1
|
San Martín C. Architecture and Assembly of Structurally Complex Viruses. Subcell Biochem 2024; 105:431-467. [PMID: 39738954 DOI: 10.1007/978-3-031-65187-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Viral particles consist essentially of a proteinaceous capsid that protects the genome and is also involved in many functions during the virus life cycle. In structurally simple viruses, the capsid consists of a number of copies of the same, or a few different proteins organized into a symmetric oligomer. Structurally complex viruses present a larger variety of components in their capsids than simple viruses. They may contain accessory proteins with specific architectural or functional roles, or incorporate non-proteic elements such as lipids. They present a range of geometrical variability, from slight deviations from the icosahedral symmetry to complete asymmetry or even pleomorphism. Putting together the many different elements in the virion requires an extra effort to achieve correct assembly, and thus complex viruses require sophisticated mechanisms to regulate morphogenesis. This chapter provides a general view of the structure and assembly of complex viruses.
Collapse
Affiliation(s)
- Carmen San Martín
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
2
|
Ngo VQH, Enault F, Midoux C, Mariadassou M, Chapleur O, Mazéas L, Loux V, Bouchez T, Krupovic M, Bize A. Diversity of novel archaeal viruses infecting methanogens discovered through coupling of stable isotope probing and metagenomics. Environ Microbiol 2022; 24:4853-4868. [PMID: 35848130 PMCID: PMC9796341 DOI: 10.1111/1462-2920.16120] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/01/2022] [Accepted: 06/29/2022] [Indexed: 01/01/2023]
Abstract
Diversity of viruses infecting non-extremophilic archaea has been grossly understudied. This is particularly the case for viruses infecting methanogenic archaea, key players in the global carbon biogeochemical cycle. Only a dozen of methanogenic archaeal viruses have been isolated so far. In the present study, we implemented an original coupling between stable isotope probing and complementary shotgun metagenomic analyses to identify viruses of methanogens involved in the bioconversion of formate, which was used as the sole carbon source in batch anaerobic digestion microcosms. Under our experimental conditions, the microcosms were dominated by methanogens belonging to the order Methanobacteriales (Methanobacterium and Methanobrevibacter genera). Metagenomic analyses yielded several previously uncharacterized viral genomes, including a complete genome of a head-tailed virus (class Caudoviricetes, proposed family Speroviridae, Methanobacterium host) and several near-complete genomes of spindle-shaped viruses. The two groups of viruses are predicted to infect methanogens of the Methanobacterium and Methanosarcina genera and represent two new virus families. The metagenomics results are in good agreement with the electron microscopy observations, which revealed the dominance of head-tailed virus-like particles and the presence of spindle-shaped particles. The present study significantly expands the knowledge on the viral diversity of viruses of methanogens.
Collapse
Affiliation(s)
- Vuong Quoc Hoang Ngo
- Université Paris‐Saclay, INRAE, PRocédés biOtechnologiques au Service de l'EnvironnementAntonyFrance
| | - François Enault
- Université Clermont Auvergne, CNRS, LMGEClermont‐FerrandFrance
| | - Cédric Midoux
- Université Paris‐Saclay, INRAE, PRocédés biOtechnologiques au Service de l'EnvironnementAntonyFrance
- Université Paris‐Saclay, INRAE, MaIAGEJouy‐en‐JosasFrance
- Université Paris‐Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics FacilityJouy‐en‐JosasFrance
| | - Mahendra Mariadassou
- Université Paris‐Saclay, INRAE, MaIAGEJouy‐en‐JosasFrance
- Université Paris‐Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics FacilityJouy‐en‐JosasFrance
| | - Olivier Chapleur
- Université Paris‐Saclay, INRAE, PRocédés biOtechnologiques au Service de l'EnvironnementAntonyFrance
| | - Laurent Mazéas
- Université Paris‐Saclay, INRAE, PRocédés biOtechnologiques au Service de l'EnvironnementAntonyFrance
| | - Valentin Loux
- Université Paris‐Saclay, INRAE, MaIAGEJouy‐en‐JosasFrance
- Université Paris‐Saclay, INRAE, BioinfOmics, MIGALE Bioinformatics FacilityJouy‐en‐JosasFrance
| | - Théodore Bouchez
- Université Paris‐Saclay, INRAE, PRocédés biOtechnologiques au Service de l'EnvironnementAntonyFrance
| | - Mart Krupovic
- Institut Pasteur, Université de Paris, CNRS UMR6047, Archaeal Virology UnitParisFrance
| | - Ariane Bize
- Université Paris‐Saclay, INRAE, PRocédés biOtechnologiques au Service de l'EnvironnementAntonyFrance
| |
Collapse
|
3
|
Complete Genome Sequence of Methanofollis aquaemaris BCRC 16166
T
, Isolated from a Marine Aquaculture Fishpond. Microbiol Resour Announc 2022; 11:e0074322. [PMID: 36094213 PMCID: PMC9583781 DOI: 10.1128/mra.00743-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hydrogenotrophic methanogen Methanofollis aquaemaris BCRC 16166T (= N2F9704T = DSM 14661T) was isolated from a marine aquaculture fishpond near Wang-gong (Taiwan, Republic of China). The genome of strain BCRC 16166T was selected for sequencing in order to provide further information about the species delineation and its infected virus.
Collapse
|
4
|
Chen S, Tu D, Hong T, Luo Y, Shen L, Ren P, Lu P, Chen X. Genomic features of a new head-tail halovirus VOLN27B infecting a Halorubrum strain. Gene 2022; 841:146766. [PMID: 35908623 DOI: 10.1016/j.gene.2022.146766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/26/2022] [Accepted: 07/24/2022] [Indexed: 11/04/2022]
Abstract
Relatively few viruses infecting haloarchaea (haloviruses) have been reported. In this study, the genome sequence of VOLN27B, a recently described archaeal tailed virus (arTV) with a myovirus morphotype was described, along with the sequence of its host, Halorubrum spp. LN27. Halovirus VOLN27B contains a linear, dsDNA genome of 76,891 bp which is predicted to encode 109 proteins and four tRNAs (tRNAThr, tRNAArg, tRNAGly and tRNAAsn). The DNA G+C content of VOLN27B genome is 56.1 mol%, nearly 10% lower than that of its host strain. A 315 bp LTR (long terminal repeat) was detected in the genome. The genome of its host strain LN27 was 3,301,211 bp (chromosome and 1 plasmid) with a DNA G+C content of 68.3 mol% and 3,142 annotated protein coding genes. At least two hypothetical proviruses were detected in the genome. It lacked a CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) locus. Sequence similarity and phylogenetic tree reconstructions placed it within the genus Halorubrum as a potential new species. VOLN27B exhibits a distinct difference in the frequency of codon usage against its host strain Halorubrum sp. LN27. The organization of VOLN27B genome shows remarkable synteny and amino acid sequence similarity to the genomes and predicted proteins of HF1-like haloviruses (genus Haloferacalesvirus) and a provirus in the genome of Halorubrum depositum Y78. VOLN27B and its host Halorubrum sp. LN27 comprise a new virus-host system from a hypersaline ecosystem and can be used to further understand the novel biology at extreme salt concentration.
Collapse
Affiliation(s)
- Shaoxing Chen
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| | - Demei Tu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yuqing Luo
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ping Ren
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Peng Lu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
5
|
Fackler JR, Dworjan M, Gazi KS, Grogan DW. Diversity of SIRV-like Viruses from a North American Population. Viruses 2022; 14:v14071439. [PMID: 35891419 PMCID: PMC9319562 DOI: 10.3390/v14071439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
A small subset of acidic hot springs sampled in Yellowstone National Park yielded rod-shaped viruses which lysed liquid host cultures and formed clear plaques on lawns of host cells. Three isolates chosen for detailed analysis were found to be genetically related to previously described isolates of the Sulfolobus islandicus rod-shaped virus (SIRV), but distinct from them and from each other. Functional stability of the new isolates was assessed in a series of inactivation experiments. UV-C radiation inactivated one of the isolates somewhat faster than bacteriophage λ, suggesting that encapsidation in the SIRV-like virion did not confer unusual protection of the DNA from UV damage. With respect to high temperature, the new isolates were extremely, but not equally, stable. Several chemical treatments were found to inactivate the virions and, in some cases, to reveal apparent differences in virion stability among the isolates. Screening a larger set of isolates identified greater variation of these stability properties but found few correlations among the resulting profiles. The majority of host cells infected by the new isolates were killed, but survivors exhibited heritable resistance, which could not be attributed to CRISPR spacer acquisition or the loss of the pilus-related genes identified by earlier studies. Virus-resistant host variants arose at high frequency and most were resistant to multiple viral strains; conversely, resistant host clones generated virus-sensitive variants, also at high frequency. Virus-resistant cells lacked the ability of virus-sensitive cells to bind virions in liquid suspensions. Rapid interconversion of sensitive and resistant forms of a host strain suggests the operation of a yet-unidentified mechanism that acts to allow both the lytic virus and its host to propagate in highly localized natural populations, whereas variation of virion-stability phenotypes among the new viral isolates suggests that multiple molecular features contribute to the biological durability of these viruses.
Collapse
Affiliation(s)
- Joseph R. Fackler
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA; (J.R.F.); (M.D.); (K.S.G.)
- Adaptive Phage Therapeutics, Gaithersburg, MD 20878, USA
| | - Michael Dworjan
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA; (J.R.F.); (M.D.); (K.S.G.)
| | - Khaled S. Gazi
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA; (J.R.F.); (M.D.); (K.S.G.)
- Department of Biology, Faculty of Science and Arts in Almandaq, Al-Baha University, Almandaq 65756, Saudi Arabia
| | - Dennis W. Grogan
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA; (J.R.F.); (M.D.); (K.S.G.)
- Correspondence:
| |
Collapse
|
6
|
VOLN27B: A New Head-Tailed Halovirus Isolated from an Underground Salt Crystal and Infecting Halorubrum. ARCHAEA (VANCOUVER, B.C.) 2022; 2021:8271899. [PMID: 34992502 PMCID: PMC8727067 DOI: 10.1155/2021/8271899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023]
Abstract
A novel halovirus, VOLN27B, was isolated from a drill core sample taken at a depth of approximately 430 m, from a layer formed during the Cretaceous period (Anhui, China). VOLN27B infects the halophilic archaeon Halorubrum sp. LN27 and has a head-tailed morphotype with a contractile tail, typical of myoviruses. The average head diameter is 64 ± 2.0 nm, and uncontracted tails are 15 ± 1.0 × 65 ± 2.0 nm. The latent period is about 10 h. The maturing time of VOLN27B in cells of Halorubrum sp. LN27 was nearly 8 h. The adsorption time of VOLN27B on cells of Halorubrum sp. LN27 was less than 1 min. Virus particles are unstable at pH values less than 5 or when the NaCl concentration is below 12% (w/v). VOLN27B and Halorubrum sp. LN27 were recovered from the same hypersaline environment and provide a new virus-host system in haloarchaea.
Collapse
|
7
|
Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF, Peeters E, Siebers B, Albers SV, Kelly RM. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 2021; 45:fuaa063. [PMID: 33476388 PMCID: PMC8557808 DOI: 10.1093/femsre/fuaa063] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.
Collapse
Affiliation(s)
- April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Alejandra Recalde
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Bräsen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Phillip Nussbaum
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Bost
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Schocke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Tessa E F Quax
- Archaeal Virus–Host Interactions, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| |
Collapse
|
8
|
Bonetti G, Trevathan-Tackett SM, Carnell PE, Macreadie PI. The potential of viruses to influence the magnitude of greenhouse gas emissions in an inland wetland. WATER RESEARCH 2021; 193:116875. [PMID: 33550166 DOI: 10.1016/j.watres.2021.116875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Wetlands are among the earth's most efficient ecosystems for carbon sequestration, but can also emit potent greenhouse gases (GHGs) depending on how they are managed. Global management strategies have sought to maximize carbon drawdown by wetlands by manipulating wetland hydrology to inhibit bacterially-mediated emissions. However, it has recently been hypothesized within wetlands that viruses have the potential to dictate the magnitude and direction of GHG emissions by attacking prokaryotes involved in the carbon cycle. Here we tested this hypothesis in a whole-ecosystem manipulation by hydrologically-restoring a degraded wetland ('rewetting') and investigated the changes in GHG emissions, prokaryotes, viruses, and virus-host interactions. We found that hydrological restoration significantly increased prokaryotic diversity, methanogenic Methanomicrobia, as well as putative iron/sulfate-cyclers (Geobacteraceae), nitrogen-cyclers (Nitrosomonadaceae), and fermentative bacteria (Koribacteraceae). These results provide insights into successional microbial community shifts during rehabilitation. Additionally, in response to watering, viral-induced prokaryotic mortality declined by 77%, resulting in limited carbon released by viral shunt that was significantly correlated with the 2.8-fold reduction in wetland carbon emissions. Our findings highlight, for the first time, the potential implications of viral infections in soil prokaryotes on wetland greenhouse gas dynamics and confirm the importance of wetland rehabilitation as a tool to offset carbon emissions.
Collapse
Affiliation(s)
- Giuditta Bonetti
- Deakin University, Centre for Integrative Ecology, School of Life and Environmental Sciences, Burwood Campus, Victoria 3125, Australia..
| | - Stacey M Trevathan-Tackett
- Deakin University, Centre for Integrative Ecology, School of Life and Environmental Sciences, Burwood Campus, Victoria 3125, Australia..
| | - Paul E Carnell
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Queenscliff Campus, Queenscliff, VIC 3225, Australia.
| | - Peter I Macreadie
- Deakin University, Centre for Integrative Ecology, School of Life and Environmental Sciences, Burwood Campus, Victoria 3125, Australia..
| |
Collapse
|
9
|
The Microbial Composition in Circumneutral Thermal Springs from Chignahuapan, Puebla, Mexico Reveals the Presence of Particular Sulfur-Oxidizing Bacterial and Viral Communities. Microorganisms 2020; 8:microorganisms8111677. [PMID: 33137872 PMCID: PMC7692377 DOI: 10.3390/microorganisms8111677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 12/28/2022] Open
Abstract
Terrestrial thermal springs are widely distributed globally, and these springs harbor a broad diversity of organisms of biotechnological interest. In Mexico, few studies exploring this kind of environment have been described. In this work, we explore the microbial community in Chignahuapan hot springs, which provides clues to understand these ecosystems' diversity. We assessed the diversity of the microorganism communities in a hot spring environment with a metagenomic shotgun approach. Besides identifying similarities and differences with other ecosystems, we achieved a systematic comparison against 11 metagenomic samples from diverse localities. The Chignahuapan hot springs show a particular prevalence of sulfur-oxidizing bacteria from the genera Rhodococcus, Thermomonas, Thiomonas, Acinetobacter, Sulfurovum, and Bacillus, highlighting those that are different from other recovered bacterial populations in circumneutral hot springs environments around the world. The co-occurrence analysis of the bacteria and viruses in these environments revealed that within the Rhodococcus, Thiomonas, Thermonas, and Bacillus genera, the Chignahuapan samples have specific species of bacteria with a particular abundance, such as Rhodococcus erytropholis. The viruses in the circumneutral hot springs present bacteriophages within the order Caudovirales (Siphoviridae, Myoviridae, and Podoviridae), but the family of Herelleviridae was the most abundant in Chignahuapan samples. Furthermore, viral auxiliary metabolic genes were identified, many of which contribute mainly to the metabolism of cofactors and vitamins as well as carbohydrate metabolism. Nevertheless, the viruses and bacteria present in the circumneutral environments contribute to the sulfur cycle. This work represents an exhaustive characterization of a community structure in samples collected from hot springs in Mexico and opens opportunities to identify organisms of biotechnological interest.
Collapse
|
10
|
Abstract
Prokaryotes commonly undergo genome reduction, particularly in the case of symbiotic bacteria. Genome reductions tend toward the energetically favorable removal of unnecessary, redundant, or nonfunctional genes. However, without mechanisms to compensate for these losses, deleterious mutation and genetic drift might otherwise overwhelm a population. Among the mechanisms employed to counter gene loss and share evolutionary success within a population, gene transfer agents (GTAs) are increasingly becoming recognized as important contributors. Although viral in origin, GTA particles package fragments of their "host" genome for distribution within a population of cells, often in a synchronized manner, rather than selfishly packaging genes necessary for their spread. Microbes as diverse as archaea and alpha-proteobacteria have been known to produce GTA particles, which are capable of transferring selective advantages such as virulence factors and antibiotic resistance. In this review, we discuss the various types of GTAs identified thus far, focusing on a defined set of symbiotic alpha-proteobacteria known to carry them. Drawing attention to the predicted presence of these genes, we discuss their potential within the selective marine and terrestrial environments occupied by mutualistic, parasitic, and endosymbiotic microbes.
Collapse
Affiliation(s)
- Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
11
|
Hartman R, Eilers BJ, Bollschweiler D, Munson-McGee JH, Engelhardt H, Young MJ, Lawrence CM. The Molecular Mechanism of Cellular Attachment for an Archaeal Virus. Structure 2019; 27:1634-1646.e3. [PMID: 31587916 DOI: 10.1016/j.str.2019.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/21/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
Sulfolobus turreted icosahedral virus (STIV) is a model archaeal virus and member of the PRD1-adenovirus lineage. Although STIV employs pyramidal lysis structures to exit the host, knowledge of the viral entry process is lacking. We therefore initiated studies on STIV attachment and entry. Negative stain and cryoelectron micrographs showed virion attachment to pili-like structures emanating from the Sulfolobus host. Tomographic reconstruction and sub-tomogram averaging revealed pili recognition by the STIV C381 turret protein. Specifically, the triple jelly roll structure of C381 determined by X-ray crystallography shows that pilus recognition is mediated by conserved surface residues in the second and third domains. In addition, the STIV petal protein (C557), when present, occludes the pili binding site, suggesting that it functions as a maturation protein. Combined, these results demonstrate a role for the namesake STIV turrets in initial cellular attachment and provide the first molecular model for viral attachment in the archaeal domain of life.
Collapse
Affiliation(s)
- Ross Hartman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Brian J Eilers
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Daniel Bollschweiler
- Department of Molecular Structural Biology, Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | - Jacob H Munson-McGee
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Harald Engelhardt
- Department of Molecular Structural Biology, Max-Planck-Institute for Biochemistry, Martinsried, Germany
| | - Mark J Young
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA; Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; The Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA.
| | - C Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA; The Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
12
|
Martin‐Cuadrado A, Senel E, Martínez‐García M, Cifuentes A, Santos F, Almansa C, Moreno‐Paz M, Blanco Y, García‐Villadangos M, Cura MÁG, Sanz‐Montero ME, Rodríguez‐Aranda JP, Rosselló‐Móra R, Antón J, Parro V. Prokaryotic and viral community of the sulfate‐rich crust from Peñahueca ephemeral lake, an astrobiology analogue. Environ Microbiol 2019; 21:3577-3600. [DOI: 10.1111/1462-2920.14680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ece Senel
- Department of Physiology, Genetics and MicrobiologyUniversity of Alicante Alicante Spain
- Department of BiologyGraduate School of Sciences, Eskisehir Technical University Yunusemre Campus, Eskisehir 26470 Turkey
| | - Manuel Martínez‐García
- Department of Physiology, Genetics and MicrobiologyUniversity of Alicante Alicante Spain
| | - Ana Cifuentes
- Department of Ecology and Marine Resources, Marine Microbiology GroupMediterranean Institute for Advanced Studies (IMEDEA, CSIC‐UIB) Esporles Spain
| | - Fernando Santos
- Department of Physiology, Genetics and MicrobiologyUniversity of Alicante Alicante Spain
| | - Cristina Almansa
- Research Technical Services (SSTTI), Microscopy UnitUniversity of Alicante Alicante Spain
| | - Mercedes Moreno‐Paz
- Department of Molecular EvolutionCentro de Astrobiología (INTA‐CSIC) Madrid Spain
| | - Yolanda Blanco
- Department of Molecular EvolutionCentro de Astrobiología (INTA‐CSIC) Madrid Spain
| | | | | | | | | | - Ramon Rosselló‐Móra
- Department of BiologyGraduate School of Sciences, Eskisehir Technical University Yunusemre Campus, Eskisehir 26470 Turkey
| | - Josefa Antón
- Department of Physiology, Genetics and MicrobiologyUniversity of Alicante Alicante Spain
| | - Víctor Parro
- Department of Molecular EvolutionCentro de Astrobiología (INTA‐CSIC) Madrid Spain
| |
Collapse
|
13
|
Liu Y, Brandt D, Ishino S, Ishino Y, Koonin EV, Kalinowski J, Krupovic M, Prangishvili D. New archaeal viruses discovered by metagenomic analysis of viral communities in enrichment cultures. Environ Microbiol 2019; 21:2002-2014. [PMID: 30451355 PMCID: PMC11128462 DOI: 10.1111/1462-2920.14479] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/07/2018] [Accepted: 11/10/2018] [Indexed: 12/20/2022]
Abstract
Viruses infecting hyperthermophilic archaea of the phylum Crenarchaeota display enormous morphological and genetic diversity, and are classified into 12 families. Eight of these families include only one or two species, indicating sparse sampling of the crenarchaeal virus diversity. In an attempt to expand the crenarchaeal virome, we explored virus diversity in the acidic, hot spring Umi Jigoku in Beppu, Japan. Environmental samples were used to establish enrichment cultures under conditions favouring virus replication. The host diversity in the enrichment cultures was restricted to members of the order Sulfolobales. Metagenomic sequencing of the viral communities yielded seven complete or near-complete double-stranded DNA virus genomes. Six of these genomes could be attributed to polyhedral and filamentous viruses that were observed by electron microscopy in the enrichment cultures. Two icosahedral viruses represented species in the family Portogloboviridae. Among the filamentous viruses, two were identified as new species in the families Rudiviridae and Lipothrixviridae, whereas two other formed a group seemingly distinct from the known virus genera. No particle morphotype could be unequivocally assigned to the seventh viral genome, which apparently represents a new virus type. Our results suggest that filamentous viruses are globally distributed and are prevalent virus types in extreme geothermal environments.
Collapse
Affiliation(s)
- Ying Liu
- Department of Microbiology, BMGE, Institut Pasteur, Paris 75015, France
| | - David Brandt
- Center for Biotechnology, Universität Bielefeld, Bielefeld 33615, Germany
| | - Sonoko Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 819-0395, Japan
| | - Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Fukuoka 819-0395, Japan
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jörn Kalinowski
- Center for Biotechnology, Universität Bielefeld, Bielefeld 33615, Germany
| | - Mart Krupovic
- Department of Microbiology, BMGE, Institut Pasteur, Paris 75015, France
| | | |
Collapse
|
14
|
Papathanasiou P, Erdmann S, Leon-Sobrino C, Sharma K, Urlaub H, Garrett RA, Peng X. Stable maintenance of the rudivirus SIRV3 in a carrier state in Sulfolobus islandicus despite activation of the CRISPR-Cas immune response by a second virus SMV1. RNA Biol 2018; 16:557-565. [PMID: 30146914 DOI: 10.1080/15476286.2018.1511674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Carrier state viral infection constitutes an equilibrium state in which a limited fraction of a cellular population is infected while the remaining cells are transiently resistant to infection. This type of infection has been characterized for several bacteriophages but not, to date, for archaeal viruses. Here we demonstrate that the rudivirus SIRV3 can produce a host-dependent carrier state infection in the model crenarchaeon Sulfolobus. SIRV3 only infected a fraction of a Sulfolobus islandicus REY15A culture over several days during which host growth was unimpaired and no chromosomal DNA degradation was observed. CRISPR spacer acquisition from SIRV3 DNA was induced by coinfecting with the monocaudavirus SMV1 and it was coincident with increased transcript levels from subtype I-A adaptation and interference cas genes. However, this response did not significantly affect the carrier state infection of SIRV3 and both viruses were maintained in the culture over 12 days during which SIRV3 anti-CRISPR genes were shown to be expressed. Transcriptome and proteome analyses demonstrated that most SIRV3 genes were expressed at varying levels over time whereas SMV1 gene expression was generally low. The study yields insights into the basis for the stable infection of SIRV3 and the resistance to the different host CRISPR-Cas interference mechanisms. It also provides a rationale for the commonly observed coinfection of archaeal cells by different viruses in natural environments.
Collapse
Affiliation(s)
- Pavlos Papathanasiou
- a Danish Archaea Centre, Department of Biology , University of Copenhagen , Copenhagen N , Denmark
| | - Susanne Erdmann
- a Danish Archaea Centre, Department of Biology , University of Copenhagen , Copenhagen N , Denmark.,b ithree Institute, University of Technology Sydney , Sydney , Australia
| | - Carlos Leon-Sobrino
- a Danish Archaea Centre, Department of Biology , University of Copenhagen , Copenhagen N , Denmark.,c Centre for Microbial Ecology and Genomics, Department of Genetics , University of Pretoria , Hatfield , South Africa
| | - Kundan Sharma
- d Max Planck Institute of Biophysical Chemistry , Am Faßberg 11, D37077 Göttingen , Germany.,e Ludwig Institute for Cancer Research, University of Oxford , Oxford , UK
| | - Henning Urlaub
- d Max Planck Institute of Biophysical Chemistry , Am Faßberg 11, D37077 Göttingen , Germany.,f Bioanalytics Research Group, Institute of Clinical Chemistry, University Medical Center Göttingen , Göttingen , Germany
| | - Roger A Garrett
- a Danish Archaea Centre, Department of Biology , University of Copenhagen , Copenhagen N , Denmark
| | - Xu Peng
- a Danish Archaea Centre, Department of Biology , University of Copenhagen , Copenhagen N , Denmark
| |
Collapse
|
15
|
Covarrubias PC, Moya-Beltrán A, Atavales J, Moya-Flores F, Tapia PS, Acuña LG, Spinelli S, Quatrini R. Occurrence, integrity and functionality of AcaML1-like viruses infecting extreme acidophiles of the Acidithiobacillus species complex. Res Microbiol 2018; 169:628-637. [PMID: 30138723 DOI: 10.1016/j.resmic.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/28/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
Abstract
General knowledge on the diversity and biology of microbial viruses infecting bacterial hosts from extreme acidic environments lags behind most other econiches. In this study, we analyse the AcaML1 virus occurrence in the taxon, its genetic composition and infective behaviour under standard acidic and SOS-inducing conditions to assess its integrity and functionality. Occurrence analysis in sequenced acidithiobacilli showed that AcaML1-like proviruses are confined to the mesothermophiles Acidithiobacillus caldus and Thermithiobacillus tepidarius. Among A. caldus strains and isolates this provirus had a modest prevalence (30%). Comparative genomic analysis revealed a significant conservation with the T. tepidarius AcaML1-like provirus, excepting the tail genes, and a high conservation of the virus across strains of the A. caldus species. Such conservation extends from the modules architecture to the gene level, suggesting that organization and composition of these viruses are preserved for functional reasons. Accordingly, the AcaML1 proviruses were demonstrated to excise from their host genomes under DNA-damaging conditions triggering the SOS-response and to produce DNA-containing VLPs. Despite this fact, under the conditions evaluated (acidic) the VLPs obtained from A. caldus ATCC 51756 could not produce productive infections of a candidate sensitive strain (#6) nor trigger it lysis.
Collapse
Affiliation(s)
- Paulo C Covarrubias
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Ana Moya-Beltrán
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile; Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Joaquin Atavales
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Francisco Moya-Flores
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Pablo S Tapia
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Lillian G Acuña
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille Univ-Centre National de la Recherche Scientifique (CNRS), UMR 7257, Campus de Luminy, Case 932, 13288, Marseille Cedex 09, France
| | - Raquel Quatrini
- Fundación Ciencia y Vida, Avenida Zañartu 1482, Ñuñoa, 7780272, Santiago, Chile.
| |
Collapse
|
16
|
Dharmavaram S, Rudnick J, Lawrence CM, Bruinsma RF. Smectic viral capsids and the aneurysm instability. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:204004. [PMID: 29578447 PMCID: PMC7100389 DOI: 10.1088/1361-648x/aab99a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 06/08/2023]
Abstract
The capsids of certain Archaea-infecting viruses undergo large shape changes, while maintaining their integrity against rupture by osmotic pressure. We propose that these capsids are in a smectic liquid crystalline state, with the capsid proteins assembling along spirals. We show that smectic capsids are intrinsically stabilized against the formation of localized bulges with non-zero Gauss curvature while still allowing for large-scale cooperative shape transformation that involves global changes in the Gauss curvature.
Collapse
Affiliation(s)
- S Dharmavaram
- Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, United States of America
| | - J Rudnick
- Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, United States of America
| | - C M Lawrence
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, United States of America
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States of America
| | - R F Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, United States of America
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, United States of America
| |
Collapse
|
17
|
Parikka KJ, Jacquet S, Colombet J, Guillaume D, Le Romancer M. Abundance and observations of thermophilic microbial and viral communities in submarine and terrestrial hot fluid systems of the French Southern and Antarctic Lands. Polar Biol 2018. [DOI: 10.1007/s00300-018-2288-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Structural studies of Acidianus tailed spindle virus reveal a structural paradigm used in the assembly of spindle-shaped viruses. Proc Natl Acad Sci U S A 2018; 115:2120-2125. [PMID: 29440399 DOI: 10.1073/pnas.1719180115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spindle-shaped virion morphology is common among archaeal viruses, where it is a defining characteristic of many viral families. However, structural heterogeneity intrinsic to spindle-shaped viruses has seriously hindered efforts to elucidate the molecular architecture of these lemon-shaped capsids. We have utilized a combination of cryo-electron microscopy and X-ray crystallography to study Acidianus tailed spindle virus (ATSV). These studies reveal the architectural principles that underlie assembly of a spindle-shaped virus. Cryo-electron tomography shows a smooth transition from the spindle-shaped capsid into the tubular-shaped tail and allows low-resolution structural modeling of individual virions. Remarkably, higher-dose 2D micrographs reveal a helical surface lattice in the spindle-shaped capsid. Consistent with this, crystallographic studies of the major capsid protein reveal a decorated four-helix bundle that packs within the crystal to form a four-start helical assembly with structural similarity to the tube-shaped tail structure of ATSV and other tailed, spindle-shaped viruses. Combined, this suggests that the spindle-shaped morphology of the ATSV capsid is formed by a multistart helical assembly with a smoothly varying radius and allows construction of a pseudoatomic model for the lemon-shaped capsid that extends into a tubular tail. The potential advantages that this novel architecture conveys to the life cycle of spindle-shaped viruses, including a role in DNA ejection, are discussed.
Collapse
|
19
|
Structure and assembly mechanism of virus-associated pyramids. Biophys Rev 2017; 10:551-557. [PMID: 29204884 DOI: 10.1007/s12551-017-0357-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/16/2017] [Indexed: 01/08/2023] Open
Abstract
Viruses have developed intricate molecular machines to infect, replicate within and escape from their host cells. Perhaps one of the most intriguing of these mechanisms is the pyramidal egress structure that has evolved in archaeal viruses, such as SIRV2 or STIV1. The structure and mechanism of these virus-associated pyramids (VAPs) has been studied by cryo-electron tomography and complementary biochemical techniques, revealing that VAPs are formed by multiple copies of a virus-encoded 10-kDa protein (PVAP) that integrate into the cell membrane and assemble into hollow, sevenfold symmetric pyramids. In this process, growing VAPs puncture the protective surface layer and ultimately open to release newly replicated viral particles into the surrounding medium. PVAP has the striking capability to spontaneously integrate and self-assemble into VAPs in biological membranes of the archaea, bacteria and eukaryotes. This renders the VAP a universal membrane remodelling system. In this review, we provide an overview of the VAP structure and assembly mechanism and discuss the possible use of VAPs in nano-biotechnology.
Collapse
|
20
|
Abstract
One of the most prominent features of archaea is the extraordinary diversity of their DNA viruses. Many archaeal viruses differ substantially in morphology from bacterial and eukaryotic viruses and represent unique virus families. The distinct nature of archaeal viruses also extends to the gene composition and architectures of their genomes and the properties of the proteins that they encode. Environmental research has revealed prominent roles of archaeal viruses in influencing microbial communities in ocean ecosystems, and recent metagenomic studies have uncovered new groups of archaeal viruses that infect extremophiles and mesophiles in diverse habitats. In this Review, we summarize recent advances in our understanding of the genomic and morphological diversity of archaeal viruses and the molecular biology of their life cycles and virus-host interactions, including interactions with archaeal CRISPR-Cas systems. We also examine the potential origins and evolution of archaeal viruses and discuss their place in the global virosphere.
Collapse
|
21
|
Methanosarcina Spherical Virus, a Novel Archaeal Lytic Virus Targeting Methanosarcina Strains. J Virol 2017; 91:JVI.00955-17. [PMID: 28878086 DOI: 10.1128/jvi.00955-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022] Open
Abstract
A novel archaeal lytic virus targeting species of the genus Methanosarcina was isolated using Methanosarcina mazei strain Gö1 as the host. Due to its spherical morphology, the virus was designated Methanosarcina spherical virus (MetSV). Molecular analysis demonstrated that MetSV contains double-stranded linear DNA with a genome size of 10,567 bp containing 22 open reading frames (ORFs), all oriented in the same direction. Functions were predicted for some of these ORFs, i.e., such as DNA polymerase, ATPase, and DNA-binding protein as well as envelope (structural) protein. MetSV-derived spacers in CRISPR loci were detected in several published Methanosarcina draft genomes using bioinformatic tools, revealing a potential protospacer-adjacent motif (PAM) motif (TTA/T). Transcription and expression of several predicted viral ORFs were validated by reverse transcription-PCR (RT-PCR), PAGE analysis, and liquid chromatography-mass spectrometry (LC-MS)-based proteomics. Analysis of core lipids by atmospheric pressure chemical ionization (APCI) mass spectrometry showed that MetSV and Methanosarcina mazei both contain archaeol and glycerol dialkyl glycerol tetraether without a cyclopentane moiety (GDGT-0). The MetSV host range is limited to Methanosarcina strains growing as single cells (M. mazei, Methanosarcina barkeri and Methanosarcina soligelidi). In contrast, strains growing as sarcina-like aggregates were apparently protected from infection. Heterogeneity related to morphology phases in M. mazei cultures allowed acquisition of resistance to MetSV after challenge by growing cultures as sarcina-like aggregates. CRISPR/Cas-mediated resistance was excluded since neither of the two CRISPR arrays showed MetSV-derived spacer acquisition. Based on these findings, we propose that changing the morphology from single cells to sarcina-like aggregates upon rearrangement of the envelope structure prevents infection and subsequent lysis by MetSV.IMPORTANCE Methanoarchaea are among the most abundant organisms on the planet since they are present in high numbers in major anaerobic environments. They convert various carbon sources, e.g., acetate, methylamines, or methanol, to methane and carbon dioxide; thus, they have a significant impact on the emission of major greenhouse gases. Today, very little is known about viruses specifically infecting methanoarchaea that most probably impact the abundance of methanoarchaea in microbial consortia. Here, we characterize the first identified Methanosarcina-infecting virus (MetSV) and show a mechanism for acquiring resistance against MetSV. Based on our results, we propose that growth as sarcina-like aggregates prevents infection and subsequent lysis. These findings allow new insights into the virus-host relationship in methanogenic community structures, their dynamics, and their phase heterogeneity. Moreover, the availability of a specific virus provides new possibilities to deepen our knowledge of the defense mechanisms of potential hosts and offers tools for genetic manipulation.
Collapse
|
22
|
Wu L, Uldahl KB, Chen F, Benasutti H, Logvinski D, Vu V, Banda NK, Peng X, Simberg D, Moghimi SM. Interaction of extremophilic archaeal viruses with human and mouse complement system and viral biodistribution in mice. Mol Immunol 2017; 90:273-279. [PMID: 28846925 DOI: 10.1016/j.molimm.2017.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/06/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
Archaeal viruses offer exceptional biophysical properties for modification and exploration of their potential in bionanotechnology, bioengineering and nanotherapeutic developments. However, the interaction of archaeal viruses with elements of the innate immune system has not been explored, which is a necessary prerequisite if their potential for biomedical applications to be realized. Here we show complement activation through lectin (via direct binding of MBL/MASPs) and alternative pathways by two extremophilic archaeal viruses (Sulfolobus monocaudavirus 1 and Sulfolobus spindle-shaped virus 2) in human serum. We further show some differences in initiation of complement activation pathways between these viruses. Since, Sulfolobus monocaudavirus 1 was capable of directly triggering the alternative pathway, we also demonstrate that the complement regulator factor H has no affinity for the viral surface, but factor H deposition is purely C3-dependent. This suggests that unlike some virulent pathogens Sulfolobus monocaudavirus 1 does not acquire factor H for protection. Complement activation with Sulfolobus monocaudavirus 1 also proceeds in murine sera through MBL-A/C as well as factor D-dependent manner, but C3 deficiency has no overall effect on viral clearance by organs of the reticuloendothelial system on intravenous injection. However, splenic deposition was significantly higher in C3 knockout animals compared with the corresponding wild type mice. We discuss the potential application of these viruses in biomedicine in relation to their complement activating properties.
Collapse
Affiliation(s)
- Linping Wu
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Kristine Buch Uldahl
- Danish Archaea Center, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen 2200, Denmark
| | - Fangfang Chen
- Department of Gastrointestinal Surgery, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, People's Republic of China; Tranlational Bio-Nanosciences Laboratory and Colorado Center for Nanomedicine and Nanosafety, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, 1250 East Mountview Blvd., Aurora, CO 80045, USA
| | - Halli Benasutti
- Tranlational Bio-Nanosciences Laboratory and Colorado Center for Nanomedicine and Nanosafety, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, 1250 East Mountview Blvd., Aurora, CO 80045, USA
| | - Deborah Logvinski
- Tranlational Bio-Nanosciences Laboratory and Colorado Center for Nanomedicine and Nanosafety, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, 1250 East Mountview Blvd., Aurora, CO 80045, USA
| | - Vivian Vu
- Tranlational Bio-Nanosciences Laboratory and Colorado Center for Nanomedicine and Nanosafety, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, 1250 East Mountview Blvd., Aurora, CO 80045, USA
| | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado Denver, Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO 80045, USA
| | - Xu Peng
- Danish Archaea Center, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen 2200, Denmark
| | - Dmitri Simberg
- Tranlational Bio-Nanosciences Laboratory and Colorado Center for Nanomedicine and Nanosafety, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, 1250 East Mountview Blvd., Aurora, CO 80045, USA
| | - Seyed Moein Moghimi
- Tranlational Bio-Nanosciences Laboratory and Colorado Center for Nanomedicine and Nanosafety, The Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Pharmaceutical Sciences, University of Colorado Denver, Anschutz Medical Campus, 1250 East Mountview Blvd., Aurora, CO 80045, USA; School of Medicine, Pharmacy and Health, Durham University, Queen's Campus, Stockton-on-Tees TS17 6BH, United Kingdom.
| |
Collapse
|
23
|
Novel chaperonins are prevalent in the virioplankton and demonstrate links to viral biology and ecology. ISME JOURNAL 2017; 11:2479-2491. [PMID: 28731469 PMCID: PMC5649160 DOI: 10.1038/ismej.2017.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/26/2017] [Accepted: 05/06/2017] [Indexed: 12/18/2022]
Abstract
Chaperonins are protein-folding machinery found in all cellular life. Chaperonin genes have been documented within a few viruses, yet, surprisingly, analysis of metagenome sequence data indicated that chaperonin-carrying viruses are common and geographically widespread in marine ecosystems. Also unexpected was the discovery of viral chaperonin sequences related to thermosome proteins of archaea, indicating the presence of virioplankton populations infecting marine archaeal hosts. Virioplankton large subunit chaperonin sequences (GroELs) were divergent from bacterial sequences, indicating that viruses have carried this gene over long evolutionary time. Analysis of viral metagenome contigs indicated that: the order of large and small subunit genes was linked to the phylogeny of GroEL; both lytic and temperate phages may carry group I chaperonin genes; and viruses carrying a GroEL gene likely have large double-stranded DNA (dsDNA) genomes (>70 kb). Given these connections, it is likely that chaperonins are critical to the biology and ecology of virioplankton populations that carry these genes. Moreover, these discoveries raise the intriguing possibility that viral chaperonins may more broadly alter the structure and function of viral and cellular proteins in infected host cells.
Collapse
|
24
|
Peeters E, Boon M, Rollie C, Willaert RG, Voet M, White MF, Prangishvili D, Lavigne R, Quax TEF. DNA-Interacting Characteristics of the Archaeal Rudiviral Protein SIRV2_Gp1. Viruses 2017; 9:v9070190. [PMID: 28718834 PMCID: PMC5537682 DOI: 10.3390/v9070190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/02/2022] Open
Abstract
Whereas the infection cycles of many bacterial and eukaryotic viruses have been characterized in detail, those of archaeal viruses remain largely unexplored. Recently, studies on a few model archaeal viruses such as SIRV2 (Sulfolobus islandicus rod-shaped virus) have revealed an unusual lysis mechanism that involves the formation of pyramidal egress structures on the host cell surface. To expand understanding of the infection cycle of SIRV2, we aimed to functionally characterize gp1, which is a SIRV2 gene with unknown function. The SIRV2_Gp1 protein is highly expressed during early stages of infection and it is the only protein that is encoded twice on the viral genome. It harbours a helix-turn-helix motif and was therefore hypothesized to bind DNA. The DNA-binding behavior of SIRV2_Gp1 was characterized with electrophoretic mobility shift assays and atomic force microscopy. We provide evidence that the protein interacts with DNA and that it forms large aggregates, thereby causing extreme condensation of the DNA. Furthermore, the N-terminal domain of the protein mediates toxicity to the viral host Sulfolobus. Our findings may lead to biotechnological applications, such as the development of a toxic peptide for the containment of pathogenic bacteria, and add to our understanding of the Rudiviral infection cycle.
Collapse
Affiliation(s)
- Eveline Peeters
- Research Group of Microbiology, Department of Bio-Engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Maarten Boon
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, 3001 Leuven, Belgium.
| | - Clare Rollie
- Biomedical Sciences Research Complex, University of St Andrews, Fife, North Haugh, St. Andrews KY16 9AJ, UK.
| | - Ronnie G Willaert
- Alliance Research Group VUB-UGhent NanoMicrobiology, IJRG VUB-EPFL, BioNanotechnology & NanoMedicine, Research Group Structural Biology Brussels, Department of Bio-Engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Marleen Voet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, 3001 Leuven, Belgium.
| | - Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, Fife, North Haugh, St. Andrews KY16 9AJ, UK.
| | | | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, 3001 Leuven, Belgium.
| | - Tessa E F Quax
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, 3001 Leuven, Belgium.
| |
Collapse
|
25
|
Sheppard C, Werner F. Structure and mechanisms of viral transcription factors in archaea. Extremophiles 2017; 21:829-838. [PMID: 28681113 PMCID: PMC5569661 DOI: 10.1007/s00792-017-0951-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/23/2017] [Indexed: 01/31/2023]
Abstract
Virus-encoded transcription factors have been pivotal in exploring the molecular mechanisms and regulation of gene expression in bacteria and eukaryotes since the birth of molecular biology, while our understanding of viral transcription in archaea is still in its infancy. Archaeal viruses do not encode their own RNA polymerases (RNAPs) and are consequently entirely dependent on their hosts for gene expression; this is fundamentally different from many bacteriophages and requires alternative regulatory strategies. Archaeal viruses wield a repertoire of proteins to expropriate the host transcription machinery to their own benefit. In this short review we summarise our current understanding of gene-specific and global mechanisms that viruses employ to chiefly downregulate host transcription and enable the efficient and temporal expression of the viral transcriptome. Most of the experimentally characterised archaeo-viral transcription regulators possess either ribbon-helix-helix or Zn-finger motifs that allow them to engage with the DNA in a sequence-specific manner, altering the expression of a specific subset of genes. Recently a novel type of regulator was reported that directly binds to the RNAP and shuts down transcription of both host and viral genes in a global fashion.
Collapse
Affiliation(s)
- Carol Sheppard
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Finn Werner
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
26
|
Differentiation and Structure in Sulfolobus islandicus Rod-Shaped Virus Populations. Viruses 2017; 9:v9050120. [PMID: 28534836 PMCID: PMC5454432 DOI: 10.3390/v9050120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 11/17/2022] Open
Abstract
In the past decade, molecular surveys of viral diversity have revealed that viruses are the most diverse and abundant biological entities on Earth. In culture, however, most viral isolates that infect microbes are represented by a few variants isolated on type strains, limiting our ability to study how natural variation affects virus-host interactions in the laboratory. We screened a set of 137 hot spring samples for viruses that infect a geographically diverse panel of the hyperthemophilic crenarchaeon Sulfolobus islandicus. We isolated and characterized eight SIRVs (Sulfolobus islandicus rod-shaped viruses) from two different regions within Yellowstone National Park (USA). Comparative genomics revealed that all SIRV sequenced isolates share 30 core genes that represent 50–60% of the genome. The core genome phylogeny, as well as the distribution of variable genes (shared by some but not all SIRVs) and the signatures of host-virus interactions recorded on the CRISPR (clustered regularly interspaced short palindromic repeats) repeat-spacer arrays of S. islandicus hosts, identify different SIRV lineages, each associated with a different geographic location. Moreover, our studies reveal that SIRV core genes do not appear to be under diversifying selection and thus we predict that the abundant and diverse variable genes govern the coevolutionary arms race between SIRVs and their hosts.
Collapse
|
27
|
Wagner A, Whitaker RJ, Krause DJ, Heilers JH, van Wolferen M, van der Does C, Albers SV. Mechanisms of gene flow in archaea. Nat Rev Microbiol 2017; 15:492-501. [DOI: 10.1038/nrmicro.2017.41] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Philosof A, Yutin N, Flores-Uribe J, Sharon I, Koonin EV, Béjà O. Novel Abundant Oceanic Viruses of Uncultured Marine Group II Euryarchaeota. Curr Biol 2017; 27:1362-1368. [PMID: 28457865 PMCID: PMC5434244 DOI: 10.1016/j.cub.2017.03.052] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/09/2017] [Accepted: 03/21/2017] [Indexed: 12/16/2022]
Abstract
Marine group II Euryarchaeota (MG-II) are among the most abundant microbes in oceanic surface waters [1, 2, 3, 4]. So far, however, representatives of MG-II have not been cultivated, and no viruses infecting these organisms have been described. Here, we present complete genomes for three distinct groups of viruses assembled from metagenomic sequence datasets highly enriched for MG-II. These novel viruses, which we denote magroviruses, possess double-stranded DNA genomes of 65 to 100 kilobases in size that encode a structural module characteristic of head-tailed viruses and, unusually for archaeal and bacterial viruses, a nearly complete replication apparatus of apparent archaeal origin. The newly identified magroviruses are widespread and abundant and therefore are likely to be major ecological agents. A novel viral group, magroviruses, likely infects marine group II archaea Magroviruses are highly abundant in oceanic surface waters worldwide Magroviruses have linear, double-stranded DNA genomes of about 100 kilobases Magroviruses encode a near complete replication apparatus of apparent archaeal origin
Collapse
Affiliation(s)
- Alon Philosof
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - José Flores-Uribe
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Itai Sharon
- Migal Galilee Research Institute, Kiryat Shmona 11016, Israel; Tel Hai College, Upper Galilee 12210, Israel
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Oded Béjà
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
29
|
Uldahl KB, Wu L, Hall A, Papathanasiou P, Peng X, Moghimi SM. Recognition of extremophilic archaeal viruses by eukaryotic cells: a promising nanoplatform from the third domain of life. Sci Rep 2016; 6:37966. [PMID: 27892499 PMCID: PMC5125014 DOI: 10.1038/srep37966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/19/2016] [Indexed: 01/08/2023] Open
Abstract
Viruses from the third domain of life, Archaea, exhibit unusual features including extreme stability that allow their survival in harsh environments. In addition, these species have never been reported to integrate into human or any other eukaryotic genomes, and could thus serve for exploration of novel medical nanoplatforms. Here, we selected two archaeal viruses Sulfolobus monocaudavirus 1 (SMV1) and Sulfolobus spindle shaped virus 2 (SSV2) owing to their unique spindle shape, hyperthermostable and acid-resistant nature and studied their interaction with mammalian cells. Accordingly, we followed viral uptake, intracellular trafficking and cell viability in human endothelial cells of brain (hCMEC/D3 cells) and umbilical vein (HUVEC) origin. Whereas SMV1 is efficiently internalized into both types of human cells, SSV2 differentiates between HUVECs and hCMEC/D3 cells, thus opening a path for selective cell targeting. On internalization, both viruses localize to the lysosomal compartments. Neither SMV1, nor SSV2 induced any detrimental effect on cell morphology, plasma membrane and mitochondrial functionality. This is the first study demonstrating recognition of archaeal viruses by eukaryotic cells which provides good basis for future exploration of archaeal viruses in bioengineering and development of multifunctional vectors.
Collapse
Affiliation(s)
- Kristine Buch Uldahl
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen, 2200, Denmark
| | - Linping Wu
- Nanomedicine Research Group, Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Arnaldur Hall
- Nanomedicine Research Group, Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Pavlos Papathanasiou
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen, 2200, Denmark
| | - Xu Peng
- Danish Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, Copenhagen, 2200, Denmark
| | - Seyed Moein Moghimi
- Nanomedicine Research Group, Centre for Pharmaceutical Nanotechnology and Nanotoxicology, Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark.,School of Medicine, Pharmacy and Health, Durham University, Wolfson building, Queens campus, Stockton on Tees, TS17 6BS, UK
| |
Collapse
|
30
|
Danovaro R, Dell’Anno A, Corinaldesi C, Rastelli E, Cavicchioli R, Krupovic M, Noble RT, Nunoura T, Prangishvili D. Virus-mediated archaeal hecatomb in the deep seafloor. SCIENCE ADVANCES 2016; 2:e1600492. [PMID: 27757416 PMCID: PMC5061471 DOI: 10.1126/sciadv.1600492] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/11/2016] [Indexed: 05/12/2023]
Abstract
Viruses are the most abundant biological entities in the world's oceans, and they play a crucial role in global biogeochemical cycles. In deep-sea ecosystems, archaea and bacteria drive major nutrient cycles, and viruses are largely responsible for their mortality, thereby exerting important controls on microbial dynamics. However, the relative impact of viruses on archaea compared to bacteria is unknown, limiting our understanding of the factors controlling the functioning of marine systems at a global scale. We evaluate the selectivity of viral infections by using several independent approaches, including an innovative molecular method based on the quantification of archaeal versus bacterial genes released by viral lysis. We provide evidence that, in all oceanic surface sediments (from 1000- to 10,000-m water depth), the impact of viral infection is higher on archaea than on bacteria. We also found that, within deep-sea benthic archaea, the impact of viruses was mainly directed at members of specific clades of Marine Group I Thaumarchaeota. Although archaea represent, on average, ~12% of the total cell abundance in the top 50 cm of sediment, virus-induced lysis of archaea accounts for up to one-third of the total microbial biomass killed, resulting in the release of ~0.3 to 0.5 gigatons of carbon per year globally. Our results indicate that viral infection represents a key mechanism controlling the turnover of archaea in surface deep-sea sediments. We conclude that interactions between archaea and their viruses might play a profound, previously underestimated role in the functioning of deep-sea ecosystems and in global biogeochemical cycles.
Collapse
Affiliation(s)
- Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
- Corresponding author.
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Cinzia Corinaldesi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
- Department of Sciences and Engineering of Materials, Environment and Urbanistics, Polytechnic University of Marche, Ancona 60131, Italy
| | - Eugenio Rastelli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mart Krupovic
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris 75015, France
| | - Rachel T. Noble
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC 28557, USA
| | - Takuro Nunoura
- Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka 237-0061, Japan
| | - David Prangishvili
- Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris 75015, France
| |
Collapse
|
31
|
Serrano-Solís V, Cocho G, José MV. Genomic signatures in viral sequences by in-frame and out-frame mutual information. J Theor Biol 2016; 403:1-9. [PMID: 27178876 DOI: 10.1016/j.jtbi.2016.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 04/25/2016] [Accepted: 05/03/2016] [Indexed: 11/28/2022]
Abstract
In order to understand the unique biology of viruses, we use the Mutual Information Function (MIF) to characterize 792 viral sequences comprising 458 viral whole genomes. A 3-base periodicity (3-bp) was observed only in DNA-viruses whereas RNA-viruses showed irregular patterns. The correlation of MIF values at frequencies of 3-bp (in-frame) with frequencies of 4 and 5bps (out-frame), turned out to be useful to distinguish viruses according to their respective taxonomic order, and whether they pertain to any of the three different kingdoms, Eubacteria, Archaea and Eukarya. The clustering of viruses was carried out by the use of a new statistics, namely, the pair of in- and out-frame values of the MIF. The clustering thus obtained turned out to be entirely consistent with the current viral taxonomy. As a result we were able to compare in a single plot both viral and cellular genomes unlike any given phylogenetic reconstruction.
Collapse
Affiliation(s)
| | - Germinal Cocho
- Instituto de Física, Universidad Nacional Autónoma de México (IFUNAM), Mexico.
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México D.F. 04510, Mexico.
| |
Collapse
|
32
|
Lindgren AR, Buckley BA, Eppley SM, Reysenbach AL, Stedman KM, Wagner JT. Life on the Edge-the Biology of Organisms Inhabiting Extreme Environments: An Introduction to the Symposium. Integr Comp Biol 2016; 56:493-9. [PMID: 27471225 DOI: 10.1093/icb/icw094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Life persists, even under extremely harsh conditions. While the existence of extremophiles is well known, the mechanisms by which these organisms evolve, perform basic metabolic functions, reproduce, and survive under extreme physical stress are often entirely unknown. Recent technological advances in terms of both sampling and studying extremophiles have yielded new insight into their evolution, physiology and behavior, from microbes and viruses to plants to eukaryotes. The goal of the "Life on the Edge-the Biology of Organisms Inhabiting Extreme Environments" symposium was to unite researchers from taxonomically and methodologically diverse backgrounds to highlight new advances in extremophile biology. Common themes and new insight that emerged from the symposium included the important role of symbiotic associations, the continued challenges associated with sampling and studying extremophiles and the important role these organisms play in terms of studying climate change. As we continue to explore our planet, especially in difficult to reach areas from the poles to the deep sea, we expect to continue to discover new and extreme circumstances under which life can persist.
Collapse
Affiliation(s)
- Annie R Lindgren
- The Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA
| | - Bradley A Buckley
- The Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA
| | - Sarah M Eppley
- The Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA
| | - Anna-Louise Reysenbach
- The Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA
| | - Kenneth M Stedman
- The Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA
| | - Josiah T Wagner
- The Center for Life in Extreme Environments, Portland State University, Portland, OR 97201, USA
| |
Collapse
|
33
|
Perotti LE, Dharmavaram S, Klug WS, Marian J, Rudnick J, Bruinsma RF. Useful scars: Physics of the capsids of archaeal viruses. Phys Rev E 2016; 94:012404. [PMID: 27575161 DOI: 10.1103/physreve.94.012404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Indexed: 11/07/2022]
Abstract
We propose a physical model for the capsids of tailed archaeal viruses as viscoelastic membranes under tension. The fluidity is generated by thermal motion of scarlike structures that are an intrinsic feature of the ground state of large particle arrays covering surfaces with nonzero Gauss curvature. The tension is generated by a combination of the osmotic pressure of the enclosed genome and an extension force generated by filamentous structure formation that drives the formation of the tails. In continuum theory, the capsid has the shape of a surface of constant mean curvature: an unduloid. Particle arrays covering unduloids are shown to exhibit pronounced subdiffusive and diffusive single-particle transport at temperatures that are well below the melting temperature of defect-free particle arrays on a surface with zero Gauss curvature.
Collapse
Affiliation(s)
- L E Perotti
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA
| | - S Dharmavaram
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA
| | - W S Klug
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA
| | - J Marian
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, USA
| | - J Rudnick
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA
| | - R F Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, USA and Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
34
|
Identification, Characterization, and Application of the Replicon Region of the Halophilic Temperate Sphaerolipovirus SNJ1. J Bacteriol 2016; 198:1952-1964. [PMID: 27137505 DOI: 10.1128/jb.00131-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/26/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The temperate haloarchaeal virus SNJ1 displays lytic and lysogenic life cycles. During the lysogenic cycle, the virus resides in its host, Natrinema sp. strain J7-1, in the form of an extrachromosomal circular plasmid, pHH205. In this study, a 3.9-kb region containing seven predicted genes organized in two operons was identified as the minimal replicon of SNJ1. Only RepA, encoded by open reading frame 11-12 (ORF11-12), was found to be essential for replication, and its expression increased during the lytic cycle. Sequence analysis suggested that RepA is a distant homolog of HUH endonucleases, a superfamily that includes rolling-circle replication initiation proteins from various viruses and plasmids. In addition to RepA, two genetic elements located within both termini of the 3.9-kb replicon were also required for SNJ1 replication. SNJ1 genome and SNJ1 replicon-based shuttle vectors were present at 1 to 3 copies per chromosome. However, the deletion of ORF4 significantly increased the SNJ1 copy number, suggesting that the product of ORF4 is a negative regulator of SNJ1 abundance. Shuttle vectors based on the SNJ1 replicon were constructed and validated for stable expression of heterologous proteins, both in J7 derivatives and in Natrinema pallidum JCM 8980(T), suggesting their broad applicability as genetic tools for Natrinema species. IMPORTANCE Archaeal viruses exhibit striking morphological diversity and unique gene content. In this study, the minimal replicon of the temperate haloarchaeal virus SNJ1 was identified. A number of ORFs and genetic elements controlling virus genome replication, maintenance, and copy number were characterized. In addition, based on the replicon, a novel expression shuttle vector has been constructed and validated for protein expression and purification in Natrinema sp. CJ7 and Natrinema pallidum JCM 8980(T) This study not only provided mechanistic and functional insights into SNJ1 replication but also led to the development of useful genetic tools to investigate SNJ1 and other viruses infecting Natrinema species as well as their hosts.
Collapse
|
35
|
Life Cycle Characterization of Sulfolobus Monocaudavirus 1, an Extremophilic Spindle-Shaped Virus with Extracellular Tail Development. J Virol 2016; 90:5693-5699. [PMID: 27053548 DOI: 10.1128/jvi.00075-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/15/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED We provide here, for the first time, insights into the initial infection stages of a large spindle-shaped archaeal virus and explore the following life cycle events. Our observations suggest that Sulfolobus monocaudavirus 1 (SMV1) exhibits a high adsorption rate and that virions adsorb to the host cells via three distinct attachment modes: nosecone association, body association, and body/tail association. In the body/tail association mode, the entire virion, including the tail(s), aligns to the host cell surface and the main body is greatly flattened, suggesting a possible fusion entry mechanism. Upon infection, the intracellular replication cycle lasts about 8 h, at which point the virions are released as spindle-shaped tailless particles. Replication of the virus retarded host growth but did not cause lysis of the host cells. Once released from the host and at temperatures resembling that of its natural habitat, SMV1 starts developing one or two tails. This exceptional property of undergoing a major morphological development outside, and independently of, the host cell has been reported only once before for the related Acidianus two-tailed virus. Here, we show that SMV1 can develop tails of more than 900 nm in length, more than quadrupling the total virion length. IMPORTANCE Very little is known about the initial life cycle stages of viruses infecting hosts of the third domain of life, Archaea This work describes the first example of an archaeal virus employing three distinct association modes. The virus under study, Sulfolobus monocaudavirus 1, is a representative of the large spindle-shaped viruses that are frequently found in acidic hot springs. The results described here will add valuable knowledge about Archaea, the least studied domain in the virology field.
Collapse
|
36
|
Parikka KJ, Le Romancer M, Wauters N, Jacquet S. Deciphering the virus-to-prokaryote ratio (VPR): insights into virus-host relationships in a variety of ecosystems. Biol Rev Camb Philos Soc 2016; 92:1081-1100. [DOI: 10.1111/brv.12271] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 02/18/2016] [Accepted: 03/01/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Kaarle J. Parikka
- Laboratory of Microbiology of Extreme Environments; lnstitut Universitaire Européen de la Mer; Plouzané 29280 France
- LabMCT, Belgian Department of Defense; Queen Astrid Military Hospital; Brussels 1120 Belgium
| | - Marc Le Romancer
- Laboratory of Microbiology of Extreme Environments; lnstitut Universitaire Européen de la Mer; Plouzané 29280 France
| | - Nina Wauters
- Biological Evolution and Ecology; Université Libre de Bruxelles; Brussels 1050 Belgium
| | | |
Collapse
|
37
|
Svirskaitė J, Oksanen HM, Daugelavičius R, Bamford DH. Monitoring Physiological Changes in Haloarchaeal Cell during Virus Release. Viruses 2016; 8:59. [PMID: 26927156 PMCID: PMC4810249 DOI: 10.3390/v8030059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 01/14/2023] Open
Abstract
The slow rate of adsorption and non-synchronous release of some archaeal viruses have hindered more thorough analyses of the mechanisms of archaeal virus release. To address this deficit, we utilized four viruses that infect Haloarcula hispanica that represent the four virion morphotypes currently known for halophilic euryarchaeal viruses: (1) icosahedral internal membrane-containing SH1; (2) icosahedral tailed HHTV-1; (3) spindle-shaped His1; and (4) pleomorphic His2. To discern the events occurring as the progeny viruses exit, we monitored culture turbidity, as well as viable cell and progeny virus counts of infected and uninfected cultures. In addition to these traditional metrics, we measured three parameters associated with membrane integrity: the binding of the lipophilic anion phenyldicarbaundecaborane, oxygen consumption, and both intra- and extra-cellular ATP levels.
Collapse
Affiliation(s)
- Julija Svirskaitė
- Department of Biosciences, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland.
| | - Hanna M Oksanen
- Department of Biosciences, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland.
| | - Rimantas Daugelavičius
- Department of Biochemistry, Vytautas Magnus University, Vileikos g. 8, 44404 Kaunas, Lithuania.
| | - Dennis H Bamford
- Department of Biosciences, Institute of Biotechnology, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland.
| |
Collapse
|
38
|
A virus of hyperthermophilic archaea with a unique architecture among DNA viruses. Proc Natl Acad Sci U S A 2016; 113:2478-83. [PMID: 26884161 DOI: 10.1073/pnas.1518929113] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viruses package their genetic material in diverse ways. Most known strategies include encapsulation of nucleic acids into spherical or filamentous virions with icosahedral or helical symmetry, respectively. Filamentous viruses with dsDNA genomes are currently associated exclusively with Archaea. Here, we describe a filamentous hyperthermophilic archaeal virus, Pyrobaculum filamentous virus 1 (PFV1), with a type of virion organization not previously observed in DNA viruses. The PFV1 virion, 400 ± 20 × 32 ± 3 nm, contains an envelope and an inner core consisting of two structural units: a rod-shaped helical nucleocapsid formed of two 14-kDa major virion proteins and a nucleocapsid-encompassing protein sheath composed of a single major virion protein of 18 kDa. The virion organization of PFV1 is superficially similar to that of negative-sense RNA viruses of the family Filoviridae, including Ebola virus and Marburg virus. The linear dsDNA of PFV1 carries 17,714 bp, including 60-bp-long terminal inverted repeats, and contains 39 predicted ORFs, most of which do not show similarities to sequences in public databases. PFV1 is a lytic virus that completely disrupts the host cell membrane at the end of the infection cycle.
Collapse
|
39
|
Abstract
Many plasmids have been described in Euryarchaeota, one of the three major archaeal phyla, most of them in salt-loving haloarchaea and hyperthermophilic Thermococcales. These plasmids resemble bacterial plasmids in terms of size (from small plasmids encoding only one gene up to large megaplasmids) and replication mechanisms (rolling circle or theta). Some of them are related to viral genomes and form a more or less continuous sequence space including many integrated elements. Plasmids from Euryarchaeota have been useful for designing efficient genetic tools for these microorganisms. In addition, they have also been used to probe the topological state of plasmids in species with or without DNA gyrase and/or reverse gyrase. Plasmids from Euryarchaeota encode both DNA replication proteins recruited from their hosts and novel families of DNA replication proteins. Euryarchaeota form an interesting playground to test evolutionary hypotheses on the origin and evolution of viruses and plasmids, since a robust phylogeny is available for this phylum. Preliminary studies have shown that for different plasmid families, plasmids share a common gene pool and coevolve with their hosts. They are involved in gene transfer, mostly between plasmids and viruses present in closely related species, but rarely between cells from distantly related archaeal lineages. With few exceptions (e.g., plasmids carrying gas vesicle genes), most archaeal plasmids seem to be cryptic. Interestingly, plasmids and viral genomes have been detected in extracellular membrane vesicles produced by Thermococcales, suggesting that these vesicles could be involved in the transfer of viruses and plasmids between cells.
Collapse
|
40
|
|
41
|
Roux S, Enault F, Ravet V, Colombet J, Bettarel Y, Auguet JC, Bouvier T, Lucas-Staat S, Vellet A, Prangishvili D, Forterre P, Debroas D, Sime-Ngando T. Analysis of metagenomic data reveals common features of halophilic viral communities across continents. Environ Microbiol 2015; 18:889-903. [PMID: 26472517 DOI: 10.1111/1462-2920.13084] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 09/28/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022]
Abstract
Microbial communities from hypersaline ponds, dominated by halophilic archaea, are considered specific of such extreme conditions. The associated viral communities have accordingly been shown to display specific features, such as similar morphologies among different sites. However, little is known about the genetic diversity of these halophilic viral communities across the Earth. Here, we studied viral communities in hypersaline ponds sampled on the coast of Senegal (8-36% of salinity) using metagenomics approach, and compared them with hypersaline viromes from Australia and Spain. The specificity of hyperhalophilic viruses could first be demonstrated at a community scale, salinity being a strong discriminating factor between communities. For the major viral group detected in all samples (Caudovirales), only a limited number of halophilic Caudovirales clades were highlighted. These clades gather viruses from different continents and display consistent genetic composition, indicating that they represent related lineages with a worldwide distribution. Non-tailed hyperhalophilic viruses display a greater rate of gene transfer and recombination, with uncharacterized genes conserved across different kind of viruses and plasmids. Thus, hypersaline viral communities around the world appear to form a genetically consistent community that are likely to harbour new genes coding for enzymes specifically adapted to these environments.
Collapse
Affiliation(s)
- Simon Roux
- Université Blaise Pascal, Laboratoire 'Microorganismes: Génome et Environnement', Clermont Université, Clermont-Ferrand, France.,CNRS UMR 6023, LMGE, Aubière, France
| | - Francois Enault
- Université Blaise Pascal, Laboratoire 'Microorganismes: Génome et Environnement', Clermont Université, Clermont-Ferrand, France.,CNRS UMR 6023, LMGE, Aubière, France
| | - Viviane Ravet
- Université Blaise Pascal, Laboratoire 'Microorganismes: Génome et Environnement', Clermont Université, Clermont-Ferrand, France.,CNRS UMR 6023, LMGE, Aubière, France
| | - Jonathan Colombet
- Université Blaise Pascal, Laboratoire 'Microorganismes: Génome et Environnement', Clermont Université, Clermont-Ferrand, France.,CNRS UMR 6023, LMGE, Aubière, France
| | - Yvan Bettarel
- IRD UMR 5119 ECOSYM, Université Montpellier 2, Montpellier, 34095, France
| | - Jean-Christophe Auguet
- Marine Biodiversity, Exploitation and Conservation (MARBEC), UMR CNRS 9190, Montpellier University, Place Eugéne Bataillon, Montpellier, France
| | - Thierry Bouvier
- IRD UMR 5119 ECOSYM, Université Montpellier 2, Montpellier, 34095, France
| | - Soizick Lucas-Staat
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Agnès Vellet
- Université Blaise Pascal, Laboratoire 'Microorganismes: Génome et Environnement', Clermont Université, Clermont-Ferrand, France.,CNRS UMR 6023, LMGE, Aubière, France
| | - David Prangishvili
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, Paris, France
| | - Patrick Forterre
- Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, Institut Pasteur, Paris, France.,Laboratoire de Biologie Moléculaire du Gène chez les Extrêmophiles, CNRS UMR 8621, Université Paris Sud, Institut de Génétique et Microbiologie, Orsay, France
| | - Didier Debroas
- Université Blaise Pascal, Laboratoire 'Microorganismes: Génome et Environnement', Clermont Université, Clermont-Ferrand, France.,CNRS UMR 6023, LMGE, Aubière, France
| | - Telesphore Sime-Ngando
- Université Blaise Pascal, Laboratoire 'Microorganismes: Génome et Environnement', Clermont Université, Clermont-Ferrand, France.,CNRS UMR 6023, LMGE, Aubière, France
| |
Collapse
|
42
|
León-Sobrino C, Kot WP, Garrett RA. Transcriptome changes in STSV2-infected Sulfolobus islandicus REY15A undergoing continuous CRISPR spacer acquisition. Mol Microbiol 2015; 99:719-28. [PMID: 26514343 DOI: 10.1111/mmi.13263] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 12/21/2022]
Abstract
A transcriptome study was performed on Sulfolobus islandicus REY15A actively undergoing CRISPR spacer acquisition from the crenarchaeal monocaudavirus STSV2 in rich and basal media over a 6 day period. Spacer acquisition preceded strong host growth retardation, altered transcriptional activity of four different CRISPR-Cas modules and changes in viral copy numbers, and with significant differences in the two media. Transcript levels of proteins involved in the cell cycle were reduced, whereas those of DNA replication, DNA repair, transcriptional regulation and some antitoxin-toxin pairs and transposases were unchanged or enhanced. Antisense RNAs were implicated in the transcriptional regulation of adaptation and interference modules of the type I-A CRISPR-Cas system, and evidence was found for the occurrence of functional co-ordination between the single CRISPR-Cas adaptation module and the functionally diverse interference modules.
Collapse
Affiliation(s)
- Carlos León-Sobrino
- Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Witold P Kot
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Roger A Garrett
- Archaea Centre, Department of Biology, University of Copenhagen, Copenhagen, DK-2200, Denmark
| |
Collapse
|
43
|
Zeldes BM, Keller MW, Loder AJ, Straub CT, Adams MWW, Kelly RM. Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 2015; 6:1209. [PMID: 26594201 PMCID: PMC4633485 DOI: 10.3389/fmicb.2015.01209] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/19/2015] [Indexed: 01/06/2023] Open
Abstract
Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high temperature industrial biotechnology.
Collapse
Affiliation(s)
- Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh, NC, USA
| | - Matthew W Keller
- Department of Biochemistry and Molecular Biology, University of Georgia Athens, GA, USA
| | - Andrew J Loder
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh, NC, USA
| | - Christopher T Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh, NC, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia Athens, GA, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University Raleigh, NC, USA
| |
Collapse
|
44
|
Fusco S, Liguori R, Limauro D, Bartolucci S, She Q, Contursi P. Transcriptome analysis of Sulfolobus solfataricus infected with two related fuselloviruses reveals novel insights into the regulation of CRISPR-Cas system. Biochimie 2015; 118:322-32. [DOI: 10.1016/j.biochi.2015.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/08/2015] [Indexed: 11/26/2022]
|
45
|
Pietilä MK, Roine E, Sencilo A, Bamford DH, Oksanen HM. Pleolipoviridae, a newly proposed family comprising archaeal pleomorphic viruses with single-stranded or double-stranded DNA genomes. Arch Virol 2015; 161:249-56. [PMID: 26459284 DOI: 10.1007/s00705-015-2613-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/13/2015] [Indexed: 11/24/2022]
Abstract
Viruses infecting archaea show a variety of virion morphotypes, and they are currently classified into more than ten viral families or corresponding groups. A pleomorphic virus morphotype is very common among haloarchaeal viruses, and to date, several such viruses have been isolated. Here, we propose the classification of eight such viruses and formation of a new family, Pleolipoviridae (from the Greek pleo for more or many and lipos for lipid), containing three genera, Alpha-, Beta-, and Gammapleolipovirus. The proposal is currently under review by the International Committee on Taxonomy of Viruses (ICTV). The members of the proposed family Pleolipoviridae infect halophilic archaea and are nonlytic. They share structural and genomic features and differ from any other classified virus. The virion of pleolipoviruses is composed of a pleomorphic membrane vesicle enclosing the genome. All pleolipoviruses have two major structural protein species, internal membrane and spike proteins. Although the genomes of the pleolipoviruses are single- or double-stranded, linear or circular DNA molecules, they share the same genome organization and gene synteny and show significant similarity at the amino acid level. The canonical features common to all members of the proposed family Pleolipoviridae show that they are closely related and thus form a new viral family.
Collapse
Affiliation(s)
- Maija K Pietilä
- Department of Food and Environmental Sciences, University of Helsinki, P.O. Box 56, Viikinkaari 9, 00014, Helsinki, Finland
| | - Elina Roine
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, P.O. Box 56, Viikinkaari 9, 00014, Helsinki, Finland
| | - Ana Sencilo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the ASCR, v.v.i., Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Dennis H Bamford
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, P.O. Box 56, Viikinkaari 9, 00014, Helsinki, Finland
| | - Hanna M Oksanen
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, P.O. Box 56, Viikinkaari 9, 00014, Helsinki, Finland.
| |
Collapse
|
46
|
Liu Y, Wang J, Liu Y, Wang Y, Zhang Z, Oksanen HM, Bamford DH, Chen X. Identification and characterization of SNJ2, the first temperate pleolipovirus integrating into the genome of the SNJ1-lysogenic archaeal strain. Mol Microbiol 2015; 98:1002-20. [PMID: 26331239 DOI: 10.1111/mmi.13204] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 11/29/2022]
Abstract
Proviral regions have been identified in the genomes of many haloarchaea, but only a few archaeal halophilic temperate viruses have been studied. Here, we report a new virus, SNJ2, originating from archaeal strain Natrinema sp. J7-1. We demonstrate that this temperate virus coexists with SNJ1 virus and is dependent on SNJ1 for efficient production. Here, we show that SNJ1 is an icosahedral membrane-containing virus, whereas SNJ2 is a pleomorphic one. Instead of producing progeny virions and forming plaques, SNJ2 integrates into the host tRNA(Met) gene. The virion contains a discontinuous, circular, double-stranded DNA genome of 16 992 bp, in which both nicks and single-stranded regions are present preceded by a 'GCCCA' motif. Among 25 putative SNJ2 open reading frames (ORFs), five of them form a cluster of conserved ORFs homologous to archaeal pleolipoviruses isolated from hypersaline environments. Two structural protein encoding genes in the conserved cluster were verified in SNJ2. Furthermore, SNJ2-like proviruses containing the conserved gene cluster were identified in the chromosomes of archaea belonging to 10 different genera. Comparison of SNJ2 and these proviruses suggests that they employ a similar integration strategy into a tRNA gene.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jiao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuchen Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ziqian Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Hanna M Oksanen
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Dennis H Bamford
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, 00014, Helsinki, Finland
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
47
|
Abstract
SUMMARY Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes, such as spindles, rods, filaments, spheres, head-tails, bottles, and droplets, and some of these new viruses have been classified into one order, 10 families, and 16 genera. Investigation of model archaeal viruses has yielded important insights into mechanisms underlining various steps in the viral life cycle, including infection, DNA replication and transcription, and virion egression. Many of these mechanisms are unprecedented for any known bacterial or eukaryal viruses. Studies of plasmids isolated from different archaeal hosts have also revealed a striking diversity in gene content and innovation in replication strategies. Highly divergent replication proteins are identified in both viral and plasmid genomes. Genomic studies of archaeal ECEs have revealed a modular sequence structure in which modules of DNA sequence are exchangeable within, as well as among, plasmid families and probably also between viruses and plasmids. In particular, it has been suggested that ECE-host interactions have shaped the coevolution of ECEs and their archaeal hosts. Furthermore, archaeal hosts have developed defense systems, including the innate restriction-modification (R-M) system and the adaptive CRISPR (clustered regularly interspaced short palindromic repeats) system, to restrict invasive plasmids and viruses. Together, these interactions permit a delicate balance between ECEs and their hosts, which is vitally important for maintaining an innovative gene reservoir carried by ECEs. In conclusion, while research on archaeal ECEs has just started to unravel the molecular biology of these genetic entities and their interactions with archaeal hosts, it is expected to accelerate in the next decade.
Collapse
|
48
|
Bolduc B, Wirth JF, Mazurie A, Young MJ. Viral assemblage composition in Yellowstone acidic hot springs assessed by network analysis. ISME JOURNAL 2015; 9:2162-77. [PMID: 26125684 DOI: 10.1038/ismej.2015.28] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/29/2014] [Accepted: 01/12/2015] [Indexed: 01/31/2023]
Abstract
Understanding of viral assemblage structure in natural environments remains a daunting task. Total viral assemblage sequencing (for example, viral metagenomics) provides a tractable approach. However, even with the availability of next-generation sequencing technology it is usually only possible to obtain a fragmented view of viral assemblages in natural ecosystems. In this study, we applied a network-based approach in combination with viral metagenomics to investigate viral assemblage structure in the high temperature, acidic hot springs of Yellowstone National Park, USA. Our results show that this approach can identify distinct viral groups and provide insights into the viral assemblage structure. We identified 110 viral groups in the hot springs environment, with each viral group likely representing a viral family at the sub-family taxonomic level. Most of these viral groups are previously unknown DNA viruses likely infecting archaeal hosts. Overall, this study demonstrates the utility of combining viral assemblage sequencing approaches with network analysis to gain insights into viral assemblage structure in natural ecosystems.
Collapse
Affiliation(s)
- Benjamin Bolduc
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA.,Department of Plant Sciences and Plant Pathology and, Montana State University, Bozeman, MT, USA
| | - Jennifer F Wirth
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA.,Department of Plant Sciences and Plant Pathology and, Montana State University, Bozeman, MT, USA
| | - Aurélien Mazurie
- Bioinformatics Core Facility, Montana State University, Bozeman, MT, USA
| | - Mark J Young
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA.,Department of Plant Sciences and Plant Pathology and, Montana State University, Bozeman, MT, USA
| |
Collapse
|
49
|
Quemin ERJ, Quax TEF. Archaeal viruses at the cell envelope: entry and egress. Front Microbiol 2015; 6:552. [PMID: 26097469 PMCID: PMC4456609 DOI: 10.3389/fmicb.2015.00552] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/19/2015] [Indexed: 11/13/2022] Open
Abstract
The cell envelope represents the main line of host defense that viruses encounter on their way from one cell to another. The cytoplasmic membrane in general is a physical barrier that needs to be crossed both upon viral entry and exit. Therefore, viruses from the three domains of life employ a wide range of strategies for perforation of the cell membrane, each adapted to the cell surface environment of their host. Here, we review recent insights on entry and egress mechanisms of viruses infecting archaea. Due to the unique nature of the archaeal cell envelope, these particular viruses exhibit novel and unexpected mechanisms to traverse the cellular membrane.
Collapse
Affiliation(s)
| | - Tessa E F Quax
- Molecular Biology of Archaea, Institute for Biology II - Microbiology, University of Freiburg , Freiburg, Germany
| |
Collapse
|
50
|
Wang H, Yu Y, Liu T, Pan Y, Yan S, Wang Y. Diversity of putative archaeal RNA viruses in metagenomic datasets of a yellowstone acidic hot spring. SPRINGERPLUS 2015; 4:189. [PMID: 25918685 PMCID: PMC4405519 DOI: 10.1186/s40064-015-0973-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/09/2015] [Indexed: 12/02/2022]
Abstract
Two genomic fragments (5,662 and 1,269 nt in size, GenBank accession no. JQ756122 and JQ756123, respectively) of novel, positive-strand RNA viruses that infect archaea were first discovered in an acidic hot spring in Yellowstone National Park (Bolduc et al., 2012). To investigate the diversity of these newly identified putative archaeal RNA viruses, global metagenomic datasets were searched for sequences that were significantly similar to those of the viruses. A total of 3,757 associated reads were retrieved solely from the Yellowstone datasets and were used to assemble the genomes of the putative archaeal RNA viruses. Nine contigs with lengths ranging from 417 to 5,866 nt were obtained, 4 of which were longer than 2,200 nt; one contig was 204 nt longer than JQ756122, representing the longest genomic sequence of the putative archaeal RNA viruses. These contigs revealed more than 50% sequence similarity to JQ756122 or JQ756123 and may be partial or nearly complete genomes of novel genogroups or genotypes of the putative archaeal RNA viruses. Sequence and phylogenetic analyses indicated that the archaeal RNA viruses are genetically diverse, with at least 3 related viral lineages in the Yellowstone acidic hot spring environment.
Collapse
Affiliation(s)
- Hongming Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongxin Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Taigang Liu
- College of Information Technology, Shanghai Ocean University, Shanghai, China
| | - Yingjie Pan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China ; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage & Preservation, Ministry of Agriculture, Shanghai, China ; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| | - Shuling Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China ; Institute of Biochemistry and Molecular Cell Biology, University of Goettingen, Goettingen, Germany
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China ; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage & Preservation, Ministry of Agriculture, Shanghai, China ; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
| |
Collapse
|