1
|
Maciąg-Dorszyńska M, Morcinek-Orłowska J, Barańska S. Concise Overview of Methodologies Employed in the Study of Bacterial DNA Replication. Int J Mol Sci 2025; 26:446. [PMID: 39859162 PMCID: PMC11764726 DOI: 10.3390/ijms26020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
DNA replication is a fundamental process in the cell on which the functioning of the entire cell as well as the maintenance of the entire species depends. This process is synchronized with all other processes within the cell as well as with external, environmental factors. This complex network of interconnections presents significant challenges in the field of DNA replication research, both in terms of identifying an appropriate approach to a question posed and in terms of methodology. This article aims to provide a roadmap to assist in navigating (to help overcome) these challenges and in selecting an appropriate research methodology. It should help to establish a research pathway, starting with arranging the host genetic background for analysis at different cellular levels, which can be achieved using complex or simple single-purpose techniques.
Collapse
Affiliation(s)
- Monika Maciąg-Dorszyńska
- Department of Bacterial Molecular Genetics, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Joanna Morcinek-Orłowska
- Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| | - Sylwia Barańska
- Department of Bacterial Molecular Genetics, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
2
|
Pląskowska K, Zakrzewska-Czerwińska J. Chromosome structure and DNA replication dynamics during the life cycle of the predatory bacterium Bdellovibrio bacteriovorus. FEMS Microbiol Rev 2023; 47:fuad057. [PMID: 37791401 PMCID: PMC11318664 DOI: 10.1093/femsre/fuad057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023] Open
Abstract
Bdellovibrio bacteriovorus, an obligate predatory Gram-negative bacterium that proliferates inside and kills other Gram-negative bacteria, was discovered more than 60 years ago. However, we have only recently begun to understand the detailed cell biology of this proficient bacterial killer. Bdellovibrio bacteriovorus exhibits a peculiar life cycle and bimodal proliferation, and thus represents an attractive model for studying novel aspects of bacterial cell biology. The life cycle of B. bacteriovorus consists of two phases: a free-living nonreplicative attack phase and an intracellular reproductive phase. During the reproductive phase, B. bacteriovorus grows as an elongated cell and undergoes binary or nonbinary fission, depending on the prey size. In this review, we discuss: (1) how the chromosome structure of B. bacteriovorus is remodeled during its life cycle; (2) how its chromosome replication dynamics depends on the proliferation mode; (3) how the initiation of chromosome replication is controlled during the life cycle, and (4) how chromosome replication is spatiotemporally coordinated with the proliferation program.
Collapse
Affiliation(s)
- Karolina Pląskowska
- Department of Molecular Microbiology, Faculty of Biotechnology, University
of Wrocław, ul. Joliot-Curie 14A, Wrocław,
Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Molecular Microbiology, Faculty of Biotechnology, University
of Wrocław, ul. Joliot-Curie 14A, Wrocław,
Poland
| |
Collapse
|
3
|
Sreelatha S, Nagarajan U, Natarajan S. Protein targets in Mycobacterium tuberculosis and their inhibitors for therapeutic implications: A narrative review. Int J Biol Macromol 2023:125022. [PMID: 37244342 DOI: 10.1016/j.ijbiomac.2023.125022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Advancement in the area of anti-tubercular drug development has been full-fledged, yet, a very less number of drug molecules have reached phase II clinical trials, and therefore "End-TB" is still a global challenge. Inhibitors to specific metabolic pathways of Mycobacterium tuberculosis (Mtb) gain importance in strategizing anti-tuberculosis drug discovery. The lead compounds that target DNA replication, protein synthesis, cell wall biosynthesis, bacterial virulence and energy metabolism are emerging as potential chemotherapeutic options against Mtb growth and survival within the host. In recent times, the in silico approaches have become most promising tools in the identification of suitable inhibitors for specific protein targets of Mtb. An update in the fundamental understanding of these inhibitors and the mechanism of interaction may bring hope to future perspectives in novel drug development and delivery approaches. This review provides a collective impression of the small molecules with potential antimycobacterial activities and their target pathways in Mtb such as cell wall biosynthesis, DNA replication, transcription and translation, efflux pumps, antivirulence pathways and general metabolism. The mechanism of interaction of specific inhibitor with their respective protein targets has been discussed. The comprehensive knowledge of such an impactful area of research would essentially reflect in the discovery of novel drug molecules and effective delivery approaches. This narrative review encompasses the knowledge of emerging targets and promising n that could potentially translate in to the anti-TB-drug discovery.
Collapse
Affiliation(s)
- Souparnika Sreelatha
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, Tamil Nadu, India
| | - Usharani Nagarajan
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, Tamil Nadu, India
| | - Saravanan Natarajan
- Department of Biochemistry, ICMR-National Institute for Research in Tuberculosis, Chennai 600031, Tamil Nadu, India.
| |
Collapse
|
4
|
Shahid F, Alghamdi YS, Mashraqi M, Khurshid M, Ashfaq UA. Proteome based mapping and molecular docking revealed DnaA as a potential drug target against Shigella sonnei. Saudi J Biol Sci 2022; 29:1147-1159. [PMID: 35241965 PMCID: PMC8886675 DOI: 10.1016/j.sjbs.2021.09.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/09/2021] [Accepted: 09/13/2021] [Indexed: 01/22/2023] Open
Abstract
Shigella sonnei is one of the major causes of diarrhea and remained a critical microbe responsible for higher morbidity and mortality rates resulting from dysentery every year across the world. Antibiotic therapy of Shigella diseases plays a critical role in decreasing the prevalence as well as the fatality rate of this infection. However, the management of these diseases remains challenging, owing to the overall increase in resistance against many antimicrobials. The situation necessitates the rapid development of effective and feasible S. sonnei treatments. In the present study, the subtractive genomics approach was utilized to find the potential drug targets for S. sonnei strain Ss046. Various tools of bioinformatics were implemented to remove the human-specific homologous and pathogen-specific paralogous sequences from the bacterial proteome. Then, metabolic pathway and subcellular location analysis were performed of essential bacterial proteins to describe their role in various cellular processes. Only one essential protein i-e Chromosomal replication initiator protein DnaA was found in the proteome of the pathogen that could be used as a potent target for designing new drugs. 3D structure prediction of DnaA protein was carried out using Phyre 2. Molecular docking of 5000 phytochemicals was performed against DnaA to identify four top-ranked phytochemicals (Riccionidin A, Dothistromin, Fustin, and Morin) based on scoring functions and interaction with the active site. This study suggests that these phytochemicals could be used as antibacterial drugs to treat S. sonnei infections in the future. To confirm their efficacy and evaluate their drug potency, further in vitro analyses are required.
Collapse
Affiliation(s)
- Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Youssef Saeed Alghamdi
- Department of Biology, Turabah University College, Taif University, P.O.BOX 11099, Taif 21944, Saudi Arabia
| | - Mutaib Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Najran University, Najran, Saudi Arabia
| | - Mohsin Khurshid
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
5
|
Maurya GK, Chaudhary R, Pandey N, Misra HS. Molecular insights into replication initiation in a multipartite genome harboring bacterium Deinococcus radiodurans. J Biol Chem 2021; 296:100451. [PMID: 33626388 PMCID: PMC7988490 DOI: 10.1016/j.jbc.2021.100451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022] Open
Abstract
Deinococcus radiodurans harbors a multipartite ploid genome system consisting of two chromosomes and two plasmids present in multiple copies. How these discrete genome elements are maintained and inherited is not well understood. PprA, a pleiotropic protein involved in radioresistance, has been characterized for its roles in DNA repair, genome segregation, and cell division in this bacterium. Here, we show that PprA regulates ploidy of chromosome I and II and inhibits the activity of drDnaA, the initiator protein in D. radiodurans. We found that pprA deletion resulted in an increased genomic content and ploidy of both the chromosomal elements. Expression of PprA in trans rescued the phenotypes of the pprA mutant. To understand the molecular mechanism underlying these phenotypes, we characterized drDnaA and drDnaB. As expected for an initiator protein, recombinant drDnaA showed sequence-specific interactions with the putative oriC sequence in chromosome I (oriCI). Both drDnaA and drDnaB showed ATPase activity, also typical of initiator proteins, but only drDnaB exhibited 5'→3' dsDNA helicase activity in vitro. drDnaA and drDnaB showed homotypic and heterotypic interactions with each other, which were perturbed by PprA. Interestingly, PprA has inhibited the ATPase activity of drDnaA but showed no effect on the activity of drDnaB. Regulation of chromosome copy number and inhibition of the initiator protein functions by PprA strongly suggest that it plays a role as a checkpoint regulator of the DNA replication initiation in D. radiodurans perhaps through its interaction with the replication initiation machinery.
Collapse
Affiliation(s)
- Ganesh K Maurya
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Neha Pandey
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, University of Mumbai, Mumbai, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India; Life Sciences, Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
6
|
The Escherichia coli QseB/QseC signaling is required for correct timing of replication initiation and cell motility. Gene 2020; 773:145374. [PMID: 33359126 DOI: 10.1016/j.gene.2020.145374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022]
Abstract
The Escherichia coli QseB/QseC signaling regulates expressions of more than 50 genes encoding flagellar proteins and proteins associated with virulence. Here we found that absence of the QseB/QseC signaling led to an early initiation of chromosomal replication and higher concentration of DnaA which is initiator for replication. The upstream region of dnaA promoter contains three potential QseB binding sites and absence of these binding sites increased transcription of the dnaA gene in wild-type cells but not in the cells lacking the qseB/qseC genes, showing that the QseB/QseC signaling regulates dnaA expression through the QseB binding sites. Also increased cell motility but neither cell size nor growth rate in ΔqseBC and ΔqseB cells was observed and these effects were reversed by ectopic expression of QseBC. Further, it was found that QseB interacted with the DnaK chaperone and FtsZ cell division protein in vivo, and absence of DnaK or partial inactivation of FtsZ decreased cell motility. Thus, we conclude that the QseB/QseC signaling modulates timing of replication initiation by regulating expression of DnaA, coordinates cell motility with cell division through interacting with the DnaK and FtsZ protein.
Collapse
|
7
|
Ropelewska M, Gross MH, Konieczny I. DNA and Polyphosphate in Directed Proteolysis for DNA Replication Control. Front Microbiol 2020; 11:585717. [PMID: 33123115 PMCID: PMC7566177 DOI: 10.3389/fmicb.2020.585717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/10/2020] [Indexed: 12/03/2022] Open
Abstract
The strict control of bacterial cell proliferation by proteolysis is vital to coordinate cell cycle processes and to adapt to environmental changes. ATP-dependent proteases of the AAA + family are molecular machineries that contribute to cellular proteostasis. Their activity is important to control the level of various proteins, including those that are essential for the regulation of DNA replication. Since the process of proteolysis is irreversible, the protease activity must be tightly regulated and directed toward a specific substrate at the exact time and space in a cell. In our mini review, we discuss the impact of phosphate-containing molecules like DNA and inorganic polyphosphate (PolyP), accumulated during stress, on protease activities. We describe how the directed proteolysis of essential replication proteins contributes to the regulation of DNA replication under normal and stress conditions in bacteria.
Collapse
Affiliation(s)
- Malgorzata Ropelewska
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Marta H Gross
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Igor Konieczny
- Laboratory of Molecular Biology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
8
|
Yang Q, Catalano CE. ATP serves as a nucleotide switch coupling the genome maturation and packaging motor complexes of a virus assembly machine. Nucleic Acids Res 2020; 48:5006-5015. [PMID: 32255177 PMCID: PMC7229814 DOI: 10.1093/nar/gkaa205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 11/29/2022] Open
Abstract
The assembly of double-stranded DNA viruses, from phages to herpesviruses, is strongly conserved. Terminase enzymes processively excise and package monomeric genomes from a concatemeric DNA substrate. The enzymes cycle between a stable maturation complex that introduces site-specific nicks into the duplex and a dynamic motor complex that rapidly translocates DNA into a procapsid shell, fueled by ATP hydrolysis. These tightly coupled reactions are catalyzed by terminase assembled into two functionally distinct nucleoprotein complexes; the maturation complex and the packaging motor complex, respectively. We describe the effects of nucleotides on the assembly of a catalytically competent maturation complex on viral DNA, their effect on maturation complex stability and their requirement for the transition to active packaging motor complex. ATP plays a major role in regulating all of these activities and may serve as a 'nucleotide switch' that mediates transitions between the two complexes during processive genome packaging. These biological processes are recapitulated in all of the dsDNA viruses that package monomeric genomes from concatemeric DNA substrates and the nucleotide switch mechanism may have broad biological implications with respect to virus assembly mechanisms.
Collapse
Affiliation(s)
- Qin Yang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Carlos E Catalano
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
9
|
Sperlea T, Muth L, Martin R, Weigel C, Waldminghaus T, Heider D. gammaBOriS: Identification and Taxonomic Classification of Origins of Replication in Gammaproteobacteria using Motif-based Machine Learning. Sci Rep 2020; 10:6727. [PMID: 32317695 PMCID: PMC7174414 DOI: 10.1038/s41598-020-63424-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/31/2020] [Indexed: 01/23/2023] Open
Abstract
The biology of bacterial cells is, in general, based on information encoded on circular chromosomes. Regulation of chromosome replication is an essential process that mostly takes place at the origin of replication (oriC), a locus unique per chromosome. Identification of high numbers of oriC is a prerequisite for systematic studies that could lead to insights into oriC functioning as well as the identification of novel drug targets for antibiotic development. Current methods for identifying oriC sequences rely on chromosome-wide nucleotide disparities and are therefore limited to fully sequenced genomes, leaving a large number of genomic fragments unstudied. Here, we present gammaBOriS (Gammaproteobacterial oriC Searcher), which identifies oriC sequences on gammaproteobacterial chromosomal fragments. It does so by employing motif-based machine learning methods. Using gammaBOriS, we created BOriS DB, which currently contains 25,827 gammaproteobacterial oriC sequences from 1,217 species, thus making it the largest available database for oriC sequences to date. Furthermore, we present gammaBOriTax, a machine-learning based approach for taxonomic classification of oriC sequences, which was trained on the sequences in BOriS DB. Finally, we extracted the motifs relevant for identification and classification decisions of the models. Our results suggest that machine learning sequence classification approaches can offer great support in functional motif identification.
Collapse
Affiliation(s)
- Theodor Sperlea
- Faculty of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Str. 6, D-35032, Marburg, Lahn, Germany
| | - Lea Muth
- Faculty of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Str. 6, D-35032, Marburg, Lahn, Germany
| | - Roman Martin
- Faculty of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Str. 6, D-35032, Marburg, Lahn, Germany
| | - Christoph Weigel
- Institute of Biotechnology, Faculty III, Technische Universität Berlin (TUB), Straße des 17. Juni 135, D-10623, Berlin, Germany
| | - Torsten Waldminghaus
- Chromosome Biology Group, LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, D-35043, Marburg, Lahn, Germany
| | - Dominik Heider
- Faculty of Mathematics and Computer Science, University of Marburg, Hans-Meerwein-Str. 6, D-35032, Marburg, Lahn, Germany.
| |
Collapse
|
10
|
Leonard AC, Rao P, Kadam RP, Grimwade JE. Changing Perspectives on the Role of DnaA-ATP in Orisome Function and Timing Regulation. Front Microbiol 2019; 10:2009. [PMID: 31555240 PMCID: PMC6727663 DOI: 10.3389/fmicb.2019.02009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/16/2019] [Indexed: 01/20/2023] Open
Abstract
Bacteria, like all cells, must precisely duplicate their genomes before they divide. Regulation of this critical process focuses on forming a pre-replicative nucleoprotein complex, termed the orisome. Orisomes perform two essential mechanical tasks that configure the unique chromosomal replication origin, oriC to start a new round of chromosome replication: (1) unwinding origin DNA and (2) assisting with loading of the replicative DNA helicase on exposed single strands. In Escherichia coli, a necessary orisome component is the ATP-bound form of the bacterial initiator protein, DnaA. DnaA-ATP differs from DnaA-ADP in its ability to oligomerize into helical filaments, and in its ability to access a subset of low affinity recognition sites in the E. coli replication origin. The helical filaments have been proposed to play a role in both of the key mechanical tasks, but recent studies raise new questions about whether they are mandatory for orisome activity. It was recently shown that a version of E. coli oriC (oriCallADP), whose multiple low affinity DnaA recognition sites bind DnaA-ATP and DnaA-ADP similarly, was fully occupied and unwound by DnaA-ADP in vitro, and in vivo suppressed the lethality of DnaA mutants defective in ATP binding and ATP-specific oligomerization. However, despite their functional equivalency, orisomes assembled on oriCallADP were unable to trigger chromosome replication at the correct cell cycle time and displayed a hyper-initiation phenotype. Here we present a new perspective on DnaA-ATP, and suggest that in E. coli, DnaA-ATP is not required for mechanical functions, but rather is needed for site recognition and occupation, so that initiation timing is coupled to DnaA-ATP levels. We also discuss how other bacterial types may utilize DnaA-ATP and DnaA-ADP, and whether the high diversity of replication origins in the bacterial world reflects different regulatory strategies for how DnaA-ATP is used to control orisome assembly.
Collapse
Affiliation(s)
- Alan C Leonard
- Laboratory of Microbial Genetics, Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| | - Prassanna Rao
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Rohit P Kadam
- Laboratory of Microbial Genetics, Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| | - Julia E Grimwade
- Laboratory of Microbial Genetics, Department of Biomedical and Chemical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
11
|
Liu Y, Xie Z, Zhou X, Li W, Zhang H, He ZG. NapM enhances the survival of Mycobacterium tuberculosis under stress and in macrophages. Commun Biol 2019; 2:65. [PMID: 30793043 PMCID: PMC6377630 DOI: 10.1038/s42003-019-0314-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/18/2019] [Indexed: 11/09/2022] Open
Abstract
Hostile environmental cues cause Mycobacterium tuberculosis to enter a state of slow growth for survival. However, the underlying regulatory mechanism remains unclear. DnaA is essential for DNA replication initiation and represents an efficient target for growth regulation in bacteria. Here, we show that the nucleoid-associated protein NapM is a DnaA antagonist, protecting M. tuberculosis from stress-mediated killing. NapM can be induced by diverse stressful signals. It binds to DnaA to inhibit both its DNA replication origin-binding and ATP hydrolysis activity. As a DnaA antagonist, NapM inhibits the mycobacterial DNA synthesis in vitro and in vivo in M. tuberculosis. Furthermore, we show that NapM contributes to the survival of M. tuberculosis under stress and within macrophages during infection. Our findings provide a previously unidentified mechanism of mycobacterial survival under stress and also suggest NapM as a potential drug target for tuberculosis control.
Collapse
Affiliation(s)
- Yu Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiwei Xie
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiling Zhou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weihui Li
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zheng-Guo He
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Dao FY, Lv H, Wang F, Feng CQ, Ding H, Chen W, Lin H. Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics 2018; 35:2075-2083. [DOI: 10.1093/bioinformatics/bty943] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Fu-Ying Dao
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Lv
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Wang
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chao-Qin Feng
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Ding
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Chen
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Lin
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology and Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
On KF, Jaremko M, Stillman B, Joshua-Tor L. A structural view of the initiators for chromosome replication. Curr Opin Struct Biol 2018; 53:131-139. [PMID: 30218786 DOI: 10.1016/j.sbi.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/07/2018] [Indexed: 11/18/2022]
Affiliation(s)
- Kin Fan On
- W.M. Keck Structural Biology Laboratory, United States; Howard Hughes Medical Institute, United States; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Matt Jaremko
- W.M. Keck Structural Biology Laboratory, United States; Howard Hughes Medical Institute, United States; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States.
| | - Leemor Joshua-Tor
- W.M. Keck Structural Biology Laboratory, United States; Howard Hughes Medical Institute, United States; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States.
| |
Collapse
|
14
|
García García T, Ventroux M, Derouiche A, Bidnenko V, Correia Santos S, Henry C, Mijakovic I, Noirot-Gros MF, Poncet S. Phosphorylation of the Bacillus subtilis Replication Controller YabA Plays a Role in Regulation of Sporulation and Biofilm Formation. Front Microbiol 2018; 9:486. [PMID: 29619013 PMCID: PMC5871692 DOI: 10.3389/fmicb.2018.00486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/01/2018] [Indexed: 11/13/2022] Open
Abstract
Bacillus subtilis cells can adopt different life-styles in response to various environmental cues, including planktonic cells during vegetative growth, sessile cells during biofilm formation and sporulation. While switching life-styles, bacteria must coordinate the progression of their cell cycle with their physiological status. Our current understanding of the regulatory pathways controlling the decision-making processes and triggering developmental switches highlights a key role of protein phosphorylation. The regulatory mechanisms that integrate the bacterial chromosome replication status with sporulation involve checkpoint proteins that target the replication initiator DnaA or the kinase phosphorelay controlling the master regulator Spo0A. B. subtilis YabA is known to interact with DnaA to prevent over-initiation of replication during vegetative growth. Here, we report that YabA is phosphorylated by YabT, a Ser/Thr kinase expressed during sporulation and biofilm formation. The phosphorylation of YabA has no effect on replication initiation control but hyper-phosphorylation of YabA leads to an increase in sporulation efficiency and a strong inhibition of biofilm formation. We also provide evidence that YabA phosphorylation affects the level of Spo0A-P in cells. These results indicate that YabA is a multifunctional protein with a dual role in regulating replication initiation and life-style switching, thereby providing a potential mechanism for cross-talk and coordination of cellular processes during adaptation to environmental change.
Collapse
Affiliation(s)
| | - Magali Ventroux
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Vladimir Bidnenko
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sara Correia Santos
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Céline Henry
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ivan Mijakovic
- Systems and Synthetic Biology, Chalmers University of Technology, Göteborg, Sweden
| | | | - Sandrine Poncet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
15
|
Xiao X, Ye HX, Liu Z, Jia JH, Chou KC. iROS-gPseKNC: Predicting replication origin sites in DNA by incorporating dinucleotide position-specific propensity into general pseudo nucleotide composition. Oncotarget 2018; 7:34180-9. [PMID: 27147572 PMCID: PMC5085147 DOI: 10.18632/oncotarget.9057] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/09/2016] [Indexed: 11/25/2022] Open
Abstract
DNA replication, occurring in all living organisms and being the basis for biological inheritance, is the process of producing two identical replicas from one original DNA molecule. To in-depth understand such an important biological process and use it for developing new strategy against genetics diseases, the knowledge of duplication origin sites in DNA is indispensible. With the explosive growth of DNA sequences emerging in the postgenomic age, it is highly desired to develop high throughput tools to identify these regions purely based on the sequence information alone. In this paper, by incorporating the dinucleotide position-specific propensity information into the general pseudo nucleotide composition and using the random forest classifier, a new predictor called iROS-gPseKNC was proposed. Rigorously cross-validations have indicated that the proposed predictor is significantly better than the best existing method in sensitivity, specificity, overall accuracy, and stability. Furthermore, a user-friendly web-server for iROS-gPseKNC has been established at http://www.jci-bioinfo.cn/iROS-gPseKNC, by which users can easily get their desired results without the need to bother the complicated mathematics, which were presented just for the integrity of the methodology itself.
Collapse
Affiliation(s)
- Xuan Xiao
- Computer Department, Jing-De-Zhen Ceramic Institute, Jing-De-Zhen, 333403, China.,Information School, ZheJiang Textile and Fashion College, NingBo, 315211, China.,Gordon Life Science Institute, Boston, Massachusetts, 02478, USA
| | - Han-Xiao Ye
- Computer Department, Jing-De-Zhen Ceramic Institute, Jing-De-Zhen, 333403, China
| | - Zi Liu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jian-Hua Jia
- Computer Department, Jing-De-Zhen Ceramic Institute, Jing-De-Zhen, 333403, China
| | - Kuo-Chen Chou
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Gordon Life Science Institute, Boston, Massachusetts, 02478, USA
| |
Collapse
|
16
|
Characterization of Copy Number Control of Two Haloferax volcanii Replication Origins Using Deletion Mutants and Haloarchaeal Artificial Chromosomes. J Bacteriol 2017; 200:JB.00517-17. [PMID: 29038254 DOI: 10.1128/jb.00517-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/08/2017] [Indexed: 12/17/2022] Open
Abstract
Haloferax volcanii is polyploid and contains about 20 genome copies under optimal conditions. However, the chromosome copy number is highly regulated and ranges from two during phosphate starvation to more than 40 under conditions of phosphate surplus. The aim of this study was the characterization of the influence of two replication origins on the genome copy number. The origin repeats and the genes encoding origin recognition complex (ORC) proteins were deleted. The core origin oriC1-orc1 (ori1) deletion mutant had a lower genome copy number and a higher level of fitness than the wild type, in stark contrast to the oriC2-orc5 (ori2) deletion mutant. The genes adjacent to ori1 could not be deleted, and thus, at least two of them are probably essential, while deletion of the genes adjacent to ori2 was possible. Various fragments of and around the origins were cloned into a suicide plasmid to generate haloarchaeal artificial chromosomes (HACs). The copy number of the oriC1-orc1 HAC was much higher than that of the oriC2-orc5 HAC. The addition of adjacent genes influenced both the HAC copy number and the chromosome copy number. The results indicate that the origins of H. volcanii are not independent but that the copy number is regulated via a network of genes around the origins.IMPORTANCE Several species of archaea have more than one origin of replication on their major chromosome and are thus the only known prokaryotic species that allow the analysis of the evolution of multiorigin replication. The widely studied Haloferax volcanii H26 strain has a major chromosome with four origins of replication. Two origins, ori1 and ori2, were chosen for an in-depth analysis using deletion mutants and haloarchaeal artificial chromosomes. The analysis was not restricted to the core origin regions; origin-adjacent genes were also included. Because H. volcanii is polyploid, the effects on the chromosome copy number were of specific importance. The results revealed extreme differences between the two origins.
Collapse
|
17
|
Li YC, Naveen V, Lin MG, Hsiao CD. Structural analyses of the bacterial primosomal protein DnaB reveal that it is a tetramer and forms a complex with a primosomal re-initiation protein. J Biol Chem 2017; 292:15744-15757. [PMID: 28808061 PMCID: PMC5612107 DOI: 10.1074/jbc.m117.792002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 08/08/2017] [Indexed: 11/06/2022] Open
Abstract
The DnaB primosomal protein from Gram-positive bacteria plays a key role in DNA replication and restart as a loader protein for the recruitment of replisome cascade proteins. Previous investigations have established that DnaB is composed of an N-terminal domain, a middle domain, and a C-terminal domain. However, structural evidence for how DnaB functions at the atomic level is lacking. Here, we report the crystal structure of DnaB, encompassing the N-terminal and middle domains (residues 1-300), from Geobacillus stearothermophilus (GstDnaB1-300) at 2.8 Å resolution. Our structure revealed that GstDnaB1-300 forms a tetramer with two basket-like architectures, a finding consistent with those from solution studies using analytical ultracentrifugation. Furthermore, our results from both GST pulldown assays and analytical ultracentrifugation show that GstDnaB1-300 is sufficient to form a complex with PriA, the primosomal reinitiation protein. Moreover, with the aid of small angle X-ray scattering experiments, we also determined the structural envelope of full-length DnaB (GstDnaBFL) in solution. These small angle X-ray scattering studies indicated that GstDnaBFL has an elongated conformation and that the protruding density envelopes originating from GstDnaB1-300 could completely accommodate the GstDnaB C-terminal domain (residues 301-461). Taken together with biochemical assays, our results suggest that GstDnaB uses different domains to distinguish the PriA interaction and single-stranded DNA binding. These findings can further extend our understanding of primosomal assembly in replication restart.
Collapse
Affiliation(s)
- Yi-Ching Li
- From the Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan and
| | - Vankadari Naveen
- From the Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan and
| | - Min-Guan Lin
- From the Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan and
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chwan-Deng Hsiao
- From the Institute of Molecular Biology, Academia Sinica, Taipei, 115, Taiwan and
| |
Collapse
|
18
|
Seid CA, Smith JL, Grossman AD. Genetic and biochemical interactions between the bacterial replication initiator DnaA and the nucleoid-associated protein Rok in Bacillus subtilis. Mol Microbiol 2017; 103:798-817. [PMID: 27902860 DOI: 10.1111/mmi.13590] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2016] [Indexed: 12/16/2022]
Abstract
We identified interactions between the conserved bacterial replication initiator and transcription factor DnaA and the nucleoid-associated protein Rok of Bacillus subtilis. DnaA binds directly to clusters of DnaA boxes at the origin of replication and elsewhere, including the promoters of several DnaA-regulated genes. Rok, an analog of H-NS from gamma-proteobacteria that affects chromosome architecture and of Lsr2 from Mycobacteria, binds A+T-rich sequences throughout the genome and represses expression of many genes. Using crosslinking and immunoprecipitation followed by deep sequencing (ChIP-seq), we found that DnaA was associated with eight previously identified regions containing clusters of DnaA boxes, plus 36 additional regions that were also bound by Rok. Association of DnaA with these additional regions appeared to be indirect as it was dependent on Rok and independent of the DNA-binding domain of DnaA. Gene expression and mutant analyses support a model in which DnaA and Rok cooperate to repress transcription of yxaJ, the yybNM operon and the sunA-bdbB operon. Our results indicate that DnaA modulates the activity of Rok. We postulate that this interaction might affect nucleoid architecture. Furthermore, DnaA might interact similarly with Rok analogues in other organisms.
Collapse
Affiliation(s)
- Charlotte A Seid
- Department of Biology, Massachusetts Institute of Technology, Building 68-530, Cambridge, MA, 02139, USA
| | - Janet L Smith
- Department of Biology, Massachusetts Institute of Technology, Building 68-530, Cambridge, MA, 02139, USA
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Building 68-530, Cambridge, MA, 02139, USA
| |
Collapse
|
19
|
Control of bacterial chromosome replication by non-coding regions outside the origin. Curr Genet 2016; 63:607-611. [PMID: 27942832 DOI: 10.1007/s00294-016-0671-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
Chromosome replication in Eubacteria is initiated by initiator protein(s) binding to specific sites within the replication origin, oriC. Recently, initiator protein binding to chromosomal regions outside the origin has attracted renewed attention; as such binding sites contribute to control the frequency of initiations. These outside-oriC binding sites function in several different ways: by steric hindrances of replication fork assembly, by titration of initiator proteins away from the origin, by performing a chaperone-like activity for inactivation- or activation of initiator proteins or by mediating crosstalk between chromosomes. Here, we discuss initiator binding to outside-oriC sites in a broad range of different taxonomic groups, to highlight the significance of such regions for regulation of bacterial chromosome replication. For Escherichia coli, it was recently shown that the genomic positions of regulatory elements are important for bacterial fitness, which, as we discuss, could be true for several other organisms.
Collapse
|
20
|
Makowski Ł, Donczew R, Weigel C, Zawilak-Pawlik A, Zakrzewska-Czerwińska J. Initiation of Chromosomal Replication in Predatory Bacterium Bdellovibrio bacteriovorus. Front Microbiol 2016; 7:1898. [PMID: 27965633 PMCID: PMC5124646 DOI: 10.3389/fmicb.2016.01898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/11/2016] [Indexed: 11/18/2022] Open
Abstract
Bdellovibrio bacteriovorus is a small Gram-negative predatory bacterium that attacks other Gram-negative bacteria, including many animal, human, and plant pathogens. This bacterium exhibits a peculiar biphasic life cycle during which two different types of cells are produced: non-replicating highly motile cells (the free-living phase) and replicating cells (the intracellular-growth phase). The process of chromosomal replication in B. bacteriovorus must therefore be temporally and spatially regulated to ensure that it is coordinated with cell differentiation and cell cycle progression. Recently, B. bacteriovorus has received considerable research interest due to its intriguing life cycle and great potential as a prospective antimicrobial agent. Although, we know that chromosomal replication in bacteria is mainly regulated at the initiation step, no data exists about this process in B. bacteriovorus. We report the first characterization of key elements of initiation of chromosomal replication - DnaA protein and oriC region from the predatory bacterium, B. bacteriovorus. In vitro studies using different approaches demonstrate that the B. bacteriovorus oriC (BdoriC) is specifically bound and unwound by the DnaA protein. Sequence comparison of the DnaA-binding sites enabled us to propose a consensus sequence for the B. bacteriovorus DnaA box [5'-NN(A/T)TCCACA-3']. Surprisingly, in vitro analysis revealed that BdoriC is also bound and unwound by the host DnaA proteins (relatively distantly related from B. bacteriovorus). We compared the architecture of the DnaA-oriC complexes (orisomes) in homologous (oriC and DnaA from B. bacteriovorus) and heterologous (BdoriC and DnaA from prey, Escherichia coli or Pseudomonas aeruginosa) systems. This work provides important new entry points toward improving our understanding of the initiation of chromosomal replication in this predatory bacterium.
Collapse
Affiliation(s)
- Łukasz Makowski
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy – Polish Academy of SciencesWrocław, Poland
| | - Rafał Donczew
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy – Polish Academy of SciencesWrocław, Poland
| | | | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy – Polish Academy of SciencesWrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy – Polish Academy of SciencesWrocław, Poland
- Department of Molecular Microbiology, Faculty of Biotechnology, University of WrocławWrocław, Poland
| |
Collapse
|
21
|
The Coordinated Positive Regulation of Topoisomerase Genes Maintains Topological Homeostasis in Streptomyces coelicolor. J Bacteriol 2016; 198:3016-3028. [PMID: 27551021 PMCID: PMC5055605 DOI: 10.1128/jb.00530-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/17/2016] [Indexed: 01/08/2023] Open
Abstract
Maintaining an optimal level of chromosomal supercoiling is critical for the progression of DNA replication and transcription. Moreover, changes in global supercoiling affect the expression of a large number of genes and play a fundamental role in adapting to stress. Topoisomerase I (TopA) and gyrase are key players in the regulation of bacterial chromosomal topology through their respective abilities to relax and compact DNA. Soil bacteria such as Streptomyces species, which grow as branched, multigenomic hyphae, are subject to environmental stresses that are associated with changes in chromosomal topology. The topological fluctuations modulate the transcriptional activity of a large number of genes and in Streptomyces are related to the production of antibiotics. To better understand the regulation of topological homeostasis in Streptomyces coelicolor, we investigated the interplay between the activities of the topoisomerase-encoding genes topA and gyrBA. We show that the expression of both genes is supercoiling sensitive. Remarkably, increased chromosomal supercoiling induces the topA promoter but only slightly influences gyrBA transcription, while DNA relaxation affects the topA promoter only marginally but strongly activates the gyrBA operon. Moreover, we showed that exposure to elevated temperatures induces rapid relaxation, which results in changes in the levels of both topoisomerases. We therefore propose a unique mechanism of S. coelicolor chromosomal topology maintenance based on the supercoiling-dependent stimulation, rather than repression, of the transcription of both topoisomerase genes. These findings provide important insight into the maintenance of topological homeostasis in an industrially important antibiotic producer. IMPORTANCE We describe the unique regulation of genes encoding two topoisomerases, topoisomerase I (TopA) and gyrase, in a model Streptomyces species. Our studies demonstrate the coordination of topoisomerase gene regulation, which is crucial for maintenance of topological homeostasis. Streptomyces species are producers of a plethora of biologically active secondary metabolites, including antibiotics, antitumor agents, and immunosuppressants. The significant regulatory factor controlling the secondary metabolism is the global chromosomal topology. Thus, the investigation of chromosomal topology homeostasis in Streptomyces strains is crucial for their use in industrial applications as producers of secondary metabolites.
Collapse
|
22
|
Jaworski P, Donczew R, Mielke T, Thiel M, Oldziej S, Weigel C, Zawilak-Pawlik A. Unique and Universal Features of Epsilonproteobacterial Origins of Chromosome Replication and DnaA-DnaA Box Interactions. Front Microbiol 2016; 7:1555. [PMID: 27746772 PMCID: PMC5043019 DOI: 10.3389/fmicb.2016.01555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/16/2016] [Indexed: 12/23/2022] Open
Abstract
In bacteria, chromosome replication is initiated by the interaction of the initiator protein DnaA with a defined region of a chromosome at which DNA replication starts (oriC). While DnaA proteins share significant homology regardless of phylogeny, oriC regions exhibit more variable structures. The general architecture of oriCs is universal, i.e., they are composed of a cluster of DnaA binding sites, a DNA-unwinding element, and sequences that bind regulatory proteins. However, detailed structures of oriCs are shared by related species while being significantly different in unrelated bacteria. In this work, we characterized Epsilonproteobacterial oriC regions. Helicobacter pylori was the only species of the class for which oriC was characterized. A few unique features were found such as bipartite oriC structure, not encountered in any other Gram-negative species, and topology-sensitive DnaA-DNA interactions, which have not been found in any other bacterium. These unusual H. pylori oriC features raised questions of whether oriC structure and DnaA-DNA interactions are unique to this bacterium or whether they are common to related species. By in silico and in vitro analyses we identified putative oriCs in three Epsilonproteobacterial species: pathogenic Arcobacter butzleri, symbiotic Wolinella succinogenes, and free-living Sulfurimonas denitrificans. We propose that oriCs typically co-localize with ruvC-dnaA-dnaN in Epsilonproteobacteria, with the exception of Helicobacteriaceae species. The clusters of DnaA boxes localize upstream (oriC1) and downstream (oriC2) of dnaA, and they likely constitute bipartite origins. In all cases, DNA unwinding was shown to occur in oriC2. Unlike the DnaA box pattern, which is not conserved in Epsilonproteobacterial oriCs, the consensus DnaA box sequences and the mode of DnaA-DnaA box interactions are common to the class. We propose that the typical Epsilonproteobacterial DnaA box consists of the core nucleotide sequence 5′-TTCAC-3′ (4–8 nt), which, together with the significant changes in the DNA-binding motif of corresponding DnaAs, determines the unique molecular mechanism of DnaA-DNA interaction. Our results will facilitate identification of oriCs and subsequent identification of factors which regulate chromosome replication in other Epsilonproteobacteria. Since replication is controlled at the initiation step, it will help to better characterize life cycles of these species, many of which are considered as emerging pathogens.
Collapse
Affiliation(s)
- Pawel Jaworski
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Rafal Donczew
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | | | - Marcel Thiel
- Laboratory of Biopolymers Structure, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk Gdańsk, Poland
| | - Stanislaw Oldziej
- Laboratory of Biopolymers Structure, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk Gdańsk, Poland
| | - Christoph Weigel
- Department of Life Science Engineering, Fachbereich 2, HTW Berlin Berlin, Germany
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| |
Collapse
|
23
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
24
|
Abstract
In recent years it has become clear that complex regulatory circuits control the initiation step of DNA replication by directing the assembly of a multicomponent molecular machine (the orisome) that separates DNA strands and loads replicative helicase at oriC, the unique chromosomal origin of replication. This chapter discusses recent efforts to understand the regulated protein-DNA interactions that are responsible for properly timed initiation of chromosome replication. It reviews information about newly identified nucleotide sequence features within Escherichia coli oriC and the new structural and biochemical attributes of the bacterial initiator protein DnaA. It also discusses the coordinated mechanisms that prevent improperly timed DNA replication. Identification of the genes that encoded the initiators came from studies on temperature-sensitive, conditional-lethal mutants of E. coli, in which two DNA replication-defective phenotypes, "immediate stop" mutants and "delayed stop" mutants, were identified. The kinetics of the delayed stop mutants suggested that the defective gene products were required specifically for the initiation step of DNA synthesis, and subsequently, two genes, dnaA and dnaC, were identified. The DnaA protein is the bacterial initiator, and in E. coli, the DnaC protein is required to load replicative helicase. Regulation of DnaA accessibility to oriC, the ordered assembly and disassembly of a multi-DnaA complex at oriC, and the means by which DnaA unwinds oriC remain important questions to be answered and the chapter discusses the current state of knowledge on these topics.
Collapse
|
25
|
Smith JL, Grossman AD. In Vitro Whole Genome DNA Binding Analysis of the Bacterial Replication Initiator and Transcription Factor DnaA. PLoS Genet 2015; 11:e1005258. [PMID: 26020636 PMCID: PMC4447404 DOI: 10.1371/journal.pgen.1005258] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 05/01/2015] [Indexed: 11/18/2022] Open
Abstract
DnaA, the replication initiation protein in bacteria, is an AAA+ ATPase that binds and hydrolyzes ATP and exists in a heterogeneous population of ATP-DnaA and ADP-DnaA. DnaA binds cooperatively to the origin of replication and several other chromosomal regions, and functions as a transcription factor at some of these regions. We determined the binding properties of Bacillus subtilis DnaA to genomic DNA in vitro at single nucleotide resolution using in vitro DNA affinity purification and deep sequencing (IDAP-Seq). We used these data to identify 269 binding regions, refine the consensus sequence of the DnaA binding site, and compare the relative affinity of binding regions for ATP-DnaA and ADP-DnaA. Most sites had a slightly higher affinity for ATP-DnaA than ADP-DnaA, but a few had a strong preference for binding ATP-DnaA. Of the 269 sites, only the eight strongest binding ones have been observed to bind DnaA in vivo, suggesting that other cellular factors or the amount of available DnaA in vivo restricts DnaA binding to these additional sites. Conversely, we found several chromosomal regions that were bound by DnaA in vivo but not in vitro, and that the nucleoid-associated protein Rok was required for binding in vivo. Our in vitro characterization of the inherent ability of DnaA to bind the genome at single nucleotide resolution provides a backdrop for interpreting data on in vivo binding and regulation of DnaA, and is an approach that should be adaptable to many other DNA binding proteins.
Collapse
Affiliation(s)
- Janet L Smith
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
26
|
Williams LE, Wernegreen JJ. Genome evolution in an ancient bacteria-ant symbiosis: parallel gene loss among Blochmannia spanning the origin of the ant tribe Camponotini. PeerJ 2015; 3:e881. [PMID: 25861561 PMCID: PMC4389277 DOI: 10.7717/peerj.881] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/18/2015] [Indexed: 12/11/2022] Open
Abstract
Stable associations between bacterial endosymbionts and insect hosts provide opportunities to explore genome evolution in the context of established mutualisms and assess the roles of selection and genetic drift across host lineages and habitats. Blochmannia, obligate endosymbionts of ants of the tribe Camponotini, have coevolved with their ant hosts for ∼40 MY. To investigate early events in Blochmannia genome evolution across this ant host tribe, we sequenced Blochmannia from two divergent host lineages, Colobopsis obliquus and Polyrhachis turneri, and compared them with four published genomes from Blochmannia of Camponotus sensu stricto. Reconstructed gene content of the last common ancestor (LCA) of these six Blochmannia genomes is reduced (690 protein coding genes), consistent with rapid gene loss soon after establishment of the symbiosis. Differential gene loss among Blochmannia lineages has affected cellular functions and metabolic pathways, including DNA replication and repair, vitamin biosynthesis and membrane proteins. Blochmannia of P. turneri (i.e., B. turneri) encodes an intact DnaA chromosomal replication initiation protein, demonstrating that loss of dnaA was not essential for establishment of the symbiosis. Based on gene content, B. obliquus and B. turneri are unable to provision hosts with riboflavin. Of the six sequenced Blochmannia, B. obliquus is the earliest diverging lineage (i.e., the sister group of other Blochmannia sampled) and encodes the fewest protein-coding genes and the most pseudogenes. We identified 55 genes involved in parallel gene loss, including glutamine synthetase, which may participate in nitrogen recycling. Pathways for biosynthesis of coenzyme A, terpenoids and riboflavin were lost in multiple lineages, suggesting relaxed selection on the pathway after inactivation of one component. Analysis of Illumina read datasets did not detect evidence of plasmids encoding missing functions, nor the presence of coresident symbionts other than Wolbachia. Although gene order is strictly conserved in four Blochmannia of Camponotus sensu stricto, comparisons with deeply divergent lineages revealed inversions in eight genomic regions, indicating ongoing recombination despite ancestral loss of recA. In sum, the addition of two Blochmannia genomes of divergent host lineages enables reconstruction of early events in evolution of this symbiosis and suggests that Blochmannia lineages may experience distinct, host-associated selective pressures. Understanding how evolutionary forces shape genome reduction in this system may help to clarify forces driving gene loss in other bacteria, including intracellular pathogens.
Collapse
Affiliation(s)
- Laura E Williams
- Duke Center for Genomic and Computational Biology, Duke University , Durham, NC , USA
| | - Jennifer J Wernegreen
- Duke Center for Genomic and Computational Biology, Duke University , Durham, NC , USA ; Nicholas School of the Environment, Duke University , Durham, NC , USA
| |
Collapse
|
27
|
End of the beginning: elongation and termination features of alternative modes of chromosomal replication initiation in bacteria. PLoS Genet 2015; 11:e1004909. [PMID: 25569209 PMCID: PMC4287441 DOI: 10.1371/journal.pgen.1004909] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In bacterial cells, bidirectional replication of the circular chromosome is initiated from a single origin (oriC) and terminates in an antipodal terminus region such that movement of the pair of replication forks is largely codirectional with transcription. The terminus region is flanked by discrete Ter sequences that act as polar, or direction-dependent, arrest sites for fork progression. Alternative oriC-independent modes of replication initiation are possible, one of which is constitutive stable DNA replication (cSDR) from transcription-associated RNA–DNA hybrids or R-loops. Here, I discuss the distinctive attributes of fork progression and termination associated with different modes of bacterial replication initiation. Two hypothetical models are proposed: that head-on collisions between pairs of replication forks, which are a feature of replication termination in all kingdoms of life, provoke bilateral fork reversal reactions; and that cSDR is characterized by existence of distinct subpopulations in bacterial cultures and a widespread distribution of origins in the genome, each with a small firing potential. Since R-loops are known to exist in eukaryotic cells and to inflict genome damage in G1 phase, it is possible that cSDR-like events promote aberrant replication initiation even in eukaryotes.
Collapse
|
28
|
Wolański M, Donczew R, Zawilak-Pawlik A, Zakrzewska-Czerwińska J. oriC-encoded instructions for the initiation of bacterial chromosome replication. Front Microbiol 2015; 5:735. [PMID: 25610430 PMCID: PMC4285127 DOI: 10.3389/fmicb.2014.00735] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/05/2014] [Indexed: 01/09/2023] Open
Abstract
Replication of the bacterial chromosome initiates at a single origin of replication that is called oriC. This occurs via the concerted action of numerous proteins, including DnaA, which acts as an initiator. The origin sequences vary across species, but all bacterial oriCs contain the information necessary to guide assembly of the DnaA protein complex at oriC, triggering the unwinding of DNA and the beginning of replication. The requisite information is encoded in the unique arrangement of specific sequences called DnaA boxes, which form a framework for DnaA binding and assembly. Other crucial sequences of bacterial origin include DNA unwinding element (DUE, which designates the site at which oriC melts under the influence of DnaA) and binding sites for additional proteins that positively or negatively regulate the initiation process. In this review, we summarize our current knowledge and understanding of the information encoded in bacterial origins of chromosomal replication, particularly in the context of replication initiation and its regulation. We show that oriC encoded instructions allow not only for initiation but also for precise regulation of replication initiation and coordination of chromosomal replication with the cell cycle (also in response to environmental signals). We focus on Escherichia coli, and then expand our discussion to include several other microorganisms in which additional regulatory proteins have been recently shown to be involved in coordinating replication initiation to other cellular processes (e.g., Bacillus, Caulobacter, Helicobacter, Mycobacterium, and Streptomyces). We discuss diversity of bacterial oriC regions with the main focus on roles of individual DNA recognition sequences at oriC in binding the initiator and regulatory proteins as well as the overall impact of these proteins on the formation of initiation complex.
Collapse
Affiliation(s)
- Marcin Wolański
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław Wrocław, Poland
| | - Rafał Donczew
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław Wrocław, Poland ; Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences Wrocław, Poland
| |
Collapse
|
29
|
Khlebodarova TM, Likhoshvai VA. New evidence of an old problem: The coupling of genome replication to cell growth in bacteria. RUSS J GENET+ 2014. [DOI: 10.1134/s102279541408002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Wolański M, Jakimowicz D, Zakrzewska-Czerwińska J. Fifty years after the replicon hypothesis: cell-specific master regulators as new players in chromosome replication control. J Bacteriol 2014; 196:2901-11. [PMID: 24914187 PMCID: PMC4135643 DOI: 10.1128/jb.01706-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous free-living bacteria undergo complex differentiation in response to unfavorable environmental conditions or as part of their natural cell cycle. Developmental programs require the de novo expression of several sets of genes responsible for morphological, physiological, and metabolic changes, such as spore/endospore formation, the generation of flagella, and the synthesis of antibiotics. Notably, the frequency of chromosomal replication initiation events must also be adjusted with respect to the developmental stage in order to ensure that each nascent cell receives a single copy of the chromosomal DNA. In this review, we focus on the master transcriptional factors, Spo0A, CtrA, and AdpA, which coordinate developmental program and which were recently demonstrated to control chromosome replication. We summarize the current state of knowledge on the role of these developmental regulators in synchronizing the replication with cell differentiation in Bacillus subtilis, Caulobacter crescentus, and Streptomyces coelicolor, respectively.
Collapse
Affiliation(s)
- Marcin Wolański
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dagmara Jakimowicz
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Faculty of Biotechnology, University of Wrocław, Wrocław, Poland Department of Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
31
|
Rybenkov VV. Maintenance of chromosome structure in Pseudomonas aeruginosa. FEMS Microbiol Lett 2014; 356:154-65. [PMID: 24863732 DOI: 10.1111/1574-6968.12478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/11/2014] [Accepted: 05/19/2014] [Indexed: 11/30/2022] Open
Abstract
Replication and segregation of genetic information are the activities central to the well-being of all living cells. Concerted mechanisms have evolved that ensure that each cellular chromosome is replicated once and only once per cell cycle and then faithfully segregated into daughter cells. Despite remarkable taxonomic diversity, these mechanisms are largely conserved across eubacteria, although species-specific distinctions can often be noted. Here, we provide an overview of the current state of knowledge about maintenance of the chromosome structure in Pseudomonas aeruginosa. We focus on global chromosome organization and its dynamics during DNA replication and cell division. Special emphasis is made on contrasting these activities in P. aeruginosa and other bacteria. Among unique P. aeruginosa, features are the presence of two distinct autonomously replicating sequences and multiple condensins, which suggests existence of novel regulatory mechanisms.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
32
|
Donczew R, Mielke T, Jaworski P, Zakrzewska-Czerwińska J, Zawilak-Pawlik A. Assembly of Helicobacter pylori initiation complex is determined by sequence-specific and topology-sensitive DnaA-oriC interactions. J Mol Biol 2014; 426:2769-82. [PMID: 24862285 DOI: 10.1016/j.jmb.2014.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
In bacteria, chromosome replication is initiated by binding of the DnaA initiator protein to DnaA boxes located in the origin of chromosomal replication (oriC). This leads to DNA helix opening within the DNA-unwinding element. Helicobacter pylori oriC, the first bipartite origin identified in Gram-negative bacteria, contains two subregions, oriC1 and oriC2, flanking the dnaA gene. The DNA-unwinding element region is localized in the oriC2 subregion downstream of dnaA. Surprisingly, oriC2-DnaA interactions were shown to depend on DNA topology, which is unusual in bacteria but is similar to initiator-origin interactions observed in higher organisms. In this work, we identified three DnaA boxes in the oriC2 subregion, two of which were bound only as supercoiled DNA. We found that all three DnaA boxes play important roles in orisome assembly and subsequent DNA unwinding, but different functions can be assigned to individual boxes. This suggests that the H. pylori oriC may be functionally divided, similar to what was described recently for Escherichia coli oriC. On the basis of these results, we propose a model of initiation complex formation in H. pylori.
Collapse
Affiliation(s)
- Rafał Donczew
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Weigla 12, 53-114 Wrocław, Poland.
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany.
| | - Paweł Jaworski
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Weigla 12, 53-114 Wrocław, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Weigla 12, 53-114 Wrocław, Poland; University of Wrocław, Faculty of Biotechnology, Joliot-Curie 14a, 50-138 Wrocław, Poland.
| | - Anna Zawilak-Pawlik
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Weigla 12, 53-114 Wrocław, Poland.
| |
Collapse
|
33
|
Wu Z, Liu J, Yang H, Xiang H. DNA replication origins in archaea. Front Microbiol 2014; 5:179. [PMID: 24808892 PMCID: PMC4010727 DOI: 10.3389/fmicb.2014.00179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/01/2014] [Indexed: 11/13/2022] Open
Abstract
DNA replication initiation, which starts at specific chromosomal site (known as replication origins), is the key regulatory stage of chromosome replication. Archaea, the third domain of life, use a single or multiple origin(s) to initiate replication of their circular chromosomes. The basic structure of replication origins is conserved among archaea, typically including an AT-rich unwinding region flanked by several conserved repeats (origin recognition box, ORB) that are located adjacent to a replication initiator gene. Both the ORB sequence and the adjacent initiator gene are considerably diverse among different replication origins, while in silico and genetic analyses have indicated the specificity between the initiator genes and their cognate origins. These replicator–initiator pairings are reminiscent of the oriC-dnaA system in bacteria, and a model for the negative regulation of origin activity by a downstream cluster of ORB elements has been recently proposed in haloarchaea. Moreover, comparative genomic analyses have revealed that the mosaics of replicator-initiator pairings in archaeal chromosomes originated from the integration of extrachromosomal elements. This review summarizes the research progress in understanding of archaeal replication origins with particular focus on the utilization, control and evolution of multiple replication origins in haloarchaea.
Collapse
Affiliation(s)
- Zhenfang Wu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Haibo Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China ; University of Chinese Academy of Sciences Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
34
|
Donczew R, Zakrzewska-Czerwińska J, Zawilak-Pawlik A. Beyond DnaA: the role of DNA topology and DNA methylation in bacterial replication initiation. J Mol Biol 2014; 426:2269-82. [PMID: 24747048 DOI: 10.1016/j.jmb.2014.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022]
Abstract
The replication of chromosomal DNA is a fundamental event in the life cycle of every cell. The first step of replication, initiation, is controlled by multiple factors to ensure only one round of replication per cell cycle. The process of initiation has been described most thoroughly for bacteria, especially Escherichia coli, and involves many regulatory proteins that vary considerably between different species. These proteins control the activity of the two key players of initiation in bacteria: the initiator protein DnaA and the origin of chromosome replication (oriC). Factors involved in the control of the availability, activity, or oligomerization of DnaA during initiation are generally regarded as the most important and thus have been thoroughly characterized. Other aspects of the initiation process, such as origin accessibility and susceptibility to unwinding, have been less explored. However, recent findings indicate that these factors have a significant role. This review focuses on DNA topology, conformation, and methylation as important factors that regulate the initiation process in bacteria. We present a comprehensive summary of the factors involved in the modulation of DNA topology, both locally at oriC and more globally at the level of the entire chromosome. We show clearly that the conformation of oriC dynamically changes, and control of this conformation constitutes another, important factor in the regulation of bacterial replication initiation. Furthermore, the process of initiation appears to be associated with the dynamics of the entire chromosome and this association is an important but largely unexplored phenomenon.
Collapse
Affiliation(s)
- Rafał Donczew
- Institute of Immunology and Experimental Therapy, Department of Microbiology, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Institute of Immunology and Experimental Therapy, Department of Microbiology, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland; Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-138 Wrocław, Poland.
| | - Anna Zawilak-Pawlik
- Institute of Immunology and Experimental Therapy, Department of Microbiology, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland.
| |
Collapse
|
35
|
Propionate represses the dnaA gene via the methylcitrate pathway-regulating transcription factor, PrpR, in Mycobacterium tuberculosis. Antonie Van Leeuwenhoek 2014; 105:951-9. [PMID: 24705740 PMCID: PMC3982210 DOI: 10.1007/s10482-014-0153-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/10/2014] [Indexed: 11/22/2022]
Abstract
During infection of macrophages, Mycobacterium tuberculosis, the pathogen that causes tuberculosis, utilizes fatty acids as a major carbon source. However, little is known about the coordination of the central carbon metabolism of M. tuberculosis with its chromosomal replication, particularly during infection. A recently characterized transcription factor called PrpR is known to directly regulate the genes involved in fatty acid catabolism by M. tuberculosis. Here, we report for the first time that PrpR also regulates the dnaA gene, which encodes the DnaA initiator protein responsible for initiating chromosomal replication. Using cell-free systems and intact cells, we demonstrated an interaction between PrpR and the dnaA promoter region. Moreover, real-time quantitative reverse-transcription PCR analysis revealed that PrpR acts as a transcriptional repressor of dnaA when propionate (a product of odd-chain-length fatty acid catabolism) was used as the sole carbon source. We hypothesize that PrpR may be an important element of the complex regulatory system(s) required for tubercle bacilli to survive within macrophages, presumably coordinating the catabolism of host-derived fatty acids with chromosomal replication.
Collapse
|
36
|
Kaur G, Vora MP, Czerwonka CA, Rozgaja TA, Grimwade JE, Leonard AC. Building the bacterial orisome: high-affinity DnaA recognition plays a role in setting the conformation of oriC DNA. Mol Microbiol 2014; 91:1148-63. [PMID: 24443848 DOI: 10.1111/mmi.12525] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2014] [Indexed: 11/29/2022]
Abstract
During assembly of the E. coli pre-replicative complex (pre-RC), initiator DnaA oligomers are nucleated from three widely separated high-affinity DnaA recognition sites in oriC. Oligomer assembly is then guided by low-affinity DnaA recognition sites, but is also regulated by a switch-like conformational change in oriC mediated by sequential binding of two DNA bending proteins, Fis and IHF, serving as inhibitor and activator respectively. Although their recognition sites are separated by up to 90 bp, Fis represses IHF binding and weak DnaA interactions until accumulating DnaA displaces Fis from oriC. It remains unclear whether high-affinity DnaA binding plays any role in Fis repression at a distance and it is also not known whether all high-affinity DnaA recognition sites play an equivalent role in oligomer formation. To examine these issues, we developed origin-selective recombineering methods to mutate E. coli chromosomal oriC. We found that, although oligomers were assembled in the absence of any individual high-affinity DnaA binding site, loss of DnaA binding at peripheral sites eliminated Fis repression, and made binding of both Fis and IHF essential. We propose a model in which interaction of DnaA molecules at high-affinity sites regulates oriC DNA conformation.
Collapse
Affiliation(s)
- Gulpreet Kaur
- Department of Biological Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL, 32901, USA
| | | | | | | | | | | |
Collapse
|
37
|
Single-cell model of prokaryotic cell cycle. J Theor Biol 2014; 341:78-87. [DOI: 10.1016/j.jtbi.2013.09.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 09/24/2013] [Accepted: 09/29/2013] [Indexed: 11/23/2022]
|
38
|
Abstract
The onset of genomic DNA synthesis requires precise interactions of specialized initiator proteins with DNA at sites where the replication machinery can be loaded. These sites, defined as replication origins, are found at a few unique locations in all of the prokaryotic chromosomes examined so far. However, replication origins are dispersed among tens of thousands of loci in metazoan chromosomes, thereby raising questions regarding the role of specific nucleotide sequences and chromatin environment in origin selection and the mechanisms used by initiators to recognize replication origins. Close examination of bacterial and archaeal replication origins reveals an array of DNA sequence motifs that position individual initiator protein molecules and promote initiator oligomerization on origin DNA. Conversely, the need for specific recognition sequences in eukaryotic replication origins is relaxed. In fact, the primary rule for origin selection appears to be flexibility, a feature that is modulated either by structural elements or by epigenetic mechanisms at least partly linked to the organization of the genome for gene expression.
Collapse
Affiliation(s)
- Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901
| | | |
Collapse
|
39
|
Wolański M, Jakimowicz D, Zakrzewska-Czerwińska J. AdpA, key regulator for morphological differentiation regulates bacterial chromosome replication. Open Biol 2013; 2:120097. [PMID: 22870392 PMCID: PMC3411110 DOI: 10.1098/rsob.120097] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/02/2012] [Indexed: 12/26/2022] Open
Abstract
AdpA, one of the most pleiotropic transcription regulators in bacteria, controls expression of several dozen genes during Streptomyces differentiation. Here, we report a novel function for the AdpA protein: inhibitor of chromosome replication at the initiation stage. AdpA specifically recognizes the 5′ region of the Streptomyces coelicolor replication origin (oriC). Our in vitro results show that binding of AdpA protein decreased access of initiator protein (DnaA) to the oriC region. We also found that mutation of AdpA-binding sequences increased the accessibility of oriC to DnaA, which led to more frequent replication and acceleration of Streptomyces differentiation (at the stage of aerial hyphae formation). Moreover, we also provide evidence that AdpA and DnaA proteins compete for oriC binding in an ATP-dependent manner, with low ATP levels causing preferential binding of AdpA, and high ATP levels causing dissociation of AdpA and association of DnaA. This would be consistent with a role for ATP levels in determining when aerial hyphae emerge.
Collapse
Affiliation(s)
- Marcin Wolański
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53114 Wrocław, Poland
| | | | | |
Collapse
|
40
|
Barańska S, Glinkowska M, Herman-Antosiewicz A, Maciąg-Dorszyńska M, Nowicki D, Szalewska-Pałasz A, Węgrzyn A, Węgrzyn G. Replicating DNA by cell factories: roles of central carbon metabolism and transcription in the control of DNA replication in microbes, and implications for understanding this process in human cells. Microb Cell Fact 2013; 12:55. [PMID: 23714207 PMCID: PMC3698200 DOI: 10.1186/1475-2859-12-55] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 05/26/2013] [Indexed: 12/29/2022] Open
Abstract
Precise regulation of DNA replication is necessary to ensure the inheritance of genetic features by daughter cells after each cell division. Therefore, determining how the regulatory processes operate to control DNA replication is crucial to our understanding and application to biotechnological processes. Contrary to early concepts of DNA replication, it appears that this process is operated by large, stationary nucleoprotein complexes, called replication factories, rather than by single enzymes trafficking along template molecules. Recent discoveries indicated that in bacterial cells two processes, central carbon metabolism (CCM) and transcription, significantly and specifically influence the control of DNA replication of various replicons. The impact of these discoveries on our understanding of the regulation of DNA synthesis is discussed in this review. It appears that CCM may influence DNA replication by either action of specific metabolites or moonlighting activities of some enzymes involved in this metabolic pathway. The role of transcription in the control of DNA replication may arise from either topological changes in nucleic acids which accompany RNA synthesis or direct interactions between replication and transcription machineries. Due to intriguing similarities between some prokaryotic and eukaryotic regulatory systems, possible implications of studies on regulation of microbial DNA replication on understanding such a process occurring in human cells are discussed.
Collapse
Affiliation(s)
- Sylwia Barańska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk 80-308, Poland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The replication origin and the initiator protein DnaA are the main targets for regulation of chromosome replication in bacteria. The origin bears multiple DnaA binding sites, while DnaA contains ATP/ADP-binding and DNA-binding domains. When enough ATP-DnaA has accumulated in the cell, an active initiation complex can be formed at the origin resulting in strand opening and recruitment of the replicative helicase. In Escherichia coli, oriC activity is directly regulated by DNA methylation and specific oriC-binding proteins. DnaA activity is regulated by proteins that stimulate ATP-DnaA hydrolysis, yielding inactive ADP-DnaA in a replication-coupled negative-feedback manner, and by DnaA-binding DNA elements that control the subcellular localization of DnaA or stimulate the ADP-to-ATP exchange of the DnaA-bound nucleotide. Regulation of dnaA gene expression is also important for initiation. The principle of replication-coupled negative regulation of DnaA found in E. coli is conserved in eukaryotes as well as in bacteria. Regulations by oriC-binding proteins and dnaA gene expression are also conserved in bacteria.
Collapse
Affiliation(s)
- Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway
| | | |
Collapse
|
42
|
Denapoli J, Tehranchi AK, Wang JD. Dose-dependent reduction of replication elongation rate by (p)ppGpp in Escherichia coli and Bacillus subtilis. Mol Microbiol 2013; 88:93-104. [PMID: 23461544 DOI: 10.1111/mmi.12172] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2013] [Indexed: 11/26/2022]
Abstract
DNA replication is regulated in response to environmental constraints such as nutrient availability. While much is known about regulation of replication during initiation, little is known about regulation of replication during elongation. In the bacterium Bacillus subtilis, replication elongation is paused upon sudden amino acid starvation by the starvation-inducible nucleotide (p)ppGpp. However, in many bacteria including Escherichia coli, replication elongation is thought to be unregulated by nutritional availability. Here we reveal that the replication elongation rate in E. coli is modestly but significantly reduced upon strong amino acid starvation. This reduction requires (p)ppGpp and is exacerbated in a gppA mutant with increased pppGpp levels. Importantly, high levels of (p)ppGpp, independent of amino acid starvation, are sufficient to inhibit replication elongation even in the absence of transcription. Finally, in both E. coli and B. subtilis, (p)ppGpp inhibits replication elongation in a dose-dependent manner rather than via a switch-like mechanism, although this inhibition is much stronger in B. subtilis. This supports a model where replication elongation rates are regulated by (p)ppGpp to allow rapid and tunable response to multiple abrupt stresses in evolutionarily diverse bacteria.
Collapse
Affiliation(s)
- Jessica Denapoli
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
43
|
Norris V, Amar P. Chromosome Replication in Escherichia coli: Life on the Scales. Life (Basel) 2012; 2:286-312. [PMID: 25371267 PMCID: PMC4187155 DOI: 10.3390/life2040286] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 10/01/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022] Open
Abstract
At all levels of Life, systems evolve on the 'scales of equilibria'. At the level of bacteria, the individual cell must favor one of two opposing strategies and either take risks to grow or avoid risks to survive. It has been proposed in the Dualism hypothesis that the growth and survival strategies depend on non-equilibrium and equilibrium hyperstructures, respectively. It has been further proposed that the cell cycle itself is the way cells manage to balance the ratios of these types of hyperstructure so as to achieve the compromise solution of living on the two scales. Here, we attempt to re-interpret a major event, the initiation of chromosome replication in Escherichia coli, in the light of scales of equilibria. This entails thinking in terms of hyperstructures as responsible for intensity sensing and quantity sensing and how this sensing might help explain the role of the DnaA protein in initiation of replication. We outline experiments and an automaton approach to the cell cycle that should test and refine the scales concept.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, EA 3829, Department of Biology, University of Rouen, 76821, Mont Saint Aignan, France.
| | - Patrick Amar
- Laboratoire de Recherche en Informatique, Université Paris-Sud, and INRIA Saclay - Ile de France, AMIB Project, Orsay, France.
| |
Collapse
|
44
|
Donczew R, Weigel C, Lurz R, Zakrzewska-Czerwinska J, Zawilak-Pawlik A. Helicobacter pylori oriC--the first bipartite origin of chromosome replication in Gram-negative bacteria. Nucleic Acids Res 2012; 40:9647-60. [PMID: 22904070 PMCID: PMC3479198 DOI: 10.1093/nar/gks742] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Binding of the DnaA protein to oriC leads to DNA melting within the DNA unwinding element (DUE) and initiates replication of the bacterial chromosome. Helicobacter pylori oriC was previously identified as a region localized upstream of dnaA and containing a cluster of DnaA boxes bound by DnaA protein with a high affinity. However, no unwinding within the oriC sequence has been detected. Comprehensive in silico analysis presented in this work allowed us to identify an additional region (oriC2), separated from the original one (oriC1) by the dnaA gene. DnaA specifically binds both regions, but DnaA-dependent DNA unwinding occurs only within oriC2. Surprisingly, oriC2 is bound exclusively as supercoiled DNA, which directly shows the importance of the DNA topology in DnaA-oriC interactions, similarly as previously presented only for initiator-origin interactions in Archaea and some Eukaryota. We conclude that H. pylori oriC exhibits bipartite structure, being the first such origin discovered in a Gram-negative bacterium. The H. pylori mode of initiator-oriC interactions, with the loop formation between the subcomplexes of the discontinuous origin, resembles those discovered in Bacillus subtilis chromosome and in many plasmids, which might suggest a similar way of controlling initiation of replication.
Collapse
Affiliation(s)
- Rafał Donczew
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Department of Microbiology, Weigla 12, 53-114 Wrocław, Poland
| | | | | | | | | |
Collapse
|
45
|
Abstract
Genomic analyses increasingly make use of sophisticated statistical and computational approaches in investigations of genomic function and evolution. Scientists implementing and developing these approaches are often computational scientists, physicists, or mathematicians. This article aims to provide a compact overview of genome biology for these scientists. Thus, the article focuses on providing biological context to the genomic features, processes, and structures analysed by these approaches. Topics covered include (1) differences between eukaryotic and prokaryotic cells; (2) the physical structure of genomes and chromatin; (3) different categories of genomic regions, including those serving as templates for RNA and protein synthesis, regulatory regions, repetitive regions, and "architectural" or "organisational" regions, such as centromeres and telomeres; (4) the cell cycle; (5) an overview of transcription, translation, and protein structure; and (6) a glossary of relevant terms.
Collapse
|
46
|
Regev T, Myers N, Zarivach R, Fishov I. Association of the chromosome replication initiator DnaA with the Escherichia coli inner membrane in vivo: quantity and mode of binding. PLoS One 2012; 7:e36441. [PMID: 22574163 PMCID: PMC3344877 DOI: 10.1371/journal.pone.0036441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 04/02/2012] [Indexed: 11/18/2022] Open
Abstract
DnaA initiates chromosome replication in most known bacteria and its activity is controlled so that this event occurs only once every cell division cycle. ATP in the active ATP-DnaA is hydrolyzed after initiation and the resulting ADP is replaced with ATP on the verge of the next initiation. Two putative recycling mechanisms depend on the binding of DnaA either to the membrane or to specific chromosomal sites, promoting nucleotide dissociation. While there is no doubt that DnaA interacts with artificial membranes in vitro, it is still controversial as to whether it binds the cytoplasmic membrane in vivo. In this work we looked for DnaA-membrane interaction in E. coli cells by employing cell fractionation with both native and fluorescent DnaA hybrids. We show that about 10% of cellular DnaA is reproducibly membrane-associated. This small fraction might be physiologically significant and represent the free DnaA available for initiation, rather than the vast majority bound to the datA reservoir. Using the combination of mCherry with a variety of DnaA fragments, we demonstrate that the membrane binding function is delocalized on the surface of the protein's domain III, rather than confined to a particular sequence. We propose a new binding-bending mechanism to explain the membrane-induced nucleotide release from DnaA. This mechanism would be fundamental to the initiation of replication.
Collapse
Affiliation(s)
- Tomer Regev
- Department of Life Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Nadav Myers
- Department of Life Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
- National Institute of Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Itzhak Fishov
- Department of Life Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
47
|
Maciąg-Dorszyńska M, Ignatowska M, Jannière L, Węgrzyn G, Szalewska-Pałasz A. Mutations in central carbon metabolism genes suppress defects in nucleoid position and cell division of replication mutants in Escherichia coli. Gene 2012; 503:31-5. [PMID: 22565187 DOI: 10.1016/j.gene.2012.04.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 11/16/2022]
Abstract
A genetic link of the carbon metabolism and DNA replication was recently reported for the representative of Gram-negative bacteria, Escherichia coli. Our studies showed that the viability of thermosensitive replication mutants at high temperature can be improved or fully recovered by deleting certain genes of central carbon metabolism (CCM). In order to improve our understanding of this phenomenon, in this study we analyzed the length and nucleoid distribution of suppressed thermosensitive replication mutants. The dysfunctions in the replication machinery generally lead to formation of elongated cells (termed filaments) that originate from an inhibition of cell division dependent on replication-stress, and to abnormal distribution and compaction of nucleoids. The results reported here provide evidence that deletion of the pta and ackA CCM genes significantly reduces observed cell length in the replication mutants dnaA46, dnaB8, dnaE486, dnaG(ts) and dnaN159. A weaker effect was shown in the tktB dnaE486 double mutant. The CCM enzyme dysfunction restored also the nucleoid shape and position in double mutants. The specificity of these effects was confirmed by overexpression of fully functional genes coding for relevant CCM enzymes, which caused the reversion to the initial filamentous and nucleoid phenotypes. These results indicate that CCM mutations can rescue (or reduce) the cell division defects resulting from various replication mutations. We thus suggest that the replication-metabolism connection may serve as a general mechanism affecting DNA duplication at various levels to adjust this process and the cell division to the status of cell physiology.
Collapse
|
48
|
Debowski AW, Carnoy C, Verbrugghe P, Nilsson HO, Gauntlett JC, Fulurija A, Camilleri T, Berg DE, Marshall BJ, Benghezal M. Xer recombinase and genome integrity in Helicobacter pylori, a pathogen without topoisomerase IV. PLoS One 2012; 7:e33310. [PMID: 22511919 PMCID: PMC3325230 DOI: 10.1371/journal.pone.0033310] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/07/2012] [Indexed: 12/13/2022] Open
Abstract
In the model organism E. coli, recombination mediated by the related XerC and XerD recombinases complexed with the FtsK translocase at specialized dif sites, resolves dimeric chromosomes into free monomers to allow efficient chromosome segregation at cell division. Computational genome analysis of Helicobacter pylori, a slow growing gastric pathogen, identified just one chromosomal xer gene (xerH) and its cognate dif site (difH). Here we show that recombination between directly repeated difH sites requires XerH, FtsK but not XerT, the TnPZ transposon associated recombinase. xerH inactivation was not lethal, but resulted in increased DNA per cell, suggesting defective chromosome segregation. The xerH mutant also failed to colonize mice, and was more susceptible to UV and ciprofloxacin, which induce DNA breakage, and thereby recombination and chromosome dimer formation. xerH inactivation and overexpression each led to a DNA segregation defect, suggesting a role for Xer recombination in regulation of replication. In addition to chromosome dimer resolution and based on the absence of genes for topoisomerase IV (parC, parE) in H. pylori, we speculate that XerH may contribute to chromosome decatenation, although possible involvement of H. pylori's DNA gyrase and topoisomerase III homologue are also considered. Further analyses of this system should contribute to general understanding of and possibly therapy development for H. pylori, which causes peptic ulcers and gastric cancer; for the closely related, diarrheagenic Campylobacter species; and for unrelated slow growing pathogens that lack topoisomerase IV, such as Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Aleksandra W. Debowski
- Ondek Pty Ltd and Helicobacter pylori Research Laboratory, School of Pathology & Laboratory Medicine, M504, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Washington,
| | - Christophe Carnoy
- United States of America Center for Infection and Immunity of Lille, INSERM U 1019, CNRS UMR 8204, Univ Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Phebe Verbrugghe
- Ondek Pty Ltd and Helicobacter pylori Research Laboratory, School of Pathology & Laboratory Medicine, M504, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Washington,
| | - Hans-Olof Nilsson
- Ondek Pty Ltd and Helicobacter pylori Research Laboratory, School of Pathology & Laboratory Medicine, M504, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Washington,
| | - Jonathan C. Gauntlett
- Ondek Pty Ltd and Helicobacter pylori Research Laboratory, School of Pathology & Laboratory Medicine, M504, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Washington,
| | - Alma Fulurija
- Ondek Pty Ltd and Helicobacter pylori Research Laboratory, School of Pathology & Laboratory Medicine, M504, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Washington,
| | - Tania Camilleri
- Ondek Pty Ltd and Helicobacter pylori Research Laboratory, School of Pathology & Laboratory Medicine, M504, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Washington,
| | - Douglas E. Berg
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Barry J. Marshall
- Ondek Pty Ltd and Helicobacter pylori Research Laboratory, School of Pathology & Laboratory Medicine, M504, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Washington,
| | - Mohammed Benghezal
- Ondek Pty Ltd and Helicobacter pylori Research Laboratory, School of Pathology & Laboratory Medicine, M504, Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Nedlands, Washington,
- * E-mail:
| |
Collapse
|
49
|
Jyothikumar V, Klanbut K, Tiong J, Roxburgh JS, Hunter IS, Smith TK, Herron PR. Cardiolipin synthase is required for Streptomyces coelicolor morphogenesis. Mol Microbiol 2012; 84:181-97. [PMID: 22409773 PMCID: PMC3776143 DOI: 10.1111/j.1365-2958.2012.08018.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The fluid mosaic model has recently been amended to account for the existence of membrane domains enriched in certain phospholipids. In rod-shaped bacteria, the anionic phospholipid cardiolipin is enriched at the cell poles but its role in the morphogenesis of the filamentous bacterium Streptomyces coelicolor is unknown. It was impossible to delete clsA (cardiolipin synthase; SCO1389) unless complemented by a second copy of clsA elsewhere in the chromosome. When placed under the control of an inducible promoter, clsA expression, phospholipid profile and morphogenesis became inducer dependent. TLC analysis of phospholipid showed altered profiles upon depletion of clsA expression. Analysis of cardiolipin by mass spectrometry showed two distinct cardiolipin envelopes that reflected differences in acyl chain length; the level of the larger cardiolipin envelope was reduced in concert with clsA expression. ClsA-EGFP did not localize to specific locations, but cardiolipin itself showed enrichment at hyphal tips, branch points and anucleate regions. Quantitative analysis of hyphal dimensions showed that the mycelial architecture and the erection of aerial hyphae were affected by the expression of clsA. Overexpression of clsA resulted in weakened hyphal tips, misshaped aerial hyphae and anucleate spores and demonstrates that cardiolipin synthesis is a requirement for morphogenesis in Streptomyces.
Collapse
Affiliation(s)
- Vinod Jyothikumar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Khanungkan Klanbut
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - John Tiong
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - James S. Roxburgh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Iain S. Hunter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Terry K. Smith
- Biomolecular Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Paul R. Herron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
50
|
Saifi B, Ferat JL. Replication fork reactivation in a dnaC2 mutant at non-permissive temperature in Escherichia coli. PLoS One 2012; 7:e33613. [PMID: 22442702 PMCID: PMC3308344 DOI: 10.1371/journal.pone.0033613] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/13/2012] [Indexed: 11/18/2022] Open
Abstract
Replicative helicases unwind double-stranded DNA in front of the polymerase and ensure the processivity of DNA synthesis. In Escherichia coli, the helicase loader DnaC as well as factors involved in the formation of the open complex during the initiation of replication and primosomal proteins during the reactivation of arrested replication forks are required to recruit and deposit the replicative helicase onto single-stranded DNA prior to the formation of the replisome. dnaC2 is a thermosensitive allele of the gene specifying the helicase loader; at non-permissive temperature replication cannot initiate, but most ongoing rounds of replication continues through to completion (18% of dnaC2 cells fail to complete replication at non-permissive temperature). An assumption, which may be drawn from this observation, is that only a few replication forks are arrested under normal growth conditions. This assumption, however, is at odds with the severe and deleterious phenotypes associated with a null mutant of priA, the gene encoding a helicase implicated in the reactivation of arrested replication forks. We developed an assay that involves an abrupt inactivation of rounds of synchronized replication in a large population of cells, in order to evaluate the ability of dnaC2 cells to reactivate arrested replication forks at non-permissive temperature. We compared the rate at which arrested replication forks accumulated in dnaC2 priA+ and dnaC2 priA2 cells and observed that this rate was lower in dnaC2 priA+ cells. We conclude that while replication cannot initiate in a dnaC2 mutant at non-permissive temperature, a class of arrested replication forks (PriA-dependent and DnaC-independent) are reactivated within these cells.
Collapse
Affiliation(s)
- Boubekeur Saifi
- Centre de Genetique Moleculaire du CNRS, Gif Sur Yvette, France
| | - Jean-Luc Ferat
- Centre de Genetique Moleculaire du CNRS, Gif Sur Yvette, France
- Universite de Versailles Saint Quentin, Versailles, France
- * E-mail:
| |
Collapse
|