja, Boyacá, Colombia.,GEBIMOL, School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Tunja, Boyacá, Colombia.,GEO, School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia-UPTC, Tunja, Boyacá, Colombia
| |
Collapse
|
10
|
Moura de Sousa JA, Pfeifer E, Touchon M, Rocha EPC. Causes and Consequences of Bacteriophage Diversification via Genetic Exchanges across Lifestyles and Bacterial Taxa. Mol Biol Evol 2021; 38:2497-2512. [PMID: 33570565 PMCID: PMC8136500 DOI: 10.1093/molbev/msab044] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bacteriophages (phages) evolve rapidly by acquiring genes from other phages. This results in mosaic genomes. Here, we identify numerous genetic transfers between distantly related phages and aim at understanding their frequency, consequences, and the conditions favoring them. Gene flow tends to occur between phages that are enriched for recombinases, transposases, and nonhomologous end joining, suggesting that both homologous and illegitimate recombination contribute to gene flow. Phage family and host phyla are strong barriers to gene exchange, but phage lifestyle is not. Even if we observe four times more recent transfers between temperate phages than between other pairs, there is extensive gene flow between temperate and virulent phages, and between the latter. These predominantly involve virulent phages with large genomes previously classed as low gene flux, and lead to the preferential transfer of genes encoding functions involved in cell energetics, nucleotide metabolism, DNA packaging and injection, and virion assembly. Such exchanges may contribute to the observed twice larger genomes of virulent phages. We used genetic transfers, which occur upon coinfection of a host, to compare phage host range. We found that virulent phages have broader host ranges and can mediate genetic exchanges between narrow host range temperate phages infecting distant bacterial hosts, thus contributing to gene flow between virulent phages, as well as between temperate phages. This gene flow drastically expands the gene repertoires available for phage and bacterial evolution, including the transfer of functional innovations across taxa.
Collapse
Affiliation(s)
| | - Eugen Pfeifer
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, Paris, France
| |
Collapse
|
11
|
Chavhan Y, Malusare S, Dey S. Interplay of population size and environmental fluctuations: A new explanation for fitness cost rarity in asexuals. Ecol Lett 2021; 24:1943-1954. [PMID: 34145720 DOI: 10.1111/ele.13831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022]
Abstract
Theoretical models of ecological specialisation commonly assume that adaptation to one environment leads to fitness reductions (costs) in others. However, experiments often fail to detect such costs. We addressed this conundrum using experimental evolution with Escherichia coli in several constant and fluctuating environments at multiple population sizes. We found that in fluctuating environments, smaller populations paid significant costs, but larger ones avoided them altogether. Contrastingly, in constant environments, larger populations paid more costs than the smaller ones. Overall, large population sizes and fluctuating environments led to cost avoidance only when present together. Mutational frequency distributions obtained from whole-genome whole-population sequencing revealed that the primary mechanism of cost avoidance was the enrichment of multiple beneficial mutations within the same lineage. Since the conditions revealed by our study for avoiding costs are widespread, it provides a novel explanation of the conundrum of why the costs expected in theory are rarely detected in experiments.
Collapse
Affiliation(s)
- Yashraj Chavhan
- Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - Sarthak Malusare
- Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - Sutirth Dey
- Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| |
Collapse
|
12
|
Ko D, Choi SH. Comparative genomics reveals an SNP potentially leading to phenotypic diversity of Salmonella enterica serovar Enteritidis. Microb Genom 2021; 7:000572. [PMID: 33952386 PMCID: PMC8209725 DOI: 10.1099/mgen.0.000572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
An SNP is a spontaneous genetic change having a potential to modify the functions of the original genes and to lead to phenotypic diversity of bacteria in nature. In this study, a phylogenetic analysis of Salmonella enterica serovar Enteritidis, a major food-borne pathogen, showed that eight strains of S. Enteritidis isolated in South Korea, including FORC_075 and FORC_078, have almost identical genome sequences. Interestingly, however, the abilities of FORC_075 to form biofilms and red, dry and rough (RDAR) colonies were significantly impaired, resulting in phenotypic differences among the eight strains. Comparative genomic analyses revealed that one of the non-synonymous SNPs unique to FORC_075 has occurred in envZ, which encodes a sensor kinase of the EnvZ/OmpR two-component system. The SNP in envZ leads to an amino acid change from Pro248 (CCG) in other strains including FORC_078 to Leu248 (CTG) in FORC_075. Allelic exchange of envZ between FORC_075 and FORC_078 identified that the SNP in envZ is responsible for the impaired biofilm- and RDAR colony-forming abilities of S. Enteritidis. Biochemical analyses demonstrated that the SNP in envZ significantly increases the phosphorylated status of OmpR in S. Enteritidis and alters the expression of the OmpR regulon. Phenotypic analyses further identified that the SNP in envZ decreases motility of S. Enteritidis but increases its adhesion and invasion to both human epithelial cells and murine macrophage cells. In addition to an enhancement of infectivity to the host cells, survival under acid stress was also elevated by the SNP in envZ. Together, these results suggest that the natural occurrence of the SNP in envZ could contribute to phenotypic diversity of S. Enteritidis, possibly improving its fitness and pathogenesis.
Collapse
Affiliation(s)
- Duhyun Ko
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
13
|
Li W, Wang A. Genomic islands mediate environmental adaptation and the spread of antibiotic resistance in multiresistant Enterococci - evidence from genomic sequences. BMC Microbiol 2021; 21:55. [PMID: 33602143 PMCID: PMC7893910 DOI: 10.1186/s12866-021-02114-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background Genomic islands (GIs) play an important role in the chromosome diversity of Enterococcus. In the current study, we aimed to investigate the spread of GIs between Enterococcus strains and their correlation with antibiotic resistance genes (ARGs). Bitsliced Genomic Signature Indexes (BIGSI) were used to screen the NCBI Sequence Read Archive (SRA) for multiple resistant Enterococcus. A total of 37 pairs of raw reads were screened from 457,000 whole-genome sequences (WGS) in the SRA database, which come from 37 Enterococci distributed in eight countries. These raw reads were assembled for the prediction and analysis of GIs, ARGs, plasmids and prophages. Results The results showed that GIs were universal in Enterococcus, with an average of 3.2 GIs in each strain. Network analysis showed that frequent genetic information exchanges mediated by GIs occurred between Enterococcus strains. Seven antibiotic-resistant genomic islands (ARGIs) were found to carry one to three ARGs, mdtG, tetM, dfrG, lnuG, and fexA, in six strains. These ARGIs were involved in the spread of antibiotic resistance in 45.9% of the 37 strains, although there was no significant positive correlation between the frequency of GI exchanges and the number of ARGs each strain harboured (r = 0. 287, p = 0.085). After comprehensively analysing the genome data, we found that partial GIs were associated with multiple mobile genetic elements (transposons, integrons, prophages and plasmids) and had potential natural transformation characteristics. Conclusions All of these results based on genomic sequencing suggest that GIs might mediate the acquisition of some ARGs and might be involved in the high genome plasticity of Enterococcus through transformation, transduction and conjugation, thus providing a fitness advantage for Enterococcus hosts under complex environmental factors. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02114-4.
Collapse
Affiliation(s)
- Weiwei Li
- School of Life Science,
- Ludong University, Yantai, 264025, China.
| | - Ailan Wang
- School of Life Science,
- Ludong University, Yantai, 264025, China
| |
Collapse
|
14
|
Pan Q, Cen S, Yu L, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Niche-Specific Adaptive Evolution of Lactobacillus plantarum Strains Isolated From Human Feces and Paocai. Front Cell Infect Microbiol 2021; 10:615876. [PMID: 33489942 PMCID: PMC7817898 DOI: 10.3389/fcimb.2020.615876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/19/2020] [Indexed: 11/25/2022] Open
Abstract
Lactobacillus plantarum, a widely used probiotic in the food industry, exists in diverse habitats, which has led to its niche-specific genetic evolution. However, the relationship between this type of genetic evolution and the bacterial phenotype remains unclear. Here, six L. plantarum strains derived from paocai and human feces were analyzed at the genomic and phenotypic levels to investigate the features of adaptive evolution in different habitats. A comparative genomic analysis showed that 93 metabolism-related genes underwent structural variations (SVs) during adaptive evolution, including genes responsible for carbohydrate, lipid, amino acid, inorganic ion and coenzyme transport and metabolism, and energy production and conversion. Notably, seven virulence factor-related genes in strains from both habitats showed SVs — similar to the pattern found in the orthologous virulence genes of pathogenic bacteria shared similar niches, suggesting the possibility of horizontal gene transfer. These genomic variations further influenced the metabolic abilities of strains and their interactions with the commensal microbiota in the host intestine. Compared with the strains from feces, those from paocai exhibited a shorter stagnation period and a higher growth rate in a diluted paocai solution because of variations in functional genes. In addition, opposite correlations were identified between the relative abundances of L. plantarum strains and the genus Bifidobacterium in two media inoculated with strains from the two habitats. Overall, our findings revealed that the niche-specific genetic evolution of L. plantarum strains is associated with their fermentation abilities and physiological functions in host gut health. This knowledge can help guiding the exploration and application of probiotics from the specific niches-based probiotic exploitation.
Collapse
Affiliation(s)
- Qiqi Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shi Cen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Rudenko O, Engelstädter J, Barnes AC. Evolutionary epidemiology of Streptococcus iniae: Linking mutation rate dynamics with adaptation to novel immunological landscapes. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104435. [PMID: 32569744 DOI: 10.1016/j.meegid.2020.104435] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
Pathogens continuously adapt to changing host environments where variation in their virulence and antigenicity is critical to their long-term evolutionary success. The emergence of novel variants is accelerated in microbial mutator strains (mutators) deficient in DNA repair genes, most often from mismatch repair and oxidized-guanine repair systems (MMR and OG respectively). Bacterial MMR/OG mutants are abundant in clinical samples and show increased adaptive potential in experimental infection models, yet the role of mutators in the epidemiology and evolution of infectious disease is not well understood. Here we investigated the role of mutation rate dynamics in the evolution of a broad host range pathogen, Streptococcus iniae, using a set of 80 strains isolated globally over 40 years. We have resolved phylogenetic relationships using non-recombinant core genome variants, measured in vivo mutation rates by fluctuation analysis, identified variation in major MMR/OG genes and their regulatory regions, and phenotyped the major traits determining virulence in streptococci. We found that both mutation rate and MMR/OG genotype are remarkably conserved within phylogenetic clades but significantly differ between major phylogenetic lineages. Further, variation in MMR/OG loci correlates with occurrence of atypical virulence-associated phenotypes, infection in atypical hosts (mammals), and atypical (osseous) tissue of a vaccinated primary host. These findings suggest that mutators are likely to facilitate adaptations preceding major diversification events and may promote emergence of variation permitting colonization of a novel host tissue, novel host taxa (host jumps), and immune-escape in the vaccinated host.
Collapse
Affiliation(s)
- Oleksandra Rudenko
- The University of Queensland, School of Biological Sciences, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Jan Engelstädter
- The University of Queensland, School of Biological Sciences, St Lucia Campus, Brisbane, Queensland 4072, Australia
| | - Andrew C Barnes
- The University of Queensland, School of Biological Sciences, St Lucia Campus, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
16
|
Promiscuous DNA cleavage by HpyAII endonuclease is modulated by the HNH catalytic residues. Biosci Rep 2020; 40:226299. [PMID: 32880391 PMCID: PMC7494987 DOI: 10.1042/bsr20201633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022] Open
Abstract
Helicobacter pylori is a carcinogenic bacterium that is responsible for 5.5% of all human gastric cancers. H. pylori codes for an unusually large number of restriction-modification (R-M) systems and several of them are strain-specific and phase-variable. HpyAII is a novel Type IIs phase-variable restriction endonuclease present in 26695 strain of H. pylori. We show that HpyAII prefers two-site substrates over one-site substrates for maximal cleavage activity. HpyAII is less stringent in metal ion requirement and shows higher cleavage activity with Ni2+ over Mg2+. Mutational analysis of the putative residues of the HNH motif of HpyAII confirms that the protein has an active HNH site for the cleavage of DNA. However, mutation of the first Histidine residue of the HNH motif to Alanine does not abolish the enzymatic activity, but instead causes loss of fidelity compared with wildtype HpyAII. Previous studies have shown that mutation of the first Histidine residue of the HNH motif of all other known HNH motif motif-containing enzymes completely abolishes enzymatic activity. We found, in the case of HpyAII, mutation of an active site residue leads to the loss of endonuclease fidelity. The present study provides further insights into the evolution of restriction enzymes.
Collapse
|
17
|
Vatanshenassan M, Boekhout T, Mauder N, Robert V, Maier T, Meis JF, Berman J, Then E, Kostrzewa M, Hagen F. Evaluation of Microsatellite Typing, ITS Sequencing, AFLP Fingerprinting, MALDI-TOF MS, and Fourier-Transform Infrared Spectroscopy Analysis of Candida auris. J Fungi (Basel) 2020; 6:jof6030146. [PMID: 32854308 PMCID: PMC7576496 DOI: 10.3390/jof6030146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Candida auris is an emerging opportunistic yeast species causing nosocomial outbreaks at a global scale. A few studies have focused on the C. auris genotypic structure. Here, we compared five epidemiological typing tools using a set of 96 C. auris isolates from 14 geographical areas. Isolates were analyzed by microsatellite typing, ITS sequencing, amplified fragment length polymorphism (AFLP) fingerprint analysis, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), and Fourier-transform infrared (FTIR) spectroscopy methods. Microsatellite typing grouped the isolates into four main clusters, corresponding to the four known clades in concordance with whole genome sequencing studies. The other investigated typing tools showed poor performance compared with microsatellite typing. A comparison between the five methods showed the highest agreement between microsatellite typing and ITS sequencing with 45% similarity, followed by microsatellite typing and the FTIR method with 33% similarity. The lowest agreement was observed between FTIR spectroscopy, MALDI-TOF MS, and ITS sequencing. This study indicates that microsatellite typing is the tool of choice for C. auris outbreak investigations. Additionally, FTIR spectroscopy requires further optimization and evaluation before it can be used as an epidemiological typing method, comparable with microsatellite typing, as a rapid method for tracing nosocomial fungal outbreaks.
Collapse
Affiliation(s)
- Mansoureh Vatanshenassan
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.V.); (N.M.); (T.M.)
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (T.B.); (V.R.); (E.T.)
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (T.B.); (V.R.); (E.T.)
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1012 WX Amsterdam, The Netherlands
| | - Norman Mauder
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.V.); (N.M.); (T.M.)
| | - Vincent Robert
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (T.B.); (V.R.); (E.T.)
- BioAware, B-4280 Hannut, Belgium
| | - Thomas Maier
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.V.); (N.M.); (T.M.)
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ), 6532 SZ Nijmegen, The Netherlands;
- Center of Expertise in Mycology Radboudumc, Canisius Wilhelmina Hospital (CWZ), 6532 SZ Nijmegen, The Netherlands
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, 80060-000 Curitiba, Brazil
| | - Judith Berman
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, 6997801 Tel Aviv, Israel;
| | - Euníce Then
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (T.B.); (V.R.); (E.T.)
| | - Markus Kostrzewa
- Bruker Daltonik GmbH, 28359 Bremen, Germany; (M.V.); (N.M.); (T.M.)
- Correspondence: (M.K.); (F.H.); Tel.: +49-421-2205-1258 (M.K.); +31-30-2122-600 (F.H.)
| | - Ferry Hagen
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands; (T.B.); (V.R.); (E.T.)
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Correspondence: (M.K.); (F.H.); Tel.: +49-421-2205-1258 (M.K.); +31-30-2122-600 (F.H.)
| |
Collapse
|
18
|
Aspridou Z, Koutsoumanis K. Variability in microbial inactivation: From deterministic Bigelow model to probability distribution of single cell inactivation times. Food Res Int 2020; 137:109579. [PMID: 33233190 DOI: 10.1016/j.foodres.2020.109579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/02/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022]
Abstract
Phenotypic heterogeneity seems to be an important component leading to biological individuality and is of great importance in the case of microbial inactivation. Bacterial cells are characterized by their own resistance to stresses. This inherent stochasticity is reflected in microbial survival curve which, in this context, can be considered as cumulative probability distribution of lethal events. The objective of the present study was to present an overview on the assessment and quantification of variability in microbial inactivation originating from single cells and discuss this heterogeneity in the context of predicting microbial behavior and Risk assessment studies. The detailed knowledge of the distribution of the single cells' inactivation times can be the basis for stochastic inactivation models which, in turn, may be employed in a risk - based food safety approach.
Collapse
Affiliation(s)
- Zafiro Aspridou
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
19
|
Genomic Epidemiology and Evolution of Diverse Lineages of Clinical Campylobacter jejuni Cocirculating in New Hampshire, USA, 2017. J Clin Microbiol 2020; 58:JCM.02070-19. [PMID: 32269101 PMCID: PMC7269400 DOI: 10.1128/jcm.02070-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/28/2020] [Indexed: 12/26/2022] Open
Abstract
Campylobacter jejuni is one of the leading causes of bacterial gastroenteritis worldwide. In the United States, New Hampshire was one of the 18 states that reported cases in the 2016 to 2018 multistate outbreak of multidrug-resistant C. jejuni. Here, we aimed to elucidate the baseline diversity of the wider New Hampshire C. jejuni population during the outbreak. We used genome sequences of 52 clinical isolates sampled in New Hampshire in 2017, including 1 of the 2 isolates from the outbreak. Campylobacter jejuni is one of the leading causes of bacterial gastroenteritis worldwide. In the United States, New Hampshire was one of the 18 states that reported cases in the 2016 to 2018 multistate outbreak of multidrug-resistant C. jejuni. Here, we aimed to elucidate the baseline diversity of the wider New Hampshire C. jejuni population during the outbreak. We used genome sequences of 52 clinical isolates sampled in New Hampshire in 2017, including 1 of the 2 isolates from the outbreak. Results revealed a remarkably diverse population composed of at least 28 sequence types, which are mostly represented by 1 or a few strains. A comparison of our isolates with 249 clinical C. jejuni from other states showed frequent phylogenetic intermingling, suggesting a lack of geographical structure and minimal local diversification within the state. Multiple independent acquisitions of resistance genes from 5 classes of antibiotics characterize the population, with 47/52 (90.4%) of the genomes carrying at least 1 horizontally acquired resistance gene. Frequently recombining genes include those associated with heptose biosynthesis, colonization, and stress resistance. We conclude that the diversity of clinical C. jejuni in New Hampshire in 2017 was driven mainly by the coexistence of phylogenetically diverse antibiotic-resistant lineages, widespread geographical mixing, and frequent recombination. This study provides an important baseline census of the standing pangenomic variation and drug resistance to aid the development of a statewide database for epidemiological studies and clinical decision making. Continued genomic surveillance will be necessary to accurately assess how the population of C. jejuni changes over the long term.
Collapse
|
20
|
Hurtado R, Maturrano L, Azevedo V, Aburjaile F. Pathogenomics insights for understanding Pasteurella multocida adaptation. Int J Med Microbiol 2020; 310:151417. [PMID: 32276876 DOI: 10.1016/j.ijmm.2020.151417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/01/2020] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
Pasteurella multocida is an important veterinary pathogen able to infect a wide range of animals in a broad spectrum of diseases. P. multocida is a complex microorganism in relation to its genomic flexibility, host adaptation and pathogenesis. Epidemiological analysis based on multilocus sequence typing, serotyping, genotyping, association with virulence genes and single nucleotide polymorphisms (SNPs), enables assessment of intraspecies diversity, phylogenetic and strain-specific relationships associated with host predilection or disease. A high number of sequenced genomes provides us a more accurate genomic and epidemiological interpretation to determine whether certain lineages can infect a host or produce disease. Comparative genomic analysis and pan-genomic approaches have revealed a flexible genome for hosting mobile genetic elements (MGEs) and therefore significant variation in gene content. Moreover, it was possible to find lineage-specific MGEs from the same niche, showing acquisition probably due to an evolutionary convergence event or to a genetic group with infective capacity. Furthermore, diversification selection analysis exhibits proteins exposed on the surface subject to selection pressures with an interstrain heterogeneity related to their ability to adapt. This article is the first review describing the genomic relationship to elucidate the diversity and evolution of P. multocida.
Collapse
Affiliation(s)
- Raquel Hurtado
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil; Laboratory of Molecular Biology and Genetics, Veterinary Medicine Faculty, San Marcos University, Lima, Peru
| | - Lenin Maturrano
- Laboratory of Molecular Biology and Genetics, Veterinary Medicine Faculty, San Marcos University, Lima, Peru
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Flávia Aburjaile
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil; Laboratory of Plant Genetics and Biotechnology, Federal University of Pernambuco, Recife, 50670-901, Pernambuco, Brazil.
| |
Collapse
|
21
|
Jerdan R, Kuśmierska A, Petric M, Spiers AJ. Penetrating the air-liquid interface is the key to colonization and wrinkly spreader fitness. MICROBIOLOGY-SGM 2020; 165:1061-1074. [PMID: 31436522 DOI: 10.1099/mic.0.000844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In radiating populations of Pseudomonas fluorescens SBW25, adaptive wrinkly spreader (WS) mutants are able to gain access to the air-liquid (A-L) interface of static liquid microcosms and achieve a significant competitive fitness advantage over other non-biofilm-forming competitors. Aerotaxis and flagella-based swimming allows SBW25 cells to move into the high-O2 region located at the top of the liquid column and maintain their position by countering the effects of random cell diffusion, convection and disturbance (i.e. physical displacement). However, wild-type cells showed significantly lower levels of enrichment in this region compared to the archetypal WS, indicating that WS cells employ an additional mechanism to transfer to the A-L interface where displacement is no longer an issue and a biofilm can develop at the top of the liquid column. Preliminary experiments suggest that this might be achieved through the expression of an as yet unidentified surface active agent that is weakly associated with WS cells and alters liquid surface tension, as determined by quantitative tensiometry. The effect of physical displacement on the colonization of the high-O2 region and A-L interface was reduced through the addition of agar or polyethylene glycol to increase liquid viscosity, and under these conditions the competitive fitness of the WS was significantly reduced. These observations suggest that the ability to transfer to the A-L interface from the high-O2 region and remain there without further expenditure of energy (through, for example, the deployment of flagella) is a key evolutionary innovation of the WS, as it allows subsequent biofilm development and significant population increase, thereby affording these adaptive mutants a competitive fitness advantage over non-biofilm-forming competitors located within the liquid column.
Collapse
Affiliation(s)
- Robyn Jerdan
- School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| | - Anna Kuśmierska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland.,School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| | - Marija Petric
- School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| | - Andrew J Spiers
- School of Applied Sciences, Abertay University, Dundee DD1 1HG, UK
| |
Collapse
|
22
|
Comparative Analysis of Ionic Strength Tolerance between Freshwater and Marine Caulobacterales Adhesins. J Bacteriol 2019; 201:JB.00061-19. [PMID: 30858293 DOI: 10.1128/jb.00061-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/08/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial adhesion is affected by environmental factors, such as ionic strength, pH, temperature, and shear forces. Therefore, marine bacteria must have developed adhesins with different compositions and structures than those of their freshwater counterparts to adapt to their natural environment. The dimorphic alphaproteobacterium Hirschia baltica is a marine budding bacterium in the clade Caulobacterales H. baltica uses a polar adhesin, the holdfast, located at the cell pole opposite the reproductive stalk, for surface attachment and cell-cell adhesion. The holdfast adhesin has been best characterized in Caulobacter crescentus, a freshwater member of the Caulobacterales, and little is known about holdfast compositions and properties in marine Caulobacterales Here, we use H. baltica as a model to characterize holdfast properties in marine Caulobacterales We show that freshwater and marine Caulobacterales use similar genes in holdfast biogenesis and that these genes are highly conserved among the species in the two genera. We determine that H. baltica produces a larger holdfast than C. crescentus and that the holdfasts have different chemical compositions, as they contain N-acetylglucosamine and galactose monosaccharide residues and proteins but lack DNA. Finally, we show that H. baltica holdfasts tolerate higher ionic strength than those of C. crescentus We conclude that marine Caulobacterales holdfasts have physicochemical properties that maximize binding in high-ionic-strength environments.IMPORTANCE Most bacteria spend a large part of their life spans attached to surfaces, forming complex multicellular communities called biofilms. Bacteria can colonize virtually any surface, and therefore, they have adapted to bind efficiently in very different environments. In this study, we compare the adhesive holdfasts produced by the freshwater bacterium C. crescentus and a relative, the marine bacterium H. baltica We show that H. baltica holdfasts have a different morphology and chemical composition and tolerate high ionic strength. Our results show that the H. baltica holdfast is an excellent model to study the effect of ionic strength on adhesion and provides insights into the physicochemical properties required for adhesion in the marine environment.
Collapse
|
23
|
Kruse T, Ratnadevi CM, Erikstad HA, Birkeland NK. Complete genome sequence analysis of the thermoacidophilic verrucomicrobial methanotroph "Candidatus Methylacidiphilum kamchatkense" strain Kam1 and comparison with its closest relatives. BMC Genomics 2019; 20:642. [PMID: 31399023 PMCID: PMC6688271 DOI: 10.1186/s12864-019-5995-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The candidate genus "Methylacidiphilum" comprises thermoacidophilic aerobic methane oxidizers belonging to the Verrucomicrobia phylum. These are the first described non-proteobacterial aerobic methane oxidizers. The genes pmoCAB, encoding the particulate methane monooxygenase do not originate from horizontal gene transfer from proteobacteria. Instead, the "Ca. Methylacidiphilum" and the sister genus "Ca. Methylacidimicrobium" represent a novel and hitherto understudied evolutionary lineage of aerobic methane oxidizers. Obtaining and comparing the full genome sequences is an important step towards understanding the evolution and physiology of this novel group of organisms. RESULTS Here we present the closed genome of "Ca. Methylacidiphilum kamchatkense" strain Kam1 and a comparison with the genomes of its two closest relatives "Ca. Methylacidiphilum fumariolicum" strain SolV and "Ca. Methylacidiphilum infernorum" strain V4. The genome consists of a single 2,2 Mbp chromosome with 2119 predicted protein coding sequences. Genome analysis showed that the majority of the genes connected with metabolic traits described for one member of "Ca. Methylacidiphilum" is conserved between all three genomes. All three strains encode class I CRISPR-cas systems. The average nucleotide identity between "Ca. M. kamchatkense" strain Kam1 and strains SolV and V4 is ≤95% showing that they should be regarded as separate species. Whole genome comparison revealed a high degree of synteny between the genomes of strains Kam1 and SolV. In contrast, comparison of the genomes of strains Kam1 and V4 revealed a number of rearrangements. There are large differences in the numbers of transposable elements found in the genomes of the three strains with 12, 37 and 80 transposable elements in the genomes of strains Kam1, V4 and SolV respectively. Genomic rearrangements and the activity of transposable elements explain much of the genomic differences between strains. For example, a type 1h uptake hydrogenase is conserved between strains Kam1 and SolV but seems to have been lost from strain V4 due to genomic rearrangements. CONCLUSIONS Comparing three closed genomes of "Ca. Methylacidiphilum" spp. has given new insights into the evolution of these organisms and revealed large differences in numbers of transposable elements between strains, the activity of these explains much of the genomic differences between strains.
Collapse
Affiliation(s)
- Thomas Kruse
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway.
| | | | - Helge-André Erikstad
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway
| | - Nils-Kåre Birkeland
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, 5020, Bergen, Norway.
| |
Collapse
|
24
|
Phale PS, Shah BA, Malhotra H. Variability in Assembly of Degradation Operons for Naphthalene and its derivative, Carbaryl, Suggests Mobilization through Horizontal Gene Transfer. Genes (Basel) 2019; 10:genes10080569. [PMID: 31357661 PMCID: PMC6723655 DOI: 10.3390/genes10080569] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 01/14/2023] Open
Abstract
In the biosphere, the largest biological laboratory, increased anthropogenic activities have led microbes to evolve and adapt to the changes occurring in the environment. Compounds, specifically xenobiotics, released due to such activities persist in nature and undergo bio-magnification in the food web. Some of these compounds act as potent endocrine disrupters, mutagens or carcinogens, and therefore their removal from the environment is essential. Due to their persistence, microbial communities have evolved to metabolize them partially or completely. Diverse biochemical pathways have evolved or been assembled by exchange of genetic material (horizontal gene transfer) through various mobile genetic elements like conjugative and non-conjugative plasmids, transposons, phages and prophages, genomic islands and integrative conjugative elements. These elements provide an unlimited opportunity for genetic material to be exchanged across various genera, thus accelerating the evolution of a new xenobiotic degrading phenotype. In this article, we illustrate examples of the assembly of metabolic pathways involved in the degradation of naphthalene and its derivative, Carbaryl, which are speculated to have evolved or adapted through the above-mentioned processes.
Collapse
Affiliation(s)
- Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai-400 076, India.
| | - Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai-400 076, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, Mumbai-400 076, India
| |
Collapse
|
25
|
Nepal S, Bonn F, Grasso S, Stobernack T, de Jong A, Zhou K, Wedema R, Rosema S, Becher D, Otto A, Rossen JW, van Dijl JM, Bathoorn E. An ancient family of mobile genomic islands introducing cephalosporinase and carbapenemase genes in Enterobacteriaceae. Virulence 2019; 9:1377-1389. [PMID: 30101693 PMCID: PMC6177240 DOI: 10.1080/21505594.2018.1509666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The exchange of mobile genomic islands (MGIs) between microorganisms is often mediated by phages, which may provide benefits to the phage’s host. The present study started with the identification of Enterobacter cloacae, Klebsiella pneumoniae and Escherichia coli isolates with exceptional cephalosporin and carbapenem resistance phenotypes from patients in a neonatal ward. To identify possible molecular connections between these isolates and their β-lactam resistance phenotypes, the respective bacterial genome sequences were compared. This unveiled the existence of a family of ancient MGIs that were probably exchanged before the species E. cloacae, K. pneumoniae and E. coli emerged from their common ancestry. A representative MGI from E. cloacae was named MIR17-GI, because it harbors the novel β-lactamase gene variant blaMIR17. Importantly, our observations show that the MIR17-GI-like MGIs harbor genes associated with high-level resistance to cephalosporins. Among them, MIR17-GI stands out because MIR17 also displays carbapenemase activity. As shown by mass spectrometry, the MIR17 carbapenemase is among the most abundantly expressed proteins of the respective E. cloacae isolate. Further, we show that MIR17-GI-like islands are associated with integrated P4-like prophages. This implicates phages in the spread of cephalosporin and carbapenem resistance amongst Enterobacteriaceae. The discovery of an ancient family of MGIs, mediating the spread of cephalosporinase and carbapenemase genes, is of high clinical relevance, because high-level cephalosporin and carbapenem resistance have serious implications for the treatment of patients with enterobacteriaceal infections.
Collapse
Affiliation(s)
- Suruchi Nepal
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - Florian Bonn
- b Institute for Microbiology , Ernst-Moritz-Arndt-University Greifswald , Greifswald , Germany
| | - Stefano Grasso
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - Tim Stobernack
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - Anne de Jong
- c Department of Molecular Genetics , University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute , Groningen , The Netherlands
| | - Kai Zhou
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands.,d State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital , Zhejiang University , Hangzhou , China
| | - Ronald Wedema
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - Sigrid Rosema
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - Dörte Becher
- b Institute for Microbiology , Ernst-Moritz-Arndt-University Greifswald , Greifswald , Germany
| | - Andreas Otto
- b Institute for Microbiology , Ernst-Moritz-Arndt-University Greifswald , Greifswald , Germany
| | - John W Rossen
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - Jan Maarten van Dijl
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| | - Erik Bathoorn
- a Department of Medical Microbiology , University of Groningen, University Medical Center Groningen , Groningen , the Netherlands
| |
Collapse
|
26
|
Palmer M, Venter SN, Coetzee MP, Steenkamp ET. Prokaryotic species are sui generis evolutionary units. Syst Appl Microbiol 2019; 42:145-158. [DOI: 10.1016/j.syapm.2018.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/25/2022]
|
27
|
Zeng Q, Xie J, Li Y, Gao T, Xu C, Wang Q. Comparative genomic and functional analyses of four sequenced Bacillus cereus genomes reveal conservation of genes relevant to plant-growth-promoting traits. Sci Rep 2018; 8:17009. [PMID: 30451927 PMCID: PMC6242881 DOI: 10.1038/s41598-018-35300-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
Some Bacillus strains function as predominant plant-growth-promoting rhizobacteria. Bacillus cereus 905 is a rod-shaped Gram-positive bacterium isolated from wheat rhizosphere and is a rhizobacterium that exhibits significant plant-growth-promoting effects. Species belonging to the genus Bacillus are observed in numerous different habitats. Several papers on B. cereus are related to pathogens that causes food-borne illness and industrial applications. However, genomic analysis of plant-associated B. cereus has yet to be reported. Here, we conducted a genomic analysis comparing strain 905 with three other B. cereus strains and investigate the genomic characteristics and evolution traits of the species in different niches. The genome sizes of four B. cereus strains range from 5.38 M to 6.40 M, and the number of protein-coding genes varies in the four strains. Comparisons of the four B. cereus strains reveal 3,998 core genes. The function of strain-specific genes are related to carbohydrate, amino acid and coenzyme metabolism and transcription. Analysis of single nucleotide polymorphisms (SNPs) indicates local diversification of the four strains. SNPs are unevenly distributed throughout the four genomes, and function interpretation of regions with high SNP density coincides with the function of strain-specific genes. Detailed analysis indicates that certain SNPs contribute to the formation of strain-specific genes. By contrast, genes related to plant-growth-promoting traits are highly conserved. This study shows the genomic differences between four strains from different niches and provides an in-depth understanding of the genome architecture of these species, thus facilitating genetic engineering and agricultural applications in the future.
Collapse
Affiliation(s)
- Qingchao Zeng
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Jianbo Xie
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Yan Li
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Tantan Gao
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Cheng Xu
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China
| | - Qi Wang
- Key Laboratory of Plant Pathology, Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
28
|
Alfsnes K, Frye SA, Eriksson J, Eldholm V, Brynildsrud OB, Bohlin J, Harrison OB, Hood DW, Maiden MCJ, Tønjum T, Ambur OH. A genomic view of experimental intraspecies and interspecies transformation of a rifampicin-resistance allele into Neisseria meningitidis. Microb Genom 2018; 4. [PMID: 30251949 PMCID: PMC6321871 DOI: 10.1099/mgen.0.000222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The spread of antibiotic resistance within and between different bacterial populations is a major health problem on a global scale. The identification of genetic transformation in genomic data from Neisseria meningitidis, the meningococcus (Mc), and other bacteria is problematic, since similar or even identical alleles may be involved. A particular challenge in naturally transformable bacteria generally is to distinguish between common ancestry and true recombined sites in sampled genome sequences. Furthermore, the identification of recombination following experimental transformation of homologous alleles requires identifiable differences between donor and recipient, which in itself influences the propensity for homologous recombination (HR). This study identifies the distribution of HR events following intraspecies and interspecies Mc transformations of rpoB alleles encoding rifampicin resistance by whole-genome DNA sequencing and single nucleotide variant analysis. The HR events analysed were confined to the genomic region surrounding the single nucleotide genetic marker used for selection. An exponential length distribution of these recombined events was found, ranging from a few nucleotides to about 72 kb stretches. The lengths of imported sequences were on average found to be longer following experimental transformation of the recipient with genomic DNA from an intraspecies versus an interspecies donor (P<0.001). The recombination events were generally observed to be mosaic, with donor sequences interspersed with recipient sequence. Here, we present four models to explain these observations, by fragmentation of the transformed DNA, by interruptions of the recombination mechanism, by secondary recombination of endogenous self-DNA, or by repair/replication mechanisms.
Collapse
Affiliation(s)
| | - Stephan A Frye
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Jens Eriksson
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Vegard Eldholm
- 3Department of Molecular Biology, Domain of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ola Brønstad Brynildsrud
- 4Department of Methodology Research and Analysis, Domain of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jon Bohlin
- 4Department of Methodology Research and Analysis, Domain of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Odile B Harrison
- 5The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Derek W Hood
- 6Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Martin C J Maiden
- 5The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Tone Tønjum
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,7Department of Microbiology, University of Oslo, Oslo, Norway
| | - Ole Herman Ambur
- 2Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway.,8OsloMet - Oslo Metropolitan University, Oslo, Norway
| |
Collapse
|
29
|
Salto IP, Torres Tejerizo G, Wibberg D, Pühler A, Schlüter A, Pistorio M. Comparative genomic analysis of Acinetobacter spp. plasmids originating from clinical settings and environmental habitats. Sci Rep 2018; 8:7783. [PMID: 29773850 PMCID: PMC5958079 DOI: 10.1038/s41598-018-26180-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
Bacteria belonging to the genus Acinetobacter have become of clinical importance over the last decade due to the development of a multi-resistant phenotype and their ability to survive under multiple environmental conditions. The development of these traits among Acinetobacter strains occurs frequently as a result of plasmid-mediated horizontal gene transfer. In this work, plasmids from nosocomial and environmental Acinetobacter spp. collections were separately sequenced and characterized. Assembly of the sequenced data resulted in 19 complete replicons in the nosocomial collection and 77 plasmid contigs in the environmental collection. Comparative genomic analysis showed that many of them had conserved backbones. Plasmid coding sequences corresponding to plasmid specific functions were bioinformatically and functionally analyzed. Replication initiation protein analysis revealed the predominance of the Rep_3 superfamily. The phylogenetic tree constructed from all Acinetobacter Rep_3 superfamily plasmids showed 16 intermingled clades originating from nosocomial and environmental habitats. Phylogenetic analysis of relaxase proteins revealed the presence of a new sub-clade named MOBQAci, composed exclusively of Acinetobacter relaxases. Functional analysis of proteins belonging to this group showed that they behaved differently when mobilized using helper plasmids belonging to different incompatibility groups.
Collapse
Affiliation(s)
- Ileana P Salto
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900), La Plata, Argentina
| | - Gonzalo Torres Tejerizo
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900), La Plata, Argentina
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615, Bielefeld, Germany
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615, Bielefeld, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615, Bielefeld, Germany
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstr. 27, D-33615, Bielefeld, Germany
| | - Mariano Pistorio
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900), La Plata, Argentina.
| |
Collapse
|
30
|
Amherd M, Velicer GJ, Rendueles O. Spontaneous nongenetic variation of group size creates cheater-free groups of social microbes. Behav Ecol 2018. [DOI: 10.1093/beheco/arx184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Michaela Amherd
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
| | - Gregory J Velicer
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
| | - Olaya Rendueles
- Institute for Integrative Biology, ETH Zürich, Universitätstrasse, Zürich, Switzerland
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- UMR 3525, CNRS, Paris, France
| |
Collapse
|
31
|
Eisenstark A. A Geneticist's View of Prostate Cancer: Prostate Cancer Treatment Considerations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1095:125-129. [PMID: 30229553 DOI: 10.1007/978-3-319-95693-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate cancer remains a life-threatening disease of men. While early detection has been helpful to reduce the mortality rate, we currently do not have a desired therapy. In recent years, new strategies have been proposed to treat prostate cancers with poor prognosis by utilizing genetically modified bacteria, including Salmonella typhimurium that preferentially replicate within solid tumors (1000:1 and up to 10,000:1 compared to non-cancerous tissue) destroying cancer cells without causing septic shock that is typically associated with wild-type S. typhimurium infections. Furthermore, these bacteria have the potential to be utilized as drug delivery systems to more effectively target different subpopulations of prostate tumor cells. This chapter reviews progress in using genetically modified S. typhimurium for destruction of prostate tumors.
Collapse
|
32
|
Sethi S, Zaman K, Jain N. Mycoplasma genitalium infections: current treatment options and resistance issues. Infect Drug Resist 2017; 10:283-292. [PMID: 28979150 PMCID: PMC5589104 DOI: 10.2147/idr.s105469] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma genitalium is one of the important causes of non-gonococcal urethritis. Rising incidence and emerging antimicrobial resistance are a major concern these days. The poor clinical outcomes with doxycycline therapy led to the use of azithromycin as the primary drug of choice. Single-dose azithromycin regimen over a period of time was changed to extended regimen following studies showing better clinical cures and less risk of resistance development. However, emerging macrolide resistance, either due to transmission of resistance or drug pressure has further worsened the management of this infection. The issues of drug resistance and treatment failures also exist in cases of M. genitalium infection. At present, the emergence of multidrug-resistant (MDR) M. genitalium strains is an alarming sign for its treatment and the associated public health impact due to its complications. However, newer drugs like pristinamycin, solithromycin, sitafloxacin, and others have shown a hope for the clinical cure, but need further clinical trials to optimize the therapeutic dosing schedules and formulate appropriate treatment regimens. Rampant and inappropriate use of these newer drugs will further sabotage future attempts to manage MDR strains. There is currently a need to formulate diagnostic algorithms and etiology-based treatment regimens rather than the syndromic approach, preferably using combination therapy instead of a monotherapy. Awareness about the current guidelines and recommended treatment regimens among clinicians and local practitioners is of utmost importance. Antimicrobial resistance testing and global surveillance are required to assess the efficacy of current treatment regimens and for guiding future research for the early detection and management of MDR M. genitalium infections.
Collapse
Affiliation(s)
- Sunil Sethi
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kamran Zaman
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neha Jain
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
33
|
Genetic Variation and Its Reflection on Posttranslational Modifications in Frequency Clock and Mating Type a-1 Proteins in Sordaria fimicola. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1268623. [PMID: 28717646 PMCID: PMC5499255 DOI: 10.1155/2017/1268623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 11/17/2022]
Abstract
Posttranslational modifications (PTMs) occur in all essential proteins taking command of their functions. There are many domains inside proteins where modifications take place on side-chains of amino acids through various enzymes to generate different species of proteins. In this manuscript we have, for the first time, predicted posttranslational modifications of frequency clock and mating type a-1 proteins in Sordaria fimicola collected from different sites to see the effect of environment on proteins or various amino acids pickings and their ultimate impact on consensus sequences present in mating type proteins using bioinformatics tools. Furthermore, we have also measured and walked through genomic DNA of various Sordaria strains to determine genetic diversity by genotyping the short sequence repeats (SSRs) of wild strains of S. fimicola collected from contrasting environments of two opposing slopes (harsh and xeric south facing slope and mild north facing slope) of Evolution Canyon (EC), Israel. Based on the whole genome sequence of S. macrospora, we targeted 20 genomic regions in S. fimicola which contain short sequence repeats (SSRs). Our data revealed genetic variations in strains from south facing slope and these findings assist in the hypothesis that genetic variations caused by stressful environments lead to evolution.
Collapse
|
34
|
Ibryashkina EM, Solonin AS, Zakharova MV. Protein NCRII-18: the role of gene fusion in the molecular evolution of restriction endonucleases. FEBS Lett 2017; 591:1702-1711. [DOI: 10.1002/1873-3468.12669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Elena M. Ibryashkina
- FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms; Russian Academy of Sciences; Pushchino Moscow Region Russia
| | - Alexander S. Solonin
- FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms; Russian Academy of Sciences; Pushchino Moscow Region Russia
| | - Marina V. Zakharova
- FSBIS G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms; Russian Academy of Sciences; Pushchino Moscow Region Russia
| |
Collapse
|
35
|
Williams TC, Peng B, Vickers CE, Nielsen LK. The Saccharomyces cerevisiae pheromone-response is a metabolically active stationary phase for bio-production. Metab Eng Commun 2016; 3:142-152. [PMID: 29468120 PMCID: PMC5779721 DOI: 10.1016/j.meteno.2016.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 11/04/2022] Open
Abstract
The growth characteristics and underlying metabolism of microbial production hosts are critical to the productivity of metabolically engineered pathways. Production in parallel with growth often leads to biomass/bio-product competition for carbon. The growth arrest phenotype associated with the Saccharomyces cerevisiae pheromone-response is potentially an attractive production phase because it offers the possibility of decoupling production from population growth. However, little is known about the metabolic phenotype associated with the pheromone-response, which has not been tested for suitability as a production phase. Analysis of extracellular metabolite fluxes, available transcriptomic data, and heterologous compound production (para-hydroxybenzoic acid) demonstrate that a highly active and distinct metabolism underlies the pheromone-response. These results indicate that the pheromone-response is a suitable production phase, and that it may be useful for informing synthetic biology design principles for engineering productive stationary phase phenotypes.
Collapse
Affiliation(s)
| | | | - Claudia E. Vickers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072, Australia
| | | |
Collapse
|
36
|
Chakraborty J, Das S. Molecular perspectives and recent advances in microbial remediation of persistent organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:16883-16903. [PMID: 27234838 DOI: 10.1007/s11356-016-6887-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/11/2016] [Indexed: 06/05/2023]
Abstract
Nutrition and pollution stress stimulate genetic adaptation in microorganisms and assist in evolution of diverse metabolic pathways for their survival on several complex organic compounds. Persistent organic pollutants (POPs) are highly lipophilic in nature and cause adverse effects to the environment and human health by biomagnification through the food chain. Diverse microorganisms, harboring numerous plasmids and catabolic genes, acclimatize to these environmentally unfavorable conditions by gene duplication, mutational drift, hypermutation, and recombination. Genetic aspects of some major POP catabolic genes such as biphenyl dioxygenase (bph), DDT 2,3-dioxygenase, and angular dioxygenase assist in degradation of biphenyl, organochlorine pesticides, and dioxins/furans, respectively. Microbial metagenome constitutes the largest genetic reservoir with miscellaneous enzymatic activities implicated in degradation. To tap the metabolic potential of microorganisms, recent techniques like sequence and function-based screening and substrate-induced gene expression are proficient in tracing out novel catabolic genes from the entire metagenome for utilization in enhanced biodegradation. The major endeavor of today's scientific world is to characterize the exact genetic mechanisms of microbes for bioremediation of these toxic compounds by excavating into the uncultured plethora. This review entails the effect of POPs on the environment and involvement of microbial catabolic genes for their removal with the advanced techniques of bioremediation.
Collapse
Affiliation(s)
- Jaya Chakraborty
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
37
|
Is the Evolution of Salmonella enterica subsp. enterica Linked to Restriction-Modification Systems? mSystems 2016; 1:mSystems00009-16. [PMID: 27822532 PMCID: PMC5069764 DOI: 10.1128/msystems.00009-16] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/11/2016] [Indexed: 01/01/2023] Open
Abstract
The evolution of bacterial pathogens, their plasticity and ability to rapidly change and adapt to new surroundings are crucial for understanding the epidemiology and public health. With the application of genomics, it became clear that horizontal gene transfer played a key role in evolution. To understand the evolution and diversification of pathogens, we need to understand the processes that drive the horizontal gene transfer. Restriction-modification systems are thought to cause rearrangements within the chromosome, as well as act as a barrier to horizontal gene transfer. However, here we show that the correlation between restriction-modification systems and evolution in other bacterial species does not apply to Salmonella enterica subsp. enterica. In summary, from this work, we conclude that other mechanisms might be involved in controlling and shaping the evolution of Salmonella enterica subsp. enterica. Salmonella enterica subsp. enterica bacteria are highly diverse foodborne pathogens that are subdivided into more than 1,500 serovars. The diversity is believed to result from mutational evolution, as well as intra- and interspecies recombination that potentially could be influenced by restriction-modification (RM) systems. The aim of this study was to investigate whether RM systems were linked to the evolution of Salmonella enterica subsp. enterica. The study included 221 Salmonella enterica genomes, of which 68 were de novo sequenced and 153 were public available genomes from ENA. The data set covered 97 different serovars of Salmonella enterica subsp. enterica and an additional five genomes from four other Salmonella subspecies as an outgroup for constructing the phylogenetic trees. The phylogenetic trees were constructed based on multiple alignment of core genes, as well as the presence or absence of pangenes. The topology of the trees was compared to the presence of RM systems, antimicrobial resistance (AMR) genes, Salmonella pathogenicity islands (SPIs), and plasmid replicons. We did not observe any correlation between evolution and the RM systems in S. enterica subsp. enterica. However, sublineage correlations and serovar-specific patterns were observed. Additionally, we conclude that plasmid replicons, SPIs, and AMR were all better correlated to serovars than to RM systems. This study suggests a limited influence of RM systems on the evolution of Salmonella enterica subsp. enterica, which could be due to the conjugational mode of horizontal gene transfer in Salmonella. Thus, we conclude that other factors must be involved in shaping the evolution of bacteria. IMPORTANCE The evolution of bacterial pathogens, their plasticity and ability to rapidly change and adapt to new surroundings are crucial for understanding the epidemiology and public health. With the application of genomics, it became clear that horizontal gene transfer played a key role in evolution. To understand the evolution and diversification of pathogens, we need to understand the processes that drive the horizontal gene transfer. Restriction-modification systems are thought to cause rearrangements within the chromosome, as well as act as a barrier to horizontal gene transfer. However, here we show that the correlation between restriction-modification systems and evolution in other bacterial species does not apply to Salmonella enterica subsp. enterica. In summary, from this work, we conclude that other mechanisms might be involved in controlling and shaping the evolution of Salmonella enterica subsp. enterica.
Collapse
|
38
|
Regulation of genetic flux between bacteria by restriction-modification systems. Proc Natl Acad Sci U S A 2016; 113:5658-63. [PMID: 27140615 DOI: 10.1073/pnas.1603257113] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Restriction-modification (R-M) systems are often regarded as bacteria's innate immune systems, protecting cells from infection by mobile genetic elements (MGEs). Their diversification has been recently associated with the emergence of particularly virulent lineages. However, we have previously found more R-M systems in genomes carrying more MGEs. Furthermore, it has been suggested that R-M systems might favor genetic transfer by producing recombinogenic double-stranded DNA ends. To test whether R-M systems favor or disfavor genetic exchanges, we analyzed their frequency with respect to the inferred events of homologous recombination and horizontal gene transfer within 79 bacterial species. Genetic exchanges were more frequent in bacteria with larger genomes and in those encoding more R-M systems. We created a recognition target motif predictor for Type II R-M systems that identifies genomes encoding systems with similar restriction sites. We found more genetic exchanges between these genomes, independently of their evolutionary distance. Our results reconcile previous studies by showing that R-M systems are more abundant in promiscuous species, wherein they establish preferential paths of genetic exchange within and between lineages with cognate R-M systems. Because the repertoire and/or specificity of R-M systems in bacterial lineages vary quickly, the preferential fluxes of genetic transfer within species are expected to constantly change, producing time-dependent networks of gene transfer.
Collapse
|
39
|
Pleška M, Qian L, Okura R, Bergmiller T, Wakamoto Y, Kussell E, Guet C. Bacterial Autoimmunity Due to a Restriction-Modification System. Curr Biol 2016; 26:404-9. [DOI: 10.1016/j.cub.2015.12.041] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/08/2015] [Accepted: 12/10/2015] [Indexed: 01/25/2023]
|
40
|
Casadesús J. Bacterial DNA Methylation and Methylomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:35-61. [PMID: 27826834 DOI: 10.1007/978-3-319-43624-1_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Formation of C5-methylcytosine, N4-methylcytosine, and N6-methyladenine in bacterial genomes is postreplicative and involves transfer of a methyl group from S-adenosyl-methionine to a base embedded in a specific DNA sequence context. Most bacterial DNA methyltransferases belong to restriction-modification systems; in addition, "solitary" or "orphan" DNA methyltransferases are frequently found in the genomes of bacteria and phage. Base methylation can affect the interaction of DNA-binding proteins with their cognate sites, either by a direct effect (e.g., steric hindrance) or by changes in DNA topology. In both Alphaproteobacteria and Gammaproteobacteria, the roles of DNA base methylation are especially well known for N6-methyladenine, including control of chromosome replication, nucleoid segregation, postreplicative correction of DNA mismatches, cell cycle-coupled transcription, formation of bacterial cell lineages, and regulation of bacterial virulence. Technical procedures that permit genome-wide analysis of DNA methylation are nowadays expanding our knowledge of the extent, evolution, and physiological significance of bacterial DNA methylation.
Collapse
Affiliation(s)
- Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, Seville, 41080, Spain.
| |
Collapse
|
41
|
Kwiatek A, Mrozek A, Bacal P, Piekarowicz A, Adamczyk-Popławska M. Type III Methyltransferase M.NgoAX from Neisseria gonorrhoeae FA1090 Regulates Biofilm Formation and Interactions with Human Cells. Front Microbiol 2015; 6:1426. [PMID: 26733970 PMCID: PMC4685087 DOI: 10.3389/fmicb.2015.01426] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/30/2015] [Indexed: 11/24/2022] Open
Abstract
Neisseria gonorrhoeae is the etiological factor of the sexually transmitted gonorrhea disease that may lead, under specific conditions, to systemic infections. The gonococcal genome encodes many restriction modification (RM) systems, which main biological role is to defend the pathogen from potentially harmful foreign DNA. However, RM systems seem also to be involved in several other functions. In this study, we examined the effect of inactivation the N. gonorrhoeae FA1090 ngoAXmod gene encoding M.NgoAX methyltransferase on the global gene expression, biofilm formation, interactions with human epithelial host cells and overall bacterial growth. Expression microarrays showed at least a twofold deregulation of a total of 121 genes in the NgoAX knock-out mutant compared to the wild-type (wt) strain under standard grow conditions. Genes with changed expression levels encoded mostly proteins involved in cell metabolism, DNA replication and repair or regulating cellular processes and signaling (such as cell wall/envelop biogenesis). As determined by the assay with crystal violet, the NgoAX knock-out strain formed a slightly larger biofilm biomass per cell than the wt strain. Live biofilm observations showed that the biofilm formed by the gonococcal ngoAXmod gene mutant is more relaxed, dispersed and thicker than the one formed by the wt strain. This more relaxed feature of the biofilm, in respect to adhesion and bacterial interactions, can be involved in pathogenesis. Moreover, the overall adhesion of mutant bacterial cells to human cells was lower than adhesion of the wt gonococci [adhesion index = 0.672 (±0.2) and 2.15 (±1.53), respectively]; yet, a higher number of mutant than wt bacteria were found inside the Hec-1-B epithelial cells [invasion index = 3.38 (±0.93) × 105 for mutant and 4.67 (±3.09) × 104 for the wt strain]. These results indicate that NgoAX knock-out cells have lower ability to attach to human cells, but more easily penetrate inside the host cells. All these data suggest that the NgoAX methyltransferase, may be implicated in N. gonorrhoeae pathogenicity, involving regulation of biofilm formation, adhesion to host cells and epithelial cell invasion.
Collapse
Affiliation(s)
- Agnieszka Kwiatek
- Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Agnieszka Mrozek
- Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | - Pawel Bacal
- Laboratory of Theory and Applications of Electrodes, Faculty of Chemistry, University of Warsaw Warsaw, Poland
| | - Andrzej Piekarowicz
- Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | | |
Collapse
|
42
|
DNA Methylation Assessed by SMRT Sequencing Is Linked to Mutations in Neisseria meningitidis Isolates. PLoS One 2015; 10:e0144612. [PMID: 26656597 PMCID: PMC4676702 DOI: 10.1371/journal.pone.0144612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/20/2015] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative bacterium Neisseria meningitidis features extensive genetic variability. To present, proposed virulence genotypes are also detected in isolates from asymptomatic carriers, indicating more complex mechanisms underlying variable colonization modes of N. meningitidis. We applied the Single Molecule, Real-Time (SMRT) sequencing method from Pacific Biosciences to assess the genome-wide DNA modification profiles of two genetically related N. meningitidis strains, both of serogroup A. The resulting DNA methylomes revealed clear divergences, represented by the detection of shared and of strain-specific DNA methylation target motifs. The positional distribution of these methylated target sites within the genomic sequences displayed clear biases, which suggest a functional role of DNA methylation related to the regulation of genes. DNA methylation in N. meningitidis has a likely underestimated potential for variability, as evidenced by a careful analysis of the ORF status of a panel of confirmed and predicted DNA methyltransferase genes in an extended collection of N. meningitidis strains of serogroup A. Based on high coverage short sequence reads, we find phase variability as a major contributor to the variability in DNA methylation. Taking into account the phase variable loci, the inferred functional status of DNA methyltransferase genes matched the observed methylation profiles. Towards an elucidation of presently incompletely characterized functional consequences of DNA methylation in N. meningitidis, we reveal a prominent colocalization of methylated bases with Single Nucleotide Polymorphisms (SNPs) detected within our genomic sequence collection. As a novel observation we report increased mutability also at 6mA methylated nucleotides, complementing mutational hotspots previously described at 5mC methylated nucleotides. These findings suggest a more diverse role of DNA methylation and Restriction-Modification (RM) systems in the evolution of prokaryotic genomes.
Collapse
|
43
|
Vanneste K, Maere S, Van de Peer Y. Tangled up in two: a burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0353. [PMID: 24958926 PMCID: PMC4071526 DOI: 10.1098/rstb.2013.0353] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genome sequencing has demonstrated that besides frequent small-scale duplications, large-scale duplication events such as whole genome duplications (WGDs) are found on many branches of the evolutionary tree of life. Especially in the plant lineage, there is evidence for recurrent WGDs, and the ancestor of all angiosperms was in fact most likely a polyploid species. The number of WGDs found in sequenced plant genomes allows us to investigate questions about the roles of WGDs that were hitherto impossible to address. An intriguing observation is that many plant WGDs seem associated with periods of increased environmental stress and/or fluctuations, a trend that is evident for both present-day polyploids and palaeopolyploids formed around the Cretaceous–Palaeogene (K–Pg) extinction at 66 Ma. Here, we revisit the WGDs in plants that mark the K–Pg boundary, and discuss some specific examples of biological innovations and/or diversifications that may be linked to these WGDs. We review evidence for the processes that could have contributed to increased polyploid establishment at the K–Pg boundary, and discuss the implications on subsequent plant evolution in the Cenozoic.
Collapse
Affiliation(s)
- Kevin Vanneste
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Steven Maere
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium Genomics Research Institute (GRI), University of Pretoria, 0028 Pretoria, South Africa
| |
Collapse
|
44
|
Zhang M, Pereira e Silva MDC, Chaib De Mares M, van Elsas JD. The mycosphere constitutes an arena for horizontal gene transfer with strong evolutionary implications for bacterial-fungal interactions. FEMS Microbiol Ecol 2014; 89:516-26. [DOI: 10.1111/1574-6941.12350] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- MiaoZhi Zhang
- Department of Microbial Ecology; Centre for Life Sciences; University of Groningen; Groningen The Netherlands
| | | | - Maryam Chaib De Mares
- Department of Microbial Ecology; Centre for Life Sciences; University of Groningen; Groningen The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology; Centre for Life Sciences; University of Groningen; Groningen The Netherlands
| |
Collapse
|
45
|
Pédron J, Mondy S, des Essarts YR, Van Gijsegem F, Faure D. Genomic and metabolic comparison with Dickeya dadantii 3937 reveals the emerging Dickeya solani potato pathogen to display distinctive metabolic activities and T5SS/T6SS-related toxin repertoire. BMC Genomics 2014; 15:283. [PMID: 24735398 PMCID: PMC4028081 DOI: 10.1186/1471-2164-15-283] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/04/2014] [Indexed: 11/28/2022] Open
Abstract
Background The pectinolytic enterobacteria of the Pectobacterium and Dickeya genera are causative agents of maceration-associated diseases affecting a wide variety of crops and ornamentals. For the past decade, the emergence of a novel species D. solani was observed in potato fields in Europe and the Mediterranean basin. The purpose of this study is to search by comparative genomics the genetic traits that could be distinctive to other Dickeya species and be involved in D. solani adaptation to the potato plant host. Results D. solani 3337 exhibits a 4.9 Mb circular genome that is characterized by a low content in mobile elements with the identification of only two full length insertion sequences. A genomic comparison with the deeply-annotated model D. dadantii 3937 strain was performed. While a large majority of Dickeya virulence genes are shared by both strains, a few hundreds genes of D. solani 3337, mostly regrouped in 25 genomic regions, are distinctive to D. dadantii 3937. These genomic regions are present in the other available draft genomes of D. solani strains and interestingly some of them were not found in the sequenced genomes of the other Dickeya species. These genomic regions regroup metabolic genes and are often accompanied by genes involved in transport systems. A metabolic analysis correlated some metabolic genes with distinctive functional traits of both D. solani 3337 and D. dadantii 3937. Three identified D. solani genomic regions also regroup NRPS/PKS encoding genes. In addition, D. solani encodes a distinctive arsenal of T5SS and T6SS-related toxin-antitoxin systems. These genes may contribute to bacteria-bacteria interactions and to the fitness of D. solani to the plant environment. Conclusions This study highlights the genomic specific traits of the emerging pathogen D. solani and will provide the basis for studying those that are involved in the successful adaptation of this emerging pathogen to the potato plant host.
Collapse
Affiliation(s)
| | | | | | - Frédérique Van Gijsegem
- UPMC Univ Paris 06, UMR 1392, IEES Paris (Institute of Ecology and Environmental Sciences), 46 rue d'Ulm, F-75005 Paris, France.
| | | |
Collapse
|
46
|
Vaz-Moreira I, Nunes OC, Manaia CM. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol Rev 2014; 38:761-78. [PMID: 24484530 DOI: 10.1111/1574-6976.12062] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 12/31/2013] [Accepted: 01/10/2014] [Indexed: 12/14/2022] Open
Abstract
Water is one of the most important bacterial habitats on Earth. As such, water represents also a major way of dissemination of bacteria between different environmental compartments. Human activities led to the creation of the so-called urban water cycle, comprising different sectors (waste, surface, drinking water), among which bacteria can hypothetically be exchanged. Therefore, bacteria can be mobilized between unclean water habitats (e.g. wastewater) and clean or pristine water environments (e.g. disinfected and spring drinking water) and eventually reach humans. In addition, bacteria can also transfer mobile genetic elements between different water types, other environments (e.g. soil) and humans. These processes may involve antibiotic resistant bacteria and antibiotic resistance genes. In this review, the hypothesis that some bacteria may share different water compartments and be also hosted by humans is discussed based on the comparison of the bacterial diversity in different types of water and with the human-associated microbiome. The role of such bacteria as potential disseminators of antibiotic resistance and the inference that currently only a small fraction of the clinically relevant antibiotic resistome may be known is discussed.
Collapse
Affiliation(s)
- Ivone Vaz-Moreira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, Porto, Portugal
| | | | | |
Collapse
|
47
|
Restriction-Modification Systems as a Barrier for Genetic Manipulation of Staphylococcus aureus. Methods Mol Biol 2014; 1373:9-23. [PMID: 25646604 DOI: 10.1007/7651_2014_180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic manipulation is a powerful approach to study fundamental aspects of bacterial physiology, metabolism, and pathogenesis. Most Staphylococcus aureus strains are remarkably difficult to genetically manipulate as they possess strong host defense mechanisms that protect bacteria from cellular invasion by foreign DNA. In S. aureus these bacterial "immunity" mechanisms against invading genomes are mainly associated with restriction-modification systems. To date, prokaryotic restriction-modification systems are classified into four different types (Type I-IV), all of which have been found in the sequenced S. aureus genomes. This chapter describes the roles, classification, mechanisms of action of different types of restriction-modification systems and the recent advances in the biology of restriction and modification in S. aureus.
Collapse
|
48
|
Bae YH, Kang KH, Jin YS, Seo JH. Molecular cloning and expression of fungal cellobiose transporters and β-glucosidases conferring efficient cellobiose fermentation in Saccharomyces cerevisiae. J Biotechnol 2014; 169:34-41. [DOI: 10.1016/j.jbiotec.2013.10.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/21/2013] [Accepted: 10/25/2013] [Indexed: 11/28/2022]
|
49
|
Premkumar L, Kurth F, Neyer S, Schembri MA, Martin JL. The multidrug resistance IncA/C transferable plasmid encodes a novel domain-swapped dimeric protein-disulfide isomerase. J Biol Chem 2013; 289:2563-76. [PMID: 24311786 DOI: 10.1074/jbc.m113.516898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multidrug resistance-encoding IncA/C conjugative plasmids disseminate antibiotic resistance genes among clinically relevant enteric bacteria. A plasmid-encoded disulfide isomerase is associated with conjugation. Sequence analysis of several IncA/C plasmids and IncA/C-related integrative and conjugative elements (ICE) from commensal and pathogenic bacteria identified a conserved DsbC/DsbG homolog (DsbP). The crystal structure of DsbP reveals an N-terminal domain, a linker region, and a C-terminal catalytic domain. A DsbP homodimer is formed through domain swapping of two DsbP N-terminal domains. The catalytic domain incorporates a thioredoxin-fold with characteristic CXXC and cis-Pro motifs. Overall, the structure and redox properties of DsbP diverge from the Escherichia coli DsbC and DsbG disulfide isomerases. Specifically, the V-shaped dimer of DsbP is inverted compared with EcDsbC and EcDsbG. In addition, the redox potential of DsbP (-161 mV) is more reducing than EcDsbC (-130 mV) and EcDsbG (-126 mV). Other catalytic properties of DsbP more closely resemble those of EcDsbG than EcDsbC. These catalytic differences are in part a consequence of the unusual active site motif of DsbP (CAVC); substitution to the EcDsbC-like (CGYC) motif converts the catalytic properties to those of EcDsbC. Structural comparison of the 12 independent subunit structures of DsbP that we determined revealed that conformational changes in the linker region contribute to mobility of the catalytic domain, providing mechanistic insight into DsbP function. In summary, our data reveal that the conserved plasmid-encoded DsbP protein is a bona fide disulfide isomerase and suggest that a dedicated oxidative folding enzyme is important for conjugative plasmid transfer.
Collapse
Affiliation(s)
- Lakshmanane Premkumar
- From the Institute for Molecular Bioscience, Division of Chemistry and Structural Biology and
| | | | | | | | | |
Collapse
|
50
|
Lan Y, Morrison JC, Hershberg R, Rosen GL. POGO-DB--a database of pairwise-comparisons of genomes and conserved orthologous genes. Nucleic Acids Res 2013; 42:D625-32. [PMID: 24198250 PMCID: PMC3964953 DOI: 10.1093/nar/gkt1094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
POGO-DB (http://pogo.ece.drexel.edu/) provides an easy platform for comparative microbial genomics. POGO-DB allows users to compare genomes using pre-computed metrics that were derived from extensive computationally intensive BLAST comparisons of >2000 microbes. These metrics include (i) average protein sequence identity across all orthologs shared by two genomes, (ii) genomic fluidity (a measure of gene content dissimilarity), (iii) number of ‘orthologs’ shared between two genomes, (iv) pairwise identity of the 16S ribosomal RNA genes and (v) pairwise identity of an additional 73 marker genes present in >90% prokaryotes. Users can visualize these metrics against each other in a 2D plot for exploratory analysis of genome similarity and of how different aspects of genome similarity relate to each other. The results of these comparisons are fully downloadable. In addition, users can download raw BLAST results for all or user-selected comparisons. Therefore, we provide users with full flexibility to carry out their own downstream analyses, by creating easy access to data that would normally require heavy computational resources to generate. POGO-DB should prove highly useful for researchers interested in comparative microbiology and benefit the microbiome/metagenomic communities by providing the information needed to select suitable phylogenetic marker genes within particular lineages.
Collapse
Affiliation(s)
- Yemin Lan
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA, Electrical & Computer Engineering Department, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA and Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics, the Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | |
Collapse
|