1
|
Wirachman ES, Grossman AD. Transcription termination and antitermination are critical for the fitness and function of the integrative and conjugative element Tn916. PLoS Genet 2024; 20:e1011417. [PMID: 39652596 DOI: 10.1371/journal.pgen.1011417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/19/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
Premature expression of genes in mobile genetic elements can be detrimental to their bacterial hosts. Tn916, the founding member of a large family of integrative and conjugative elements (ICEs; aka conjugative transposons), confers tetracycline-resistance and is found in several Gram-positive bacterial species. We identified a transcription terminator near one end of Tn916 that functions as an insulator that prevents expression of element genes when Tn916 is integrated downstream from an active host promoter. The terminator blocked expression of Tn916 genes needed for unwinding and rolling circle replication of the element DNA, and loss of the terminator caused a fitness defect for the host cells. Further, we identified an element-encoded antiterminator (named canT for conjugation-associated antitermination) that is essential for transcription of Tn916 genes after excision of the element from the host chromosome. We found that the antiterminator is orientation-specific, functions with heterologous promoters and terminators, is processive and is most likely a cis-acting RNA. Insulating gene expression in conjugative elements that are integrated in the chromosome is likely a key feature of the interplay between mobile genetic elements and their hosts and appears to be critical for the function and evolution of the large family of Tn916-like elements.
Collapse
Affiliation(s)
- Erika S Wirachman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
2
|
Sakagianni A, Koufopoulou C, Koufopoulos P, Kalantzi S, Theodorakis N, Nikolaou M, Paxinou E, Kalles D, Verykios VS, Myrianthefs P, Feretzakis G. Data-Driven Approaches in Antimicrobial Resistance: Machine Learning Solutions. Antibiotics (Basel) 2024; 13:1052. [PMID: 39596745 PMCID: PMC11590962 DOI: 10.3390/antibiotics13111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: The emergence of antimicrobial resistance (AMR) due to the misuse and overuse of antibiotics has become a critical threat to global public health. There is a dire need to forecast AMR to understand the underlying mechanisms of resistance for the development of effective interventions. This paper explores the capability of machine learning (ML) methods, particularly unsupervised learning methods, to enhance the understanding and prediction of AMR. It aims to determine the patterns from AMR gene data that are clinically relevant and, in public health, capable of informing strategies. Methods: We analyzed AMR gene data in the PanRes dataset by applying unsupervised learning techniques, namely K-means clustering and Principal Component Analysis (PCA). These techniques were applied to identify clusters based on gene length and distribution according to resistance class, offering insights into the resistance genes' structural and functional properties. Data preprocessing, such as filtering and normalization, was conducted prior to applying machine learning methods to ensure consistency and accuracy. Our methodology included the preprocessing of data and reduction of dimensionality to ensure that our models were both accurate and interpretable. Results: The unsupervised learning models highlighted distinct clusters of AMR genes, with significant patterns in gene length, including their associated resistance classes. Further dimensionality reduction by PCA allows for clearer visualizations of relationships among gene groupings. These patterns provide novel insights into the potential mechanisms of resistance, particularly the role of gene length in different resistance pathways. Conclusions: This study demonstrates the potential of ML, specifically unsupervised approaches, to enhance the understanding of AMR. The identified patterns in resistance genes could support clinical decision-making and inform public health interventions. However, challenges remain, particularly in integrating genomic data and ensuring model interpretability. Further research is needed to advance ML applications in AMR prediction and management.
Collapse
Affiliation(s)
- Aikaterini Sakagianni
- Intensive Care Unit, Sismanogelio General Hospital, 37 Sismanogleiou Str., 15126 Marousi, Greece;
| | - Christina Koufopoulou
- Anesthesiology Department, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vass. Sofias 76, 11528 Athens, Greece;
| | - Petros Koufopoulos
- Department of Internal Medicine, Sismanogleio General Hospital, 15126 Marousi, Greece;
| | - Sofia Kalantzi
- Department of Internal Medicine & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Athens, Greece;
| | - Nikolaos Theodorakis
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Athens, Greece; (N.T.); (M.N.)
| | - Maria Nikolaou
- Department of Cardiology & 65+ Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Athens, Greece; (N.T.); (M.N.)
| | - Evgenia Paxinou
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece; (E.P.); (D.K.); (V.S.V.)
| | - Dimitris Kalles
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece; (E.P.); (D.K.); (V.S.V.)
| | - Vassilios S. Verykios
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece; (E.P.); (D.K.); (V.S.V.)
| | - Pavlos Myrianthefs
- Faculty of Nursing, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Georgios Feretzakis
- School of Science and Technology, Hellenic Open University, 18 Aristotelous Str., 26335 Patras, Greece; (E.P.); (D.K.); (V.S.V.)
| |
Collapse
|
3
|
Maladan Y, Retnaningrum E, Daryono BS, Salsabila K, Sarassari R, Khoeri MM, Sari RF, Balqis SA, Wahid GA, Safari D. Pneumococcal transposon profiling associated with macrolide, tetracycline, and chloramphenicol resistance from carriage isolates of serotype 19F in Indonesia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 125:105672. [PMID: 39313084 DOI: 10.1016/j.meegid.2024.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/22/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Genetic evolution of resistance due to mutations and transposon insertions is the primary cause of antimicrobial resistance in Streptococcus pneumoniae. Resistance to macrolide, tetracycline, and chloramphenicol is caused by the insertion of specific genes that carried by transposon (Tn). This study aims to analyze transposon profiling associated with macrolide, tetracycline, and chloramphenicol resistance from carriage isolates of S. pneumoniae serotype 19F in Indonesia. S. pneumoniae serotype 19F isolates were collected from nasopharyngeal swab specimens from different regions in Indonesia. Genomic DNA was extracted from sixteen isolates and whole genome sequencing was performed on Illumina platform. Raw sequence data were analyzed using de novo assembly by ASA3P and Microscope server. The presence of transposons was identified with detection of int and xis genes and visualized by pyGenomeViz. The genome size of S. pneumoniae ranges from 2,040,117 bp to 2,437,939 bp, with a GC content of around 39 %. ST1464 (4/16) and ST271 (3/16) were found as the predominant sequence type among isolates. Tn2010 was the most common transposon among S. pneumoniae serotype 19F isolates (7/16) followed by Tn2009 (4/16), and Tn5253 (3/16). We identified two deletion sites within the tetM gene (2 bp and 58 bp) that confer tetracycline susceptibility from one isolate. This study suggests that genomic analysis can be employed for the detection and surveillance of antimicrobial resistance genes among S. pneumoniae strains isolated from various regions in Indonesia.
Collapse
Affiliation(s)
- Yustinus Maladan
- Biology Doctoral Students, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia; Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Endah Retnaningrum
- Microbiology Laboratory, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Budi Setiadi Daryono
- Genetics Laboratory, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Korrie Salsabila
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Rosantia Sarassari
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Miftahuddin Majid Khoeri
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia; Doctoral program in Biomedical, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Ratna Fathma Sari
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Sarah Azhari Balqis
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Ghina Athyah Wahid
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia
| | - Dodi Safari
- Eijkman Research Center for Molecular Biology, The National Research and Innovation Agency, Cibinong Science Center, Bogor, Indonesia.
| |
Collapse
|
4
|
Liu Y, Qiao Z, Ma Y, Wang M, Hu G, Li E. Molecular characterization of the tet (M)-carrying transposon Tn 7124 and plasmids in Escherichia coli isolates recovered from swine. Front Vet Sci 2024; 11:1430398. [PMID: 39507219 PMCID: PMC11539080 DOI: 10.3389/fvets.2024.1430398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
Here, we report the genetic features and evolutionary mechanisms of two tet (M)-bearing plasmids (pTA2 and pTA7) recovered from swine Escherichia coli isolates. The genetic profiles of pTA2 and pTA7 and corresponding transconjugants were accessed by S1 nuclease pulsed-field gel electrophoresis and Southern hybridization, followed by whole genome sequencing and bioinformatics analysis. The biological influences of pTA2 and pTA7 were determined by stability and direct competition assays. Both pTA7 and pTA2 had the IncR backbone sequences but differed in the multidrug resistance region (MDR). The MDR of pTA2 consisted of sul3, tet (M), qnrS1, bleO, oqxAB, floR, aadA1, cmlA1, aadA2, and tet (A)-tetR (A) in addition to 22 insertion sequences. Notably, pTA2 carried the novel complex Tn7124 (IS26-ctp-lp-tet (M)-hp-IS406tnp-IntI4-IS26) harboring tet (M). The fragment carrying tet (M) (IS26-ctp-lp-tet (M)-IS406 tnp-ctp-aadA1-cmlA1-aadA2-dfrA12-IntI1), named Tn6942-like, and the two resistance modules ISVsa3-VirD2-floR-lysR and tet (A)-tetR (A) were located in the MDR of pTA7. Both pTA2 and pTA7 were highly stable in E. coli DH5α cells with no fitness cost to the host or disadvantage in growth competition. These results indicate that transposons carrying tet (M) continuously integrate via mediation with an insertion sequence, which accelerates the transmission of tet (M) in E. coli isolates through integration of other drug-resistant genes, thereby posing a potential serious threat to the efficacy of clinical treatment.
Collapse
Affiliation(s)
- Yingying Liu
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, China
| | - Zhu Qiao
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Yan Ma
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Mingcheng Wang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Gongzheng Hu
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, China
| | - Enzhong Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| |
Collapse
|
5
|
Lee E, Priutt E, Woods S, Quick A, King S, McLellan LK, Shields RC. Genomic analysis of conjugative and chromosomally integrated mobile genetic elements in oral streptococci. Appl Environ Microbiol 2024; 90:e0136024. [PMID: 39254330 PMCID: PMC11497809 DOI: 10.1128/aem.01360-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
This study aimed to investigate the diversity of conjugative and chromosomally integrated mobile genetic elements (cciMGEs) within six oral streptococci species. cciMGEs, including integrative and conjugative elements (ICEs) and integrative and mobilizable elements (IMEs), are stably maintained on the host cell chromosome; however, under certain conditions, they are able to excise, form extrachromosomal circles, and transfer via a conjugation apparatus. Many cciMGEs encode "cargo" functions that aid survival in new niches and evolve new antimicrobial resistance or virulence properties, whereas others have been shown to influence host bacterial physiology. Here, using a workflow employing preexisting bioinformatics tools, we analyzed 551 genomes for the presence of cciMGEs across six common health- and disease-associated oral streptococci. We identified 486 cciMGEs, 173 of which were ICEs and 233 of which were IMEs. The cciMGEs were diverse in size, cargo genes, and relaxase types. We identified several novel relaxase proteins and a widespread IME carrying a small multidrug resistance transporter. Additionally, we provide evidence that several of the bioinformatically predicted cciMGEs encoded within various Streptococcus mutans strains are capable of excision and circularization, a critical step for cciMGE conjugative transfer. These findings highlight the significance and potential impact of MGEs in shaping the genetic landscape, pathogenicity, and antimicrobial resistance profiles of the oral microbiota.IMPORTANCEOral streptococci are important players in the oral microbiome, influencing both health and disease states within dental bacterial communities. Evolutionary adaptation, shaped in a major part by the horizontal transfer of genes, is essential for their survival in the oral cavity and within new environments. Conjugation is a significant driver of horizontal gene transfer; however, there is limited information regarding this process in oral bacteria. This study utilizes publicly available genome sequences to identify conjugative and chromosomally integrated mobile genetic elements (cciMGEs) across several species of oral streptococci and presents the preliminary characterization of these elements. Our findings significantly enhance our understanding of the mobile genomic landscape of oral streptococci critical for human health, with valuable insights into how cciMGEs might influence the survival and pathogenesis of these bacteria in the oral microbiome.
Collapse
Affiliation(s)
- Erica Lee
- New York Institute of Technology College of Osteopathic Medicine, Jonesboro, Arkansas, USA
| | - Erin Priutt
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Seth Woods
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Allison Quick
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Shawn King
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| | - Lisa K. McLellan
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, Indiana, USA
| | - Robert C. Shields
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| |
Collapse
|
6
|
Contarin R, Drapeau A, François P, Madec JY, Haenni M, Dordet-Frisoni E. The interplay between mobilome and resistome in Staphylococcus aureus. mBio 2024; 15:e0242824. [PMID: 39287446 PMCID: PMC11481524 DOI: 10.1128/mbio.02428-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Antibiotic resistance genes (ARGs) in Staphylococcus aureus can disseminate vertically through successful clones, but also horizontally through the transfer of genes conveyed by mobile genetic elements (MGEs). Even though underexplored, MGE/ARG associations in S. aureus favor the emergence of multidrug-resistant clones, which are challenging therapeutic success in both human and animal health. This study investigated the interplay between the mobilome and the resistome of more than 10,000 S. aureus genomes from human and animal origin. The analysis revealed a remarkable diversity of MGEs and ARGs, with plasmids and transposons being the main carriers of ARGs. Numerous MGE/ARG associations were identified, suggesting that MGEs play a critical role in the dissemination of resistance. A high degree of similarity was observed in MGE/ARG associations between human and animal isolates, highlighting the potential for unrestricted spread of ARGs between hosts. Our results showed that in parallel to clonal expansion, MGEs and their associated ARGs can spread across different strain types sequence types (STs), favoring the evolution of these clones and their adaptation in selective environments. The high variability of MGE/ARG associations within individual STs and their spread across several STs highlight the crucial role of MGEs in shaping the S. aureus resistome. Overall, this study provides valuable insights into the complex interplay between MGEs and ARGs in S. aureus, emphasizing the need to elucidate the mechanisms governing the epidemic success of MGEs, particularly those implicated in ARG transfer.IMPORTANCEThe research presented in this article highlights the importance of understanding the interactions between mobile genetic elements (MGEs) and antibiotic resistance genes (ARGs) carried by Staphylococcus aureus, a versatile bacterium that can be both a harmless commensal and a dangerous pathogen for humans and animals. S. aureus has a great capacity to acquire and disseminate ARGs, enabling efficient adaption to various environmental or clinical conditions. By analyzing a large data set of S. aureus genomes, we highlighted the substantial role of MGEs, particularly plasmids and transposons, in disseminating ARGs within and between S. aureus populations, bypassing host barriers. Given that multidrug-resistant S. aureus strains are classified as a high-priority pathogen by global health organizations, this knowledge is crucial for understanding the complex dynamics of transmission of antibiotic resistance in this species.
Collapse
Affiliation(s)
- Rachel Contarin
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Antoine Drapeau
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Pauline François
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Jean-Yves Madec
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- Anses—Université de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | | |
Collapse
|
7
|
Matsumoto S, Kishida K, Nonoyama S, Sakai K, Tsuda M, Nagata Y, Ohtsubo Y. Evolution of the Tn 4371 ICE family: traR-mediated coordination of cargo gene upregulation and horizontal transfer. Microbiol Spectr 2024; 12:e0060724. [PMID: 39264161 PMCID: PMC11448139 DOI: 10.1128/spectrum.00607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/18/2024] [Indexed: 09/13/2024] Open
Abstract
ICEKKS102Tn4677 carries a bph operon for the mineralization of polychlorinated biphenyls (PCBs)/biphenyl and belongs to the Tn4371 ICE (integrative and conjugative element) family. In this study, we investigated the role of the traR gene in ICE transfer. The traR gene encodes a LysR-type transcriptional regulator, which is conserved in sequence, positioning, and directional orientation among Tn4371 family ICEs. The traR belongs to the bph operon, and its overexpression on solid medium resulted in modest upregulation of traG (threefold), marked upregulation of xis (80-fold), enhanced ICE excision and, most notably, ICE transfer frequency. We propose the evolutional roles of traR, which upon insertion to its current position, might have connected the cargo gene activation and ICE transfer. This property of ICE, i.e., undergoing transfer under environmental conditions that lead to cargo gene activation, would instantly confer fitness advantages to bacteria newly acquiring this ICE, thereby resulting in efficient dissemination of the Tn4371 family ICEs.IMPORTANCEOnly ICEKKS102Tn4677 is proven to transfer among the widely disseminating Tn4371 family integrative and conjugative elements (ICEs) from β and γ-proteobacteria. We showed that the traR gene in ICEKKS102Tn4677, which is conserved in the ICE family with fixed location and direction, is co-transcribed with the cargo gene and activates ICE transfer. We propose that capturing of traR by an ancestral ICE to the current position established the Tn4371 family of ICEs. Our findings provide insights into the evolutionary processes that led to the widespread distribution of the Tn4371 family of ICEs across bacterial species.
Collapse
Affiliation(s)
- Satoshi Matsumoto
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kouhei Kishida
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shouta Nonoyama
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Keiichiro Sakai
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Masataka Tsuda
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yuji Nagata
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshiyuki Ohtsubo
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
Huang W, Markantonis JE, Yin C, Pozdol JR, Briley KP, Fallon JT. Local Genomic Surveillance of Invasive Streptococcus pyogenes in Eastern North Carolina (ENC) in 2022-2023. Int J Mol Sci 2024; 25:8179. [PMID: 39125755 PMCID: PMC11311789 DOI: 10.3390/ijms25158179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 08/12/2024] Open
Abstract
The recent increase in Group A Streptococcus (GAS) incidences in several countries across Europe and some areas of the Unites States (U.S.) has raised concerns. To understand GAS diversity and prevalence, we conducted a local genomic surveillance in Eastern North Carolina (ENC) in 2022-2023 with 95 isolates and compared its results to those of the existing national genomic surveillance in the U.S. in 2015-2021 with 13,064 isolates. We observed their epidemiological changes before and during the COVID-19 pandemic and detected a unique sub-lineage in ENC among the most common invasive GAS strain, ST28/emm1. We further discovered a multiple-copy insertion sequence, ISLgar5, in ST399/emm77 and its single-copy variants in some other GAS strains. We discovered ISLgar5 was linked to a Tn5801-like tetM-carrying integrative and conjugative element, and its copy number was associated with an ermT-carrying pRW35-like plasmid. The dynamic insertions of ISLgar5 may play a vital role in genome fitness and adaptation, driving GAS evolution relevant to antimicrobial resistance and potentially GAS virulence.
Collapse
Affiliation(s)
- Weihua Huang
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, Eastern Carolina University, Greenville, NC 27834, USA; (J.E.M.); (C.Y.); (J.R.P.); (K.P.B.); (J.T.F.)
| | | | | | | | | | | |
Collapse
|
9
|
Dec M, Zomer A, Webster J, Nowak T, Stępień-Pyśniak D, Urban-Chmiel R. Integrative and Conjugative Elements and Prophage DNA as Carriers of Resistance Genes in Erysipelothrix rhusiopathiae Strains from Domestic Geese in Poland. Int J Mol Sci 2024; 25:4638. [PMID: 38731857 PMCID: PMC11083093 DOI: 10.3390/ijms25094638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Goose erysipelas is a serious problem in waterfowl breeding in Poland. However, knowledge of the characteristics of Erysipelothrix rhusiopathiae strains causing this disease is limited. In this study, the antimicrobial susceptibility and serotypes of four E. rhusiopathiae strains from domestic geese were determined, and their whole-genome sequences (WGSs) were analyzed to detect resistance genes, integrative and conjugative elements (ICEs), and prophage DNA. Sequence type and the presence of resistance genes and transposons were compared with 363 publicly available E. rhusiopathiae strains, as well as 13 strains of other Erysipelothrix species. Four strains tested represented serotypes 2 and 5 and the MLST groups ST 4, 32, 242, and 243. Their assembled circular genomes ranged from 1.8 to 1.9 kb with a GC content of 36-37%; a small plasmid was detected in strain 1023. Strains 1023 and 267 were multidrug-resistant. The resistance genes detected in the genome of strain 1023 were erm47, tetM, and lsaE-lnuB-ant(6)-Ia-spw cluster, while strain 267 contained the tetM and ermB genes. Mutations in the gyrA gene were detected in both strains. The tetM gene was embedded in a Tn916-like transposon, which in strain 1023, together with the other resistance genes, was located on a large integrative and conjugative-like element of 130 kb designated as ICEEr1023. A minor integrative element of 74 kb was identified in strain 1012 (ICEEr1012). This work contributes to knowledge about the characteristics of E. rhusiopathiae bacteria and, for the first time, reveals the occurrence of erm47 and ermB resistance genes in strains of this species. Phage infection appears to be responsible for the introduction of the ermB gene into the genome of strain 267, while ICEs most likely play a key role in the spread of the other resistance genes identified in E. rhusiopathiae.
Collapse
Affiliation(s)
- Marta Dec
- Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (D.S.-P.); (R.U.-C.)
| | - Aldert Zomer
- Division of Infectious Diseases and Immunology, Faculty of Veterinaty Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
- WOAH Reference Laboratory for Campylobacteriosis, WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from a One Health Perspective, 3584 CL Utrecht, The Netherlands
| | - John Webster
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, PMB 4008, Narellan, NSW 2570, Australia;
| | - Tomasz Nowak
- Diagnostic Veterinary Laboratory “Vet-Lab Brudzew Dr. Piotr Kwieciński”, 62-720 Brudzew, Poland;
| | - Dagmara Stępień-Pyśniak
- Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (D.S.-P.); (R.U.-C.)
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, University of Life Sciences in Lublin, 20-033 Lublin, Poland; (D.S.-P.); (R.U.-C.)
| |
Collapse
|
10
|
Yi Q, Li L, Wang H, Zhu C, Chen Y, Yang L, Zheng Y, Yang Y, Bao Y. A clade of Streptococcus pneumoniae clonal complex 320 with increased tolerance to β-lactam antibiotics in a Chinese metropolitan city. J Glob Antimicrob Resist 2024; 36:379-388. [PMID: 38307252 DOI: 10.1016/j.jgar.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVES We characterized the population structure and features of clinical Streptococcus pneumoniae isolates associated with invasive pneumococcal disease (IPD) from 2009 to 2017 in a Chinese metropolitan city using a whole-genome sequencing approach. METHODS Seventy-nine pneumococcal strains, including 60 serogroup-19 strains from children enduring IPD from a paediatric hospital in Shenzhen, were subjected to whole-genome sequencing. Population structure was characterized through phylogenetic analysis, sequence typing, serotyping, virulence factor, and antimicrobial drug resistance (AMR) gene profiling, combining the publicly available related WGS data. Clinical demography and antibiotic susceptibility profiles were compared among different populations to emphasize the higher-risk populations. Genetic regions associated with AMR gene mobilization were identified through comparative genomics. RESULTS These IPD strains mainly belonged to clonal complex 320 (CC320) and were composed of serotypes 19A and 19F. In addition to sporadic possible importation-related isolates (ST320), we identified an independent clade, CC320_SZpop (ST271), that predominantly circulated in Shenzhen and possibly expanded its range. Clinical features and antibiotic susceptibility analysis revealed that CC320_SZpop might manifest much higher pathogenicity and tolerance to β-lactams. Specific virulence factors in Shenzhen isolates of CC320_SZpop were identified. Furthermore, an ca. 40 kb hotspot genomic region enduring frequent recombination was identified, possibly associated with the divergence of S. pneumoniae strains. CONCLUSION A novel pneumococcal clade, CC320_SZpop, circulating in Shenzhen and other regions in China, possibly under expansion, was found and deserves more study and surveillance. Our study also emphasizes the importance of continuous genomic surveillance of clinical S. pneumoniae isolates, especially IPD isolates.
Collapse
Affiliation(s)
- Qiuwei Yi
- Shenzhen Children's Hospital, Guangdong, China
| | - Liqiang Li
- National Clinical Research Center for Infectious Diseases, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Guangdong Provincial Clinical Research Center for Infectious Diseases (Tuberculosis), Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, China; Department of Clinical Laboratory, The Third People's Hospital of Shenzhen, Southern University of Science and Technology, Shenzhen, China.
| | - Heping Wang
- Shenzhen Children's Hospital, Guangdong, China
| | | | | | - Liang Yang
- Southern University of Science of and Technology, Guangdong, China
| | | | | | - Yanmin Bao
- Shenzhen Children's Hospital, Guangdong, China.
| |
Collapse
|
11
|
Ryan MP, Carraro N, Slattery S, Pembroke JT. Integrative Conjugative Elements (ICEs) of the SXT/R391 family drive adaptation and evolution in γ-Proteobacteria. Crit Rev Microbiol 2024; 50:105-126. [PMID: 36634159 DOI: 10.1080/1040841x.2022.2161870] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023]
Abstract
Integrative Conjugative Elements (ICEs) are mosaics containing functional modules allowing maintenance by site-specific integration and excision into and from the host genome and conjugative transfer to a specific host range. Many ICEs encode a range of adaptive functions that aid bacterial survival and evolution in a range of niches. ICEs from the SXT/R391 family are found in γ-Proteobacteria. Over 100 members have undergone epidemiological and molecular characterization allowing insight into their diversity and function. Comparative analysis of SXT/R391 elements from a wide geographic distribution has revealed conservation of key functions, and the accumulation and evolution of adaptive genes. This evolution is associated with gene acquisition in conserved hotspots and variable regions within the SXT/R391 ICEs catalysed via element-encoded recombinases. The elements can carry IS elements and transposons, and a mutagenic DNA polymerase, PolV, which are associated with their evolution. SXT/R391 ICEs isolated from different niches appear to have retained adaptive functions related to that specific niche; phage resistance determinants in ICEs carried by wastewater bacteria, antibiotic resistance determinants in clinical isolates and metal resistance determinants in bacteria recovered from polluted environments/ocean sediments. Many genes found in the element hotspots are undetermined and have few homologs in the nucleotide databases.
Collapse
Affiliation(s)
- Michael P Ryan
- Department of Applied Sciences, Technological University of the Shannon, Limerick, Ireland
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Shannon Slattery
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick, Ireland
| | - J Tony Pembroke
- Department of Chemical Sciences, School of Natural Sciences, University of Limerick, Ireland
- Bernal Institute, University of Limerick, Ireland
| |
Collapse
|
12
|
Ferraris L, Delannoy J, Mazuet C, Diancourt L, Mesa-Schein V, Barbut F, Aires J. Clostridium neonatale antimicrobial susceptibility, genetic resistance determinants, and genotyping: a multicentre spatiotemporal retrospective analysis. J Antimicrob Chemother 2024; 79:271-279. [PMID: 38084883 PMCID: PMC10832599 DOI: 10.1093/jac/dkad369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/21/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Clostridium neonatale was isolated during an outbreak of neonatal necrotizing enterocolitis (NEC) in 2002. C. neonatale was validated as a new species within the genus Clostridium sensu stricto in 2018. In the present study, we evaluated the antimicrobial susceptibility, genetic determinants of resistance, and phylogenetic relationships of a collection of clinical isolates of C. neonatale. METHODS C. neonatale strains (n = 68) were isolated from the stools of preterm neonates who either developed NEC or were asymptomatic carriers of C. neonatale in different periods and in different hospitals. Antimicrobial susceptibility was determined by the disc diffusion method. The MICs of clindamycin, cefotaxime and tetracycline were determined. Genetic determinants of resistance were screened by PCR (n = 68) and WGS (n = 35). Genotyping of the isolates was performed by MLST. RESULTS Antimicrobial resistance was found to clindamycin (n = 24; 35%), cefotaxime (n = 7; 10%) and tetracycline (n = 1; 1%). One clindamycin-resistant isolate carried erm(B) by PCR. In addition, one isolate carrying tet(M) was tetracycline resistant (MIC = 16 mg/L) and 44 isolates carrying either tet(O), tet(32) or tet(M) were tetracycline susceptible (MICs < 16 mg/L). MLST showed that ST2 and ST15 were significantly associated with tet(32) (P < 0.0001) and tet(O) (P < 0.0001), respectively. From WGS, we identified aph(3')-IIa and blaTEM-116 genes and a blaCBP-1-like gene. CONCLUSIONS C. neonatale is susceptible to anti-anaerobic molecules but resistant to clindamycin, cefotaxime and tetracycline. Genes encoding tetracycline ribosomal protection, macrolide-lincosamide-streptogramin B rRNA methyltransferase, aminoglycoside 3'-phosphotransferase and β-lactamases have been identified in genomic regions flanked by mobile genetic elements.
Collapse
Affiliation(s)
- Laurent Ferraris
- Faculté de Pharmacie de Paris, Université Paris Cité, INSERM, UMR-S 1139 (3PHM), Paris F-75006, France
| | - Johanne Delannoy
- Faculté de Pharmacie de Paris, Université Paris Cité, INSERM, UMR-S 1139 (3PHM), Paris F-75006, France
| | - Christelle Mazuet
- Institut Pasteur, Université Paris Cité, Centre National de Référence des Bactéries anaérobies et Botulisme, Paris F-75015, France
| | - Laure Diancourt
- Institut Pasteur, Université Paris Cité, Centre National de Référence des Bactéries anaérobies et Botulisme, Paris F-75015, France
| | - Victoria Mesa-Schein
- Faculté de Pharmacie de Paris, Université Paris Cité, INSERM, UMR-S 1139 (3PHM), Paris F-75006, France
| | - Frédéric Barbut
- Faculté de Pharmacie de Paris, Université Paris Cité, INSERM, UMR-S 1139 (3PHM), Paris F-75006, France
| | - Julio Aires
- Faculté de Pharmacie de Paris, Université Paris Cité, INSERM, UMR-S 1139 (3PHM), Paris F-75006, France
| |
Collapse
|
13
|
Spigaglia P, Mastrantonio P, Barbanti F. Antibiotic Resistances of Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:169-198. [PMID: 38175476 DOI: 10.1007/978-3-031-42108-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The rapid evolution of antibiotic resistance in Clostridioides difficile and the consequent effects on prevention and treatment of C. difficile infections (CDIs) are a matter of concern for public health. Antibiotic resistance plays an important role in driving C. difficile epidemiology. Emergence of new types is often associated with the emergence of new resistances, and most of the epidemic C. difficile clinical isolates is currently resistant to multiple antibiotics. In particular, it is to worth to note the recent identification of strains with reduced susceptibility to the first-line antibiotics for CDI treatment and/or for relapsing infections. Antibiotic resistance in C. difficile has a multifactorial nature. Acquisition of genetic elements and alterations of the antibiotic target sites, as well as other factors, such as variations in the metabolic pathways or biofilm production, contribute to the survival of this pathogen in the presence of antibiotics. Different transfer mechanisms facilitate the spread of mobile elements among C. difficile strains and between C. difficile and other species. Furthermore, data indicate that both genetic elements and alterations in the antibiotic targets can be maintained in C. difficile regardless of the burden imposed on fitness, and therefore resistances may persist in C. difficile population in absence of antibiotic selective pressure.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Paola Mastrantonio
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Barbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
14
|
Zheng Q, Li L, Yin X, Che Y, Zhang T. Is ICE hot? A genomic comparative study reveals integrative and conjugative elements as "hot" vectors for the dissemination of antibiotic resistance genes. mSystems 2023; 8:e0017823. [PMID: 38032189 PMCID: PMC10734551 DOI: 10.1128/msystems.00178-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/14/2023] [Indexed: 12/01/2023] Open
Abstract
IMPORTANCE Different from other extensively studied mobile genetic elements (MGEs) whose discoveries were initiated decades ago (1950s-1980s), integrative and conjugative elements (ICEs), a diverse array of more recently identified elements that were formally termed in 2002, have aroused increasing concern for their crucial contribution to the dissemination of antibiotic resistance genes (ARGs). However, the comprehensive understanding on ICEs' ARG profile across the bacterial tree of life is still blurred. Through a genomic study by comparison with two key MGEs, we, for the first time, systematically investigated the ARG profile as well as the host range of ICEs and also explored the MGE-specific potential to facilitate ARG propagation across phylogenetic barriers. These findings could serve as a theoretical foundation for risk assessment of ARGs mediated by distinct MGEs and further to optimize therapeutic strategies aimed at restraining antibiotic resistance crises.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research,The University of Hong Kong, Hong Kong, China
| | - Liguan Li
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research,The University of Hong Kong, Hong Kong, China
| | - Xiaole Yin
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research,The University of Hong Kong, Hong Kong, China
| | - You Che
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research,The University of Hong Kong, Hong Kong, China
| | - Tong Zhang
- Department of Civil Engineering, Environmental Microbiome Engineering and Biotechnology Laboratory, Center for Environmental Engineering Research,The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Merritt J, Kreth J. Illuminating the oral microbiome and its host interactions: tools and approaches for molecular microbiology studies. FEMS Microbiol Rev 2023; 47:fuac050. [PMID: 36549660 PMCID: PMC10719069 DOI: 10.1093/femsre/fuac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Advancements in DNA sequencing technologies within the last decade have stimulated an unprecedented interest in the human microbiome, largely due the broad diversity of human diseases found to correlate with microbiome dysbiosis. As a direct consequence of these studies, a vast number of understudied and uncharacterized microbes have been identified as potential drivers of mucosal health and disease. The looming challenge in the field is to transition these observations into defined molecular mechanistic studies of symbiosis and dysbiosis. In order to meet this challenge, many of these newly identified microbes will need to be adapted for use in experimental models. Consequently, this review presents a comprehensive overview of the molecular microbiology tools and techniques that have played crucial roles in genetic studies of the bacteria found within the human oral microbiota. Here, we will use specific examples from the oral microbiome literature to illustrate the biology supporting these techniques, why they are needed in the field, and how such technologies have been implemented. It is hoped that this information can serve as a useful reference guide to help catalyze molecular microbiology studies of the many new understudied and uncharacterized species identified at different mucosal sites in the body.
Collapse
Affiliation(s)
- Justin Merritt
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| | - Jens Kreth
- Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, United States
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, United States
| |
Collapse
|
16
|
Zhou Y, Li J, Huang F, Ai H, Gao J, Chen C, Huang L. Characterization of the pig lower respiratory tract antibiotic resistome. Nat Commun 2023; 14:4868. [PMID: 37573429 PMCID: PMC10423206 DOI: 10.1038/s41467-023-40587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 07/31/2023] [Indexed: 08/14/2023] Open
Abstract
Respiratory diseases and its treatments are highly concerned in both the pig industry and human health. However, the composition and distribution of antibiotic resistance genes (ARGs) in swine lower respiratory tract microbiome remain unknown. The relationships of ARGs with mobile genetic elements (MGEs) and lung health are unclear. Here, we characterize antibiotic resistomes of the swine lower respiratory tract microbiome containing 1228 open reading frames belonging to 372 ARGs using 745 metagenomes from 675 experimental pigs. Twelve ARGs conferring resistance to tetracycline are related to an MGE Tn916 family, and multiple types of ARGs are related to a transposase gene tnpA. Most of the linkage complexes between ARGs and MGEs (the Tn916 family and tnpA) are also observed in pig gut microbiomes and human lung microbiomes, suggesting the high risk of these MGEs mediating ARG transfer to both human and pig health. Gammaproteobacteria are the major ARG carriers, within which Escherichia coli harbored >50 ARGs and >10 MGEs. Although the microbial compositions structure the compositions of ARGs, we identify 73 ARGs whose relative abundances are significantly associated with the severity of lung lesions. Our results provide the first overview of ARG profiles in the swine lower respiratory tract microbiome.
Collapse
Affiliation(s)
- Yunyan Zhou
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingquan Li
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Fei Huang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huashui Ai
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Gao
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Congying Chen
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- National Key Laboratory of Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
17
|
Zinno P, Perozzi G, Devirgiliis C. Foodborne Microbial Communities as Potential Reservoirs of Antimicrobial Resistance Genes for Pathogens: A Critical Review of the Recent Literature. Microorganisms 2023; 11:1696. [PMID: 37512869 PMCID: PMC10383130 DOI: 10.3390/microorganisms11071696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) is a global and increasing threat to human health. Several genetic determinants of AMR are found in environmental reservoirs, including bacteria naturally associated with widely consumed fermented foods. Through the food chain, these bacteria can reach the gut, where horizontal gene transfer (HGT) can occur within the complex and populated microbial environment. Numerous studies on this topic have been published over the past decades, but a conclusive picture of the potential impact of the non-pathogenic foodborne microbial reservoir on the spread of AMR to human pathogens has not yet emerged. This review critically evaluates a comprehensive list of recent experimental studies reporting the isolation of AMR bacteria associated with fermented foods, focusing on those reporting HGT events, which represent the main driver of AMR spread within and between different bacterial communities. Overall, our analysis points to the methodological heterogeneity as a major weakness impairing determination or a causal relation between the presence of AMR determinants within the foodborne microbial reservoir and their transmission to human pathogens. The aim is therefore to highlight the main gaps and needs to better standardize future studies addressing the potential role of non-pathogenic bacteria in the spread of AMR.
Collapse
Affiliation(s)
- Paola Zinno
- Institute for the Animal Production System in the Mediterranean Environment (ISPAAM), National Research Council, Piazzale Enrico Fermi 1, 80055 Portici, Italy
| | - Giuditta Perozzi
- Research Centre for Food and Nutrition, CREA (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria), Via Ardeatina 546, 00178 Rome, Italy
| | - Chiara Devirgiliis
- Research Centre for Food and Nutrition, CREA (Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria), Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
18
|
Javed MU, Hayat MT, Mukhtar H, Imre K. CRISPR-Cas9 System: A Prospective Pathway toward Combatting Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1075. [PMID: 37370394 DOI: 10.3390/antibiotics12061075] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023] Open
Abstract
Antibiotic resistance is rising to dangerously high levels throughout the world. To cope with this problem, scientists are working on CRISPR-based research so that antibiotic-resistant bacteria can be killed and attacked almost as quickly as antibiotic-sensitive bacteria. Nuclease activity is found in Cas9, which can be programmed with a specific target sequence. This mechanism will only attack pathogens in the microbiota while preserving commensal bacteria. This article portrays the delivery methods used in the CRISPR-Cas system, which are both viral and non-viral, along with its implications and challenges, such as microbial dysbiosis, off-target effects, and failure to counteract intracellular infections. CRISPR-based systems have a lot of applications, such as correcting mutations, developing diagnostics for infectious diseases, improving crops productions, improving breeding techniques, etc. In the future, CRISPR-based systems will revolutionize the world by curing diseases, improving agriculture, and repairing genetic disorders. Though all the drawbacks of the technology, CRISPR carries great potential; thus, the modification and consideration of some aspects could result in a mind-blowing technique to attain all the applications listed and present a game-changing potential.
Collapse
Affiliation(s)
| | | | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Kalman Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timişoara, 300645 Timișoara, Romania
| |
Collapse
|
19
|
Herviou P, Balvay A, Bellet D, Bobet S, Maudet C, Staub J, Alric M, Leblond-Bourget N, Delorme C, Rabot S, Denis S, Payot S. Transfer of the Integrative and Conjugative Element ICE St3 of Streptococcus thermophilus in Physiological Conditions Mimicking the Human Digestive Ecosystem. Microbiol Spectr 2023; 11:e0466722. [PMID: 36995244 PMCID: PMC10269554 DOI: 10.1128/spectrum.04667-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/12/2023] [Indexed: 03/31/2023] Open
Abstract
Metagenome analyses of the human microbiome suggest that horizontal gene transfer (HGT) is frequent in these rich and complex microbial communities. However, so far, only a few HGT studies have been conducted in vivo. In this work, three different systems mimicking the physiological conditions encountered in the human digestive tract were tested, including (i) the TNO gastro-Intestinal tract Model 1 (TIM-1) system (for the upper part of the intestine), (ii) the ARtificial COLon (ARCOL) system (to mimic the colon), and (iii) a mouse model. To increase the likelihood of transfer by conjugation of the integrative and conjugative element studied in the artificial digestive systems, bacteria were entrapped in alginate, agar, and chitosan beads before being placed in the different gut compartments. The number of transconjugants detected decreased, while the complexity of the ecosystem increased (many clones in TIM-1 but only one clone in ARCOL). No clone was obtained in a natural digestive environment (germfree mouse model). In the human gut, the richness and diversity of the bacterial community would offer more opportunities for HGT events to occur. In addition, several factors (SOS-inducing agents, microbiota-derived factors) that potentially increase in vivo HGT efficiency were not tested here. Even if HGT events are rare, expansion of the transconjugant clones can happen if ecological success is fostered by selecting conditions or by events that destabilize the microbial community. IMPORTANCE The human gut microbiota plays a key role in maintaining normal host physiology and health, but its homeostasis is fragile. During their transit in the gastrointestinal tract, bacteria conveyed by food can exchange genes with resident bacteria. New traits acquired by HGT (e.g., new catabolic properties, bacteriocins, antibiotic resistance) can impact the gut microbial composition and metabolic potential. We showed here that TIM-1, a system mimicking the upper digestive tract, is a useful tool to evaluate HGT events in conditions closer to the physiological ones. Another important fact pointed out in this work is that Enterococcus faecalis is a good candidate for foreign gene acquisition. Due to its high ability to colonize the gut and acquire mobile genetic elements, this commensal bacterium could serve as an intermediate for HGT in the human gut.
Collapse
Affiliation(s)
- Pauline Herviou
- Université Clermont-Auvergne, INRAE, MEDIS, Clermont-Ferrand, France
| | - Aurélie Balvay
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Deborah Bellet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sophie Bobet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Claire Maudet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Johan Staub
- Université de Lorraine, INRAE, DynAMic, Nancy, France
| | - Monique Alric
- Université Clermont-Auvergne, INRAE, MEDIS, Clermont-Ferrand, France
| | | | - Christine Delorme
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sylvie Rabot
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Sylvain Denis
- Université Clermont-Auvergne, INRAE, MEDIS, Clermont-Ferrand, France
| | - Sophie Payot
- Université de Lorraine, INRAE, DynAMic, Nancy, France
| |
Collapse
|
20
|
Ma X, Chen H, Wang F, Wang S, Wu Y, Ma X, Wei Y, Shao W, Zhao Y. Molecular characterisation and antimicrobial resistance of Streptococcus agalactiae isolates from dairy farms in China. J Vet Res 2023; 67:161-167. [PMID: 38143824 PMCID: PMC10740378 DOI: 10.2478/jvetres-2023-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/25/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Streptococcus agalactiae (S. agalactiae) is a pathogen causing bovine mastitis that results in considerable economic losses in the livestock sector. To understand the distribution and drug resistance characteristics of S. agalactiae from dairy cow mastitis cases in China, multilocus sequence typing (MLST) was carried out and the serotypes and drug resistance characteristics of the bacteria in the region were analysed. Material and Methods A total of 21 strains of bovine S. agalactiae were characterised based on MLST, molecular serotyping, antimicrobial susceptibility testing, and the presence of drug resistance genes. Results The serotypes were mainly Ia and II, accounting for 47.6% and 42.9% of all serotypes, respectively. Five sequence types (STs) were identified through MLST. The ST103 and ST1878 strains were predominant, with rates of 52.4% and 28.6%, respectively. The latter is a novel, previously uncharacterised sequence type. More than 90% of S. agalactiae strains were susceptible to penicillin, oxacillin, cephalothin, ceftiofur, gentamicin, florfenicol and sulfamethoxazole. The bacteria showed high resistance to tetracycline (85.7%), clindamycin (52.1%) and erythromycin (47.6%). Resistant genes were detected by PCR, the result of which showed that 47.6%, 33.3% and 38.1% of isolates carried the tet(M), tet(O) and erm(B) genes, respectively. Conclusion The results of this study indicate that S. agalactiae show a high level of antimicrobial resistance. It is necessary to monitor the pathogens of mastitis to prevent the transmission of these bacteria.
Collapse
Affiliation(s)
- Xiaojiao Ma
- College of Animal Science Xinjiang Agriculture University, Urumqi830052, P. R. China
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi830091, P. R. China
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Urumqi830091, P. R. China
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi830091, P. R. China
| | - He Chen
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi830091, P. R. China
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Urumqi830091, P. R. China
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi830091, P. R. China
| | - Fulan Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi830091, P. R. China
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Urumqi830091, P. R. China
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi830091, P. R. China
| | - Shuai Wang
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi830091, P. R. China
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Urumqi830091, P. R. China
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi830091, P. R. China
| | - Yating Wu
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi830091, P. R. China
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Urumqi830091, P. R. China
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi830091, P. R. China
| | - Xianlan Ma
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi830091, P. R. China
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Urumqi830091, P. R. China
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi830091, P. R. China
| | - Yong Wei
- Xinjiang Tian’ao Animal Husbandry Co., Ltd, Ili835000, P. R. China
| | - Wei Shao
- College of Animal Science Xinjiang Agriculture University, Urumqi830052, P. R. China
| | - Yankun Zhao
- Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi830091, P. R. China
- Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Urumqi830091, P. R. China
- Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Urumqi830091, P. R. China
| |
Collapse
|
21
|
Rozman V, Mohar Lorbeg P, Treven P, Accetto T, Janežič S, Rupnik M, Bogovič Matijašić B. Genomic insights into antibiotic resistance and mobilome of lactic acid bacteria and bifidobacteria. Life Sci Alliance 2023; 6:e202201637. [PMID: 36781180 PMCID: PMC9930590 DOI: 10.26508/lsa.202201637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Lactic acid bacteria (LAB) and Bifidobacterium sp. (bifidobacteria) can carry antimicrobial resistance genes (ARGs), yet data on resistance mechanisms in these bacteria are limited. The aim of our study was to identify the underlying genetic mechanisms of phenotypic resistance in 103 LAB and bifidobacteria using whole-genome sequencing. Sequencing data not only confirmed the presence of 36 acquired ARGs in genomes of 18 strains, but also revealed wide dissemination of intrinsic ARGs. The presence of acquired ARGs on known and novel mobile genetic elements raises the possibility of their horizontal spread. In addition, our data suggest that mutations may be a common mechanism of resistance. Several novel candidate resistance mechanisms were uncovered, providing a basis for further in vitro studies. Overall, 1,314 minimum inhibitory concentrations matched with genotypes in 92.4% of the cases; however, prediction of phenotype based on genotypic data was only partially efficient, especially with respect to aminoglycosides and chloramphenicol. Our study sheds light on resistance mechanisms and their transferability potential in LAB and bifidobacteria, which will be useful for risk assessment analysis.
Collapse
Affiliation(s)
- Vita Rozman
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Petra Mohar Lorbeg
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Primož Treven
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| | - Tomaž Accetto
- University of Ljubljana, Biotechnical Faculty, Department of Microbiology, Chair of Microbial Diversity, Microbiomics and Biotechnology, Ljubljana, Slovenia
| | - Sandra Janežič
- National Laboratory of Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| | - Maja Rupnik
- National Laboratory of Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| | - Bojana Bogovič Matijašić
- University of Ljubljana, Biotechnical Faculty, Department of Animal Science, Institute of Dairy Science and Probiotics, Domžale, Slovenia
| |
Collapse
|
22
|
Sukumar S, Wang F, Simpson CA, Willet CE, Chew T, Hughes TE, Bockmann MR, Sadsad R, Martin FE, Lydecker HW, Browne GV, Davis KM, Bui M, Martinez E, Adler CJ. Development of the oral resistome during the first decade of life. Nat Commun 2023; 14:1291. [PMID: 36894532 PMCID: PMC9998430 DOI: 10.1038/s41467-023-36781-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
Antibiotic overuse has promoted the spread of antimicrobial resistance (AMR) with significant health and economic consequences. Genome sequencing reveals the widespread presence of antimicrobial resistance genes (ARGs) in diverse microbial environments. Hence, surveillance of resistance reservoirs, like the rarely explored oral microbiome, is necessary to combat AMR. Here, we characterise the development of the paediatric oral resistome and investigate its role in dental caries in 221 twin children (124 females and 97 males) sampled at three time points over the first decade of life. From 530 oral metagenomes, we identify 309 ARGs, which significantly cluster by age, with host genetic effects detected from infancy onwards. Our results suggest potential mobilisation of ARGs increases with age as the AMR associated mobile genetic element, Tn916 transposase was co-located with more species and ARGs in older children. We find a depletion of ARGs and species in dental caries compared to health. This trend reverses in restored teeth. Here we show the paediatric oral resistome is an inherent and dynamic component of the oral microbiome, with a potential role in transmission of AMR and dysbiosis.
Collapse
Affiliation(s)
- Smitha Sukumar
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Fang Wang
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Carra A Simpson
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, US
| | - Cali E Willet
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, Australia
| | - Tracy Chew
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, Australia
| | - Toby E Hughes
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Adelaide Dental School, University of Adelaide, Adelaide, SA, Australia
| | | | - Rosemarie Sadsad
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, Australia
| | - F Elizabeth Martin
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Henry W Lydecker
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, Australia
| | - Gina V Browne
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Institute of Dental Research, Westmead Centre for Oral Health, Westmead, NSW, Australia
| | - Kylie M Davis
- Adelaide Dental School, University of Adelaide, Adelaide, SA, Australia
| | - Minh Bui
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Elena Martinez
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, NSW, Australia
| | - Christina J Adler
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
23
|
Deshamukhya C, Bhowmik D, Dhar (Chanda) D, Bhattacharjee A. Tn5406, a staphylococcal transposon associated with macrolide-lincosamide-streptograminb resistance in clinical isolates of Staphylococcus aureus. Indian J Med Microbiol 2023; 42:30-33. [PMID: 36967212 DOI: 10.1016/j.ijmmb.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
PURPOSE In this study, we aimed to investigate the occurrence of MLSb resistance in clinical isolates of Staphylococcus aureus with respect to their association with transposons. METHODS The present study was performed with clinical isolates of S. aureus. The MLSb resistant phenotypes in the obtained isolates were determined by D zone test or double disc diffusion test as per CLSI 2020 guidelines. MLSb resistance encoding genes were detected by PCR. The genes tested were ermA, ermB, ermC, msrA, mphC, vga, vgb and lnuB. The MLSb resistant Staphylococcal isolates were selected to analyze the association of the genes with mobile genetic elements Tn554, Tn5406, Tn917, Tn6133, Tn551 by PCR based method. Primer pairs were designed using sequences from transposons and the resistance genes, respectively. RESULTS During this study, 268 isolates of S. aureus were obtained of which 233 (86.94%) isolates exhibited different MLSb resistant phenotypes. The predominant gene among the MLSb resistant isolates was msrA followed by vgaA and mphC genes. PCR assay was employed to determine whether the genes msrA, mphC and vgaA were carried by Tn554, Tn5406, Tn917, Tn6133, Tn551 transposons. PCR amplification with the designed primer pairs revealed vgaA gene being part of Tn5406. CONCLUSION The presence of Tn5406 in all the vgaA harboring isolates highlights its potential of spread across isolates. Moreover, the co-existence of different MLSb resistance encoding genes observed in the study shows that the combination of genes involved in different mechanism mediated the nature of MLSb resistance.
Collapse
|
24
|
Lekired A, Cherif-Silini H, Silini A, Ben Yahia H, Ouzari HI. Comparative genomics reveals the acquisition of mobile genetic elements by the plant growth-promoting Pantoea eucrina OB49 in polluted environments. Genomics 2023; 115:110579. [PMID: 36792019 DOI: 10.1016/j.ygeno.2023.110579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
Heavy metal-tolerant plant growth-promoting bacteria (PGPB) have gained popularity in bioremediation in recent years. A genome-assisted study of a heavy metal-tolerant PGPB Pantoea eucrina OB49 isolated from the rhizosphere of wheat grown on a heavy metal-contaminated site is presented. Comparative pan-genome analysis indicated that OB49 acquired heavy metal resistance genes through horizontal gene transfer. On contigs S10 and S12, OB49 has two arsRBCH operons that give arsenic resistance. On the S12 contig, an arsRBCH operon was discovered in conjunction with the merRTPCADE operon, which provides mercury resistance. P. eucrina OB49 may be involved in an ecological alternative for heavy metal remediation and growth promotion of wheat grown in metal-polluted soils. Our results suggested the detection of mobile genetic elements that harbour the ars operon and the fluoride resistance genes adjacent to the mer operon.
Collapse
Affiliation(s)
- Abdelmalek Lekired
- Laboratory of Microorganisms and Active Biomolecules, MBA-LR03ES03, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hafsa Cherif-Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, 19000, Setif, Algeria
| | - Allaoua Silini
- Laboratory of Applied Microbiology, Department of Microbiology, Faculty of Natural and Life Sciences, Ferhat Abbas University, 19000, Setif, Algeria
| | - Hamza Ben Yahia
- Laboratory of Microorganisms and Active Biomolecules, MBA-LR03ES03, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, MBA-LR03ES03, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| |
Collapse
|
25
|
Manyahi J, Moyo SJ, Langeland N, Blomberg B. Genetic determinants of macrolide and tetracycline resistance in penicillin non-susceptible Streptococcus pneumoniae isolates from people living with HIV in Dar es Salaam, Tanzania. Ann Clin Microbiol Antimicrob 2023; 22:16. [PMID: 36803640 PMCID: PMC9942299 DOI: 10.1186/s12941-023-00565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Over one million yearly deaths are attributable to Streptococcus pneumoniae and people living with HIV are particularly vulnerable. Emerging penicillin non-susceptible Streptococcus pneumoniae (PNSP) challenges therapy of pneumococcal disease. The aim of this study was to determine the mechanisms of antibiotic resistance among PNSP isolates by next generation sequencing. METHODS We assessed 26 PNSP isolates obtained from the nasopharynx from 537 healthy human immunodeficiency virus (HIV) infected adults in Dar es Salaam, Tanzania, participating in the randomized clinical trial CoTrimResist (ClinicalTrials.gov identifier: NCT03087890, registered on 23rd March, 2017). Next generation whole genome sequencing on the Illumina platform was used to identify mechanisms of resistance to antibiotics among PNSP. RESULTS Fifty percent (13/26) of PNSP were resistant to erythromycin, of these 54% (7/13) and 46% (6/13) had MLSB phenotype and M phenotype respectively. All erythromycin resistant PNSP carried macrolide resistance genes; six isolates had mef(A)-msr(D), five isolates had both erm(B) and mef(A)-msr(D) while two isolates carried erm(B) alone. Isolates harboring the erm(B) gene had increased MIC (> 256 µg/mL) towards macrolides, compared to isolates without erm(B) gene (MIC 4-12 µg/mL) p < 0.001. Using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines, the prevalence of azithromycin resistance was overestimated compared to genetic correlates. Tetracycline resistance was detected in 13/26 (50%) of PNSP and all the 13 isolates harbored the tet(M) gene. All isolates carrying the tet(M) gene and 11/13 isolates with macrolide resistance genes were associated with the mobile genetic element Tn6009 transposon family. Of 26 PNSP isolates, serotype 3 was the most common (6/26), and sequence type ST271 accounted for 15% (4/26). Serotypes 3 and 19 displayed high-level macrolide resistance and frequently carried both macrolide and tetracycline resistance genes. CONCLUSION The erm(B) and mef(A)-msr(D) were common genes conferring resistance to MLSB in PNSP. Resistance to tetracycline was conferred by the tet(M) gene. Resistance genes were associated with the Tn6009 transposon.
Collapse
Affiliation(s)
- Joel Manyahi
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania.
| | - Sabrina J Moyo
- Department of Clinical Science, University of Bergen, Bergen, Norway.,National Advisory Unit for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es Salaam, Tanzania
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,National Advisory Unit for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Bjørn Blomberg
- Department of Clinical Science, University of Bergen, Bergen, Norway.,National Advisory Unit for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
26
|
Michaelis C, Grohmann E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics (Basel) 2023; 12:antibiotics12020328. [PMID: 36830238 PMCID: PMC9952180 DOI: 10.3390/antibiotics12020328] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Most bacteria attach to biotic or abiotic surfaces and are embedded in a complex matrix which is known as biofilm. Biofilm formation is especially worrisome in clinical settings as it hinders the treatment of infections with antibiotics due to the facilitated acquisition of antibiotic resistance genes (ARGs). Environmental settings are now considered as pivotal for driving biofilm formation, biofilm-mediated antibiotic resistance development and dissemination. Several studies have demonstrated that environmental biofilms can be hotspots for the dissemination of ARGs. These genes can be encoded on mobile genetic elements (MGEs) such as conjugative and mobilizable plasmids or integrative and conjugative elements (ICEs). ARGs can be rapidly transferred through horizontal gene transfer (HGT) which has been shown to occur more frequently in biofilms than in planktonic cultures. Biofilm models are promising tools to mimic natural biofilms to study the dissemination of ARGs via HGT. This review summarizes the state-of-the-art of biofilm studies and the techniques that visualize the three main HGT mechanisms in biofilms: transformation, transduction, and conjugation.
Collapse
|
27
|
Roseboom AM, Ducarmon QR, Hornung BVH, Harmanus C, Crobach MJT, Kuijper EJ, Vossen RHAM, Kloet SL, Smits WK. Carriage of three plasmids in a single human clinical isolate of Clostridioides difficile. Plasmid 2023; 125:102669. [PMID: 36572199 DOI: 10.1016/j.plasmid.2022.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 11/17/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
A subset of clinical isolates of Clostridioides difficile contains one or more plasmids and these plasmids can harbor virulence and antimicrobial resistance determinants. Despite their potential importance, C. difficile plasmids remain poorly characterized. Here, we provide the complete genome sequence of a human clinical isolate that carries three high-copy number plasmids from three different plasmid families that are therefore compatible. For two of these, we identify a region capable of sustaining plasmid replication in C. difficile that is also compatible with the plasmid pCD630 that is found in many laboratory strains. Together, our data advance our understanding of C. difficile plasmid biology.
Collapse
Affiliation(s)
- Anna M Roseboom
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands.
| | - Quinten R Ducarmon
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands.
| | - Bastian V H Hornung
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands
| | - Céline Harmanus
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands.
| | - Monique J T Crobach
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands.
| | - Ed J Kuijper
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands.
| | - Rolf H A M Vossen
- Department of Human Genetics, Leiden Genome Technology Center, Leiden University Medical Center, Leiden, the Netherlands.
| | - Susan L Kloet
- Department of Human Genetics, Leiden Genome Technology Center, Leiden University Medical Center, Leiden, the Netherlands.
| | - Wiep Klaas Smits
- Department of Medical Microbiology and Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden, the Netherlands.
| |
Collapse
|
28
|
Nayar G, Terrizzano I, Seabolt E, Agarwal A, Boucher C, Ruiz J, Slizovskiy IB, Kaufman JH, Noyes NR. ggMOB: Elucidation of genomic conjugative features and associated cargo genes across bacterial genera using genus-genus mobilization networks. Front Genet 2022; 13:1024577. [PMID: 36568361 PMCID: PMC9779932 DOI: 10.3389/fgene.2022.1024577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
Horizontal gene transfer mediated by conjugation is considered an important evolutionary mechanism of bacteria. It allows organisms to quickly evolve new phenotypic properties including antimicrobial resistance (AMR) and virulence. The frequency of conjugation-mediated cargo gene exchange has not yet been comprehensively studied within and between bacterial taxa. We developed a frequency-based network of genus-genus conjugation features and candidate cargo genes from whole-genome sequence data of over 180,000 bacterial genomes, representing 1,345 genera. Using our method, which we refer to as ggMOB, we revealed that over half of the bacterial genomes contained one or more known conjugation features that matched exactly to at least one other genome. Moreover, the proportion of genomes containing these conjugation features varied substantially by genus and conjugation feature. These results and the genus-level network structure can be viewed interactively in the ggMOB interface, which allows for user-defined filtering of conjugation features and candidate cargo genes. Using the network data, we observed that the ratio of AMR gene representation in conjugative versus non-conjugative genomes exceeded 5:1, confirming that conjugation is a critical force for AMR spread across genera. Finally, we demonstrated that clustering genomes by conjugation profile sometimes correlated well with classical phylogenetic structuring; but that in some cases the clustering was highly discordant, suggesting that the importance of the accessory genome in driving bacterial evolution may be highly variable across both time and taxonomy. These results can advance scientific understanding of bacterial evolution, and can be used as a starting point for probing genus-genus gene exchange within complex microbial communities that include unculturable bacteria. ggMOB is publicly available under the GNU licence at https://ruiz-hci-lab.github.io/ggMOB/.
Collapse
Affiliation(s)
- Gowri Nayar
- Department of Biomedical Informatics, Stanford University, Stanford, CA, United States
| | | | - Ed Seabolt
- IBM Research Almaden, San Jose, CA, United States
| | | | - Christina Boucher
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, United States
| | - Jaime Ruiz
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, United States
| | - Ilya B. Slizovskiy
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, United States
| | | | - Noelle R. Noyes
- Department of Veterinary Population Medicine, University of Minnesota, Minneapolis, MN, United States,*Correspondence: Noelle R. Noyes,
| |
Collapse
|
29
|
McLellan LK, Anderson ME, Grossman AD. TnSmu1 is a functional integrative and conjugative element in Streptococcus mutans that when expressed causes growth arrest of host bacteria. Mol Microbiol 2022; 118:652-669. [PMID: 36268794 PMCID: PMC10098952 DOI: 10.1111/mmi.14992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 01/18/2023]
Abstract
Integrative and conjugative elements (ICEs) are major drivers of horizontal gene transfer in bacteria. They mediate their own transfer from host cells (donors) to recipients and allow bacteria to acquire new phenotypes, including pathogenic and metabolic capabilities and drug resistances. Streptococcus mutans, a major causative agent of dental caries, contains a putative ICE, TnSmu1, integrated at the 3' end of a leucyl tRNA gene. We found that TnSmu1 is a functional ICE, containing all the genes necessary for ICE function. It excised from the chromosome and excision was stimulated by DNA damage. We identified the DNA junctions generated by excision of TnSmu1, defined the ends of the element, and detected the extrachromosomal circle. We found that TnSmu1 can transfer from S. mutans donors to recipients when co-cultured on solid medium. The presence of TnSmu1 in recipients inhibited successful acquisition of another copy and this inhibition was mediated, at least in part, by the likely transcriptional repressor encoded by the element. Using microscopy to track individual cells, we found that activation of TnSmu1 caused an arrest of cell growth. Our results demonstrate that TnSmu1 is a functional ICE that affects the biology of its host cells.
Collapse
Affiliation(s)
- Lisa K McLellan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mary E Anderson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
30
|
Perez-Marron J, Sanders C, Gomez E, Escopete S, Owerkowicz T, Orwin PM. Community and shotgun metagenomic analysis of Alligator mississippiensis oral cavity and GI tracts reveal complex ecosystems and potential reservoirs of antibiotic resistance. Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111319. [PMID: 36115554 DOI: 10.1016/j.cbpa.2022.111319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
Abstract
We report here the community structure and functional analysis of the microbiome of the Alligator mississippiensis GI tract from the oral cavity through the entirety of the digestive tract. Although many vertebrate microbiomes have been studied in recent years, the archosaur microbiome has only been given cursory attention. In the oral cavity we used amplicon-based community analysis to examine the structure of the oral microbiome during alligator development. We found a community that diversified over time and showed many of the hallmarks we would expect of a stable oral community. This is a bit surprising given the rapid turnover of alligator teeth but suggests that the stable gumline microbes are able to rapidly colonize the emerging teeth. As we move down the digestive tract, we were able to use both long and short read sequencing approaches to evaluate the community using a shotgun metagenomics approach. Long read sequencing was applied to samples from the stomach/duodenum, and the colorectal region, revealing a fairly uniform and low complexity community made up primarily of proteobacteria at the top of the gut and much more diversity in the colon. We used deep short read sequencing to further interrogate this colorectal community. The two sequencing approaches were concordant with respect to community structure but substantially more detail was available in the short read data, in spite of high levels of host DNA contamination. Using both approaches we were able to show that the colorectal community is a potential reservoir for antibiotic resistance, human pathogens such as Clostridiodes difficile and a possible source of novel antimicrobials or other useful secondary metabolites.
Collapse
Affiliation(s)
| | - Ciara Sanders
- Biology Department, California State University at San Bernardino, San Bernardino, CA, USA. https://twitter.com/cisanders
| | - Esther Gomez
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA
| | - Sean Escopete
- Biology Department, California State University at San Bernardino, San Bernardino, CA, USA
| | - Tomasz Owerkowicz
- Biology Department, California State University at San Bernardino, San Bernardino, CA, USA
| | - Paul M Orwin
- Department of Biological Sciences, University of the Pacific, Stockton, CA, USA.
| |
Collapse
|
31
|
Ramamurthy T, Ghosh A, Chowdhury G, Mukhopadhyay AK, Dutta S, Miyoshi SI. Deciphering the genetic network and programmed regulation of antimicrobial resistance in bacterial pathogens. Front Cell Infect Microbiol 2022; 12:952491. [PMID: 36506027 PMCID: PMC9727169 DOI: 10.3389/fcimb.2022.952491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance (AMR) in bacteria is an important global health problem affecting humans, animals, and the environment. AMR is considered as one of the major components in the "global one health". Misuse/overuse of antibiotics in any one of the segments can impact the integrity of the others. In the presence of antibiotic selective pressure, bacteria tend to develop several defense mechanisms, which include structural changes of the bacterial outer membrane, enzymatic processes, gene upregulation, mutations, adaptive resistance, and biofilm formation. Several components of mobile genetic elements (MGEs) play an important role in the dissemination of AMR. Each one of these components has a specific function that lasts long, irrespective of any antibiotic pressure. Integrative and conjugative elements (ICEs), insertion sequence elements (ISs), and transposons carry the antimicrobial resistance genes (ARGs) on different genetic backbones. Successful transfer of ARGs depends on the class of plasmids, regulons, ISs proximity, and type of recombination systems. Additionally, phage-bacterial networks play a major role in the transmission of ARGs, especially in bacteria from the environment and foods of animal origin. Several other functional attributes of bacteria also get successfully modified to acquire ARGs. These include efflux pumps, toxin-antitoxin systems, regulatory small RNAs, guanosine pentaphosphate signaling, quorum sensing, two-component system, and clustered regularly interspaced short palindromic repeats (CRISPR) systems. The metabolic and virulence state of bacteria is also associated with a range of genetic and phenotypic resistance mechanisms. In spite of the availability of a considerable information on AMR, the network associations between selection pressures and several of the components mentioned above are poorly understood. Understanding how a pathogen resists and regulates the ARGs in response to antimicrobials can help in controlling the development of resistance. Here, we provide an overview of the importance of genetic network and regulation of AMR in bacterial pathogens.
Collapse
Affiliation(s)
- Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India,*Correspondence: Thandavarayan Ramamurthy,
| | - Amit Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-inchi Miyoshi
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR- National Institute of Cholera and Enteric Diseases, Kolkata, India,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
32
|
Enterococci enhance Clostridioides difficile pathogenesis. Nature 2022; 611:780-786. [PMID: 36385534 PMCID: PMC9691601 DOI: 10.1038/s41586-022-05438-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Enteric pathogens are exposed to a dynamic polymicrobial environment in the gastrointestinal tract1. This microbial community has been shown to be important during infection, but there are few examples illustrating how microbial interactions can influence the virulence of invading pathogens2. Here we show that expansion of a group of antibiotic-resistant, opportunistic pathogens in the gut-the enterococci-enhances the fitness and pathogenesis of Clostridioides difficile. Through a parallel process of nutrient restriction and cross-feeding, enterococci shape the metabolic environment in the gut and reprogramme C. difficile metabolism. Enterococci provide fermentable amino acids, including leucine and ornithine, which increase C. difficile fitness in the antibiotic-perturbed gut. Parallel depletion of arginine by enterococci through arginine catabolism provides a metabolic cue for C. difficile that facilitates increased virulence. We find evidence of microbial interaction between these two pathogenic organisms in multiple mouse models of infection and patients infected with C. difficile. These findings provide mechanistic insights into the role of pathogenic microbiota in the susceptibility to and the severity of C. difficile infection.
Collapse
|
33
|
Bean EL, McLellan LK, Grossman AD. Activation of the integrative and conjugative element Tn916 causes growth arrest and death of host bacteria. PLoS Genet 2022; 18:e1010467. [PMID: 36279314 PMCID: PMC9632896 DOI: 10.1371/journal.pgen.1010467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Integrative and conjugative elements (ICEs) serve as major drivers of bacterial evolution. These elements often confer some benefit to host cells, including antibiotic resistance, metabolic capabilities, or pathogenic determinants. ICEs can also have negative effects on host cells. Here, we investigated the effects of the ICE (conjugative transposon) Tn916 on host cells. Because Tn916 is active in a relatively small subpopulation of host cells, we developed a fluorescent reporter system for monitoring activation of Tn916 in single cells. Using this reporter, we found that cell division was arrested in cells of Bacillus subtilis and Enterococcus faecalis (a natural host for Tn916) that contained an activated (excised) Tn916. Furthermore, most of the cells with the activated Tn916 subsequently died. We also observed these phenotypes on the population level in B. subtilis utilizing a modified version of Tn916 that can be activated in the majority of cells. We identified two genes (orf17 and orf16) in Tn916 that were sufficient to cause growth defects in B. subtilis and identified a single gene, yqaR, that is in a defective phage (skin) in the B. subtilis chromosome that was required for this phenotype. These three genes were only partially responsible for the growth defect caused by Tn916, indicating that Tn916 possesses multiple mechanisms to affect growth and viability of host cells. These results highlight the complex relationships that conjugative elements have with their host cells and the interplay between mobile genetic elements.
Collapse
Affiliation(s)
- Emily L. Bean
- Department of Biology Massachusetts, Institute of Technology Cambridge, Massachusetts, United States of America
| | - Lisa K. McLellan
- Department of Biology Massachusetts, Institute of Technology Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology Massachusetts, Institute of Technology Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
34
|
Johannessen H, Anthonisen IL, Zecic N, Hegstad K, Ranheim TE, Skaare D. Characterization and Fitness Cost of Tn7100, a Novel Integrative and Conjugative Element Conferring Multidrug Resistance in Haemophilus influenzae. Front Microbiol 2022; 13:945411. [PMID: 35935209 PMCID: PMC9355037 DOI: 10.3389/fmicb.2022.945411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022] Open
Abstract
A multidrug-resistant (MDR) strain of Haemophilus influenzae, Hi-228, with phenotypic resistance toward ampicillin, cefotaxime, chloramphenicol, gentamicin, and azithromycin, was isolated in Oslo, Norway. The strain was part of a clonal outbreak (2016–2017) comprising five ST143 strains with identical resistotypes. Hi-228 carries a novel integrative and conjugative element (ICE), Tn7100, contributing to this remarkable and previously unreported MDR profile. Tn7100 contains the following resistance genes: blaTEM−1B, catA2, aac(6′)-Im, aph(2″)-Ib, mef (E), and mel. The latter four are previously unreported or rarely reported in H. influenzae. In this study, we investigated the genetic environment, mechanisms of transfer, impact on phenotypic susceptibility, and fitness cost of this ICE. We found that Tn7100 has an overall structure similar to the previously described ICE Tn6686, with blaTEM−1B and catA2 carried by Tn3 and Tn10, respectively. The major difference between Tn7100 and Tn6686 is that Tn7100 lacks tet(B) but carries the resistance gene pairs aac(6′)-Im and aph(2″)-Ib and mef (E) and mel. The gene pairs are located on the novel transposable elements Tn7470 and Tn7471, which have high sequence identities to a plasmid in Enterobacterales and an ICE in streptococcal species, respectively. Tn7100 does circularize and is transferable, however, at a low frequency. Head-to-head competition experiments showed that uptake of Tn7100 reduces bacterial fitness. Our study shows that MDR strains are capable of clonal spread and that the H. influenzae supragenome comprises an increasingly wide range of transferable resistance genes, with evidence of transfer from unrelated genera. The findings offer a glimpse into the genome dynamics of H. influenzae, highlighting the importance of rational antibiotic usage to contain antimicrobial resistance and the emergence of MDR strains in this important pathogen.
Collapse
Affiliation(s)
- Helene Johannessen
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
- *Correspondence: Helene Johannessen
| | | | - Nermin Zecic
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Kristin Hegstad
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | | | - Dagfinn Skaare
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| |
Collapse
|
35
|
Laroussi H, Aoudache Y, Robert E, Libante V, Thiriet L, Mias-Lucquin D, Douzi B, Roussel Y, Chauvot de Beauchêne I, Soler N, Leblond-Bourget N. Exploration of DNA processing features unravels novel properties of ICE conjugation in Gram-positive bacteria. Nucleic Acids Res 2022; 50:8127-8142. [PMID: 35849337 PMCID: PMC9371924 DOI: 10.1093/nar/gkac607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/02/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are important drivers of horizontal gene transfer in prokaryotes. They are responsible for antimicrobial resistance spread, a major current health concern. ICEs are initially processed by relaxases that recognize the binding site of oriT sequence and nick at a conserved nic site. The ICESt3/Tn916/ICEBs1 superfamily, which is widespread among Firmicutes, encodes uncanonical relaxases belonging to a recently identified family called MOBT. This family is related to the rolling circle replication initiators of the Rep_trans family. The nic site of these MOBT relaxases is conserved but their DNA binding site is still unknown. Here, we identified the bind site of RelSt3, the MOBT relaxase from ICESt3. Unexpectedly, we found this bind site distantly located from the nic site. We revealed that the binding of the RelSt3 N-terminal HTH domain is required for efficient nicking activity. We also deciphered the role of RelSt3 in the initial and final stages of DNA processing during conjugation. Especially, we demonstrated a strand transfer activity, and the formation of covalent DNA-relaxase intermediate for a MOBT relaxase.
Collapse
Affiliation(s)
- Haifa Laroussi
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France
| | - Yanis Aoudache
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France
| | - Emilie Robert
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France
| | | | - Louise Thiriet
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France
| | | | | | - Yvonne Roussel
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France
| | | | - Nicolas Soler
- Université de Lorraine, INRAE, DynAMic, F-54000, Nancy, France
| | | |
Collapse
|
36
|
Wang Y, Taylor SL, Choo JM, Papanicolas LE, Keating R, Hindmarsh K, Thomson RM, Morgan L, Rogers GB, Burr LD. Carriage and Transmission of Macrolide Resistance Genes in Patients With Chronic Respiratory Conditions and Their Close Contacts. Chest 2022; 162:56-65. [DOI: 10.1016/j.chest.2022.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
|
37
|
Rodríguez-Lucas C, Fernández J, Vázquez X, de Toro M, Ladero V, Fuster C, Rodicio R, Rodicio MR. Detection of the optrA Gene Among Polyclonal Linezolid-Susceptible Isolates of Enterococcus faecalis Recovered from Community Patients. Microb Drug Resist 2022; 28:773-779. [PMID: 35727074 DOI: 10.1089/mdr.2021.0402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dispersion of transferable oxazolidinone resistance genes among enterococci poses a serious problem to human health. Prompt detection of bacteria carrying these genes is crucial to avoid their spread to multidrug-resistant bacteria. The aim of the study was to describe the presence of optrA-positive isolates among enterococci in a Spanish hospital, and to determine their genetic context and location through whole genome sequencing. All enterococci recovered in a Spanish hospital (Hospital El Bierzo; HEB) from February to December 2018 (n = 443), with minimal inhibitory concentrations (MICs) to linezolid (LZD) ≥4 mg/L, were tested by polymerase chain reaction for the presence of cfr, optrA, and poxtA transferable genes. Only four Enterococcus faecalis isolates (0.9%) had LZD MICs ≥4 mg/L and none of them was positive for cfr or poxtA genes. However, the optrA gene was detected in three isolates collected from urine samples of community patients, whose genomes were sequenced and subjected to bioinformatics analysis. These isolates belonged to different clones: ST7, ST480, and ST585. In these three isolates, the optrA gene was located on plasmids, associated with IS1216 in different arrays. In one isolate, the optrA plasmid coexists with a second plasmid, which carried multiple resistance genes for different classes of antibiotics. Detection of optrA-positive E. faecalis isolates in the community is a matter of concern. The spread of these bacteria into hospital settings, particularly in those, such as the HEB, where vancomycin-resistant enterococci are endemic, should be avoided, to preserve the efficacy of the last-resort oxazolidinones.
Collapse
Affiliation(s)
- Carlos Rodríguez-Lucas
- Servicio de Microbiología, Hospital Universitario de Cabueñes, Gijón, Spain.,Grupo de Microbiología Traslacional. Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Javier Fernández
- Grupo de Microbiología Traslacional. Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Servicio de Microbiología, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Research & Innovation, Artificial Intelligence and Statistical Department, Pragmatech AI Solutions, Oviedo, Spain
| | - Xenia Vázquez
- Grupo de Microbiología Traslacional. Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Área de Microbiología, Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - María de Toro
- Plataforma de Genómica y Bioinformática, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Víctor Ladero
- Insituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Spain.,Grupo de Microbiología Molecular, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Carlos Fuster
- Unidad de Microbiología, Hospital El Bierzo (HEB), Ponferrada, Spain
| | - Rosaura Rodicio
- Grupo de Microbiología Traslacional. Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - María Rosario Rodicio
- Grupo de Microbiología Traslacional. Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Área de Microbiología, Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
38
|
Biology and engineering of integrative and conjugative elements: Construction and analyses of hybrid ICEs reveal element functions that affect species-specific efficiencies. PLoS Genet 2022; 18:e1009998. [PMID: 35584135 PMCID: PMC9154091 DOI: 10.1371/journal.pgen.1009998] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/31/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are mobile genetic elements that reside in a bacterial host chromosome and are prominent drivers of bacterial evolution. They are also powerful tools for genetic analyses and engineering. Transfer of an ICE to a new host involves many steps, including excision from the chromosome, DNA processing and replication, transfer across the envelope of the donor and recipient, processing of the DNA, and eventual integration into the chromosome of the new host (now a stable transconjugant). Interactions between an ICE and its host throughout the life cycle likely influence the efficiencies of acquisition by new hosts. Here, we investigated how different functional modules of two ICEs, Tn916 and ICEBs1, affect the transfer efficiencies into different host bacteria. We constructed hybrid elements that utilize the high-efficiency regulatory and excision modules of ICEBs1 and the conjugation genes of Tn916. These elements produced more transconjugants than Tn916, likely due to an increase in the number of cells expressing element genes and a corresponding increase in excision. We also found that several Tn916 and ICEBs1 components can substitute for one another. Using B. subtilis donors and three Enterococcus species as recipients, we found that different hybrid elements were more readily acquired by some species than others, demonstrating species-specific interactions in steps of the ICE life cycle. This work demonstrates that hybrid elements utilizing the efficient regulatory functions of ICEBs1 can be built to enable efficient transfer into and engineering of a variety of other species. Horizontal gene transfer helps drive microbial evolution, enabling bacteria to rapidly acquire new genes and traits. Integrative and conjugative elements (ICEs) are mobile genetic elements that reside in a bacterial host chromosome and are prominent drivers of horizontal gene transfer. They are also powerful tools for genetic analyses and engineering. Some ICEs carry genes that confer obvious properties to host bacteria, including antibiotic resistances, symbiosis, and pathogenesis. When activated, an ICE-encoded machine is made that can transfer the element to other cells, where it then integrates into the chromosome of the new host. Specific ICEs transfer more effectively into some bacterial species compared to others, yet little is known about the determinants of the efficiencies and specificity of acquisition by different bacterial species. We made and utilized hybrid ICEs, composed of parts of two different elements, to investigate determinants of transfer efficiencies. Our findings demonstrate that there are species-specific interactions that help determine efficiencies of stable acquisition, and that this explains, in part, the efficiencies of different ICEs. These hybrid elements are also useful in genetic engineering and synthetic biology to move genes and pathways into different bacterial species with greater efficiencies than can be achieved with naturally occurring ICEs.
Collapse
|
39
|
Le Neindre K, Dejoies L, Reissier S, Guérin F, Felden B, Cattoir V. Small RNA-mediated regulation of the tet(M) resistance gene expression in Enterococcus faecium. Res Microbiol 2022; 173:103941. [PMID: 35395390 DOI: 10.1016/j.resmic.2022.103941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022]
Abstract
We investigated the role of a novel small RNA expressed in Enterococcus faecium (named Ern0030). We revealed that ern0030 was encoded within the 5'untranslated region of tet(M), a gene conferring tetracycline resistance through ribosomal protection. By RACE mapping, we accurately determined the boundaries of ern0030, which corresponded to Ptet. This upstream sequence of tet(M), Ptet, was previously described within transcriptional attenuation mechanism. Here, Northern blot analyses revealed three transcripts of different lengths (ca. 230, 150 and 100 nucleotides) expressed from Ptet. Phenotypically, the total deletion of ern0030 conferred a decrease in tetracycline MICs that was consistent with gene expression data showing no significant tet(M) induction under tetracycline SIC in ern0030-deleted mutant as opposed to a 10-fold increase of tet(M) expression in the wild-type strain. We investigated the transcriptional attenuation mechanism by toeprint assay. Whereas the expected tet(M) RBS was detected, the RBS of the putative leader peptide was not highlighted by toeprint assay, suggesting the transcriptional attenuation was unlikely. Here, we demonstrate that Ern0030 has a role in regulation of tet(M) expression and propose a novel model of tet(M) regulation alternative or complementary to transcriptional attenuation.
Collapse
Affiliation(s)
- Killian Le Neindre
- Unité Inserm U1230, Université de Rennes 1, Rennes, France; Service de Bactériologie-Hygiène hospitalière, CHU de Rennes, Rennes, France.
| | - Loren Dejoies
- Unité Inserm U1230, Université de Rennes 1, Rennes, France; Service de Bactériologie-Hygiène hospitalière, CHU de Rennes, Rennes, France.
| | | | - François Guérin
- Service de Bactériologie-Hygiène hospitalière, CHU de Rennes, Rennes, France; CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes, France.
| | - Brice Felden
- Unité Inserm U1230, Université de Rennes 1, Rennes, France.
| | - Vincent Cattoir
- Unité Inserm U1230, Université de Rennes 1, Rennes, France; Service de Bactériologie-Hygiène hospitalière, CHU de Rennes, Rennes, France; CNR de la Résistance aux Antibiotiques (laboratoire associé 'Entérocoques'), Rennes, France.
| |
Collapse
|
40
|
Nunziata L, Brasca M, Morandi S, Silvetti T. Antibiotic resistance in wild and commercial non-enterococcal Lactic Acid Bacteria and Bifidobacteria strains of dairy origin: An update. Food Microbiol 2022; 104:103999. [DOI: 10.1016/j.fm.2022.103999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
|
41
|
Lengliz S, Cheriet S, Raddaoui A, Klibi N, Ben Chehida N, Najar T, Abbassi M. Species distribution and genes encoding antimicrobial resistance in
Enterococcus
spp. isolates from rabbits residing in diverse ecosystems: a new reservoir of linezolid and vancomycin resistance. J Appl Microbiol 2022; 132:2760-2772. [DOI: 10.1111/jam.15461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/22/2021] [Accepted: 01/15/2022] [Indexed: 11/29/2022]
Affiliation(s)
- S. Lengliz
- University of Tunis El Manar Institute of Veterinary Research of Tunisia Tunis Tunisia
- University of Carthage Laboratory of Materials, Molecules and Application Preparatory Institute for Scientific and Technical Studies LR11ES22 Tunis Tunisia
| | - S. Cheriet
- University of Tunis El Manar Institute of Veterinary Research of Tunisia Tunis Tunisia
| | - A. Raddaoui
- Laboratory Ward National Bone Marrow Transplant Center 1006, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis LR18ES39, 1006 Tunis Tunisia
| | - N. Klibi
- University of Tunis El Manar Faculty of Sciences of Tunis Laboratory of Microorganisms and Active Biomolecules Tunis Tunisia
| | - N. Ben Chehida
- University of Tunis El Manar Institute of Veterinary Research of Tunisia Tunis Tunisia
| | - T. Najar
- University of Carthage Laboratory of Materials, Molecules and Application Preparatory Institute for Scientific and Technical Studies LR11ES22 Tunis Tunisia
- University of Carthage Department of Animal Sciences National Institute of Agronomy of Tunisia Tunis Tunisia
| | - M.S. Abbassi
- University of Tunis El Manar Institute of Veterinary Research of Tunisia Tunis Tunisia
- University of Tunis El Manar Faculty of Medicine of Tunis Research Laboratory (Antimicrobial resistance) LR99ES09 Tunis Tunisia
| |
Collapse
|
42
|
Yan W, Hall AB, Jiang X. Bacteroidales species in the human gut are a reservoir of antibiotic resistance genes regulated by invertible promoters. NPJ Biofilms Microbiomes 2022; 8:1. [PMID: 35013297 PMCID: PMC8748976 DOI: 10.1038/s41522-021-00260-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
Antibiotic-resistance genes (ARGs) regulated by invertible promoters can mitigate the fitness cost of maintaining ARGs in the absence of antibiotics and could potentially prolong the persistence of ARGs in bacterial populations. However, the origin, prevalence, and distribution of these ARGs regulated by invertible promoters remains poorly understood. Here, we sought to assess the threat posed by ARGs regulated by invertible promoters by systematically searching for ARGs regulated by invertible promoters in the human gut microbiome and examining their origin, prevalence, and distribution. Through metagenomic assembly of 2227 human gut metagenomes and genomic analysis of the Unified Human Gastrointestinal Genome (UHGG) collection, we identified ARGs regulated by invertible promoters and categorized them into three classes based on the invertase-regulating phase variation. In the human gut microbiome, ARGs regulated by invertible promoters are exclusively found in Bacteroidales species. Through genomic analysis, we observed that ARGs regulated by invertible promoters have convergently originated from ARG insertions into glycan-synthesis loci that were regulated by invertible promoters at least three times. Moreover, all three classes of invertible promoters regulating ARGs are located within integrative conjugative elements (ICEs). Therefore, horizontal transfer via ICEs could explain the wide taxonomic distribution of ARGs regulated by invertible promoters. Overall, these findings reveal that glycan-synthesis loci regulated by invertible promoters in Bacteroidales species are an important hotspot for the emergence of clinically-relevant ARGs regulated by invertible promoters.
Collapse
Affiliation(s)
- Wei Yan
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - A Brantley Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA
| | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
43
|
Ghamari M, Jabalameli F, Emaneini M, Beigverdi R. Multiple-locus variable-number tandem repeat analysis for genotyping of erythromycin-resistant group B streptococci in Iran. New Microbes New Infect 2022; 45:100957. [PMID: 35198219 PMCID: PMC8851280 DOI: 10.1016/j.nmni.2022.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/26/2021] [Accepted: 01/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Group B Streptococcus (GBS or S. agalactiae) is an important pathogen causing severe invasive diseases in neonates, pregnant women, and adults with underlying medical conditions. Methods To investigate the incidence of resistance to macrolide, lincosamide and streptogramin type B (MLSB) antibiotics, macrolide and tetracycline resistance determinants and genetic relationships, a total of 146 clinical isolates of GBS were collected from Tehran, Iran. The genetic relationships between erythromycin-resistant strains were determined by multilocus variable tandem repeat analysis (MLVA). Results All isolates were susceptible to penicillin, vancomycin, linezolid, and quinupristin–dalfopristin, but were resistant to tetracycline (96.6%, 141/146), erythromycin (28.1%, 41/146) and clindamycin (16.4%, 24/146). Among the 41 erythromycin-resistant GBS (ERGBS), the most common antimicrobial resistance gene was tetM detected in 92.7% (38/41) of the isolates followed by ermTR and ermB found in 65.8% (27/41) and 29.3% (12/41) of isolates, respectively. Of the 41 ERGBS, 95% (39/41) exhibited the constitutive MLSB phenotype, 2.4% (1/41) displayed inducible MLSB and 2.4% (1/41) had M phenotype. The erm methylase genes were widely related to MLSB phenotype isolates, while the mefA gene was associated with M phenotype. MLVA analysis performed on the 41 ERGBS revealed that 34 MLVA types (MTs). MLVA analysis showed that infections due to ERGBS have been caused by a variety of genotypes, suggesting that ERGBS were clonally unrelated and dissemination of these isolates was not due to a clonal outbreak. Conclusion Careful usage of macrolide antibiotics in therapy, continued surveillance of resistance rate and appropriate infection control measures can help to reduce spreading of resistance isolates.
Collapse
|
44
|
O’Grady K, Knight DR, Riley TV. Antimicrobial resistance in Clostridioides difficile. Eur J Clin Microbiol Infect Dis 2021; 40:2459-2478. [DOI: 10.1007/s10096-021-04311-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023]
|
45
|
D'Aeth JC, van der Linden MPG, McGee L, de Lencastre H, Turner P, Song JH, Lo SW, Gladstone RA, Sá-Leão R, Ko KS, Hanage WP, Breiman RF, Beall B, Bentley SD, Croucher NJ. The role of interspecies recombination in the evolution of antibiotic-resistant pneumococci. eLife 2021; 10:e67113. [PMID: 34259624 PMCID: PMC8321556 DOI: 10.7554/elife.67113] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022] Open
Abstract
Multidrug-resistant Streptococcus pneumoniae emerge through the modification of core genome loci by interspecies homologous recombinations, and acquisition of gene cassettes. Both occurred in the otherwise contrasting histories of the antibiotic-resistant S. pneumoniae lineages PMEN3 and PMEN9. A single PMEN3 clade spread globally, evading vaccine-induced immunity through frequent serotype switching, whereas locally circulating PMEN9 clades independently gained resistance. Both lineages repeatedly integrated Tn916-type and Tn1207.1-type elements, conferring tetracycline and macrolide resistance, respectively, through homologous recombination importing sequences originating in other species. A species-wide dataset found over 100 instances of such interspecific acquisitions of resistance cassettes and flanking homologous arms. Phylodynamic analysis of the most commonly sampled Tn1207.1-type insertion in PMEN9, originating from a commensal and disrupting a competence gene, suggested its expansion across Germany was driven by a high ratio of macrolide-to-β-lactam consumption. Hence, selection from antibiotic consumption was sufficient for these atypically large recombinations to overcome species boundaries across the pneumococcal chromosome.
Collapse
Affiliation(s)
- Joshua C D'Aeth
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| | - Mark PG van der Linden
- Institute for Medical Microbiology, National Reference Center for Streptococci, University Hospital RWTH AachenAachenGermany
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and PreventionAtlantaUnited States
| | - Herminia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeirasPortugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller UniversityNew YorkUnited States
| | - Paul Turner
- Cambodia Oxford Medical Research Unit, Angkor Hospital for ChildrenSiem ReapCambodia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Jae-Hoon Song
- Department of Molecular Cell Biology, Sungkyunkwan University School of MedicineSuwonRepublic of Korea
| | - Stephanie W Lo
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Rebecca A Gladstone
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeirasPortugal
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of MedicineSuwonRepublic of Korea
| | - William P Hanage
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Robert F Breiman
- Department of Global Health, Rollins School of Public Health, Emory UniversityAtlantaUnited States
| | - Bernard Beall
- Respiratory Diseases Branch, Centers for Disease Control and PreventionAtlantaUnited States
| | - Stephen D Bentley
- Parasites & Microbes, Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
46
|
Shi Y, Zhang Y, Wu X, Zhang H, Yang M, Tian Z. Potential dissemination mechanism of the tetC gene in Aeromonas media from the aerobic biofilm reactor under oxytetracycline stresses. J Environ Sci (China) 2021; 105:90-99. [PMID: 34130843 DOI: 10.1016/j.jes.2020.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
The tetC gene has been found to be one of the most widely distributed tetracycline resistance (tet) genes in various environmental niches, but the detailed dissemination mechanisms are still largely unknown. In the present study, 11 tetC-containing Aeromonas media strains were isolated from an aerobic biofilm reactor under oxytetracycline stresses, and the genome of one strain was sequenced using the PacBio RSII sequencing approach to reveal the genetic environment of tetC. The tetC gene was carried by an IS26 composite transposon, named Tn6434. The tetC-carrying Tn6434 structure was detected in all of the A. media strains either in a novel plasmid pAeme2 (n=9) or other DNA molecules (n=2) by PCR screening. The NCBI database searching result shows that this structure was also present in the plasmids or chromosomes of other 13 genera, indicating the transferability of Tn6434. Inverse PCR and sequencing confirmed that Tn6434 can form a circular intermediate and is able to incorporate into a preexisting IS26 element, suggesting that Tn6434 might be responsible for the dissemination of tetC between different DNA molecules. This study will be helpful in uncovering the spread mechanism of tet genes in water environments.
Collapse
Affiliation(s)
- Yanhong Shi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
47
|
Yadav K, Garoff L, Huseby DL, Hughes D. Phenotypic and genetic barriers to establishment of horizontally transferred genes encoding ribosomal protection proteins. J Antimicrob Chemother 2021; 76:1441-1447. [PMID: 33655294 PMCID: PMC8120329 DOI: 10.1093/jac/dkab056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Background Ribosomal protection proteins (RPPs) interact with bacterial ribosomes to prevent inhibition of protein synthesis by tetracycline. RPP genes have evolved from a common ancestor into at least 12 distinct classes and spread by horizontal genetic transfer into a wide range of bacteria. Many bacterial genera host RPP genes from multiple classes but tet(M) is the predominant RPP gene found in Escherichia coli. Objectives We asked whether phenotypic barriers (low-level resistance, high fitness cost) might constrain the fixation of other RPP genes in E. coli. Methods We expressed a diverse set of six different RPP genes in E. coli, including tet(M), and quantified tetracycline susceptibility and growth phenotypes as a function of expression level, and evolvability to overcome identified phenotypic barriers. Results The genes tet(M) and tet(Q) conferred high-level tetracycline resistance without reducing fitness; tet(O) and tet(W) conferred high-level resistance but significantly reduced growth fitness; tetB(P) conferred low-level resistance and while mutants conferring high-level resistance were selectable these had reduced growth fitness; otr(A) did not confer resistance and resistant mutants could not be selected. Evolution experiments suggested that codon usage patterns in tet(O) and tet(W), and transcriptional silencing associated with nucleotide composition in tetB(P), accounted for the observed phenotypic barriers. Conclusions With the exception of tet(Q), the data reveal significant phenotypic and genetic barriers to the fixation of additional RPP genes in E. coli.
Collapse
Affiliation(s)
- Kavita Yadav
- Uppsala University, Department of Medical Biochemistry and Microbiology, Biomedical Center, (Box 582), Uppsala S-75123, Sweden
| | - Linnéa Garoff
- Uppsala University, Department of Medical Biochemistry and Microbiology, Biomedical Center, (Box 582), Uppsala S-75123, Sweden
| | - Douglas L Huseby
- Uppsala University, Department of Medical Biochemistry and Microbiology, Biomedical Center, (Box 582), Uppsala S-75123, Sweden
| | - Diarmaid Hughes
- Uppsala University, Department of Medical Biochemistry and Microbiology, Biomedical Center, (Box 582), Uppsala S-75123, Sweden
| |
Collapse
|
48
|
Cappele J, Mohamad Ali A, Leblond-Bourget N, Mathiot S, Dhalleine T, Payot S, Savko M, Didierjean C, Favier F, Douzi B. Structural and Biochemical Analysis of OrfG: The VirB8-like Component of the Conjugative Type IV Secretion System of ICE St3 From Streptococcus thermophilus. Front Mol Biosci 2021; 8:642606. [PMID: 33816557 PMCID: PMC8012802 DOI: 10.3389/fmolb.2021.642606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/01/2021] [Indexed: 12/02/2022] Open
Abstract
Conjugative transfer is a major threat to global health since it contributes to the spread of antibiotic resistance genes and virulence factors among commensal and pathogenic bacteria. To allow their transfer, mobile genetic elements including Integrative and Conjugative Elements (ICEs) use a specialized conjugative apparatus related to Type IV secretion systems (Conj-T4SS). Therefore, Conj-T4SSs are excellent targets for strategies that aim to limit the spread of antibiotic resistance. In this study, we combined structural, biochemical and biophysical approaches to study OrfG, a protein that belongs to Conj-T4SS of ICESt3 from Streptococcus thermophilus. Structural analysis of OrfG by X-ray crystallography revealed that OrfG central domain is similar to VirB8-like proteins but displays a different quaternary structure in the crystal. To understand, at a structural level, the common and the diverse features between VirB8-like proteins from both Gram-negative and -positive bacteria, we used an in silico structural alignment method that allowed us to identify different structural classes of VirB8-like proteins. Biochemical and biophysical characterizations of purified OrfG soluble domain and its central and C-terminal subdomains indicated that they are mainly monomeric in solution but able to form an unprecedented 6-mer oligomers. Our study provides new insights into the structural analysis of VirB8-like proteins and discusses the interplay between tertiary and quaternary structures of these proteins as an essential component of the conjugative transfer.
Collapse
Affiliation(s)
| | | | | | | | | | - Sophie Payot
- Université de Lorraine, INRAE, DynAMic, Nancy, France
| | - Martin Savko
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP 48, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
49
|
Lunde TM, Hjerde E, Al-Haroni M. Prevalence, diversity and transferability of the Tn 916-Tn 1545 family ICE in oral streptococci. J Oral Microbiol 2021; 13:1896874. [PMID: 33796228 PMCID: PMC7971310 DOI: 10.1080/20002297.2021.1896874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: The Tn916-Tn1545 family of Integrative Conjugative Elements (ICE) are mobile genetic elements (MGEs) that play a role in the spread of antibiotic resistance genes. The Tn916 harbors the tetracycline resistance gene tet(M) and it has been reported in various bacterial species. The increase in the levels of tetracycline resistance among oral streptococci is of great concern primarily due to the abundance of these species in the oral cavity and their ability to act as reservoirs for antibiotic resistance genes.Methods: In the current study, we screened 100 Norwegian clinical oral streptococcal isolates for the presence and diversity of the Tn916-Tn1545 family. In addition, we investigated the transferability the elements, and the associated transfer frequencies.Results: We observed that 21 isolates harboured the Tn916-Tn1545 family and that two of these elements were the novel Tn6815 and Tn6816. The most prevalent member of the Tn916 -Tn1545 family observed in the Norwegian clinical oral streptococcal isolates was the wild type Tn916.Conclusion: The detection of other members of this family of ICE and varying transfer frequencies suggests high versatility of the Tn916 element in oral streptococci in Norway.
Collapse
Affiliation(s)
- Tracy Munthali Lunde
- Department of Clinical Dentistry, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø
| | - Erik Hjerde
- bCenter for Bioinformatics, Faculty of Science and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Mohammed Al-Haroni
- Department of Clinical Dentistry, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø
| |
Collapse
|
50
|
Kayali O, Icgen B. intI1 Type Mobile Genetic Elements Co-selected Antibiotic-Resistant Genes in Untreated Hospital Wastewaters. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:399-405. [PMID: 33471190 DOI: 10.1007/s00128-020-03098-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Dissemination of antibiotic-resistant genes (ARGs) from hospital wastewaters (HWWs) is facilitated by the horizontal gene transfer (HGT) and involves association of ARGs with mobile genetic elements (MGEs). In our previous study, HWWs were found to have relatively high copy numbers of ARGs aadA, tetA, cmlA, sul1, and qnrS. In this study, therefore, the same HWWs were also monitored for 3 MGEs class 1 integron (intI1), insertion sequence common region 1 (ISCR1) and conjugative transposon Tn916/Tn1545 by using quantitative polymerase chain reaction. The gene intI1 with 7.4 × 102 average copy number/mL was found to be the most prevalent MGE and was up to two orders of magnitude higher than ISCR1 (5.5 × 100 average copy number/mL, p < 0.05) and Tn916/Tn1545 (2.3 × 100 average copy number/mL, p < 0.05) in all HWWs tested. Positive correlation between intI1 and the aadA, tetA, cmlA and sul1 genes indicated that the MGEs harbouring class1 integron most likely played major role in co-selecting all these ARGs together.
Collapse
Affiliation(s)
- Osman Kayali
- Department of Biotechnology, Middle East Technical University, 06800, Ankara, Turkey
| | - Bulent Icgen
- Department of Biotechnology, Middle East Technical University, 06800, Ankara, Turkey.
- Department of Environmental Engineering, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|