1
|
Shankar G, Akhter Y. Stealing survival: Iron acquisition strategies of Mycobacteriumtuberculosis. Biochimie 2024; 227:37-60. [PMID: 38901792 DOI: 10.1016/j.biochi.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), faces iron scarcity within the host due to immune defenses. This review explores the importance of iron for Mtb and its strategies to overcome iron restriction. We discuss how the host limits iron as an innate immune response and how Mtb utilizes various iron acquisition systems, particularly the siderophore-mediated pathway. The review illustrates the structure and biosynthesis of mycobactin, a key siderophore in Mtb, and the regulation of its production. We explore the potential of targeting siderophore biosynthesis and uptake as a novel therapeutic approach for TB. Finally, we summarize current knowledge on Mtb's iron acquisition and highlight promising directions for future research to exploit this pathway for developing new TB interventions.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226 025, India.
| |
Collapse
|
2
|
Worakitchanon W, Yanai H, Piboonsiri P, Miyahara R, Nedsuwan S, Imsanguan W, Chaiyasirinroje B, Sawaengdee W, Wattanapokayakit S, Wichukchinda N, Omae Y, Palittapongarnpim P, Tokunaga K, Mahasirimongkol S, Fujimoto A. Comprehensive analysis of Mycobacterium tuberculosis genomes reveals genetic variations in bacterial virulence. Cell Host Microbe 2024; 32:1972-1987.e6. [PMID: 39471821 DOI: 10.1016/j.chom.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/29/2024] [Accepted: 10/02/2024] [Indexed: 11/01/2024]
Abstract
Tuberculosis, a disease caused by Mycobacterium tuberculosis (Mtb), is a significant health problem worldwide. Here, we developed a method to detect large insertions and deletions (indels), which have been generally understudied. Leveraging this framework, we performed a comprehensive analysis of single nucleotide variants and small and large indels across 1,960 Mtb clinical isolates. Comparing the distribution of variants demonstrated that gene disruptive variants are underrepresented in genes essential for bacterial survival. An evolutionary analysis revealed that Mtb genomes are enriched in partially deleterious mutations. Genome-wide association studies identified small and large deletions in eccB2 significantly associated with patient prognosis. Additionally, we unveil significant associations with antibiotic resistance in 23 non-canonical genes. Among these, large indels are primarily found in genetic regions of Rv1216c, Rv1217c, fadD11, and ctpD. This study provides a comprehensive catalog of genetic variations and highlights their potential impact for the future treatment and risk prediction of tuberculosis.
Collapse
Affiliation(s)
- Wittawin Worakitchanon
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideki Yanai
- Fukujuji Hospital and Research Institute of Tuberculosis (RIT), Japan Anti-Tuberculosis Association, Kiyose 204-8522, Japan
| | - Pundharika Piboonsiri
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Reiko Miyahara
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8640, Japan
| | | | | | | | - Waritta Sawaengdee
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Sukanya Wattanapokayakit
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Nuanjan Wichukchinda
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand
| | - Yosuke Omae
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8640, Japan
| | - Prasit Palittapongarnpim
- Center for Microbial Genomics, Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo 162-8640, Japan
| | - Surakameth Mahasirimongkol
- Medical Life Sciences Institute, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand.
| | - Akihiro Fujimoto
- Department of Human Genetics, School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
3
|
Hiron A, Melet M, Guerry C, Dubois I, Rong V, Gilot P. Characterization of galactose catabolic pathways in Streptococcus agalactiae and identification of a major galactose: phosphotransferase importer. J Bacteriol 2024; 206:e0015524. [PMID: 39297619 PMCID: PMC11500514 DOI: 10.1128/jb.00155-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
We identified and characterized genomic regions of Streptococcus agalactiae that are involved in the Leloir and the tagatose-6-phosphate pathways for D-galactose catabolism. The accumulation of mutations in genes coding the Leloir pathway and the absence of these genes in a significant proportion of the strains suggest that this pathway may no longer be necessary for S. agalactiae and is heading toward extinction. In contrast, a genomic region containing genes coding for intermediates of the tagatose-6-phosphate pathway, a Gat family PTS transporter, and a DeoR/GlpR family regulator is present in the vast majority of strains. By deleting genes that code for intermediates of each of these two pathways in three selected strains, we demonstrated that the tagatose-6-phosphate pathway is their sole route for galactose catabolism. Furthermore, we showed that the Gat family PTS transporter acts as the primary importer of galactose in S. agalactiae. Finally, we proved that the DeoR/GlpR family regulator is a repressor of the tagatose-6-phosphate pathway and that galactose triggers the induction of this biochemical mechanism.IMPORTANCES. agalactiae, a significant pathogen for both humans and animals, encounters galactose and galactosylated components within its various ecological niches. We highlighted the capability of this bacterium to metabolize D-galactose and showed the role of the tagatose-6-phosphate pathway and of a PTS importer in this biochemical process. Since S. agalactiae relies on carbohydrate fermentation for energy production, its ability to uptake and metabolize D-galactose could enhance its persistence and its competitiveness within the microbiome.
Collapse
Affiliation(s)
- Aurelia Hiron
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Morgane Melet
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Capucine Guerry
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Ilona Dubois
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Vanessa Rong
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Philippe Gilot
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| |
Collapse
|
4
|
Shi H, Zhu Y, Shang K, Tian T, Yin Z, Shi J, He Y, Ding J, Wang Q, Zhang F. Development of innovative multi-epitope mRNA vaccine against central nervous system tuberculosis using in silico approaches. PLoS One 2024; 19:e0307877. [PMID: 39240891 PMCID: PMC11379207 DOI: 10.1371/journal.pone.0307877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/14/2024] [Indexed: 09/08/2024] Open
Abstract
Tuberculosis(TB) of the Central nervous system (CNS) is a rare and highly destructive disease. The emergence of drug resistance has increased treatment difficulty, leaving the Bacillus Calmette-Guérin (BCG) vaccine as the only licensed preventative immunization available. This study focused on identifying the epitopes of PknD (Rv0931c) and Rv0986 from Mycobacterium tuberculosis(Mtb) strain H37Rv using an in silico method. The goal was to develop a therapeutic mRNA vaccine for preventing CNS TB. The vaccine was designed to be non-allergenic, non-toxic, and highly antigenic. Codon optimization was performed to ensure effective translation in the human host. Additionally, the secondary and tertiary structures of the vaccine were predicted, and molecular docking with TLR-4 was carried out. A molecular dynamics simulation confirmed the stability of the complex. The results indicate that the vaccine structure shows effectiveness. Overall, the constructed vaccine exhibits ideal physicochemical properties, immune response, and stability, laying a theoretical foundation for future laboratory experiments.
Collapse
Affiliation(s)
- Huidong Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuejie Zhu
- Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kaiyu Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tingting Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhengwei Yin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Juan Shi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yueyue He
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Jianbing Ding
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Quan Wang
- Department of Clinical Laboratory, The Eighth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
5
|
Hasan Z, Razzak SA, Kanji A, Shakoor S, Hasan R. Efflux pump gene single-nucleotide variants associated with resistance in Mycobacterium tuberculosis isolates with discrepant drug genotypes. J Glob Antimicrob Resist 2024; 38:128-139. [PMID: 38789081 DOI: 10.1016/j.jgar.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION Single-nucleotide variants (SNVs) in Mycobacterium tuberculosis (M. tuberculosis) genomes can predict multidrug resistance (MDR) but not all phenotype-genotype correlations can be explained. We investigated SNVs in efflux pumps (EPs) in the context of M. tuberculosis drug resistance. METHODS We analysed 2221 M. tuberculosis genomes from 1432 susceptible and 200 MDR, 172 pre-extensively drug resistant (XDR) and 417 XDR isolates. Analysis of 47 EP genes was conducted using MTB-VCF, an in-house bioinformatics pipeline. SNVs were categorized according to their SIFT/Polyphen scores. Resistance genotypes were also called using the TB-Profiler tool. RESULTS Genome comparisons between susceptible and drug resistant (DR) isolates identified 418 unique SNVs in EP of which; 53.5% were in MDR, 68.9% in pre-XDR and 61.3% in XDR isolates. Twenty EPs had unique SNVs with a high SIFT/PolyPhen score, comprising 38 unique SNVs. Sixteen SNVs across 12 EP genes were significantly associated with drug resistance and enriched in pre-XDR and XDR strains. These comprised 12 previously reported SNVs (in Rv0191, Rv0507, Rv0676, Rv1217, Rv1218, Rv1273, Rv1458, Rv1819, and Rv2688) and 4 novel SNVs (in Rv1877 and Rv2333). We investigated their presence in genomes of 52 MDR isolates with phenotype-genotype discrepancies to rifampicin (RIF), isoniazid (INH), or fluoroquinolones. SNVs associated with RIF and INH (Rv1217_1218, Rv1819, Rv0450, Rv1458, Rv3827, Rv0507, Rv0676, Rv1273, and Rv2333), and with fluoroquinolone (Rv2688) resistance were present in these discrepant strains. CONCLUSIONS Considering SNVs in EPs as part of M. tuberculosis genome-based resistance interpretation may add value, especially in evaluation of XDR resistance in strains with phenotype-genotype discrepancies.
Collapse
Affiliation(s)
- Zahra Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan.
| | - Safina Abdul Razzak
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Akbar Kanji
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Sadia Shakoor
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Rumina Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
6
|
Guy CS, Gott JA, Ramírez-Cárdenas J, de Wolf C, Furze CM, West G, Muñoz-García JC, Angulo J, Fullam E. Fluorinated trehalose analogues for cell surface engineering and imaging of Mycobacterium tuberculosis. Chem Sci 2024:d4sc00721b. [PMID: 39144457 PMCID: PMC11317875 DOI: 10.1039/d4sc00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/13/2024] [Indexed: 08/16/2024] Open
Abstract
The sensitive, rapid and accurate diagnosis of Mycobacterium tuberculosis (Mtb) infection is a central challenge in controlling the global tuberculosis (TB) pandemic. Yet the detection of mycobacteria is often made difficult by the low sensitivity of current diagnostic tools, with over 3.6 million TB cases missed each year. To overcome these limitations there is an urgent need for next-generation TB diagnostic technologies. Here we report the use of a discrete panel of native 19F-trehalose (F-Tre) analogues to label and directly visualise Mtb by exploiting the uptake of fluorine-modified trehalose analogues via the mycobacterial trehalose LpqY-SugABC ATP-binding cassette (ABC) importer. We discovered the extent of modified F-Tre uptake correlates with LpqY substrate recognition and characterisation of the interacting sites by saturation transfer difference NMR coupled with molecular dynamics provides a unique glimpse into the molecular basis of fluorine-modified trehalose import in Mtb. Lipid profiling demonstrated that F-Tre analogues modified at positions 2, 3 and 6 are incorporated into mycobacterial cell-surface trehalose-containing glycolipids. This rapid one-step labelling approach facilitates the direct visualisation of F-Tre-labelled Mtb by Focused Ion Beam (FIB) Secondary Ion Mass Spectrometry (SIMS), enabling detection of the Mtb pathogen. Collectively, our findings highlight that F-Tre analogues have potential as tools to probe and unravel Mtb biology and can be exploited to detect and image TB.
Collapse
Affiliation(s)
- Collette S Guy
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| | | | - Jonathan Ramírez-Cárdenas
- Instituto de Investigaciones Químicas (IIQ), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla Avenida Américo Vespucio, 49 Sevilla 41092 Spain
| | - Christopher de Wolf
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| | - Christopher M Furze
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| | - Geoff West
- WMG, University of Warwick Coventry CV4 7AL UK
| | - Juan C Muñoz-García
- Instituto de Investigaciones Químicas (IIQ), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla Avenida Américo Vespucio, 49 Sevilla 41092 Spain
| | - Jesus Angulo
- Instituto de Investigaciones Químicas (IIQ), Consejo Superior de Investigaciones Científicas, Universidad de Sevilla Avenida Américo Vespucio, 49 Sevilla 41092 Spain
| | - Elizabeth Fullam
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| |
Collapse
|
7
|
Yang X, Hu T, Liang J, Xiong Z, Lin Z, Zhao Y, Zhou X, Gao Y, Sun S, Yang X, Guddat LW, Yang H, Rao Z, Zhang B. An oligopeptide permease, OppABCD, requires an iron-sulfur cluster domain for functionality. Nat Struct Mol Biol 2024; 31:1072-1082. [PMID: 38548954 DOI: 10.1038/s41594-024-01256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/23/2024] [Indexed: 07/20/2024]
Abstract
Oligopeptide permease, OppABCD, belongs to the type I ABC transporter family. Its role is to import oligopeptides into bacteria for nutrient uptake and to modulate the host immune response. OppABCD consists of a cluster C substrate-binding protein (SBP), OppA, membrane-spanning OppB and OppC subunits, and an ATPase, OppD, that contains two nucleotide-binding domains (NBDs). Here, using cryo-electron microscopy, we determined the high-resolution structures of Mycobacterium tuberculosis OppABCD in the resting state, oligopeptide-bound pre-translocation state, AMPPNP-bound pre-catalytic intermediate state and ATP-bound catalytic intermediate state. The structures show an assembly of a cluster C SBP with its ABC translocator and a functionally required [4Fe-4S] cluster-binding domain in OppD. Moreover, the ATP-bound OppABCD structure has an outward-occluded conformation, although no substrate was observed in the transmembrane cavity. Here, we reveal an oligopeptide recognition and translocation mechanism of OppABCD, which provides a perspective on how this and other type I ABC importers facilitate bulk substrate transfer across the lipid bilayer.
Collapse
Affiliation(s)
- Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China.
| | - Tianyu Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jingxi Liang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Zhiqi Xiong
- Laboratory of Structural Biology, Tsinghua University, Beijing, China
| | - Zhenli Lin
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yao Zhao
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xiaoting Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shan Sun
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane Queensland, Australia
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
- Laboratory of Structural Biology, Tsinghua University, Beijing, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
8
|
He P, Zhao B, He W, Song Z, Pei S, Liu D, Xia H, Wang S, Ou X, Zheng Y, Zhou Y, Song Y, Wang Y, Cao X, Xing R, Zhao Y. Impact of MSMEG5257 Deletion on Mycolicibacterium smegmatis Growth. Microorganisms 2024; 12:770. [PMID: 38674714 PMCID: PMC11052289 DOI: 10.3390/microorganisms12040770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Mycobacterial membrane proteins play a pivotal role in the bacterial invasion of host cells; however, the precise mechanisms underlying certain membrane proteins remain elusive. Mycolicibacterium smegmatis (Ms) msmeg5257 is a hemolysin III family protein that is homologous to Mycobacterium tuberculosis (Mtb) Rv1085c, but it has an unclear function in growth. To address this issue, we utilized the CRISPR/Cas9 gene editor to construct Δmsmeg5257 strains and combined RNA transcription and LC-MS/MS protein profiling to determine the functional role of msmeg5257 in Ms growth. The correlative analysis showed that the deletion of msmeg5257 inhibits ABC transporters in the cytomembrane and inhibits the biosynthesis of amino acids in the cell wall. Corresponding to these results, we confirmed that MSMEG5257 localizes in the cytomembrane via subcellular fractionation and also plays a role in facilitating the transport of iron ions in environments with low iron levels. Our data provide insights that msmeg5257 plays a role in maintaining Ms metabolic homeostasis, and the deletion of msmeg5257 significantly impacts the growth rate of Ms. Furthermore, msmeg5257, a promising drug target, offers a direction for the development of novel therapeutic strategies against mycobacterial diseases.
Collapse
Affiliation(s)
- Ping He
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Bing Zhao
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Wencong He
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Zexuan Song
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Shaojun Pei
- School of Public Health, Peking University, Haidian District, Beijing 100871, China;
| | - Dongxin Liu
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Hui Xia
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Shengfen Wang
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Xichao Ou
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Yang Zheng
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Yang Zhou
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Yuanyuan Song
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Yiting Wang
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Xiaolong Cao
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Ruida Xing
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| | - Yanlin Zhao
- Chinese Center for Disease Control and Prevention, Changping District, Beijing 102206, China; (P.H.); (B.Z.); (W.H.); (Z.S.); (D.L.); (H.X.); (S.W.); (X.O.); (Y.Z.); (Y.Z.); (Y.S.); (Y.W.); (X.C.); (R.X.)
| |
Collapse
|
9
|
Long Y, Wang B, Xie T, Luo R, Tang J, Deng J, Wang C. Overexpression of efflux pump genes is one of the mechanisms causing drug resistance in Mycobacterium tuberculosis. Microbiol Spectr 2024; 12:e0251023. [PMID: 38047702 PMCID: PMC10783012 DOI: 10.1128/spectrum.02510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Gene mutations cannot explain all drug resistance of Mycobacterium tuberculosis, and the overexpression of efflux pump genes is considered another important cause of drug resistance. A total of 46 clinical isolates were included in this study to analyze the overexpression of efflux pump genes in different resistant types of strains. The results showed that overexpression of efflux pump genes did not occur in sensitive strains. There was no significant trend in the overexpression of efflux pump genes before and after one-half of MIC drug induction. By adding the efflux pump inhibitor verapamil, we can observe the decrease of MIC of some drug-resistant strains. At the same time, this study ensured the reliability of calculating the relative expression level of efflux pump genes by screening reference genes and using two reference genes for the normalization of quantitative PCR. Therefore, this study confirms that the overexpression of efflux pump genes plays an important role in the drug resistance of clinical isolates of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ying Long
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Bin Wang
- Zigong Center for Disease Control and Prevention, Zigong, China
| | - Tiancheng Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Ruixin Luo
- Zigong Center for Disease Control and Prevention, Zigong, China
| | - Jing Tang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jianping Deng
- Zigong Center for Disease Control and Prevention, Zigong, China
| | - Chuan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Schildkraut JA, Coolen JPM, Ruesen C, van den Heuvel JJMW, Aceña LE, Wertheim HFL, Jansen RS, Koenderink JB, Te Brake LHM, van Ingen J. The potential role of drug transporters and amikacin modifying enzymes in M. avium. J Glob Antimicrob Resist 2023; 34:161-165. [PMID: 37453496 DOI: 10.1016/j.jgar.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
OBJECTIVES Mycobacterium avium (M. avium) complex bacteria cause opportunistic infections in humans. Treatment yields cure rates of 60% and consists of a macrolide, a rifamycin, and ethambutol, and in severe cases, amikacin. Mechanisms of antibiotic tolerance remain mostly unknown. Therefore, we studied the contribution of efflux and amikacin modification to antibiotic susceptibility. METHODS We characterised M. avium ABC transporters and studied their expression together with other transporters following exposure to clarithromycin, amikacin, ethambutol, and rifampicin. We determined the effect of combining the efflux pump inhibitors berberine, verapamil and CCCP (carbonyl cyanide m-chlorophenyl hydrazone), to study the role of efflux on susceptibility. Finally, we studied the modification of amikacin by M. avium using metabolomic analysis. RESULTS Clustering shows conservation between M. avium and M. tuberculosis and transporters from most bacterial subfamilies (2-6, 7a/b, 10-12) were found. The largest number of transporter encoding genes was up-regulated after clarithromycin exposure, and the least following amikacin exposure. Only berberine increased the susceptibility to clarithromycin. Finally, because of the limited effect of amikacin on transporter expression, we studied amikacin modification and showed that M. avium, in contrast to M. abscessus, is not able to modify amikacin. CONCLUSION We show that M. avium carries ABC transporters from all major families important for antibiotic efflux, including homologues shown to have affinity for drugs included in treatment. Efflux inhibition in M. avium can increase susceptibility, but this effect is efflux pump inhibitor- and antibiotic-specific. Finally, the lack of amikacin modifying activity in M. avium is important for its activity.
Collapse
Affiliation(s)
- Jodie A Schildkraut
- Radboudumc Centre for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Jordy P M Coolen
- Radboudumc Centre for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Carolien Ruesen
- Centre for Epidemiology and Surveillance of Infectious Diseases, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | | | - Laura Edo Aceña
- Radboudumc Centre for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Heiman F L Wertheim
- Radboudumc Centre for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Robert S Jansen
- Department of Microbiology, RIBES, Radboud University, Nijmegen, the Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and toxicology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Lindsey H M Te Brake
- Radboudumc Centre for Infectious Diseases, Department of Pharmacy, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Jakko van Ingen
- Radboudumc Centre for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
11
|
Jaiswal S, Kumar S, Velarde de la Cruz E. Exploring the role of the protein tyrosine kinase a (PtkA) in mycobacterial intracellular survival. Tuberculosis (Edinb) 2023; 142:102398. [PMID: 37657276 DOI: 10.1016/j.tube.2023.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Mycobacterium tuberculosis (Mtb) continues to define new paradigms of host-pathogen interaction. There are several host proteins known which are regulated by Mtb infection. The proteins which regulate host biological processes like apoptosis, cell processes, stress proteins, metabolic enzymes, etc. are targeted by the pathogens. Mtb proteins interact directly or indirectly with host proteins and play an important role in their persistence and intracellular growth. Mtb is an intracellular pathogen. It remains dormant for years within the host without activating its immune system. Mtb Protein tyrosine kinase (PtkA) regulates host anti-apoptotic protein, metabolic enzymes, and several other proteins that are involved in stress regulation, cell proliferation, protein folding, DNA repair, etc. PtkA regulates other mycobacterial proteins and plays an important role in its growth and survival. Here we summarized the current knowledge of PtkA and reviewed its role in mycobacterial intracellular survival as it regulates several other mycobacterial proteins and host proteins. PtkA regulates PtpA secretion which is essential for mycobacterial virulence and could be used as an attractive drug target.
Collapse
Affiliation(s)
- Swati Jaiswal
- University of Massachusetts Chan Medical School, Worcester, United States.
| | | | | |
Collapse
|
12
|
Arredondo-Hernández R, Schcolnik-Cabrera A, Orduña P, Juárez-López D, Varela-Salinas T, López-Vidal Y. Identification of peptides presented through the MHC-II of dendritic cells stimulated with Mycobacterium avium. Immunobiology 2023; 228:152416. [PMID: 37429053 DOI: 10.1016/j.imbio.2023.152416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
Mycobacterium avium (M. avium) represents a species of concern, because of its ability to modulate the host's innate immune response, and therefore influence trajectory of adaptative immunity. Since eradicative response against mycobacteria, and M. tuberculosis/M. avium, relies on peptides actively presented on a Major Histocompatibility complex-II (MHC-II) context, we assessed paradoxical stimulation of Dendritic Cell resulting on immature immunophenotype characterized by membrane minor increase of MHC-II and CD40 despite of high expression of the pro-inflammatory tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in supernatants. Identification of M. avium leucine rich peptides forming short α-helices shutting down Type 1T helper (Th1), contribute to the understanding of immune evasion of an increasingly prevalent pathogen, and may provide a basis for future immunotherapy to infectious and non-infectious disease.
Collapse
Affiliation(s)
- René Arredondo-Hernández
- Laboratorio de Microbioma, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Alejandro Schcolnik-Cabrera
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Patricia Orduña
- Laboratorio de Microbioma, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Daniel Juárez-López
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510, Coyoacán, Ciudad de México, Mexico
| | - Tania Varela-Salinas
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
13
|
Vaval Taylor DM, Xayarath B, Freitag NE. Two Permeases Associated with the Multifunctional CtaP Cysteine Transport System in Listeria monocytogenes Play Distinct Roles in Pathogenesis. Microbiol Spectr 2023; 11:e0331722. [PMID: 37199604 PMCID: PMC10269559 DOI: 10.1128/spectrum.03317-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 04/05/2023] [Indexed: 05/19/2023] Open
Abstract
The soil-dwelling bacterium Listeria monocytogenes survives a multitude of conditions when residing in the outside environment and as a pathogen within host cells. Key to survival within the infected mammalian host is the expression of bacterial gene products necessary for nutrient acquisition. Similar to many bacteria, L. monocytogenes uses peptide import to acquire amino acids. Peptide transport systems play an important role in nutrient uptake as well as in additional functions that include bacterial quorum sensing and signal transduction, recycling of peptidoglycan fragments, adherence to eukaryotic cells, and alterations in antibiotic susceptibility. It has been previously described that CtaP, encoded by lmo0135, is a multifunctional protein associated with activities that include cysteine transport, resistance to acid, membrane integrity, and bacterial adherence to host cells. ctaP is located next to two genes predicted to encode membrane-bound permeases lmo0136 and lmo0137, termed CtpP1 and CtpP2, respectively. Here, we show that CtpP1 and CtpP2 are required for bacterial growth in the presence of low concentrations of cysteine and for virulence in mouse infection models. Taken together, the data identify distinct nonoverlapping roles for two related permeases that are important for the growth and survival of L. monocytogenes within host cells. IMPORTANCE Bacterial peptide transport systems are important for nutrient uptake and may additionally function in a variety of other roles, including bacterial communication, signal transduction, and bacterial adherence to eukaryotic cells. Peptide transport systems often consist of a substrate-binding protein associated with a membrane-spanning permease. The environmental bacterial pathogen Listeria monocytogenes uses the substrate-binding protein CtaP not only for cysteine transport but also for resistance to acid, maintenance of membrane integrity, and bacterial adherence to host cells. In this study, we demonstrate complementary yet distinct functional roles for two membrane permeases, CtpP1 and CtpP2, that are encoded by genes linked to ctaP and that contribute to bacterial growth, invasion, and pathogenicity.
Collapse
Affiliation(s)
- Diandra M. Vaval Taylor
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Bobbi Xayarath
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nancy E. Freitag
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Jeffreys L, Ardrey A, Hafiz TA, Dyer LA, Warman AJ, Mosallam N, Nixon GL, Fisher NE, Hong WD, Leung SC, Aljayyoussi G, Bibby J, Almeida DV, Converse PJ, Fotouhi N, Berry NG, Nuermberger EL, Upton AM, O’Neill PM, Ward SA, Biagini GA. Identification of 2-Aryl-Quinolone Inhibitors of Cytochrome bd and Chemical Validation of Combination Strategies for Respiratory Inhibitors against Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:221-238. [PMID: 36606559 PMCID: PMC9926492 DOI: 10.1021/acsinfecdis.2c00283] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis cytochrome bd quinol oxidase (cyt bd), the alternative terminal oxidase of the respiratory chain, has been identified as playing a key role during chronic infection and presents a putative target for the development of novel antitubercular agents. Here, we report confirmation of successful heterologous expression of M. tuberculosis cytochrome bd. The heterologous M. tuberculosis cytochrome bd expression system was used to identify a chemical series of inhibitors based on the 2-aryl-quinolone pharmacophore. Cytochrome bd inhibitors displayed modest efficacy in M. tuberculosis growth suppression assays together with a bacteriostatic phenotype in time-kill curve assays. Significantly, however, inhibitor combinations containing our front-runner cyt bd inhibitor CK-2-63 with either cyt bcc-aa3 inhibitors (e.g., Q203) and/or adenosine triphosphate (ATP) synthase inhibitors (e.g., bedaquiline) displayed enhanced efficacy with respect to the reduction of mycobacterium oxygen consumption, growth suppression, and in vitro sterilization kinetics. In vivo combinations of Q203 and CK-2-63 resulted in a modest lowering of lung burden compared to treatment with Q203 alone. The reduced efficacy in the in vivo experiments compared to in vitro experiments was shown to be a result of high plasma protein binding and a low unbound drug exposure at the target site. While further development is required to improve the tractability of cyt bd inhibitors for clinical evaluation, these data support the approach of using small-molecule inhibitors to target multiple components of the branched respiratory chain of M. tuberculosis as a combination strategy to improve therapeutic and pharmacokinetic/pharmacodynamic (PK/PD) indices related to efficacy.
Collapse
Affiliation(s)
- Laura
N. Jeffreys
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Alison Ardrey
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Taghreed A. Hafiz
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Lauri-Anne Dyer
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Ashley J. Warman
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Nada Mosallam
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Gemma L. Nixon
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Nicholas E. Fisher
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - W. David Hong
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Suet C. Leung
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Ghaith Aljayyoussi
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Jaclyn Bibby
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Deepak V. Almeida
- Center
for Tuberculosis Research, Johns Hopkins
University School of Medicine, Baltimore, Maryland21205, United States
| | - Paul J. Converse
- Center
for Tuberculosis Research, Johns Hopkins
University School of Medicine, Baltimore, Maryland21205, United States
| | - Nader Fotouhi
- Global
Alliance for TB Drug Development, New York, New York10005, United States
| | - Neil G. Berry
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Eric L. Nuermberger
- Center
for Tuberculosis Research, Johns Hopkins
University School of Medicine, Baltimore, Maryland21205, United States
| | - Anna M. Upton
- Global
Alliance for TB Drug Development, New York, New York10005, United States
- Evotec
(US) Inc., 303B College Road East, Princeton, New Jersey08540, United States
| | - Paul M. O’Neill
- Department
of Chemistry, University of Liverpool, LiverpoolL69 7ZD, U.K.
| | - Stephen A. Ward
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| | - Giancarlo A. Biagini
- Centre
for Drugs and Diagnostics, Department of Tropical Infectious Diseases, Liverpool School of Tropical Medicine, Pembroke Place, LiverpoolL3 5QA, U.K.
| |
Collapse
|
15
|
Adhikary A, Chatterjee D, Ghosh AS. ABC superfamily transporter Rv1273c of Mycobacterium tuberculosis acts as a multidrug efflux pump. FEMS Microbiol Lett 2023; 370:fnad114. [PMID: 37881010 DOI: 10.1093/femsle/fnad114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/17/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023] Open
Abstract
Efflux pump-mediated drug resistance in bacteria is a common occurrence effective for the general survival of the organism. The Mycobacterium tuberculosis genome has an abundance of adenosine triphosphate (ATP) dependent cassette transporter genes but only a handful of them are documented for their contribution to drug resistance. In this study, we inspected the potential of an ABC transporter Rv1273c from M. tuberculosis as a multidrug efflux pump and a contributor to intrinsic drug resistance. Expression of Rv1273c in Escherichia coli and M. smegmatis conferred tolerance to various structurally unrelated antibiotics. Lower accumulation of fluoroquinolones in intact E. coli and M. smegmatis cells expressing the transporter implied its active efflux activity. Energy-dependent efflux by Rv1273c was observed in real time using the lipophilic dye Nile Red. Expression of Rv1273c also resulted in an increase in biofilm formation by E. coli and M. smegmatis cells. Overall, the results indicate the possibility that Rv1273c might be a multidrug transporter with a wide substrate range and a probable contributor to biofilm formation.
Collapse
Affiliation(s)
- Anwesha Adhikary
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Debasmita Chatterjee
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Anindya Sundar Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
16
|
Radhakrishnan A, Brown CM, Guy CS, Cooper C, Pacheco-Gomez R, Stansfeld PJ, Fullam E. Interrogation of the Pathogen Box reveals small molecule ligands against the mycobacterial trehalose transporter LpqY-SugABC. RSC Med Chem 2022; 13:1225-1233. [PMID: 36320433 PMCID: PMC9579956 DOI: 10.1039/d2md00104g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/01/2022] [Indexed: 12/04/2022] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, claims ∼1.5 million lives annually. Effective chemotherapy is essential to control TB, however the emergence of drug-resistant strains of TB have seriously threatened global attempts to control and eradicate this deadly pathogen. Trehalose recycling via the LpqY-SugABC importer is essential for the virulence and survival of Mtb and inhibiting or hijacking this transport system is an attractive approach for the development of novel anti-tubercular and diagnostic agents. Therefore, we interrogated the drug-like compounds in the open-source Medicines for Malaria Pathogen Box and successfully identified seven compounds from the TB, kinetoplastids and reference compound disease sets that recognise LpqY. The molecules have diverse chemical scaffolds, are not specific trehalose analogues, and may be used as novel templates to facilitate the development of therapeutics that kill Mtb with a novel mechanism of action via the mycobacterial trehalose LpqY-SugABC transport system.
Collapse
Affiliation(s)
- Anjana Radhakrishnan
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| | - Chelsea M Brown
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| | - Collette S Guy
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| | - Charlotte Cooper
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| | - Raul Pacheco-Gomez
- Malvern Panalytical Ltd, Enigma Business Park Grovewood Road Malvern WR14 1XZ UK
| | - Phillip J Stansfeld
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
| | - Elizabeth Fullam
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK +44 (0)2476 574239
| |
Collapse
|
17
|
Singh N, Sharma N, Singh P, Pandey M, Ilyas M, Sisodiya L, Choudhury T, Gosain TP, Singh R, Atmakuri K. HupB, a nucleoid-associated protein, is critical for survival of Mycobacterium tuberculosis under host-mediated stresses and for enhanced tolerance to key first-line antibiotics. Front Microbiol 2022; 13:937970. [PMID: 36071978 PMCID: PMC9441915 DOI: 10.3389/fmicb.2022.937970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
To survive and establish its niche, Mycobacterium tuberculosis (Mtb) engages in a steady battle against an array of host defenses and a barrage of antibiotics. Here, we demonstrate that Mtb employs HupB, a nucleoid-associated protein (NAP) as its key player to simultaneously battle and survive in these two stress-inducing fronts. Typically, NAPs are key to bacterial survival under a wide array of environmental or host-mediated stresses. Here, we report that for Mtb to survive under different macrophage-induced assaults including acidic pH, nutrient depletion, oxidative and nitrosative stresses, HupB presence is critical. As expected, the hupB knockout mutant is highly sensitive to these host-mediated stresses. Furthermore, Mtb aptly modulates HupB protein levels to overcome these stresses. We also report that HupB aids Mtb to gain tolerance to high levels of rifampicin (RIF) and isoniazid (INH) exposure. Loss of hupB makes Mtb highly susceptible to even short exposures to reduced amounts of RIF and INH. Overexpressing hupB in Mtb or complementing hupB in the hupB knockout mutant triggers enhanced survival of Mtb under these stresses. We also find that upon loss of hupB, Mtb significantly enhances the permeability of its cell wall by modulating the levels of several surface lipids including phthiocerol dimycocerosates (PDIMs), thus possibly influencing overall susceptibility to host-mediated stresses. Loss of hupB also downregulates efflux pump expression possibly influencing increased susceptibility to INH and RIF. Finally, we find that therapeutic targeting of HupB with SD1, a known small molecule inhibitor, significantly enhances Mtb susceptibility to INH and THP-1 macrophages and significantly reduces MIC to INH. Thus, our data strongly indicate that HupB is a highly promising therapeutic target especially for potential combinatorial shortened therapy with reduced INH and RIF doses.
Collapse
Affiliation(s)
- Niti Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Manipal University, Manipal, Karnataka, India
| | - Nishant Sharma
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Padam Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Manitosh Pandey
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Department of Life Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Mohd Ilyas
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Lovely Sisodiya
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tejaswini Choudhury
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tannu Priya Gosain
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ramandeep Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Krishnamohan Atmakuri
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- *Correspondence: Krishnamohan Atmakuri
| |
Collapse
|
18
|
Sołtys K, Tarczewska A, Bystranowska D, Sozańska N. Getting Closer to Decrypting the Phase Transitions of Bacterial Biomolecules. Biomolecules 2022; 12:907. [PMID: 35883463 PMCID: PMC9312465 DOI: 10.3390/biom12070907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/31/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) of biomolecules has emerged as a new paradigm in cell biology, and the process is one proposed mechanism for the formation of membraneless organelles (MLOs). Bacterial cells have only recently drawn strong interest in terms of studies on both liquid-to-liquid and liquid-to-solid phase transitions. It seems that these processes drive the formation of prokaryotic cellular condensates that resemble eukaryotic MLOs. In this review, we present an overview of the key microbial biomolecules that undergo LLPS, as well as the formation and organization of biomacromolecular condensates within the intracellular space. We also discuss the current challenges in investigating bacterial biomacromolecular condensates. Additionally, we highlight a summary of recent knowledge about the participation of bacterial biomolecules in a phase transition and provide some new in silico analyses that can be helpful for further investigations.
Collapse
Affiliation(s)
- Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland; (A.T.); (D.B.); (N.S.)
| | | | | | | |
Collapse
|
19
|
Shantal CJN, Juan CC, Lizbeth BUS, Carlos HGJ, Estela GPB. Candida glabrata is a successful pathogen: an artist manipulating the immune response. Microbiol Res 2022; 260:127038. [DOI: 10.1016/j.micres.2022.127038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
|
20
|
Birhanu AG, Gómez-Muñoz M, Kalayou S, Riaz T, Lutter T, Yimer SA, Abebe M, Tønjum T. Proteome Profiling of Mycobacterium tuberculosis Cells Exposed to Nitrosative Stress. ACS OMEGA 2022; 7:3470-3482. [PMID: 35128256 PMCID: PMC8811941 DOI: 10.1021/acsomega.1c05923] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Reactive nitrogen species (RNS) are secreted by human cells in response to infection by Mycobacterium tuberculosis (Mtb). Although RNS can kill Mtb under some circumstances, Mtb can adapt and survive in the presence of RNS by a process that involves modulation of gene expression. Previous studies focused primarily on stress-related changes in the Mtb transcriptome. This study unveils changes in the Mtb proteome in response to a sub-lethal dose of nitric oxide (NO) over several hours of exposure. Proteins were identified using liquid chromatography coupled with electrospray ionization mass spectrometry (LC-MS/MS). A total of 2911 Mtb proteins were identified, of which 581 were differentially abundant (DA) after exposure to NO in at least one of the four time points (30 min, 2 h, 6 h, and 20 h). The proteomic response to NO was marked by two phases, with few DA proteins in the early phase and a multitude of DA proteins in the later phase. The efflux pump Rv1687 stood out as being the only protein more abundant at all the time points and might play a role in the early protection of Mtb against nitrosative stress. These changes appeared to be compensatory in nature, contributing to iron homeostasis, energy metabolism, and other stress responses. This study thereby provides new insights into the response of Mtb to NO at the level of proteomics.
Collapse
Affiliation(s)
- Alemayehu Godana Birhanu
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Institute
of Biotechnology, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| | - Marta Gómez-Muñoz
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Shewit Kalayou
- Department
of Microbiology, Oslo University Hospital, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- International
Center of Insect Physiology and Ecology (ICIPE), P.O. Box 30772-00100 Nairobi, Kenya
| | - Tahira Riaz
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Timo Lutter
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| | - Solomon Abebe Yimer
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Coalition
for Epidemic Preparedness Innovations (CEPI), P.O. Box 123, Torshov, 0412 Oslo, Norway
| | - Markos Abebe
- Armauer
Hansen Research Institute, Jimma Road, P.O. Box 1005 Addis Ababa, Ethiopia
| | - Tone Tønjum
- Department
of Microbiology, University of Oslo, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
- Department
of Microbiology, Oslo University Hospital, P.O. Box 4950, Nydalen, NO-0424 Oslo, Norway
| |
Collapse
|
21
|
Cui Z, Li X, Shin J, Gamper H, Hou YM, Sacchettini JC, Zhang J. Interplay between an ATP-binding cassette F protein and the ribosome from Mycobacterium tuberculosis. Nat Commun 2022; 13:432. [PMID: 35064151 PMCID: PMC8782954 DOI: 10.1038/s41467-022-28078-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/07/2022] [Indexed: 12/22/2022] Open
Abstract
EttA, energy-dependent translational throttle A, is a ribosomal factor that gates ribosome entry into the translation elongation cycle. A detailed understanding of its mechanism of action is limited due to the lack of high-resolution structures along its ATPase cycle. Here we present the cryo-electron microscopy (cryo-EM) structures of EttA from Mycobacterium tuberculosis (Mtb), referred to as MtbEttA, in complex with the Mtb 70S ribosome initiation complex (70SIC) at the pre-hydrolysis (ADPNP) and transition (ADP-VO4) states, and the crystal structure of MtbEttA alone in the post-hydrolysis (ADP) state. We observe that MtbEttA binds the E-site of the Mtb 70SIC, remodeling the P-site tRNA and the ribosomal intersubunit bridge B7a during the ribosomal ratcheting. In return, the rotation of the 30S causes conformational changes in MtbEttA, forcing the two nucleotide-binding sites (NBSs) to alternate to engage each ADPNP in the pre-hydrolysis states, followed by complete engagements of both ADP-VO4 molecules in the ATP-hydrolysis transition states. In the post-hydrolysis state, the conserved ATP-hydrolysis motifs of MtbEttA dissociate from both ADP molecules, leaving two nucleotide-binding domains (NBDs) in an open conformation. These structures reveal a dynamic interplay between MtbEttA and the Mtb ribosome, providing insights into the mechanism of translational regulation by EttA-like proteins.
Collapse
Affiliation(s)
- Zhicheng Cui
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaojun Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Joonyoung Shin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Junjie Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
22
|
Zhang Q, Liu X, Liu H, Zhang B, Yang H, Mi K, Guddat LW, Rao Z. Conformational Changes in a Macrolide Antibiotic Binding Protein From Mycobacterium smegmatis Upon ADP Binding. Front Microbiol 2021; 12:780954. [PMID: 34956144 PMCID: PMC8696161 DOI: 10.3389/fmicb.2021.780954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Rv3197 (MABP-1), a non-canonical ABC protein in Mycobacterium tuberculosis, has ATPase activity and confers inducible resistance to the macrolide family of antibiotics. Here we have shown that MSMEG_1954, the homolog of Rv3197 in M. smegmatis, has a similar function of conferring macrolide resistance. Crystal structures of apo-MSMEG_1954 (form1 and form 2) and MSMEG_1954 in complex with ADP have been determined. These three structures show that MSMEG_1954 has at least two different conformations we identify as closed state (MSMEG_1954-form 1) and open state (MSMEG_1954-form 2 and MSMEG_1954-ADP). Structural superimposition shows that the MSMEG_1954-form 2 and MSMEG_1954-ADP complex have similar conformation to that observed for MABP-1 and MABP-1-erythromicin complex structure. However, the antibiotic binding pocket in MSMEG_1954-form 1 is completely blocked by the N-terminal accessory domain. When bound by ADP, the N-terminal accessory domain undergoes conformational change, which results in the open of the antibiotic binding pocket. Because of the degradation of N terminal accessory domain in MSMSG_1954-form 2, it is likely to represent a transitional state between MSMEG_1954-form 1 and MSMEG_1954-ADP complex structure.
Collapse
Affiliation(s)
- Qingqing Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.,Innovative Center for Pathogen Research, Guangzhou Laboratory, Guangzhou, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Bingjie Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Kaixia Mi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.,Shanghai Institute for Advanced Immunochemical Studies and School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China.,Laboratory of Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Khazaal S, Al Safadi R, Osman D, Hiron A, Gilot P. Investigation of the polyamine biosynthetic and transport capability of Streptococcus agalactiae: the non-essential PotABCD transporter. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34910617 PMCID: PMC8744998 DOI: 10.1099/mic.0.001124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Polyamines constitute a group of organic polycations positively charged at physiological pH. They are involved in a large variety of biological processes, including the protection against physiological stress. In this study, we show that the genome of Streptococcus agalactiae, a commensal bacterium of the intestine and the vagina and one of the most common agents responsible of neonate infections, does not encode proteins homologous to the specific enzymes involved in the known polyamine synthetic pathways. This lack of biosynthetic capability was verified experimentally by TLC analysis of the intracellular content of S. agalactiae grown in the absence of polyamines. However, similar analyses showed that the polyamines spermidine, spermine and putrescine can be imported from the growth media into the bacteria. We found that all strains of S. agalactiae possess the genes encoding the polyamine ABC transporter PotABCD. We demonstrated that these genes form an operon with folK, a gene involved in folate biosynthesis, murB, a gene involved in peptidoglycan biosynthesis, and with clc, a gene encoding a Cl−/H+ antiporter involved in resistance to acid stress in Escherichia coli. Transcription of the potABCD operon is induced by peroxide-induced oxidative stress but not by acidic stress. Spermidine and spermine were found to be inducers of potABCD transcription at pH 7.4 whereas putrescine induces this expression only during peroxide-induced oxidative stress. Using a deletion mutant of potABCD, we were nevertheless unable to associate phenotypic traits to the PotABCD transporter, probably due to the existence of one or more as yet identified transporters with a redundant action.
Collapse
Affiliation(s)
- Sarah Khazaal
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, 37032 Tours, France.,Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, 1300, Lebanon
| | - Rim Al Safadi
- Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, 1300, Lebanon
| | - Dani Osman
- Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, 1300, Lebanon
| | - Aurélia Hiron
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, 37032 Tours, France
| | - Philippe Gilot
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, 37032 Tours, France
| |
Collapse
|
24
|
Karlikowska M, Singh A, Bhatt A, Ott S, Bottrill AR, Besra GS, Fullam E. Biochemical and phenotypic characterisation of the Mycobacterium smegmatis transporter UspABC. Cell Surf 2021; 7:100052. [PMID: 34296047 PMCID: PMC8281650 DOI: 10.1016/j.tcsw.2021.100052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 11/08/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular human pathogen that has evolved to survive in a nutrient limited environment within the host for decades. Accordingly, Mtb has developed strategies to acquire scarce nutrients and the mycobacterial transporter systems provide an important route for the import of key energy sources. However, the physiological role of the Mtb transporters and their substrate preference(s) are poorly characterised. Previous studies have established that the Mtb UspC solute-binding domain recognises amino- and phosphorylated-sugars, indicating that the mycobacterial UspABC transporter plays a key role in the import of peptidoglycan precursors. Herein, we have used a wide array of approaches to investigate the role of UspABC in Mycobacterium smegmatis by analysis of mutant strains that either lack the solute binding domain: ΔuspC or the entire transport complex: ΔuspABC. Analysis of mycobacterial transcripts shows that the uspABC system is functionally expressed in mycobacteria as a contiguous reading frame. Topology mapping confirms an Nin-Cin orientation of the UspAB integral membrane spanning domains. Phenotypic microarray profiling of commercially available sugars suggests, unexpectedly, that the uspC and ΔuspABC mutants had different carbon utilisation profiles and that neither strain utilised glucose-1-phosphate. Furthermore, proteomics analysis showed an alteration in the abundance of proteins involved in sugar and lipid metabolism, crucial for cell envelope synthesis, and we propose that UspABC has an important role in determining the interplay between these pathways.
Collapse
Affiliation(s)
| | - Albel Singh
- Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Apoorva Bhatt
- Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Sascha Ott
- Warwick Medical School, University of Warwick, CV4 7AL, UK
- Bioinformatics Research Technology Platform, University of Warwick, Coventry CV4 7AL, UK
| | | | - Gurdyal S. Besra
- Institute of Microbiology & Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Elizabeth Fullam
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
25
|
De la Torre LI, Vergara Meza JG, Cabarca S, Costa-Martins AG, Balan A. Comparison of carbohydrate ABC importers from Mycobacterium tuberculosis. BMC Genomics 2021; 22:841. [PMID: 34798821 PMCID: PMC8603345 DOI: 10.1186/s12864-021-07972-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis, the etiological agent of tuberculosis, has at least four ATP-Binding Cassette (ABC) transporters dedicated to carbohydrate uptake: LpqY/SugABC, UspABC, Rv2038c-41c, and UgpAEBC. LpqY/SugABC transporter is essential for M. tuberculosis survival in vivo and potentially involved in the recycling of cell wall components. The three-dimensional structures of substrate-binding proteins (SBPs) LpqY, UspC, and UgpB were described, however, questions about how these proteins interact with the cognate transporter are still being explored. Components of these transporters, such as SBPs, show high immunogenicity and could be used for the development of diagnostic and therapeutic tools. In this work, we used a phylogenetic and structural bioinformatics approach to compare the four systems, in an attempt to predict functionally important regions. RESULTS Through the analysis of the putative orthologs of the carbohydrate ABC importers in species of Mycobacterium genus it was shown that Rv2038c-41c and UgpAEBC systems are restricted to pathogenic species. We showed that the components of the four ABC importers are phylogenetically separated into four groups defined by structural differences in regions that modulate the functional activity or the interaction with domain partners. The regulatory region in nucleotide-binding domains, the periplasmic interface in transmembrane domains and the ligand-binding pocket of the substrate-binding proteins define their substrates and segregation in different branches. The interface between transmembrane domains and nucleotide-binding domains show conservation of residues and charge. CONCLUSIONS The presence of four ABC transporters in M. tuberculosis dedicated to uptake and transport of different carbohydrate sources, and the exclusivity of at least two of them being present only in pathogenic species of Mycobacterium genus, highlights their relevance in virulence and pathogenesis. The significant differences in the SBPs, not present in eukaryotes, and in the regulatory region of NBDs can be explored for the development of inhibitory drugs targeting the bacillus. The possible promiscuity of NBDs also contributes to a less specific and more comprehensive control approach.
Collapse
Affiliation(s)
- Lilia I De la Torre
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- Genectics and Molecular Biology Postgraduate Program, Institute of Biology, State University of Campinas, São Paulo, Brazil
- Biomedical Research Group, University of Sucre, Sucre, Colombia
| | - José G Vergara Meza
- Biomedical Research Group, University of Sucre, Sucre, Colombia
- Department of Parasitology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Sindy Cabarca
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- Genectics and Molecular Biology Postgraduate Program, Institute of Biology, State University of Campinas, São Paulo, Brazil
- Biomedical Research Group, University of Sucre, Sucre, Colombia
| | - André G Costa-Martins
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andrea Balan
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil.
- Genectics and Molecular Biology Postgraduate Program, Institute of Biology, State University of Campinas, São Paulo, Brazil.
- Laboratory of Applied Structural Biology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374; Cidade Universitária, São Paulo, Brazil.
| |
Collapse
|
26
|
NTM Infection Risk and Trace Metals in Surface Water: A Population-Based Ecologic Epidemiologic Study in Oregon. Ann Am Thorac Soc 2021; 19:543-550. [PMID: 34582742 DOI: 10.1513/annalsats.202101-053oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Nontuberculous mycobacteria (NTM) are ubiquitous environmental bacteria, and some pathogenic species cause lung disease. Environmental factors contribute to increased NTM abundance, with higher potential for exposure and infection. OBJECTIVE To identify water-quality constituents that influence the risk of NTM infection in Oregon. METHODS We conducted a population-based cohort study using patient incidence data from the Oregon statewide NTM laboratory data collected as part of a public health surveillance project from 2007 through 2012. To estimate the risk of NTM Pulmonary Infection (PI) from exposure to water constituents, we extracted water-quality data from the Water Quality Portal and associated these data with corresponding patient county of residence. Using generalized linear models, we modeled two outcomes: Mycobacterium avium complex species PI and Mycobacterium abscessus group species PI. RESULTS For every 1-unit increase in the log concentration of vanadium in surface water, infection risk increased by 49% among persons with Mycobacterium avium complex PI. Among those with Mycobacterium abscessus PI, we observed that for every 1-unit increase in the log concentration of molybdenum in surface water, infection risk increased by 41%. The highest risk of infection due to Mycobacterium abscessus group infection was concentrated in counties within the Northwestern region of Oregon. High infection risk associated with Mycobacterium avium complex species did not show any geographic pattern. CONCLUSIONS Concentrations of the trace metals molybdenum and vanadium in surface water sources were associated with NTM infection in Oregon. These findings may help identify regions at higher risk of NTM infection to guide risk reduction strategies.
Collapse
|
27
|
Foreman HCC, Frank A, Stedman TT. Determination of variable region sequences from hybridoma immunoglobulins that target Mycobacterium tuberculosis virulence factors. PLoS One 2021; 16:e0256079. [PMID: 34415957 PMCID: PMC8378720 DOI: 10.1371/journal.pone.0256079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/29/2021] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects one-quarter of the world's population. Mtb and HIV coinfections enhance the comorbidity of tuberculosis (TB) and AIDS, accounting for one-third of all AIDS-associated mortalities. Humoral antibody to Mtb correlates with TB susceptibility, and engineering of Mtb antibodies may lead to new diagnostics and therapeutics. The characterization and validation of functional immunoglobulin (Ig) variable chain (IgV) sequences provide a necessary first step towards developing therapeutic antibodies against pathogens. The virulence-associated Mtb antigens SodA (Superoxide Dismutase), KatG (Catalase), PhoS1/PstS1 (regulatory factor), and GroES (heat shock protein) are potential therapeutic targets but lacked IgV sequence characterization. Putative IgV sequences were identified from the mRNA of hybridomas targeting these antigens and isotype-switched into a common immunoglobulin fragment crystallizable region (Fc region) backbone, subclass IgG2aκ. Antibodies were validated by demonstrating recombinant Ig assembly and secretion, followed by the determination of antigen-binding specificity using ELISA and immunoblot assay.
Collapse
Affiliation(s)
- Hui-Chen Chang Foreman
- BEI Resources, ATCC., Manassas, Virginia, United States of America
- * E-mail: (HCCF); (TTS)
| | - Andrew Frank
- BEI Resources, ATCC., Manassas, Virginia, United States of America
| | - Timothy T. Stedman
- BEI Resources, ATCC., Manassas, Virginia, United States of America
- * E-mail: (HCCF); (TTS)
| |
Collapse
|
28
|
Cabarca S, Frazão de Souza M, Albert de Oliveira A, Vignoli Muniz GS, Lamy MT, Vinicius Dos Reis C, Takarada J, Effer B, Souza LS, Iriarte de la Torre L, Couñago R, Pinto Oliveira CL, Balan A. Structure of the Mycobacterium tuberculosis cPknF and conformational changes induced in forkhead-associated regulatory domains. Curr Res Struct Biol 2021; 3:165-178. [PMID: 34382010 PMCID: PMC8339232 DOI: 10.1016/j.crstbi.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) has 11 Serine-Threonine Protein Kinases (STPK) that control numerous physiological processes, including cell growth, cell division, metabolic flow, and transcription. PknF is one of the 11 Mtb STPKs that has, among other substrates, two FHA domains (FHA-1 and FHA-2) of the ATP-Binding Cassette (ABC) transporter Rv1747. Phosphorylation in T152 and T210 located in a non-structured linker that connects Rv1747 FHA domains is considerate to be the regulatory mechanism of the transporter. In this work, we resolved the three-dimensional structure of the PknF catalytic domain (cPknF) in complex with the human kinase inhibitor IKK16. cPknF is conserved when compared to other STPKs but shows specific residues in the binding site where the inhibitor is positioned. In addition, using Small Angle X-Ray Scattering analysis we monitored the behavior of the wild type and three FHA-phosphomimetic mutants in solution, and measured the cPknF affinity for these domains. The kinase showed higher affinity for the non-phosphorylated wild type domain and preference for phosphorylation of T152 inducing the rapprochement of the domains and significant structural changes. The results shed some light on the process of regulating the transporter's activity by phosphorylation and arises important questions about evolution and importance of this mechanism for the bacillus. Rv1747 is an ABC transporter which activity is regulated by PknF. cPknF is a typical Serine/Threonine Protein Kinase that can be explored as drug target. The higher affinity of cPknF for FHA-2 is important for further conformational changes. Rv1747 activation model reveals a concatenated activity essential for the system.
Collapse
Affiliation(s)
- Sindy Cabarca
- Programa de Pós-graduação em Genética, Universidade Estadual de Campinas, Campinas, 13083-862, SP, Brazil.,Laboratório de Biologia Estrutural Aplicada LBEA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.,Grupo Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, 700001, Sucre, Colombia
| | - Maximilia Frazão de Souza
- Grupo de Fluidos Complexos, Departamento de Física Experimental, Instituto de Física, Universidade de São Paulo, São Paulo, 05508-090, SP, Brazil
| | - Andrew Albert de Oliveira
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Gabriel S Vignoli Muniz
- Departamento de Física Geral, Instituto de Física, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - M Teresa Lamy
- Departamento de Física Geral, Instituto de Física, Universidade de São Paulo, São Paulo, 05508-090, Brazil
| | - Caio Vinicius Dos Reis
- Structural Genomics Consortium, Universidade Estadual de Campinas, Campinas, 13083-886, São Paulo, Brazil
| | - Jessica Takarada
- Structural Genomics Consortium, Universidade Estadual de Campinas, Campinas, 13083-886, São Paulo, Brazil
| | - Brian Effer
- Center of Excellence in Traslational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de la Frontera, Temuco, 01145, Chile
| | - Lucas Santos Souza
- Laboratório de Biologia Estrutural Aplicada LBEA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Lilia Iriarte de la Torre
- Programa de Pós-graduação em Genética, Universidade Estadual de Campinas, Campinas, 13083-862, SP, Brazil.,Laboratório de Biologia Estrutural Aplicada LBEA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil.,Grupo Investigaciones Biomédicas, Universidad de Sucre, Sincelejo, 700001, Sucre, Colombia
| | - Rafael Couñago
- Structural Genomics Consortium, Universidade Estadual de Campinas, Campinas, 13083-886, São Paulo, Brazil
| | - Cristiano Luis Pinto Oliveira
- Grupo de Fluidos Complexos, Departamento de Física Experimental, Instituto de Física, Universidade de São Paulo, São Paulo, 05508-090, SP, Brazil
| | - Andrea Balan
- Laboratório de Biologia Estrutural Aplicada LBEA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
29
|
Identification and characterization of metal uptake ABC transporters in Mycobacterium tuberculosis unveil their ligand specificity. Int J Biol Macromol 2021; 185:324-337. [PMID: 34171249 DOI: 10.1016/j.ijbiomac.2021.06.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/09/2023]
Abstract
Mycobacterium tuberculosis, one of the major threats to mankind, requires micronutrients like metal ions for their survival and pathogenicity inside the host system. Intracellular pathogens such as M. tuberculosis have co-evolved to combat the nutritional immunity developed by the host. It has developed eminent mechanisms to sequester essential metal ions from the host system. One such prominent mechanism to scavenge metal ions to thrive in the host cell involves ATP-binding cassette (ABC) transporters, which transport metal ions (in free and/or complex forms) across the cell membrane. This study employs a high-throughput data mining analysis to identify open reading frames (ORFs) encoding metal uptake ABC transporters in M. tuberculosis H37Rv. In total, 19 ORFs resulting in seven ABC transport systems and two P-type ATPases were identified, which are potentially involved in the uptake of different metal ions. The results also suggest the existence of a subunit sharing mechanism in M. tuberculosis where the transmembrane and nucleotide binding domains are shared among different ABC transport systems indicating the import of multiple substrates via a single ABC transporter. Thus, this study reflects an overview of the repertoire of metal-specific ABC transport systems in M. tuberculosis H37Rv, providing potential therapeutic targets for the future.
Collapse
|
30
|
Laws M, Jin P, Rahman KM. Efflux pumps in Mycobacterium tuberculosis and their inhibition to tackle antimicrobial resistance. Trends Microbiol 2021; 30:57-68. [PMID: 34052094 DOI: 10.1016/j.tim.2021.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
Tuberculosis (TB), an infectious disease caused by the bacterium Mycobacterium tuberculosis, was the leading cause of mortality worldwide in 2019 due to a single infectious agent. The growing threat of strains of M. tuberculosis untreatable by modern antibiotic regimens only exacerbates this problem. In response to this continued public health emergency, research into methods of potentiating currently approved antimicrobial agents against resistant strains of M. tuberculosis is an urgent priority, and a key strategy in this regard is the design of mycobacterial efflux pump inhibitors (EPIs). This review summarises the current state of knowledge surrounding drug-related efflux pumps in M. tuberculosis and presents recent updates within the field of mycobacterial EPIs with a view to aiding the design of an effective adjunct therapy to overcome efflux-mediated resistance in TB.
Collapse
Affiliation(s)
- Mark Laws
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Peiqin Jin
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Khondaker Miraz Rahman
- School of Cancer and Pharmaceutical Sciences, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
31
|
Mycobacterium tuberculosis Binds Human Serum Amyloid A, and the Interaction Modulates the Colonization of Human Macrophages and the Transcriptional Response of the Pathogen. Cells 2021; 10:cells10051264. [PMID: 34065319 PMCID: PMC8160739 DOI: 10.3390/cells10051264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 01/10/2023] Open
Abstract
As a very successful pathogen with outstanding adaptive properties, Mycobacterium tuberculosis (Mtb) has developed a plethora of sophisticated mechanisms to subvert host defenses and effectively enter and replicate in the harmful environment inside professional phagocytes, namely, macrophages. Here, we demonstrated the binding interaction of Mtb with a major human acute phase protein, namely, serum amyloid A (SAA1), and identified AtpA (Rv1308), ABC (Rv2477c), EspB (Rv3881c), TB 18.6 (Rv2140c), and ThiC (Rv0423c) membrane proteins as mycobacterial effectors responsible for the pathogen-host protein interplay. SAA1-opsonization of Mtb prior to the infection of human macrophages favored bacterial entry into target phagocytes accompanied by a substantial increase in the load of intracellularly multiplying and surviving bacteria. Furthermore, binding of human SAA1 by Mtb resulted in the up- or downregulation of the transcriptional response of tubercle bacilli. The most substantial changes were related to the increased expression level of the genes of two operons encoding mycobacterial transporter systems, namely, mmpL5/mmpS5 (rv0676c), and rv1217c, rv1218c. Therefore, we postulate that during infection, Mtb-SAA1 binding promotes the infection of host macrophages by tubercle bacilli and modulates the functional response of the pathogen.
Collapse
|
32
|
Jackson M, Stevens CM, Zhang L, Zgurskaya HI, Niederweis M. Transporters Involved in the Biogenesis and Functionalization of the Mycobacterial Cell Envelope. Chem Rev 2021; 121:5124-5157. [PMID: 33170669 PMCID: PMC8107195 DOI: 10.1021/acs.chemrev.0c00869] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The biology of mycobacteria is dominated by a complex cell envelope of unique composition and structure and of exceptionally low permeability. This cell envelope is the basis of many of the pathogenic features of mycobacteria and the site of susceptibility and resistance to many antibiotics and host defense mechanisms. This review is focused on the transporters that assemble and functionalize this complex structure. It highlights both the progress and the limits of our understanding of how (lipo)polysaccharides, (glyco)lipids, and other bacterial secretion products are translocated across the different layers of the cell envelope to their final extra-cytoplasmic location. It further describes some of the unique strategies evolved by mycobacteria to import nutrients and other products through this highly impermeable barrier.
Collapse
Affiliation(s)
- Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Casey M. Stevens
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Lei Zhang
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| | - Helen I. Zgurskaya
- University of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Parkway, Norman, OK 73019, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL 35294, USA
| |
Collapse
|
33
|
In Silico Approach for Phytocompound-Based Drug Designing to Fight Efflux Pump-Mediated Multidrug-Resistant Mycobacterium tuberculosis. Appl Biochem Biotechnol 2021; 193:1757-1779. [PMID: 33826064 PMCID: PMC8024441 DOI: 10.1007/s12010-021-03557-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Tuberculosis (TB), caused by the bacteria Mycobacterium tuberculosis, is one of the principal causes of death in the world despite the existence of a significant number of antibiotics aimed against it. This is mainly due to the drug resistance mechanisms present in the bacterium, which leads to multidrug-resistant tuberculosis (MDR-TB). Additionally, the development of new antibiotics has become limited over the years. Although there are various drug resistance mechanisms present, efflux pumps are of utmost importance because they extrude out several dissimilar antitubercular drugs out of the cell. There are many efflux pump proteins present in Mycobacterium tuberculosis. Therefore, blocking these efflux pumps by inhibitors can raise the efficacy of the existing antibiotics and may also pave the path for the discovery and synthesis of new drugs. Plant compounds can act as a resource for the development of efflux pump inhibitors (EPIs), which may eventually replace or augment the current therapeutic options. This is mainly because plants have been traditionally used for ages for food or treatment and are considered safe with little or no side effects. Various computational tools are available which are used for the virtual screening of a large number of phytocompounds within a short span of time. This review aims to highlight the mechanism and appearance of drug resistance in Mycobacterium tuberculosis with emphasis on efflux pumps along with the significance of phytochemicals as inhibitors of these pumps and their screening strategy by computational approaches.
Collapse
|
34
|
Cryo-EM structure of the full-length WzmWzt ABC transporter required for lipid-linked O antigen transport. Proc Natl Acad Sci U S A 2020; 118:2016144118. [PMID: 33443152 DOI: 10.1073/pnas.2016144118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
O antigens are important cell surface polysaccharides in gram-negative bacteria where they extend core lipopolysaccharides in the extracellular leaflet of the outer membrane. O antigen structures are serotype specific and form extended cell surface barriers endowing many pathogens with survival benefits. In the ABC transporter-dependent biosynthesis pathway, O antigens are assembled on the cytosolic side of the inner membrane on a lipid anchor and reoriented to the periplasmic leaflet by the channel-forming WzmWzt ABC transporter for ligation to the core lipopolysaccharides. In many cases, this process depends on the chemical modification of the O antigen's nonreducing terminus, sensed by WzmWzt via a carbohydrate-binding domain (CBD) that extends its nucleotide-binding domain (NBD). Here, we provide the cryo-electron microscopy structure of the full-length WzmWzt transporter from Aquifex aeolicus bound to adenosine triphosphate (ATP) and in a lipid environment, revealing a highly asymmetric transporter organization. The CBDs dimerize and associate with only one NBD. Conserved loops at the CBD dimer interface straddle a conserved peripheral NBD helix. The CBD dimer is oriented perpendicularly to the NBDs and its putative ligand-binding sites face the transporter to likely modulate ATPase activity upon O antigen binding. Further, our structure reveals a closed WzmWzt conformation in which an aromatic belt near the periplasmic channel exit seals the transporter in a resting, ATP-bound state. The sealed transmembrane channel is asymmetric, with one open and one closed cytosolic and periplasmic portal. The structure provides important insights into O antigen recruitment to and translocation by WzmWzt and related ABC transporters.
Collapse
|
35
|
Fullam E, Young RJ. Physicochemical properties and Mycobacterium tuberculosis transporters: keys to efficacious antitubercular drugs? RSC Med Chem 2020; 12:43-56. [PMID: 34041481 PMCID: PMC8130550 DOI: 10.1039/d0md00265h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
Securing novel, safe, and effective medicines to treat Mycobacterium tuberculosis remains an elusive goal, particularly influenced by the largely impervious Mtb envelope that limits exposure and thus efficacy of inhibitors at their cellular and periplasmic targets. The impact of physicochemical properties on pharmacokinetic parameters that govern oral absorption and exposure at sites of infection is considered alongside how these properties influence penetration of the Mtb envelope, with the likely influence of transporter proteins. The findings are discussed to benchmark current drugs and the emerging pipeline, whilst considering tactics for future rational and targeted design strategies, based around emerging data on Mtb transporters and their structures and functions.
Collapse
Affiliation(s)
- Elizabeth Fullam
- School of Life Sciences, University of Warwick Coventry CV4 7AL UK
| | | |
Collapse
|
36
|
The ATP-Binding Cassette (ABC) Transport Systems in Mycobacterium tuberculosis: Structure, Function, and Possible Targets for Therapeutics. BIOLOGY 2020; 9:biology9120443. [PMID: 33291531 PMCID: PMC7761784 DOI: 10.3390/biology9120443] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Simple Summary Mycobacterium tuberculosis is a bacterium of great medical importance because it causes tuberculosis, a disease that affects millions of people worldwide. Two important features are related to this bacterium: its ability to infect and survive inside the host, minimizing the immune response, and the burden of clinical isolates that are highly resistant to antibiotics treatment. These two phenomena are directly affected by cell envelope proteins, such as proteins from the ATP-Binding Cassette (ABC transporters) superfamily. In this review, we have compiled information on all the M. tuberculosis ABC transporters described so far, both from a functional and structural point of view, and show their relevance for the bacillus and the potential targets for studies aiming to control the microorganism and structural features. Abstract Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), a disease that affects millions of people in the world and that is associated with several human diseases. The bacillus is highly adapted to infect and survive inside the host, mainly because of its cellular envelope plasticity, which can be modulated to adapt to an unfriendly host environment; to manipulate the host immune response; and to resist therapeutic treatment, increasing in this way the drug resistance of TB. The superfamily of ATP-Binding Cassette (ABC) transporters are integral membrane proteins that include both importers and exporters. Both types share a similar structural organization, yet only importers have a periplasmic substrate-binding domain, which is essential for substrate uptake and transport. ABC transporter-type importers play an important role in the bacillus physiology through the transport of several substrates that will interfere with nutrition, pathogenesis, and virulence. Equally relevant, exporters have been involved in cell detoxification, nutrient recycling, and antibiotics and drug efflux, largely affecting the survival and development of multiple drug-resistant strains. Here, we review known ABC transporters from M. tuberculosis, with particular focus on the diversity of their structural features and relevance in infection and drug resistance.
Collapse
|
37
|
Intracellular Mycobacterium tuberculosis Exploits Multiple Host Nitrogen Sources during Growth in Human Macrophages. Cell Rep 2020; 29:3580-3591.e4. [PMID: 31825837 PMCID: PMC6915324 DOI: 10.1016/j.celrep.2019.11.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/05/2019] [Accepted: 11/07/2019] [Indexed: 02/05/2023] Open
Abstract
Nitrogen metabolism of Mycobacterium tuberculosis (Mtb) is crucial for the survival of this important pathogen in its primary human host cell, the macrophage, but little is known about the source(s) and their assimilation within this intracellular niche. Here, we have developed 15N-flux spectral ratio analysis (15N-FSRA) to explore Mtb’s nitrogen metabolism; we demonstrate that intracellular Mtb has access to multiple amino acids in the macrophage, including glutamate, glutamine, aspartate, alanine, glycine, and valine; and we identify glutamine as the predominant nitrogen donor. Each nitrogen source is uniquely assimilated into specific amino acid pools, indicating compartmentalized metabolism during intracellular growth. We have discovered that serine is not available to intracellular Mtb, and we show that a serine auxotroph is attenuated in macrophages. This work provides a systems-based tool for exploring the nitrogen metabolism of intracellular pathogens and highlights the enzyme phosphoserine transaminase as an attractive target for the development of novel anti-tuberculosis therapies. Mycobacterium tuberculosis utilizes multiple amino acids as nitrogen sources in human macrophages 15N-FSRA tool identified the intracellular nitrogen sources Glutamine is the predominant nitrogen donor for M. tuberculosis Serine biosynthesis is essential for the survival of intracellular M. tuberculosis
Collapse
|
38
|
Grechko V, Podolsky D, Cheshchevik V. Identification new potential multidrug resistance proteins of Saccharomyces cerevisiae. J Microbiol Methods 2020; 176:106029. [DOI: 10.1016/j.mimet.2020.106029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/28/2020] [Accepted: 08/06/2020] [Indexed: 10/23/2022]
|
39
|
Abstract
Understanding how Mycobacterium tuberculosis survives during antibiotic treatment is necessary to rationally devise more effective tuberculosis (TB) chemotherapy regimens. Using genome-wide mutant fitness profiling and the mouse model of TB, we identified genes that alter antibiotic efficacy specifically in the infection environment and associated several of these genes with natural genetic variants found in drug-resistant clinical isolates. These data suggest strategies for synergistic therapies that accelerate bacterial clearance, and they identify mechanisms of adaptation to drug exposure that could influence treatment outcome. Effective tuberculosis treatment requires at least 6 months of combination therapy. Alterations in the physiological state of the bacterium during infection are thought to reduce drug efficacy and prolong the necessary treatment period, but the nature of these adaptations remain incompletely defined. To identify specific bacterial functions that limit drug effects during infection, we employed a comprehensive genetic screening approach to identify mutants with altered susceptibility to the first-line antibiotics in the mouse model. We identified many mutations that increase the rate of bacterial clearance, suggesting new strategies for accelerating therapy. In addition, the drug-specific effects of these mutations suggested that different antibiotics are limited by distinct factors. Rifampin efficacy is inferred to be limited by cellular permeability, whereas isoniazid is preferentially affected by replication rate. Many mutations that altered bacterial clearance in the mouse model did not have an obvious effect on drug susceptibility using in vitro assays, indicating that these chemical-genetic interactions tend to be specific to the in vivo environment. This observation suggested that a wide variety of natural genetic variants could influence drug efficacy in vivo without altering behavior in standard drug-susceptibility tests. Indeed, mutations in a number of the genes identified in our study are enriched in drug-resistant clinical isolates, identifying genetic variants that may influence treatment outcome. Together, these observations suggest new avenues for improving therapy, as well as the mechanisms of genetic adaptations that limit it. IMPORTANCE Understanding how Mycobacterium tuberculosis survives during antibiotic treatment is necessary to rationally devise more effective tuberculosis (TB) chemotherapy regimens. Using genome-wide mutant fitness profiling and the mouse model of TB, we identified genes that alter antibiotic efficacy specifically in the infection environment and associated several of these genes with natural genetic variants found in drug-resistant clinical isolates. These data suggest strategies for synergistic therapies that accelerate bacterial clearance, and they identify mechanisms of adaptation to drug exposure that could influence treatment outcome.
Collapse
|
40
|
Lewis KM, Greene CL, Sattler SA, Youn B, Xun L, Kang C. The Structural Basis of the Binding of Various Aminopolycarboxylates by the Periplasmic EDTA-Binding Protein EppA from Chelativorans sp. BNC1. Int J Mol Sci 2020; 21:ijms21113940. [PMID: 32486296 PMCID: PMC7312458 DOI: 10.3390/ijms21113940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 11/16/2022] Open
Abstract
The widespread use of synthetic aminopolycarboxylates, such as ethylenediaminetetraacetate (EDTA), as chelating agents has led to their contamination in the environment as stable metal–chelate complexes. Microorganisms can transport free EDTA, but not metal–EDTA complexes, into cells for metabolism. An ABC-type transporter for free EDTA uptake in Chelativorans sp. BNC1 was investigated to understand the mechanism of the ligand selectivity. We solved the X-ray crystal structure of the periplasmic EDTA-binding protein (EppA) and analyzed its structure–function relations through isothermal titration calorimetry, site-directed mutagenesis, molecular docking, and quantum chemical analysis. EppA had high affinities for EDTA and other aminopolycarboxylates, which agrees with structural analysis, showing that its binding pocket could accommodate free aminopolycarboxylates. Further, key amino acid residues involved in the binding were identified. Our results suggest that EppA is a general binding protein for the uptake of free aminopolycarboxylates. This finding suggests that bacterial cells import free aminopolycarboxylates, explaining why stable metal–chelate complexes are resistant to degradation, as they are not transported into the cells for degradation.
Collapse
Affiliation(s)
- Kevin M. Lewis
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA; (K.M.L.); (C.L.G.)
| | - Chelsie L. Greene
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA; (K.M.L.); (C.L.G.)
| | - Steven A. Sattler
- School of Molecular Biosciences, Washington State University, Pullman, WA 99163, USA;
| | - Buhyun Youn
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea;
| | - Luying Xun
- School of Molecular Biosciences, Washington State University, Pullman, WA 99163, USA;
- Correspondence: (L.X.); (C.K.)
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA 99163, USA; (K.M.L.); (C.L.G.)
- School of Molecular Biosciences, Washington State University, Pullman, WA 99163, USA;
- Correspondence: (L.X.); (C.K.)
| |
Collapse
|
41
|
Shahbaaz M, Potemkin V, Bisetty K, Hassan MI, Hussien MA. Classification and functional analyses of putative virulence factors of Mycobacterium tuberculosis: A combined sequence and structure based study. Comput Biol Chem 2020; 87:107270. [PMID: 32438116 DOI: 10.1016/j.compbiolchem.2020.107270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 04/16/2020] [Accepted: 04/26/2020] [Indexed: 11/17/2022]
Abstract
The emergence of the drug-resistant mechanisms in Mycobacterium tuberculosis poses the biggest challenges to the current therapeutic measures, which necessitates the identification of new drug targets. The Hypothetical Proteins (HPs), a class of functionally uncharacterized proteins, may provide a new class of undiscovered therapeutic targets. The genome of M. tuberculosis contains 1000 HPs with their sequences were analyzed using a variety of bioinformatics tools and the functional annotations were performed. The functions of 662 HPs were successfully predicted and further classified 483 HPs as enzymes, 141 HPs were predicted to be involved in the diverse cellular mechanisms and 38 HPs may function as transporters and carriers proteins. Furthermore, 28 HPs were predicted to be virulent in nature. Amongst them, the HP P95201, HP P9WM79, HP I6WZ30, HP I6 × 9T8, HP P9WKP3, and HP P9WK89 showed the highest virulence scores. Therefore, these proteins were subjected to extensive structure analyses and dynamics of their conformations were investigated using the principles of molecular dynamics simulations, each for a 150 ns time scale. This study provides a deeper understanding of the undiscovered drug targets and the generated outputs will facilitate the process of drug design and discovery against the infection of M. tuberculosis.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X17, Bellville 7535, Cape Town, South Africa; Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin prospekt, 454080 Chelyabinsk, Russia
| | - Vladimir Potemkin
- Laboratory of Computational Modeling of Drugs, South Ural State University, 76 Lenin prospekt, 454080 Chelyabinsk, Russia
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, Durban, 4000, South Africa
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mostafa A Hussien
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203 Jeddah 21589, Saudi Arabia; Department of Chemistry, Faculty of Science, Port Said University, Port Said, 42521, Egypt
| |
Collapse
|
42
|
Biochemical and biophysical characterization of nucleotide binding domain of Trehalose transporter from Mycobacterium tuberculosis. Int J Biol Macromol 2020; 152:109-116. [PMID: 32092417 DOI: 10.1016/j.ijbiomac.2020.02.237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 12/18/2022]
Abstract
The SugABC is an ABC transporter in Mycobacterium tuberculosis which is proposed to be involved in the process of Trehalose import, but till date the proteins of this transporter complex have not been functionally characterized. This transport process is driven by the nucleotide binding domain SugC of SugABC transporter. To understand the functional role of SugC, we expressed and purified the protein in E.coli. Our purification result shows, Mtb SugC exists as a monomer in solution but forms dimers upon binding to ATP. It is stable at pH 7.5 as analyzed by CD spectroscopy and showed maximum activity at this pH as estimated by Michaelis-Menten's kinetics for Mg-ATP at a KM of 0.15 mM. The SugCH193A mutant was observed to have a reduced catalytic activity implying that H193 is one of the residues involved in the hydrolysis of ATP. The molecular modeling further revealed that, like E.coli MalK, MtbSugC also has an ATPase domain and a regulatory domain. Despite having low sequence homology with other nucleotide binding domains of ABC transporters, the structure and functional motifs of MtbSugC are conserved. Thus, we show that SugC is a functional ATPase domain of SugABC transporter in Mycobacterium tuberculosis.
Collapse
|
43
|
Soni DK, Dubey SK, Bhatnagar R. ATP-binding cassette (ABC) import systems of Mycobacterium tuberculosis: target for drug and vaccine development. Emerg Microbes Infect 2020; 9:207-220. [PMID: 31985348 PMCID: PMC7034087 DOI: 10.1080/22221751.2020.1714488] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nutrient procurement specifically from nutrient-limiting environment is essential for pathogenic bacteria to survive and/or persist within the host. Long-term survival or persistent infection is one of the main reasons for the overuse of antibiotics, and contributes to the development and spread of antibiotic resistance. Mycobacterium tuberculosis is known for long-term survival within the host, and develops multidrug resistance. Before and during infection, the pathogen encounters various harsh environmental conditions. To cope up with such nutrient-limiting conditions, it is crucial to uptake essential nutrients such as ions, sugars, amino acids, peptides, and metals, necessary for numerous vital biological activities. Among the various types of transporters, ATP-binding cassette (ABC) importers are essentially unique to bacteria, accessible as drug targets without penetrating the cytoplasmic membrane, and offer an ATP-dependent gateway into the cell by mimicking substrates of the importer and designing inhibitors against substrate-binding proteins, ABC importers endeavour for the development of successful drug candidates and antibiotics. Alternatively, the production of antibodies against substrate-binding proteins could lead to vaccine development. In this review, we will emphasize the role of M. tuberculosis ABC importers for survival and virulence within the host. Furthermore, we will elucidate their unique characteristics to discover emerging therapies to combat tuberculosis.
Collapse
Affiliation(s)
- Dharmendra Kumar Soni
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
44
|
Khosravi AD, Sirous M, Absalan Z, Tabandeh MR, Savari M. Comparison Of drrA And drrB Efflux Pump Genes Expression In Drug-Susceptible And -Resistant Mycobacterium tuberculosis Strains Isolated From Tuberculosis Patients In Iran. Infect Drug Resist 2019; 12:3437-3444. [PMID: 31807034 PMCID: PMC6842285 DOI: 10.2147/idr.s221823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/26/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Among different resistance mechanisms in Mycobacterium tuberculosis (MTB), efflux pumps may have a role in drug-resistance property of MTB. So, the aim of this study was to compare the relative overexpression of two important efflux pump genes, drrA and drrB, among MTB isolates from TB patients. METHODS A total of 37 clinical isolates of confirmed MTB isolates were analyzed. Drug susceptibility testing (DST) was performed using the conventional proportional method. Real-time semiquantitative PCR profiling of the efflux pump genes of drrA and drrB was performed for clinical isolates. The receiver operating curve (ROC) analysis for differentiation of resistant from susceptible isolates on the basis of efflux pump expression fold changes was also performed. RESULTS According to DST, 16 rifampin (RIF) monoresistant, 3 isoniazid (INH) monoresistant, 5 multidrug-resistant (MDR) and 13 pan-susceptible isolates of MTB were evaluated for gene expression. The highest values of drrA and drrB gene expression fold changes were seen in MDR isolates, which were significant in comparison with susceptible isolates and H37Rv reference strain. By using comparative ROC analysis, the obtained cutoff point for drrA and drrB gene overexpression was the folds of >1.6 and >2.3, respectively. CONCLUSION The results of the present study confirm the role of DrrA-DrrB efflux pump in antibiotic resistance in clinical MTB isolates. As the large number of efflux pumps are located in the cell envelope of MTB, we cannot correlate a single efflux pump overexpression to the drug-resistance phenotype, unless all the pumps simultaneously investigated.
Collapse
Affiliation(s)
- Azar Dokht Khosravi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrandokht Sirous
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology and Parasitology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra Absalan
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Basic Sciences, Division of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran of Ahvaz, Ahvaz, Iran
| | - Mohammad Savari
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
45
|
Gupta S, Kumar A, Singh K, Kumari R, Sharma A, Singh RK, Pandey SK, Anupurba S. Rv1273c, an ABC transporter of Mycobacterium tuberculosis promotes mycobacterial intracellular survival within macrophages via modulating the host cell immune response. Int J Biol Macromol 2019; 142:320-331. [PMID: 31593717 DOI: 10.1016/j.ijbiomac.2019.09.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/18/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
Mycobacterium proteins, especially cell wall associated proteins, interact with host macrophage to regulate the functions and cytokine production. So, identification and characterization of such proteins is essential for understanding tuberculosis pathogenesis. The role of the ABC transporter proteins in the pathophysiology and virulence of Mycobacterium tuberculosis is not clearly understood. In the present study, Rv1273c, an ABC transporter, has been expressed in a non-pathogenic and fast growing Mycobacterium smegmatis strain to explore its role in host pathogen interactions. Over expression of Rv1273c resulted in enhanced intracellular survival in macrophage as well as modified cell wall architecture. We found altered colony morphology and cell surface properties that might be linked with remodelling of bacterial cell wall which may help in the intracellular survival of mycobacterium. However, the enhanced intracellular survival was not found to be the consequence of an increased resistance to intracellular stresses. The activation of macrophage by Rv1273c was associated with perturbed cytokine production. Pharmacological inhibition experiment and western immunoblotting suggested that this altered cytokine profile was mediated possibly by NF-kB and p38 pathway in macrophage. Overall, the present findings indicated that Rv1273c enhanced mycobacterium persistence and mediated the evasion of immune responses during infection.
Collapse
Affiliation(s)
- Smita Gupta
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Arun Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Kamal Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Richa Kumari
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rakesh K Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Satyendra K Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shampa Anupurba
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
46
|
Song N, Li Z, Cui Z, Chen L, Cui Y, Dang G, Li Z, Li H, Liu S. The prominent alteration in transcriptome and metabolome of Mycobacterium bovis BCG str. Tokyo 172 induced by vitamin B 1. BMC Microbiol 2019; 19:104. [PMID: 31117936 PMCID: PMC6530141 DOI: 10.1186/s12866-019-1492-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/14/2019] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Vitamin B1 (VB1) is a crucial dietary nutrient and essential cofactor for several key enzymes in the regulation of cellular and metabolic processes, and more importantly in the activation of immune system. To date, the precise role of VB1 in Mycobacterium tuberculosis remains to be fully understood. RESULTS In this study, the transcriptional and metabolic profiles of VB1-treated Mycobacterium. bovis BCG were analyzed by RNA-sequencing and LC-MS (Liquid chromatography coupled to mass spectrometry). The selection of BCG strain was based on its common physiological features shared with M. tuberculosis. The results of cell growth assays demonstrated that VB1 inhibited the BCG growth rate in vitro. Transcriptomic analysis revealed that the expression levels of genes related to fatty acid metabolism, cholesterol metabolism, glycolipid catabolism, DNA replication, protein translation, cell division and cell wall formation were significantly downregulated in M. bovis BCG treated with VB1. In addition, the metabolomics LC-MS data indicated that most of the amino acids and adenosine diphosphate (ADP) were decreased in M. bovis BCG strain after VB1 treatment. CONCLUSIONS This study provides the molecular and metabolic bases to understand the impacts of VB1 on M.bovis BCG.
Collapse
Affiliation(s)
- Ningning Song
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhaoli Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ziyin Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liping Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yingying Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guanghui Dang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhe Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - He Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
47
|
Crespo R, Dang Q, Zhou NE, Guthrie LM, Snavely TC, Dong W, Loesch KA, Suzuki T, You L, Wang W, O’Malley T, Parish T, Olsen DB, Sacchettini JC. Structure-Guided Drug Design of 6-Substituted Adenosine Analogues as Potent Inhibitors of Mycobacterium tuberculosis Adenosine Kinase. J Med Chem 2019; 62:4483-4499. [PMID: 31002508 PMCID: PMC6511943 DOI: 10.1021/acs.jmedchem.9b00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis adenosine kinase (MtbAdoK) is an essential enzyme of Mtb and forms part of the purine salvage pathway within mycobacteria. Evidence suggests that the purine salvage pathway might play a crucial role in Mtb survival and persistence during its latent phase of infection. In these studies, we adopted a structural approach to the discovery, structure-guided design, and synthesis of a series of adenosine analogues that displayed inhibition constants ranging from 5 to 120 nM against the enzyme. Two of these compounds exhibited low micromolar activity against Mtb with half maximal effective inhibitory concentrations of 1.7 and 4.0 μM. Our selectivity and preliminary pharmacokinetic studies showed that the compounds possess a higher degree of specificity against MtbAdoK when compared with the human counterpart and are well tolerated in rodents, respectively. Finally, crystallographic studies showed the molecular basis of inhibition, potency, and selectivity and revealed the presence of a potentially therapeutically relevant cavity unique to the MtbAdoK homodimer.
Collapse
Affiliation(s)
- Roberto
A. Crespo
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Qun Dang
- Merck
Sharp Dohme Corporation, West Point Pennsylvania 19486, United States
| | - Nian E. Zhou
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Liam M. Guthrie
- College
of Medicine, Texas A&M University Health
Science Center, Bryan, Texas 77807, United
States
| | - Thomas C. Snavely
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Wen Dong
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Kimberly A. Loesch
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Takao Suzuki
- WuXi
AppTec, 288 Fute Zhong Road, Shanghai 200131, China
| | - Lanying You
- WuXi
AppTec, 288 Fute Zhong Road, Shanghai 200131, China
| | - Wei Wang
- WuXi
AppTec, 288 Fute Zhong Road, Shanghai 200131, China
| | - Theresa O’Malley
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Avenue E, Seattle, Washington 98102, United States
| | - Tanya Parish
- TB
Discovery Research, Infectious Disease Research
Institute, 1616 Eastlake Avenue E, Seattle, Washington 98102, United States
| | - David B. Olsen
- Merck
Sharp Dohme Corporation, West Point Pennsylvania 19486, United States,E-mail: . Phone: 215-652-5250 (D.B.O.)
| | - James C. Sacchettini
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States,E-mail: . Phone: (979) 845-8548 (J.C.S.)
| |
Collapse
|
48
|
Li M, Müller C, Fröhlich K, Gorka O, Zhang L, Groß O, Schilling O, Einsle O, Jessen-Trefzer C. Detection and Characterization of a Mycobacterial L-Arabinofuranose ABC Transporter Identified with a Rapid Lipoproteomics Protocol. Cell Chem Biol 2019; 26:852-862.e6. [PMID: 31006617 DOI: 10.1016/j.chembiol.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/23/2018] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
Abstract
Nutrient uptake is essential for survival of organisms, and carbohydrates serve as a crucial carbon and energy source for most microorganisms. Given the importance of mycobacteria as human pathogens a detailed knowledge of carbohydrate uptake transporters is highly desirable, but currently available information is severely limited and mainly based on in silico analyses. Moreover, there is only very little data available on the in vitro characterization of carbohydrate transporters from mycobacterial species. To overcome these significant limitations there is a strong demand for innovative approaches to experimentally match substrates to ATP-binding cassette (ABC) transporters in a straightforward manner. Our study focuses on the model organism Mycobacterium smegmatis and identifies a mycobacterial ABC transport system based on a rapid label-free mass spectrometry lipoproteomics assay with broad applicability. Further validation and X-ray structure analyses reveal a highly selective mycobacterial L-arabinose uptake system.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Pharmaceutical Biology and Biotechnology, Faculty of Chemistry and Pharmacy, University of Freiburg, Stefan-Meier-Straße 19, 79104 Freiburg, Germany
| | - Christoph Müller
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Klemens Fröhlich
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Breisacher Straße 115A, 79106 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Albertstraße 19A, 79104 Freiburg, Germany
| | - Oliver Gorka
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Straße 66, 79106 Freiburg, Germany
| | - Lin Zhang
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany
| | - Olaf Groß
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Breisacher Straße 66, 79106 Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg, Breisacher Straße 115A, 79106 Freiburg, Germany
| | - Oliver Einsle
- Institute of Biochemistry, Faculty of Chemistry and Pharmacy, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Claudia Jessen-Trefzer
- Department of Pharmaceutical Biology and Biotechnology, Faculty of Chemistry and Pharmacy, University of Freiburg, Stefan-Meier-Straße 19, 79104 Freiburg, Germany.
| |
Collapse
|
49
|
Thirunavukkarasu S, Khader SA. Advances in Cardiovascular Disease Lipid Research Can Provide Novel Insights Into Mycobacterial Pathogenesis. Front Cell Infect Microbiol 2019; 9:116. [PMID: 31058102 PMCID: PMC6482252 DOI: 10.3389/fcimb.2019.00116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in industrialized nations and an emerging health problem in the developing world. Systemic inflammatory processes associated with alterations in lipid metabolism are a major contributing factor that mediates the development of CVDs, especially atherosclerosis. Therefore, the pathways promoting alterations in lipid metabolism and the interplay between varying cellular types, signaling agents, and effector molecules have been well-studied. Mycobacterial species are the causative agents of various infectious diseases in both humans and animals. Modulation of host lipid metabolism by mycobacteria plays a prominent role in its survival strategy within the host as well as in disease pathogenesis. However, there are still several knowledge gaps in the mechanistic understanding of how mycobacteria can alter host lipid metabolism. Considering the in-depth research available in the area of cardiovascular research, this review presents an overview of the parallel areas of research in host lipid-mediated immunological changes that might be extrapolated and explored to understand the underlying basis of mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Shyamala Thirunavukkarasu
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|
50
|
Gupta S, Shukla H, Kumar A, Shukla R, Kumari R, Tripathi T, Singh RK, Anupurba S. Mycobacterium tuberculosis nucleoside diphosphate kinase shows interaction with putative ATP binding cassette (ABC) transporter, Rv1273c. J Biomol Struct Dyn 2019; 38:1083-1093. [PMID: 30898047 DOI: 10.1080/07391102.2019.1595150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Protein-protein interactions are crucial for all biological processes. Compiling this network provides many new insights into protein function and gives directions for the development of new drugs targeted to the pathogen. Mycobacterium tuberculosis Nucleoside diphosphate kinase (Mtb Ndk) has been reported to promote survival of mycobacterium within the macrophage and contribute significantly to mycobacterium virulence. Hence, the present study was aimed to identify and characterize the interacting partner for Ndk. The in vitro experiments, pull down and far western blotting have demonstrated that Mtb Ndk interacts with Rv1273c, a probable drug ABC transporter ATP-binding protein annotated to export drugs across the membrane. This observation was further confirmed by molecular docking and dynamic simulations studies. The homology model of Rv1273c was constructed and docked with Mtb Ndk for protein-protein interaction analysis. The critical residues involved at interface of Rv1273c-Ndk interaction were identified. MDS and Principal Component analysis carried out for conformational feasibility and stability concluded that the complex between the two proteins is more stable as compared to apo proteins. Our findings would be expected to improve the dissection of protein-protein interaction network and significantly advance our understanding of tuberculosis infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Smita Gupta
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Harish Shukla
- Department of Biochemistry, North Eastern Hill University, Shillong, India
| | - Arun Kumar
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rohit Shukla
- Department of Biochemistry, North Eastern Hill University, Shillong, India
| | - Richa Kumari
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Timir Tripathi
- Department of Biochemistry, North Eastern Hill University, Shillong, India
| | - Rakesh K Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shampa Anupurba
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|