1
|
Abstract
Junctophilins (JPHs) comprise a family of structural proteins that connect the plasma membrane to intracellular organelles such as the endo/sarcoplasmic reticulum. Tethering of these membrane structures results in the formation of highly organized subcellular junctions that play important signaling roles in all excitable cell types. There are four JPH isoforms, expressed primarily in muscle and neuronal cell types. Each JPH protein consists of 6 'membrane occupation and recognition nexus' (MORN) motifs, a joining region connecting these to another set of 2 MORN motifs, a putative alpha-helical region, a divergent region exhibiting low homology between JPH isoforms, and a carboxy-terminal transmembrane region anchoring into the ER/SR membrane. JPH isoforms play essential roles in developing and maintaining subcellular membrane junctions. Conversely, inherited mutations in JPH2 cause hypertrophic or dilated cardiomyopathy, while trinucleotide expansions in the JPH3 gene cause Huntington Disease-Like 2. Loss of JPH1 protein levels can cause skeletal myopathy, while loss of cardiac JPH2 levels causes heart failure and atrial fibrillation, among other disease. This review will provide a comprehensive overview of the JPH gene family, phylogeny, and evolutionary analysis of JPH genes and other MORN domain proteins. JPH biogenesis, membrane tethering, and binding partners will be discussed, as well as functional roles of JPH isoforms in excitable cells. Finally, potential roles of JPH isoform deficits in human disease pathogenesis will be reviewed.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States; Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), Neuroscience, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
2
|
Matthaeus C, Taraska JW. Energy and Dynamics of Caveolae Trafficking. Front Cell Dev Biol 2021; 8:614472. [PMID: 33692993 PMCID: PMC7939723 DOI: 10.3389/fcell.2020.614472] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Caveolae are 70–100 nm diameter plasma membrane invaginations found in abundance in adipocytes, endothelial cells, myocytes, and fibroblasts. Their bulb-shaped membrane domain is characterized and formed by specific lipid binding proteins including Caveolins, Cavins, Pacsin2, and EHD2. Likewise, an enrichment of cholesterol and other lipids makes caveolae a distinct membrane environment that supports proteins involved in cell-type specific signaling pathways. Their ability to detach from the plasma membrane and move through the cytosol has been shown to be important for lipid trafficking and metabolism. Here, we review recent concepts in caveolae trafficking and dynamics. Second, we discuss how ATP and GTP-regulated proteins including dynamin and EHD2 control caveolae behavior. Throughout, we summarize the potential physiological and cell biological roles of caveolae internalization and trafficking and highlight open questions in the field and future directions for study.
Collapse
Affiliation(s)
- Claudia Matthaeus
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
3
|
Dudãu M, Codrici E, Tanase C, Gherghiceanu M, Enciu AM, Hinescu ME. Caveolae as Potential Hijackable Gates in Cell Communication. Front Cell Dev Biol 2020; 8:581732. [PMID: 33195223 PMCID: PMC7652756 DOI: 10.3389/fcell.2020.581732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Caveolae are membrane microdomains described in many cell types involved in endocytocis, transcytosis, cell signaling, mechanotransduction, and aging. They are found at the interface with the extracellular environment and are structured by caveolin and cavin proteins. Caveolae and caveolins mediate transduction of chemical messages via signaling pathways, as well as non-chemical messages, such as stretching or shear stress. Various pathogens or signals can hijack these gates, leading to infectious, oncogenic and even caveolin-related diseases named caveolinopathies. By contrast, preclinical and clinical research have fallen behind in their attempts to hijack caveolae and caveolins for therapeutic purposes. Caveolae involvement in human disease is not yet fully explored or understood and, of all their scaffold proteins, only caveolin-1 is being considered in clinical trials as a possible biomarker of disease. This review briefly summarizes current knowledge about caveolae cell signaling and raises the hypothesis whether these microdomains could serve as hijackable “gatekeepers” or “gateways” in cell communication. Furthermore, because cell signaling is one of the most dynamic domains in translating data from basic to clinical research, we pay special attention to translation of caveolae, caveolin, and cavin research into clinical practice.
Collapse
Affiliation(s)
- Maria Dudãu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Clinical Biochemistry Department, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail E Hinescu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
4
|
Identification of Telocytes in the Pancreas of Turtles-A role in Cellular Communication. Int J Mol Sci 2020; 21:ijms21062057. [PMID: 32192184 PMCID: PMC7139993 DOI: 10.3390/ijms21062057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 12/13/2022] Open
Abstract
The existence of telocytes (TCs) has not yet been established in the pancreases of aquatic reptiles. Here, we report TCs in the exocrine pancreas of Pelodiscus sinensis using transmission electron microscope (TEM), immunohistochemistry (IHC), and immunofluorescence (IF) techniques. TCs surrounded the acini and ducts of the connective tissue of the exocrine pancreas and between lobules and gland cells. The cells were located preferably close to the blood vessels, interlobular ducts, and nerve fibers. Ultrastructurally, TCs exhibited small and large bodies with thick and thin portions, podoms, and podomers, and prolongations that form dichotomous branching with hetero-cellular and homo-cellular junctions. The podom (thick) portions showed caveolae, mitochondria, rough endoplasmic reticulum, and vesicles. The nucleus carries heterochromatin and is irregular in shape. The shape of TCs depends on the number of telopodes (Tps) bearing long, short, spindle, triangular, and "beads on a string" shapes with twisted, tortuous prolongations and ramifications. Shed extracellular vesicles and exosomes were found frequently released from projections and Tps within connective tissue in the vicinity of the acini and collagen fibers. IHC and IF results showed CD34+, α-SMA+, and vimentin+, long and triangle-shaped TCs, consistent with the TEM findings. The presence of shaded vesicles from TCs might implicate their possible role in immune surveillance, tissue regeneration as well as regulatory functions in the reptilian pancreas.
Collapse
|
5
|
Parkington HC, Siriwardhana ER, Coleman HA. Intracellular organelles; key regulators of myometrial activity. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Nanoscale coupling of junctophilin-2 and ryanodine receptors regulates vascular smooth muscle cell contractility. Proc Natl Acad Sci U S A 2019; 116:21874-21881. [PMID: 31591206 PMCID: PMC6815135 DOI: 10.1073/pnas.1911304116] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Junctophilin proteins maintain close contacts between the endoplasmic/sarcoplasmic reticulum (ER/SR) and the plasma membrane in many types of cells, as typified by junctophilin-2 (JPH2), which is necessary for the formation of the cardiac dyad. Here, we report that JPH2 is the most abundant junctophilin isotype in native smooth muscle cells (SMCs) isolated from cerebral arteries and that acute knockdown diminishes the area of sites of interaction between the SR and plasma membrane. Superresolution microscopy revealed nanometer-scale colocalization of JPH2 clusters with type 2 ryanodine receptor (RyR2) clusters near the cell surface. Knockdown of JPH2 had no effect on the frequency, amplitude, or kinetics of spontaneous Ca2+ sparks generated by transient release of Ca2+ from the SR through RyR2s, but it did nearly abolish Ca2+ spark-activated, large-conductance, Ca2+-activated K+ (BK) channel currents. We also found that JPH2 knockdown was associated with hypercontractility of intact cerebral arteries. We conclude that JPH2 maintains functional coupling between RyR2s and BK channels and is critically important for cerebral arterial function.
Collapse
|
7
|
Awad M, Gaber W, Ibrahim D. Onset of Appearance and Potential Significance of Telocytes in the Developing Fetal Lung. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:1246-1256. [PMID: 31524125 DOI: 10.1017/s1431927619014922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CD34, vimentin, and vascular endothelial growth factor immunohistochemical analysis and electron microscopic tools were employed to record the initial appearance of telocytes (TCs) and stage-by-stage variations in TC localizations in the developing rabbit lung. TCs could not be identified in the primitive embryonic lung until day 18 of gestation. In the pseudoglandular lung, CD34+ TCs had been recorded under the cartilage of the main bronchus, in the wall of large-sized pulmonary vessels and large epithelial tubes. In the canalicular phase, TCs could be demonstrated in the smooth muscle layer of the bronchioles including the terminal ones. The strength of CD34 immunoreactive signals had been amplified by age until the day of parturition. Ultrastructurally, TCs consisted of a tiny body and exceptionally long telopodes (Tps). The Tp consisted of alternating thin segments (podomers) and dilated ones (podoms). The Tp sometimes branched with a dichotomous pattern. TCs interconnected in a network either by homocellular junctions with neighboring TCs or by heterocellular junctions with smooth muscle cells and alveolar cells. Collectively, early detection of TCs in pulmonary vessels suggests a potential role for TCs in their angiogenesis. For the lung tissue, TCs seem to be involved in the regulation of lung histogenesis.
Collapse
Affiliation(s)
- Mahmoud Awad
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Wafaa Gaber
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Assuit University, Assuit, Egypt
| | - Dalia Ibrahim
- Department of Histology, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| |
Collapse
|
8
|
Saeki T, Suzuki Y, Yamamura H, Takeshima H, Imaizumi Y. A junctophilin-caveolin interaction enables efficient coupling between ryanodine receptors and BK Ca channels in the Ca 2+ microdomain of vascular smooth muscle. J Biol Chem 2019; 294:13093-13105. [PMID: 31308177 PMCID: PMC6721949 DOI: 10.1074/jbc.ra119.008342] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/09/2019] [Indexed: 01/09/2023] Open
Abstract
Functional coupling between large-conductance Ca2+-activated K+ (BKCa) channels in the plasma membrane (PM) and ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) is an essential mechanism for regulating mechanical force in most smooth muscle (SM) tissues. Spontaneous Ca2+ release through RyRs (Ca2+ sparks) and subsequent BKCa channel activation occur within the PM-SR junctional sites. We report here that a molecular interaction of caveolin-1 (Cav1), a caveola-forming protein, with junctophilin-2 (JP2), a bridging protein between PM and SR, positions BKCa channels near RyRs in SM cells (SMCs) and thereby contributes to the formation of a molecular complex essential for Ca2+ microdomain function. Approximately half of all Ca2+ sparks occurred within a close distance (<400 nm) from fluorescently labeled JP2 or Cav1 particles, when they were moderately expressed in primary SMCs from mouse mesenteric artery. The removal of caveolae by genetic Cav1 ablation or methyl-β-cyclodextrin treatments significantly reduced coupling efficiency between Ca2+ sparks and BKCa channel activity in SMCs, an effect also observed after JP2 knockdown in SMCs. A 20-amino acid-long region in JP2 appeared to be essential for the observed JP2-Cav1 interaction, and we also observed an interaction between JP2 and the BKCa channel. It can be concluded that the JP2-Cav1 interaction provides a structural and functional basis for the Ca2+ microdomain at PM-SR junctions and mediates cross-talk between RyRs and BKCa channels, converts local Ca2+ sparks into membrane hyperpolarization, and contributes to stabilizing resting tone in SMCs.
Collapse
Affiliation(s)
- Takanori Saeki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| |
Collapse
|
9
|
Pritchard HAT, Gonzales AL, Pires PW, Drumm BT, Ko EA, Sanders KM, Hennig GW, Earley S. Microtubule structures underlying the sarcoplasmic reticulum support peripheral coupling sites to regulate smooth muscle contractility. Sci Signal 2017; 10:eaan2694. [PMID: 28928237 PMCID: PMC6328376 DOI: 10.1126/scisignal.aan2694] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Junctional membrane complexes facilitate excitation-contraction coupling in skeletal and cardiac muscle cells by forming subcellular invaginations that maintain close (≤20 nm) proximity of ryanodine receptors (RyRs) on the sarcoplasmic reticulum (SR) with voltage-dependent Ca2+ channels in the plasma membrane. In fully differentiated smooth muscle cells, junctional membrane complexes occur as distributed sites of peripheral coupling. We investigated the role of the cytoskeleton in maintaining peripheral coupling and associated Ca2+ signaling networks within native smooth muscle cells of mouse and rat cerebral arteries. Using live-cell confocal and superresolution microscopy, we found that the tight interactions between the SR and the plasma membrane in these cells relied on arching microtubule structures present at the periphery of smooth muscle cells and were independent of the actin cytoskeleton. Loss of peripheral coupling associated with microtubule depolymerization altered the spatiotemporal properties of localized Ca2+ sparks generated by the release of Ca2+ through type 2 RyRs (RyR2s) on the SR and decreased the number of sites of colocalization between RyR2s and large-conductance Ca2+-activated K+ (BK) channels. The reduced BK channel activity associated with the loss of SR-plasma membrane interactions was accompanied by increased pressure-induced constriction of cerebral resistance arteries. We conclude that microtubule structures maintain peripheral coupling in contractile smooth muscle cells, which is crucial for the regulation of contractility and cerebral vascular tone.
Collapse
Affiliation(s)
- Harry A T Pritchard
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Albert L Gonzales
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA
| | - Paulo W Pires
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Eun A Ko
- Department of Physiology and Cell Biology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Grant W Hennig
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, USA
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA.
| |
Collapse
|
10
|
Zhang WB, Kwan CY. Pharmacological evidence that potentiation of plasmalemmal Ca(2+)-extrusion is functionally coupled to inhibition of SR Ca(2+)-ATPases in vascular smooth muscle cells. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:447-55. [PMID: 26842648 DOI: 10.1007/s00210-016-1209-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/05/2016] [Indexed: 11/28/2022]
Abstract
Cyclopiazonic acid (CPA), a specific inhibitor of sarcoplasmic reticulum (SR) Ca(2+)-ATPases, causes slowly developing and subsequently diminishing characteristic contractions in vascular smooth muscle, and the second application of CPA has incompletely repeatable effects, depending on the vessel type. The objective of the present study was to examine the mechanisms underlying the significant decrease of CPA-induced contractions upon the second application. A pharmacological intervention of Ca(2+) extrusion process as a strategy was performed to modulate vasoconstrictor effects of CPA in rat aortic ring preparations. CPA-induced contractions, expressed as percentages of the contractions induced by KCl (80 mM), were significantly decreased from 44.1 ± 5.7 to 7.6 ± 1.8 % (P < 0.001) upon the second application. The contractions, however, were completely repeatable in the presence of vanadate, an inhibitor of ATPases, but not of ouabain, an inhibitor of Na(+)-pumps. Strikingly, CPA-induced contractions were sustained and completely repeatable in Na(+)-free and low Na(+) medium. Furthermore, we found that the contractions were completely repeatable in the presence of 2',4'-dichlorobenzamil, an inhibitor of the forward mode of Na(+)/Ca(2+) exchangers, but not of KBR7943, an inhibitor of the reverse mode of Na(+)/Ca(2+) exchangers. Our findings indicate that CPA by inducing a transient rise in cytosolic Ca(2+) level causes a long-lasting upregulation of plasma membrane (PM) Ca(2+) extruders and thus leads to a diminished contraction upon its second application in blood vessels. This suggests that there is a functional coupling between PM Ca(2+) extruders and SR Ca(2+)-ATPases in rat aortic smooth muscle cells.
Collapse
Affiliation(s)
- Wen-Bo Zhang
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada.,Program in Neurosciences & Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Chiu-Yin Kwan
- Department of Medicine, Faculty of Health Sciences, McMaster University, 1200 Main Street West, Hamilton, ON, L8N 3Z5, Canada. .,Vascular Biology Research Group and Research Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung, Taiwan, 40402.
| |
Collapse
|
11
|
Popescu LM, Curici A, Wang E, Zhang H, Hu S, Gherghiceanu M. Telocytes and putative stem cells in ageing human heart. J Cell Mol Med 2014; 19:31-45. [PMID: 25545142 PMCID: PMC4288347 DOI: 10.1111/jcmm.12509] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/14/2014] [Indexed: 02/06/2023] Open
Abstract
Tradition considers that mammalian heart consists of about 70% non-myocytes (interstitial cells) and 30% cardiomyocytes (CMs). Anyway, the presence of telocytes (TCs) has been overlooked, since they were described in 2010 (visit http://www.telocytes.com). Also, the number of cardiac stem cells (CSCs) has not accurately estimated in humans during ageing. We used electron microscopy to identify and estimate the number of cells in human atrial myocardium (appendages). Three age-related groups were studied: newborns (17 days–1 year), children (6–17 years) and adults (34–60 years). Morphometry was performed on low-magnification electron microscope images using computer-assisted technology. We found that interstitial area gradually increases with age from 31.3 ± 4.9% in newborns to 41 ± 5.2% in adults. Also, the number of blood capillaries (per mm2) increased with several hundreds in children and adults versus newborns. CMs are the most numerous cells, representing 76% in newborns, 88% in children and 86% in adults. Images of CMs mitoses were seen in the 17-day newborns. Interestingly, no lipofuscin granules were found in CMs of human newborns and children. The percentage of cells that occupy interstitium were (depending on age): endothelial cells 52–62%; vascular smooth muscle cells and pericytes 22–28%, Schwann cells with nerve endings 6–7%, fibroblasts 3–10%, macrophages 1–8%, TCs about 1% and stem cells less than 1%. We cannot confirm the popular belief that cardiac fibroblasts are the most prevalent cell type in the heart and account for about 20% of myocardial volume. Numerically, TCs represent a small fraction of human cardiac interstitial cells, but because of their extensive telopodes, they achieve a 3D network that, for instance, supports CSCs. The myocardial (very) low capability to regenerate may be explained by the number of CSCs, which decreases fivefold by age (from 0.5% to 0.1% in newborns versus adults).
Collapse
Affiliation(s)
- Laurentiu M Popescu
- Department of Cellular and Molecular Medicine, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania; Division of Advanced Studies, 'Victor Babeş' National Institute of Pathology, Bucharest, Romania
| | | | | | | | | | | |
Collapse
|
12
|
Guerrero-Hernandez A, Gallegos-Gomez ML, Sanchez-Vazquez VH, Lopez-Mendez MC. Acidic intracellular Ca(2+) stores and caveolae in Ca(2+) signaling and diabetes. Cell Calcium 2014; 56:323-31. [PMID: 25182518 DOI: 10.1016/j.ceca.2014.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/07/2014] [Indexed: 12/19/2022]
Abstract
Acidic Ca(2+) stores, particularly lysosomes, are newly discovered players in the well-orchestrated arena of Ca(2+) signaling and we are at the verge of understanding how lysosomes accumulate Ca(2+) and how they release it in response to different chemical, such as NAADP, and physical signals. Additionally, it is now clear that lysosomes play a key role in autophagy, a process that allows cells to recycle components or to eliminate damaged structures to ensure cellular well-being. Moreover, lysosomes are being unraveled as hubs that coordinate both anabolism via insulin signaling and catabolism via AMPK. These acidic vesicles have close contact with the ER and there is a bidirectional movement of information between these two organelles that exquisitely regulates cell survival. Lysosomes also connect with plasma membrane where caveolae are located as specialized regions involved in Ca(2+) and insulin signaling. Alterations of all these signaling pathways are at the core of insulin resistance and diabetes.
Collapse
|
13
|
Zheng Y, Cretoiu D, Yan G, Cretoiu SM, Popescu LM, Wang X. Comparative proteomic analysis of human lung telocytes with fibroblasts. J Cell Mol Med 2014; 18:568-89. [PMID: 24674459 PMCID: PMC4000110 DOI: 10.1111/jcmm.12290] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/24/2014] [Indexed: 12/22/2022] Open
Abstract
Telocytes (TCs) were recently described as interstitial cells with very long prolongations named telopodes (Tps; http://www.telocytes.com). Establishing the TC proteome is a priority to show that TCs are a distinct type of cells. Therefore, we examined the molecular aspects of lung TCs by comparison with fibroblasts (FBs). Proteins extracted from primary cultures of these cells were analysed by automated 2-dimensional nano-electrospray ionization liquid chromatography tandem mass spectrometry (2D Nano-ESI LC-MS/MS). Differentially expressed proteins were screened by two-sample t-test (P < 0.05) and fold change (>2), based on the bioinformatics analysis. We identified hundreds of proteins up- or down-regulated, respectively, in TCs as compared with FBs. TC proteins with known identities are localized in the cytoskeleton (87%) and plasma membrane (13%), while FB up-regulated proteins are in the cytoskeleton (75%) and destined to extracellular matrix (25%). These identified proteins were classified into different categories based on their molecular functions and biological processes. While the proteins identified in TCs are mainly involved in catalytic activity (43%) and as structural molecular activity (25%), the proteins in FBs are involved in catalytic activity (24%) and in structural molecular activity, particularly synthesis of collagen and other extracellular matrix components (25%). Anyway, our data show that TCs are completely different from FBs. In conclusion, we report here the first extensive identification of proteins from TCs using a quantitative proteomics approach. Protein expression profile shows many up-regulated proteins e.g. myosin-14, periplakin, suggesting that TCs might play specific roles in mechanical sensing and mechanochemical conversion task, tissue homoeostasis and remodelling/renewal. Furthermore, up-regulated proteins matching those found in extracellular vesicles emphasize TCs roles in intercellular signalling and stem cell niche modulation. The novel proteins identified in TCs will be an important resource for further proteomic research and it will possibly allow biomarker identification for TCs. It also creates the premises for understanding the pathogenesis of some lung diseases involving TCs.
Collapse
Affiliation(s)
- Yonghua Zheng
- Department of Respirology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | |
Collapse
|
14
|
Billaud M, Lohman AW, Johnstone SR, Biwer LA, Mutchler S, Isakson BE. Regulation of cellular communication by signaling microdomains in the blood vessel wall. Pharmacol Rev 2014; 66:513-69. [PMID: 24671377 DOI: 10.1124/pr.112.007351] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.
Collapse
Affiliation(s)
- Marie Billaud
- Dept. of Molecular Physiology and Biophysics, University of Virginia School of Medicine, PO Box 801394, Charlottesville, VA 22902.
| | | | | | | | | | | |
Collapse
|
15
|
Yamamura H. [Imaging analyses of ion channel-molecule functions]. Nihon Yakurigaku Zasshi 2013; 142:79-84. [PMID: 23934527 DOI: 10.1254/fpj.142.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
16
|
Yamamura H, Imaizumi Y. Total internal reflection fluorescence imaging of Ca(2+)-induced Ca(2+) release in mouse urinary bladder smooth muscle cells. Biochem Biophys Res Commun 2012; 427:54-9. [PMID: 22975345 DOI: 10.1016/j.bbrc.2012.08.145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/31/2012] [Indexed: 11/30/2022]
Abstract
In smooth muscles (SMs), cytosolic Ca(2+) ([Ca(2+)](cyt)) dynamics during an action potential are triggered by Ca(2+) influx through voltage-dependent Ca(2+) channels (VDCCs) in the plasma membrane. The physiological significance of Ca(2+) amplification by subsequent Ca(2+) release through ryanodine receptors (RyRs) from the sarcoplasmic reticulum (SR) is still a matter of topics in SMs. In the present study, depolarization-evoked local Ca(2+) dynamics in Ca(2+) microdomain were imaged using total internal reflection fluorescence (TIRF) microscopy in mouse urinary bladder SM cells (UBSMCs). Upon depolarization under whole-cell voltage-clamp, the rapid and local elevation of [Ca(2+)](cyt) was followed by larger [Ca(2+)](cyt) increase with propagation occurred in a limited TIRF zone within ~200nm from cell surface. The depolarization-evoked [Ca(2+)](cyt) increase in a TIRF zone was abolished or greatly reduced by the pretreatment with Cd(2+) or ryanodine, respectively. The initial local [Ca(2+)](cyt) increases were mediated by Ca(2+) influx through single or clustered VDCCs as Ca(2+) sparklets, and the following step was elicited by Ca(2+)-induced Ca(2+) release (CICR) through RyR from SR. The depolarization-induced outward currents, mainly due to large-conductance Ca(2+)-activated K(+) channel activation, were also markedly reduced by Cd(2+) and ryanodine. In addition, TIRF analyses showed that the fluorescent signals of individual or clustered VDCC distributed in relatively uniform fashion and that a subset of RyRs in the subplasmalemmal SR also located in TIRF zone. In conclusion, fast TIRF imaging successfully demonstrated two step Ca(2+) events upon depolarization in Ca(2+) microdomain of UBSMCs; the initial Ca(2+) influx as Ca(2+) sparklets through discrete VDCC or their clusters and the following CICR via the activation of loosely coupled RyRs in SR located in the Ca(2+) microdomains.
Collapse
Affiliation(s)
- Hisao Yamamura
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | | |
Collapse
|
17
|
Abstract
OBJECTIVES Pancreatic interstitial cells are located among acini, ducts, nerves, and blood vessels. They are essential for pancreas development, physiology, and for oncogenic microenvironment. We identified cells with characteristic ultrastructural features of telocytes in pancreatic interstitium. Telocytes were initially described as interstitial Cajal-like cells, but it gradually became clear that they were a distinct novel cell type not directly related to canonical interstitial Cajal cells. METHODS Serial ultrathin sections of human pancreatic tissue were studied by transmission electron microscopy. Computer analysis software was used to obtain 2-dimensional compositions from serial micrographs and to perform morphometry. RESULTS Pancreatic telocytes appear as small-body cells with prolongations called telopodes. The ultrastructural features of telopodes are the following: (a) number: 1 to 3; (b) length: tens of micrometers; (c) moniliform aspect: with podoms (thicker portions) and podomers (thin segments, with a mean width of 60 nm, undetectable by light microscopy); (d) dichotomous branching forming a network; (e) establish homocellular and heterocellular junctions; (f) release of microvesicles/multivesicular bodies. Telopodes pass close to blood vessels, nerves, and pancreatic acinar cells and ducts. CONCLUSIONS Telocytes are present as distinct interstitial cells in the exocrine pancreatic stroma. They act as important players in intercellular signaling via stromal synapses and shed vesicle transfer.
Collapse
|
18
|
Gherghiceanu M, Barad L, Novak A, Reiter I, Itskovitz-Eldor J, Binah O, Popescu LM. Cardiomyocytes derived from human embryonic and induced pluripotent stem cells: comparative ultrastructure. J Cell Mol Med 2012; 15:2539-51. [PMID: 21883888 PMCID: PMC3822963 DOI: 10.1111/j.1582-4934.2011.01417.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Induced pluripotent stem cells (iPSC) are generated from fully differentiated somatic cells that were reprogrammed into a pluripotent state. Human iPSC which can be obtained from various types of somatic cells such as fibroblasts or keratinocytes can differentiate into cardiomyocytes (iPSC-CM), which exhibit cardiac-like transmembrane action potentials, intracellular Ca2+ transients and contractions. While major features of the excitation-contraction coupling of iPSC-CM have been well-described, very little is known on the ultrastructure of these cardiomyocytes. The ultrastructural features of 31-day-old (post-plating) iPSC-CM generated from human hair follicle keratinocytes (HFKT-iPSC-CM) were analysed by electron microscopy, and compared with those of human embryonic stem-cell-derived cardiomyocytes (hESC-CM). The comparison showed that cardiomyocytes from the two sources share similar proprieties. Specifically, HFKT-iPSC-CM and hESC-CM, displayed ultrastructural features of early and immature phenotype: myofibrils with sarcomeric pattern, large glycogen deposits, lipid droplets, long and slender mitochondria, free ribosomes, rough endoplasmic reticulum, sarcoplasmic reticulum and caveolae. Noteworthy, the SR is less developed in HFKT-iPSC-CM. We also found in both cell types: (1) ‘Ca2+-release units’, which connect the peripheral sarcoplasmic reticulum with plasmalemma; and (2) intercellular junctions, which mimic intercalated disks (desmosomes and fascia adherens). In conclusion, iPSC and hESC differentiate into cardiomyocytes of comparable ultrastructure, thus supporting the notion that iPSC offer a viable option for an autologous cell source for cardiac regenerative therapy.
Collapse
|
19
|
Cipriani G, Serboiu CS, Gherghiceanu M, Faussone-Pellegrini MS, Vannucchi MG. NK receptors, Substance P, Ano1 expression and ultrastructural features of the muscle coat in Cav-1(-/-) mouse ileum. J Cell Mol Med 2012; 15:2411-20. [PMID: 21535398 PMCID: PMC3822952 DOI: 10.1111/j.1582-4934.2011.01333.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Caveolin (Cav)-1 is an integral membrane protein of caveolae playing a crucial role in various signal transduction pathways. Caveolae represent the sites for calcium entry and storage especially in smooth muscle cells (SMC) and interstitial cells of Cajal (ICC). Cav-1−/− mice lack caveolae and show abnormalities in pacing and contractile activity of the small intestine. Presently, we investigated, by transmission electron microscopy (TEM) and immunohistochemistry, whether the absence of Cav-1 in Cav-1−/− mouse small intestine affects ICC, SMC and neuronal morphology, the expression of NK1 and NK2 receptors, and of Ano1 (also called Dog1 or TMEM16A), an essential molecule for slow wave activity in gastrointestinal muscles. ICC were also labelled with c-Kit and tachykinergic neurons with Substance P (SP). In Cav-1−/− mice: (i) ICC were Ano1-negative but maintained c-Kit expression, (ii) NK1 and NK2 receptor immunoreactivity was more intense and, in the SMC, mainly intracytoplasmatic, (iii) SP-immunoreactivity was significantly reduced. Under TEM: (i) ICC, SMC and telocytes lacked typical caveolae but had few and large flask-shaped vesicles we called large-sized caveolae; (ii) SMC and ICC contained an extraordinary high number of mitochondria, (iii) neurons were unchanged. To maintain intestinal motility, loss of caveolae and reduced calcium availability in Cav-1–knockout mice seem to be balanced by a highly increased number of mitochondria in ICC and SMC. Loss of Ano-1 expression, decrease of SP content and consequently overexpression of NK receptors suggest that all these molecules are Cav-1–associated proteins.
Collapse
Affiliation(s)
- G Cipriani
- Department of Anatomy, Histology and Forensic Medicine, Section of Histology, University of Florence, Florence, Italy
| | | | | | | | | |
Collapse
|
20
|
Lowalekar SK, Cristofaro V, Radisavljevic ZM, Yalla SV, Sullivan MP. Loss of bladder smooth muscle caveolae in the aging bladder. Neurourol Urodyn 2012; 31:586-92. [PMID: 22374691 DOI: 10.1002/nau.21217] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/15/2011] [Indexed: 12/16/2022]
Abstract
AIMS Caveolae are specialized regions of the cell membrane that modulate signal transduction and alterations in these structures affect bladder smooth muscle (BSM) contraction. Since bladder dysfunctions are common in the elderly, we evaluated the effect of aging on the morphology of caveolae and caveolin protein expression in BSM. METHODS Caveolar morphology (number, size, and depth) in BSM was determined from electron microscopy images of young (10 weeks), adult (6-month old), and old (12-month old) rat urinary bladders. Changes in expression levels of caveolin proteins with age were investigated by Western blot and immunofluorescence microscopy. Caveolin-3 gene expression was determined by real-time RT-PCR in young and 19-month-old rat bladders. RESULTS Twelve-month-old animals exhibited 50% fewer BSM caveolae compared to young (P < 0.01). The area of caveolae was significantly decreased at 6 and 12 months. Despite a decrease in the number of BSM caveolae at 12 months, the expression of caveolin-1 and cavin-1 were unaltered with age. In contrast, caveolin-2 and caveolin-3 protein expression and immunoreactivity were reduced in BSM at 6 and 12 months of age. Caveolin-3 gene expression was also downregulated at 19 months compared to young animals. CONCLUSION Biological aging significantly decreases BSM caveolae number and morphology with associated selective alteration in caveolin protein expression. Since caveolae are protected membrane regions that regulate signal transduction, age-related alterations in caveolae and caveolin protein expression could alter BSM contractility resulting in bladder dysfunctions of the elderly.
Collapse
Affiliation(s)
- Samar K Lowalekar
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
21
|
Yamamura H, Ikeda C, Suzuki Y, Ohya S, Imaizumi Y. Molecular assembly and dynamics of fluorescent protein-tagged single KCa1.1 channel in expression system and vascular smooth muscle cells. Am J Physiol Cell Physiol 2012; 302:C1257-68. [PMID: 22301058 DOI: 10.1152/ajpcell.00191.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The large-conductance Ca(2+)-activated K(+) (K(Ca)1.1, BK) channel has pivotal roles in the regulation of vascular tone. To clarify the molecular dynamics of BK channels and their functionally coupled protein on the membrane surface, we examined single-molecule imaging of fluorescent-labeled BK subunits in the plasma membrane using total internal reflection fluorescence (TIRF) microscopy. The dynamic mobility of yellow fluorescent protein (YFP)-tagged BKα subunit (BKα-YFP) expressed in human embryo kidney 293 (HEK) cells was detected in TIRF regions at the level of individual channels and their clusters on the plasma membrane with a diffusion coefficient of 6.7 × 10(3) nm(2)/s. When BKα-YFP was coexpressed with cyan fluorescent protein (CFP)-tagged BKβ1 subunit (BKβ1-CFP) in HEK cells, the mobility was reduced by ∼50%. Fluorescent image analyses suggest that green fluorescent protein (GFP)-tagged BKα subunit (BKα-GFP) expressed in vascular smooth muscle cells (VSMCs), at low density, preferentially formed a heterotetrameric molecular assembly with native BKα subunits, rather than homotetrameric BKα-GFP. Movement of BKα-YFP in VSMCs (0.29 × 10(3) nm(2)/s) was far more restricted than BKα-YFP/BKβ1-CFP in HEK cells (2.5 × 10(3) nm(2)/s). Actin disruption by pretreatment with cytochalasin D in VSMCs appeared to increase the mobile behavior of BKα-YFP, which was then significantly reduced by addition of jasplakinolide. Most BKα-YFP colocalized with caveolin 1 (Cav1)-CFP in VSMCs, but unexpectedly not frequently in HEK cells. Fluorescence resonance energy transfer analyses showed the direct interaction between BKα-YFP and Cav1-CFP, particularly in VSMCs. These results, obtained by single molecule imaging in living cells, indicate that the dynamics of BKα molecules on the membrane surface are strongly restricted or regulated by its auxiliary β-subunit, cytoskeleton, and direct interaction with Cav1 in VSMCs.
Collapse
Affiliation(s)
- Hisao Yamamura
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Japan
| | | | | | | | | |
Collapse
|
22
|
Gonzales AL, Earley S. Endogenous cytosolic Ca(2+) buffering is necessary for TRPM4 activity in cerebral artery smooth muscle cells. Cell Calcium 2012; 51:82-93. [PMID: 22153976 PMCID: PMC3265659 DOI: 10.1016/j.ceca.2011.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/28/2011] [Accepted: 11/14/2011] [Indexed: 10/14/2022]
Abstract
The melastatin transient receptor potential (TRP) channel, TRPM4, is a critical regulator of smooth muscle membrane potential and arterial tone. Activation of the channel is Ca(2+)-dependent, but prolonged exposures to high global Ca(2+) causes rapid inactivation under conventional whole-cell patch clamp conditions. Using amphotericin B perforated whole cell patch clamp electrophysiology, which minimally disrupts cytosolic Ca(2+) dynamics, we recently showed that Ca(2+) released from 1,2,5-triphosphate receptors (IP(3)R) on the sarcoplasmic reticulum (SR) activates TRPM4 channels, producing sustained transient inward cation currents (TICCs). Thus, Ca(2+)-dependent inactivation of TRPM4 may not be inherent to the channel itself but rather is a result of the recording conditions. We hypothesized that under conventional whole-cell configurations, loss of intrinsic cytosolic Ca(2+) buffering following cell dialysis contributes to inactivation of TRPM4 channels. With the inclusion of the Ca(2+) buffers ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA, 10mM) or bis-ethane-N,N,N',N'-tetraacetic acid (BAPTA, 0.1mM) in the pipette solution, we mimic endogenous Ca(2+) buffering and record novel, sustained whole-cell TICC activity from freshly-isolated cerebral artery myocytes. Biophysical properties of TICCs recorded under perforated and whole-cell patch clamp were nearly identical. Furthermore, whole-cell TICC activity was reduced by the selective TRPM4 inhibitor, 9-phenanthrol, and by siRNA-mediated knockdown of TRPM4. When a higher concentration (10mM) of BAPTA was included in the pipette solution, TICC activity was disrupted, suggesting that TRPM4 channels on the plasma membrane and IP(3)R on the SR are closely opposed but not physically coupled, and that endogenous Ca(2+) buffer proteins play a critical role in maintaining TRPM4 channel activity in native cerebral artery smooth muscle cells.
Collapse
Affiliation(s)
- Albert L Gonzales
- Vascular Physiology Research Group, Department of Biomedical Sciences Colorado State University Fort Collins, CO 80523-1617, USA
| | | |
Collapse
|
23
|
Caveolae and the regulation of endocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 729:14-28. [PMID: 22411311 DOI: 10.1007/978-1-4614-1222-9_2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Although clathrin-mediated endocytosis constitutes the main pathway for internalization of extracellular ligands and plasma membrane components it has generally been accepted that other uptake mechanisms-caveolae-mediated and noncaveolar raft-dependent endocytosis-also exist. During the last 20 years many papers have been published about caveolar endocytosis. These studies have fundamentally changed our view about the endocytotic role of caveolae. Views that caveolae are permanently static structures1 have been extensively considered and rejected. Although the initial steps leading to the pinching off of caveolae from the plasma membrane have been studied in details, there are still contradictory data about the intracellular trafficking of caveolae. It is still not entirely clear whether caveolar endocytosis represents an uptake pathway with distinct cellular compartments to avoid lysosomal degradation or ligands taken up by caveolae can also be targeted to late endosomes/lysosomes.In this chapter, we summarize the data available about caveolar endocytosis focusing on the intracellular route of caveolae and we provide data supporting that caveolar endocytosis can join the classical endocytotic pathway.
Collapse
|
24
|
Wang JN, Shi N, Chen SY. Manganese superoxide dismutase inhibits neointima formation through attenuation of migration and proliferation of vascular smooth muscle cells. Free Radic Biol Med 2012; 52:173-81. [PMID: 22062629 PMCID: PMC3356780 DOI: 10.1016/j.freeradbiomed.2011.10.442] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/13/2011] [Accepted: 10/15/2011] [Indexed: 11/28/2022]
Abstract
Superoxide anion is elevated during neointima development and is essential for neointimal vascular smooth muscle cell (VSMC) proliferation. However, little is known about the role of manganese superoxide dismutase (MnSOD, SOD2) in the neointima formation following vascular injury. SOD2 in the mitochondria plays an important role in cellular defense against oxidative damage. Because of its subcellular localization, SOD2 is considered the first line of defense against oxidative stress and plays a central role in metabolizing superoxide. Because mitochondria are the most important sources of superoxide anion, we speculated that SOD2 may have therapeutic benefits in preventing vascular remodeling. In this study, we used a rat carotid artery balloon-injury model and an adenoviral gene delivery approach to test the hypothesis that SOD2 suppresses vascular lesion formation. SOD2 was activated along with the progression of neointima formation in balloon-injured rat carotid arteries. Depletion of SOD2 by RNA interference markedly promoted the lesion formation, whereas SOD2 overexpression suppressed the injury-induced neointima formation via attenuation of migration and proliferation of VSMCs. SOD2 exerts its inhibitory effect on VSMC migration induced by angiotensin II by scavenging superoxide anion and suppressing the phosphorylation of Akt. Our data indicate that SOD2 is a negative modulator of vascular lesion formation after injury. Therefore, SOD2 augmentation may be a promising therapeutic strategy for the prevention of lesion formation in proliferative vascular diseases such as restenosis.
Collapse
Affiliation(s)
- Jia-Ning Wang
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Ning Shi
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
| | - Shi-You Chen
- Department of Physiology & Pharmacology, University of Georgia, Athens, GA 30602, USA
- Corresponding author. Fax: +1 706 5423015. (S.-Y. Chen)
| |
Collapse
|
25
|
Gosens R, Stelmack GL, Bos ST, Dueck G, Mutawe MM, Schaafsma D, Unruh H, Gerthoffer WT, Zaagsma J, Meurs H, Halayko AJ. Caveolin-1 is required for contractile phenotype expression by airway smooth muscle cells. J Cell Mol Med 2011; 15:2430-42. [PMID: 21199324 PMCID: PMC3822954 DOI: 10.1111/j.1582-4934.2010.01246.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 12/14/2010] [Indexed: 12/18/2022] Open
Abstract
Airway smooth muscle cells exhibit phenotype plasticity that underpins their ability to contribute both to acute bronchospasm and to the features of airway remodelling in chronic asthma. A feature of mature, contractile smooth muscle cells is the presence of abundant caveolae, plasma membrane invaginations that develop from the association of lipid rafts with caveolin-1, but the functional role of caveolae and caveolin-1 in smooth muscle phenotype plasticity is unknown. Here, we report a key role for caveolin-1 in promoting phenotype maturation of differentiated airway smooth muscle induced by transforming growth factor (TGF)-β(1). As assessed by Western analysis and laser scanning cytometry, caveolin-1 protein expression was selectively enriched in contractile phenotype airway myocytes. Treatment with TGF-β(1) induced profound increases in the contractile phenotype markers sm-α-actin and calponin in cells that also accumulated abundant caveolin-1; however, siRNA or shRNAi inhibition of caveolin-1 expression largely prevented the induction of these contractile phenotype marker proteins by TGF-β(1). The failure by TGF-β(1) to adequately induce the expression of these smooth muscle specific proteins was accompanied by a strongly impaired induction of eukaryotic initiation factor-4E binding protein(4E-BP)1 phosphorylation with caveolin-1 knockdown, indicating that caveolin-1 expression promotes TGF-β(1) signalling associated with myocyte maturation and hypertrophy. Furthermore, we observed increased expression of caveolin-1 within the airway smooth muscle bundle of guinea pigs repeatedly challenged with allergen, which was associated with increased contractile protein expression, thus providing in vivo evidence linking caveolin-1 expression with accumulation of contractile phenotype myocytes. Collectively, we identify a new function for caveolin-1 in controlling smooth muscle phenotype; this mechanism could contribute to allergic asthma.
Collapse
Affiliation(s)
- Reinoud Gosens
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
| | - Gerald L Stelmack
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| | - Sophie T Bos
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
| | - Gordon Dueck
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| | - Mark M Mutawe
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| | - Dedmer Schaafsma
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| | - Helmut Unruh
- Section of Thoracic Surgery, University of ManitobaWinnipeg, Manitoba, Canada
| | - William T Gerthoffer
- Department of Pharmacology, University of Nevada School of MedicineReno, NV, USA
| | - Johan Zaagsma
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
| | - Andrew J Halayko
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| |
Collapse
|
26
|
Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res 2011; 345:391-403. [PMID: 21858462 PMCID: PMC3168741 DOI: 10.1007/s00441-011-1229-z] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/21/2011] [Indexed: 12/17/2022]
Abstract
This study describes a novel type of interstitial (stromal) cell — telocytes (TCs) — in the human and mouse respiratory tree (terminal and respiratory bronchioles, as well as alveolar ducts). TCs have recently been described in pleura, epicardium, myocardium, endocardium, intestine, uterus, pancreas, mammary gland, etc. (see www.telocytes.com). TCs are cells with specific prolongations called telopodes (Tp), frequently two to three per cell. Tp are very long prolongations (tens up to hundreds of μm) built of alternating thin segments known as podomers (≤ 200 nm, below the resolving power of light microscope) and dilated segments called podoms, which accommodate mitochondria, rough endoplasmic reticulum and caveolae. Tp ramify dichotomously, making a 3-dimensional network with complex homo- and heterocellular junctions. Confocal microscopy reveals that TCs are c-kit- and CD34-positive. Tp release shed vesicles or exosomes, sending macromolecular signals to neighboring cells and eventually modifying their transcriptional activity. At bronchoalveolar junctions, TCs have been observed in close association with putative stem cells (SCs) in the subepithelial stroma. SCs are recognized by their ultrastructure and Sca-1 positivity. Tp surround SCs, forming complex TC-SC niches (TC-SCNs). Electron tomography allows the identification of bridging nanostructures, which connect Tp with SCs. In conclusion, this study shows the presence of TCs in lungs and identifies a TC-SC tandem in subepithelial niches of the bronchiolar tree. In TC-SCNs, the synergy of TCs and SCs may be based on nanocontacts and shed vesicles.
Collapse
|
27
|
Abstract
The term TELOCYTES was very recently introduced, for replacing the name Interstitial Cajal-Like Cells (ICLC). In fact, telocytes are not really Cajal-like cells, they being different from all other interstitial cells by the presence of telopodes, which are cell-body prolongations, very thin (under the resolving power of light microscopy), extremely long (tens up to hundreds of micrometers), with a moniliform aspect (many dilations along), and having caveolae. The presence of telocytes in epicardium and myocardium was previously documented. We present here electron microscope images showing the existence of telocytes, with telopodes, at the level of mouse endocardium. Telocytes are located in the subendothelial layer of endocardium, and their telopodes are interposed in between the endocardial endothelium and the cardiomyocytes bundles. Some telopodes penetrate from the endocardium among the cardiomyocytes and surround them, eventually. Telopodes frequently establish close spatial relationships with myocardial blood capillaries and nerve endings. Because we may consider endocardium as a 'blood-heart barrier', or more exactly as a 'blood-myocardium barrier', telocytes might have an important role in such a barrier being the dominant cell population in subendothelial layer of endocardium.
Collapse
|
28
|
Telocytes in pleura: two- and three-dimensional imaging by transmission electron microscopy. Cell Tissue Res 2010; 343:389-97. [PMID: 21174125 PMCID: PMC3032227 DOI: 10.1007/s00441-010-1095-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 11/18/2010] [Indexed: 01/26/2023]
Abstract
Information about the ultrastructure of connective (interstitial) cells supporting the pleural mesothelium is scarce. Our aim has been to examine whether telocytes (TCs) are present in pleura, as in epicardium and mesentery. TCs are a distinct type of cell, characterized by specific prolongations named telopodes (Tp). We have used transmission electron microscopy (TEM) and electron tomography (ET) to determine whether ultrastructural diagnostic criteria accepted for TCs are fulfilled by any of the cell subpopulations existing in the sub-mesothelial layer in mouse and human pleura. TCs have been identified with TEM by their characteristic prolongations. Tp appear long and moniliform, because of the alternation of podomeres (thin segments of less than 0.2 μm) and podoms (small dilations accommodating caveolae, mitochondria, and endoplasmic reticulum). Tp ramifications follow a dichotomic pattern and establish specialized cell-to-cell junctional complexes. TCs, via their Tp, seem to form an interstitial network beneath the mesothelium, covering about two-thirds of the abluminal mesothelial layer. ET has revealed complex junctional structures and tight junctions connecting pleural TCs, and small vesicles at this level in Tp. Thus, pleural TCs share significant similarities with TCs described in other serosae. Whether TCs are a (major) player in mesothelial-cell-induced tissue repair remains to be established. Nevertheless, the extremely long thin Tp and complex junctional structures that they form and the release of vesicles (or exosomes) indicate the participation of TCs in long-distance homo- or heterocellular communication.
Collapse
|
29
|
Gonzales AL, Amberg GC, Earley S. Ca2+ release from the sarcoplasmic reticulum is required for sustained TRPM4 activity in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 2010; 299:C279-88. [PMID: 20427713 DOI: 10.1152/ajpcell.00550.2009] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The melastatin transient receptor potential (TRP) channel TRPM4 is a critical regulator of vascular smooth muscle cell membrane potential and contractility. Activation of the channel is Ca(2+)-dependent, but prolonged exposure to high (>1 microM) levels of intracellular Ca(2+) causes rapid (within approximately 2 min) desensitization of TRPM4 currents under conventional whole cell and inside-out patch-clamp conditions. The goal of the present study was to establish a novel method to record sustained TRPM4 currents in smooth muscle cells under near-physiological conditions. Using the amphotericin B-perforated patch-clamp technique, we recorded and characterized sustained (up to 30 min) transient inward cation currents (TICCs) in freshly isolated cerebral artery myocytes. In symmetrical cation solutions, TICCs reversed at 0 mV and had an apparent unitary conductance of 25 pS. Replacement of extracellular Na(+) with the nonpermeable cation N-methyl-d-glucamine abolished the current. TICC activity was attenuated by the TRPM4 blockers fluflenamic acid and 9-phenanthrol. Selective silencing of TRPM4 expression using small interfering RNA diminished TICC activity, suggesting that the molecular identity of the responsible ion channel is TRPM4. We used the perforated patch-clamp method to test the hypothesis that TRPM4 is activated by intracellular Ca(2+) signaling events. We found that TICC activity is independent of Ca(2+) influx and ryanodine receptor activity but is attenuated by sarco(endo)plasmic reticulum Ca(2+)-ATPase inhibition and blockade of inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) release from the sarcoplasmic reticulum. Our findings suggest that TRPM4 channels in cerebral artery myocytes are regulated by Ca(2+) release from inositol 1,4,5-trisphosphate receptor on the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Albert L Gonzales
- Vascular Physiology Research Group, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1617, USA
| | | | | |
Collapse
|
30
|
Abstract
Ca2+-ATPases (pumps) are key actors in the regulation of Ca2+ in eukaryotic cells and are thus essential to the correct functioning of the cell machinery. They have high affinity for Ca2+ and can efficiently regulate it down to very low concentration levels. Two of the pumps have been known for decades (the SERCA and PMCA pumps); one (the SPCA pump) has only become known recently. Each pump is the product of a multigene family, the number of isoforms being further increased by alternative splicing of the primary transcripts. The three pumps share the basic features of the catalytic mechanism but differ in a number of properties related to tissue distribution, regulation, and role in the cellular homeostasis of Ca2+. The molecular understanding of the function of the pumps has received great impetus from the solution of the three-dimensional structure of one of them, the SERCA pump. These spectacular advances in the structure and molecular mechanism of the pumps have been accompanied by the emergence and rapid expansion of the topic of pump malfunction, which has paralleled the rapid expansion of knowledge in the topic of Ca2+-signaling dysfunction. Most of the pump defects described so far are genetic: when they are very severe, they produce gross and global disturbances of Ca2+ homeostasis that are incompatible with cell life. However, pump defects may also be of a type that produce subtler, often tissue-specific disturbances that affect individual components of the Ca2+-controlling and/or processing machinery. They do not bring cells to immediate death but seriously compromise their normal functioning.
Collapse
|
31
|
Tong WC, Sweeney M, Jones CJP, Zhang H, O'Neill SC, Prior I, Taggart MJ. Three-dimensional electron microscopic reconstruction of intracellular organellar arrangements in vascular smooth muscle--further evidence of nanospaces and contacts. J Cell Mol Med 2009; 13:995-8. [PMID: 19426151 PMCID: PMC3823414 DOI: 10.1111/j.1582-4934.2009.00770.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The sarcoplasmic reticulum (SR) of smooth muscle is crucial for appropriate regulation of Ca2+ signalling. In visceral and vascular smooth muscles the SR is known to periodically lie in close register, within a few nanometres, to the plasma membrane. Recent work has focussed on reconstructions of the ultrastructural arrangement of this so-called peripheral SR that may be important for the genesis of phenomena such as Ca2+ sparks. Here, we turn our attention to vascular smooth muscle and explore the 3-dimensional (3D) ultrastructural positioning of SR found deeper in the cell that is involved in the propagation of Ca2+ waves. We use digital reconstruction and volume rendering of serial electron microscopic sections from isolated resistance arteries, pressurized in vitro to mimic cellular geometric conformations anticipated in vivo, to map SR positioning. We confirm that these central portions of SR are in close register with mitochondria and the nucleus with all three organelles tightly enveloped by a myofilament/cytoskeletal lattice. Nanospacings between the SR and individual mitochondria are visible and in three dimensions as the SR contorts to accommodate these organelles. Direct connection of the SR and nuclear membranes is confirmed. Such 3D positioning of centrally located SR further informs us of its likely role in the manifestation of spatiotemporal Ca2+ dynamics: signal encoding may be facilitated by spatially directed release of Ca2+ to influence several processes crucial to vascular smooth muscle and resistance artery function including myofilament activation by Ca2+ waves, mitochondrial respiration and gene transcription.
Collapse
Affiliation(s)
- Wing Chiu Tong
- Institute of Membrane & Systems Biology, University of Leeds, Leeds, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Kiss AL, Botos E. Endocytosis via caveolae: alternative pathway with distinct cellular compartments to avoid lysosomal degradation? J Cell Mol Med 2009; 13:1228-37. [PMID: 19382909 PMCID: PMC4496137 DOI: 10.1111/j.1582-4934.2009.00754.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Endocytosis – the uptake of extracellular ligands, soluble molecules, protein and lipids from the extracellular surface – is a vital process, comprising multiple mechanisms, including phagocytosis, macropinocytosis, clathrin-dependent and clathrin-independent uptake such as caveolae-mediated and non-caveolar raft-dependent endocytosis. The best-studied endocytotic pathway for internalizing both bulk membrane and specific proteins is the clathrin-mediated endocytosis. Although many papers were published about the caveolar endocytosis, it is still not known whether it represents an alternative pathway with distinct cellular compartments to avoid lysosomal degradation or ligands taken up by caveolae can also be targeted to late endosomes/lysosomes. In this paper, we summarize data available about caveolar endocytosis. We are especially focussing on the intracellular route of caveolae and providing data supporting that caveolar endocytosis can join to the classical endocytotic pathway.
Collapse
Affiliation(s)
- Anna L Kiss
- Department of Human Morphology and Developmental Biology, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
33
|
Quintas LEM, Noël F. Mechanisms of adaptive supersensitivity in vas deferens. Auton Neurosci 2009; 146:38-46. [PMID: 19188094 DOI: 10.1016/j.autneu.2009.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/27/2008] [Accepted: 01/06/2009] [Indexed: 10/24/2022]
Abstract
Adaptive supersensitivity is a phenomenon characteristic of excitable tissues and discloses as a compensatory adjustment of tissue's response to unrelated stimulatory endogenous and exogenous substances after chronic interruption of excitatory neurotransmission. The mechanisms underlying such higher postjunctional sensitivity have been postulated for a variety of cell types. In smooth muscles, especially the vas deferens with its rich sympathetic innervation, the mechanisms responsible for supersensitivity are partly understood and appear to be different from one species to another. The present review provides a general understanding of adaptive supersensitivity and emphasizes early and recent information about the putative mechanisms involved in this phenomenon in rodent vas deferens.
Collapse
Affiliation(s)
- Luis Eduardo M Quintas
- Laboratório de Farmacologia Bioquímica e Molecular, ICB, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, J-17, Rio de Janeiro 21941-902, Brazil.
| | | |
Collapse
|
34
|
Gherghiceanu M, Hinescu ME, Popescu LM. Myocardial interstitial Cajal-like cells (ICLC) in caveolin-1 KO mice. J Cell Mol Med 2009; 13:202-6. [PMID: 19175701 PMCID: PMC3823047 DOI: 10.1111/j.1582-4934.2008.00615.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 12/22/2008] [Indexed: 11/29/2022] Open
Abstract
Abstract We compared, by transmission electron microscopy (TEM), the ultrastructure of interstitial Cajal-like cells (ICLC) in normal mammalian myocardium versus caveolin-1 null mice. TEM showed that myocardial ICLCs of caveolin-1-deficient mice retain their main ultrastructural characteristics, for example, location among cardiomyocytes, close vicinity to nerves and/or blood capillaries, specialized cell-to-cell junctions, presence of 2-3 typical processes, which are very long (several tens of micrometres), but are very thin (0.1-0.2 microm) and moniliform. However, the most striking modification of myocardial ICLC in caveolin-1 KO mice was the absence of caveolae. Beyond this main observation, three other findings could be reported: (1) the absence of caveolae in capillary endothelium, (2) persistence of (some) caveolae at the level of cardiomyocte sarcolemma or vascular smooth muscle cell sarcolemma and (3) (un)expected ultrastructural modifications such as increased thickness of capillary basement membrane and increased autophagy of several cardiomyocytes.
Collapse
Affiliation(s)
- M Gherghiceanu
- ‘Victor Babes’ National Institute of Pathology, Bucharest, Romania
| | - M E Hinescu
- ‘Victor Babes’ National Institute of Pathology, Bucharest, Romania
- Department of Cellular and Molecular Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest, Romania
| | - L M Popescu
- ‘Victor Babes’ National Institute of Pathology, Bucharest, Romania
- Department of Cellular and Molecular Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, Bucharest, Romania
- ‘I. Cantacuzino’ Institute, Bucharest, Romania
| |
Collapse
|
35
|
El-Yazbi AF, Cho WJ, Schulz R, Daniel EE. Calcium extrusion by plasma membrane calcium pump is impaired in caveolin-1 knockout mouse small intestine. Eur J Pharmacol 2008; 591:80-7. [PMID: 18634779 DOI: 10.1016/j.ejphar.2008.06.098] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 06/14/2008] [Accepted: 06/22/2008] [Indexed: 12/12/2022]
Abstract
Plasma membrane calcium ATPase (PMCA) is an important calcium extrusion mechanism in smooth muscle cells. PMCA4 is the predominant isoform operating in conditions of high intracellular calcium during contraction. PMCA appears to be localized in lipid rafts and caveolae. In this study we examined the effects of the PMCA4-selective inhibitor caloxin 1c2 (5 microM) in intestine of caveolin-1 knockout mice and in bovine tracheal smooth muscle after caveolae disruption on PMCA4 function. Small intestinal tissues from control mice treated with caloxin 1c2 showed a higher contractile response of the longitudinal smooth muscle to Carbachol (10 microM) when compared to control tissues treated with a similar concentration of a control peptide. This effect of caloxin 1c2 was not found in tissues from caveolin-1 knockout mice. Immunohistochemistry and Western blotting of membrane fractions showed that PMCA was co-localized with caveolin-1 in smooth muscle plasma membrane in control tissues. One of the PMCA4 splice variant bands was missing in the lipid raft-enriched fraction prepared from caveolin-1 knockout tissue. In bovine tracheal smooth muscle tissue, caveolae disruption by cholesterol depletion led to the diminution of caveolin-1 and PMCA4b immunoreactivities, previously co-localized in the smooth muscle plasma membrane, and to the loss of the increase in Carbachol-induced contraction by caloxin 1c2. Our results suggest that the calcium removal function of PMCA4 in smooth muscle cells is dependent on its presence in intact caveolae. We suggest that this is due to the close spatial arrangement that allows calcium extrusion from a privileged cytosolic space between caveolae and sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
36
|
Gherghiceanu M, Popescu LM. Electron microscope tomography: further demonstration of nanocontacts between caveolae and smooth muscle sarcoplasmic reticulum. J Cell Mol Med 2008; 11:1416-8. [PMID: 18205711 PMCID: PMC4401299 DOI: 10.1111/j.1582-4934.2007.00166.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A spatial relationship between caveolae and sarcoplasmic reticulum (SR) in smooth muscle cells (SMC) was previously reported in computer-assisted three-dimensional reconstruction from transmission electron microscope serial sections. The knowledge of the three-dimensional organization of the cortical space of SMC is essential to understand caveolae function at the cellular level. Cellular tomography using transmission electron microscopy tomography (EMT) is the only available technology to reliably chart the inside of a cell and is therefore an essential technology in the study of organellar nanospatial relationships. Using EMT we further demonstrate here that caveolae and peripheral SR in visceral SMC build constantly spatial units, presumably responsible for a vectorial control of free Ca2+ cytoplasmic concentrations in definite nanospaces.
Collapse
|
37
|
El-Yazbi AF, Cho WJ, Cena J, Schulz R, Daniel EE. Smooth muscle NOS, colocalized with caveolin-1, modulates contraction in mouse small intestine. J Cell Mol Med 2008; 12:1404-15. [PMID: 18400048 PMCID: PMC3865682 DOI: 10.1111/j.1582-4934.2008.00335.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neuronal nitric oxide synthase (nNOS) in myenteric neurons is activated during peristalsis to produce nitric oxide which relaxes intestinal smooth muscle. A putative nNOS is also found in the membrane of intestinal smooth muscle cells in mouse and dog. In this study we studied the possible functions of this nNOS expressed in mouse small intestinal smooth muscle colocalized with caveolin-1(Cav-1). Cav-1 knockout mice lacked nNOS in smooth muscle and provided control tissues. 60 mM KCl was used to increase intracellular [Ca2+] through L-type Ca2+ channel opening and stimulate smooth muscle NOS activity in intestinal tissue segments. An additional contractile response to LNNA (100 μM, NOS inhibitor) was observed in KCl-contracted tissues from control mice and was almost absent in tissues from Cav-1 knockout mice. Disruption of caveolae with 40 mM methyl-β cyclodextrin in tissues from control mice led to the loss of Cav-1 and nNOS immunoreactivity from smooth muscle as shown by immunohistochemistry and a reduction in the response of these tissues to N-ω-nitro-L-arginine (LNNA). Reconstitution of membrane cholesterol using water soluble cholesterol in the depleted segments restored the immunoreactivity and the response to LNNA added after KCl. Nicardipine (1 μM) blocked the responses to KCl and LNNA confirming the role of L-type Ca2+ channels. ODQ (1 μM, soluble guanylate cyclase inhibitor) had the same effect as inhibition of NOS following KCl. We conclude that the activation of nNOS, localized in smooth muscle caveolae, by calcium entering through L-type calcium channels triggers nitric oxide production which modulates muscle contraction by a cGMP-dependent mechanism.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
38
|
Méndez-Bolaina E, Sánchez-González J, Ramírez-Sánchez I, Ocharán-Hernández E, Núñez-Sánchez M, Meaney-Mendiolea E, Meaney A, Asbun-Bojalil J, Miliar-García A, Olivares-Corichi I, Ceballos-Reyes G. Effect of caveolin-1 scaffolding peptide and 17β-estradiol on intracellular Ca2+ kinetics evoked by angiotensin II in human vascular smooth muscle cells. Am J Physiol Cell Physiol 2007; 293:C1953-61. [DOI: 10.1152/ajpcell.00519.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Caveolae are identifiable plasma membrane invaginations. The main structural proteins of caveolae are the caveolins. There are three caveolins expressed in mammals, designated Cav-1, Cav-2, and Cav-3. It has been postulated that Cav-1 acts as a scaffold protein for signaling proteins; these include ion channels, enzymes, and other ligand receptors like membrane-associated estrogen receptor (ER)α or ERβ. Caveolae-associated membrane proteins are involved in regulating some of the rapid estrogenic effects of 17β-estradiol. One important system related to the activity of ERα and caveolae is the renin-angiotensin system. Angiotensin II (ANG II) has numerous actions in vascular smooth muscle, including modulation of vasomotor tone, cell growth, apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt activation, and others. Many proteins associated with caveolae are in close relation with the scaffolding domain of Cav-1 (82–101 amino acid residues). It has been proposed that this peptide may acts as a kinase inhibitor. Therefore, to explore the ability of Cav-1 scaffolding peptide (CSP-1) to regulate ANG II function and analyze the relationship between ERα and ANG II type 1 and 2 (AT1 and AT2) receptors, we decided to study the effects of CSP-1 on ANG II-induced intracellular Ca2+ kinetics and the effect of 17β-estradiol on this modulation using human smooth muscle cells in culture, intracellular Ca2+ concentration measurements, immuno- and double-immunocytochemistry confocal analysis of receptor expression, immunoblot analysis, and immunocoprecipitation assays to demonstrate coexpression. We hypothesized that CSP-1 inhibits ANG II-mediated increases in intracellular Ca2+ concentrations by interfering with intracellular signaling including the PI3K/Akt pathway. We also hypothesize that AT2 receptors associate with Cav-1. Our results show that there is a close association of AT1, AT2, and ERα with Cav-1 in human arterial smooth muscle cells in culture. CSP-1 inhibits ANG II-induced intracellular signaling.
Collapse
|
39
|
Zhang F, Pasumarthi KBS. Ultrastructural and immunocharacterization of undifferentiated myocardial cells in the developing mouse heart. J Cell Mol Med 2007; 11:552-60. [PMID: 17635645 PMCID: PMC3922360 DOI: 10.1111/j.1582-4934.2007.00044.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The recent discovery of several myogenic cardiac progenitor cells in the post-natal heart suggests that some myocardial cells may remain undifferentiated during embryonic development. In this study, we examined the subcellular characteristics of the embryonic (E) mouse ventricular myocardial cells using transmission electron microscopy (TEM). At the ultrastructural level, we identified three different cell populations within the myocardial layer of the E11.5 heart. These cells were designated as undifferentiated cells (43 ± 6%), moderately differentiated cells (43 ± 2%) and mature cardiomyocytes (14 ± 4%). Undifferentiated cells contained a large nucleus and sparse cytoplasm with no myofibrillar bundles. Moderately differentiated cells contained randomly arranged myofilaments in the cytoplasm. In contrast, mature cardiomyocytes contained well-developed sarcomere structures. We also confirmed the presence of similar undifferentiated cells albeit at low levels in the E16.5 (∼20%) and E18.5 (∼7%) myocardium. Further we used immunogold labeling technique to test whether these distinct cell populations were also positive for markers such as Nkx2.5, ISL1 and ANF. A preponderance of anti-Nkx2.5 label was found in the undifferentiated and moderately differentiated cell types. Anti-ANF label was found only in the cytoplasmic compartment of moderately differentiated and mature myocardial cells. All of the undifferentiated cells were negative for anti-ANF labeling. We did not find immuno-gold labeling with ISL1 in any of the three myocardial cell types. Based on these results, we suggest that embryonic myocardial cell differentiation is a gradual process and undifferentiated cells expressing Nkx2.5 in post-chamber myocardium may represent a progenitor cell population while cells expressing Nkx2.5 and ANF represent differentiating myocytes.
Collapse
Affiliation(s)
- Feixiong Zhang
- *Correspondence to: Kishore B.S. PASUMARTHI Department of Pharmacology, Dalhousie University, Sir Charles Tupper Building, 5850 College Street, Halifax, NS B3H 1X5 Canada. Tel.: 902 494 2681 Fax: 902 494 1388 E-mail:
| | - Kishore BS Pasumarthi
- *Correspondence to: Kishore B.S. PASUMARTHI Department of Pharmacology, Dalhousie University, Sir Charles Tupper Building, 5850 College Street, Halifax, NS B3H 1X5 Canada. Tel.: 902 494 2681 Fax: 902 494 1388 E-mail:
| |
Collapse
|