1
|
Letafati A, Taghiabadi Z, Zafarian N, Tajdini R, Mondeali M, Aboofazeli A, Chichiarelli S, Saso L, Jazayeri SM. Emerging paradigms: unmasking the role of oxidative stress in HPV-induced carcinogenesis. Infect Agent Cancer 2024; 19:30. [PMID: 38956668 PMCID: PMC11218399 DOI: 10.1186/s13027-024-00581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 07/04/2024] Open
Abstract
The contribution of the human papillomavirus (HPV) to cancer is significant but not exclusive, as carcinogenesis involves complex mechanisms, notably oxidative stress. Oxidative stress and HPV can independently cause genome instability and DNA damage, contributing to tumorigenesis. Oxidative stress-induced DNA damage, especially double-strand breaks, aids in the integration of HPV into the host genome and promotes the overexpression of two viral proteins, E6 and E7. Lifestyle factors, including diet, smoking, alcohol, and psychological stress, along with genetic and epigenetic modifications, and viral oncoproteins may influence oxidative stress, impacting the progression of HPV-related cancers. This review highlights various mechanisms in oxidative-induced HPV-mediated carcinogenesis, including altered mitochondrial morphology and function leading to elevated ROS levels, modulation of antioxidant enzymes like Superoxide Dismutase (SOD), Glutathione (GSH), and Glutathione Peroxidase (GPx), induction of chronic inflammatory environments, and activation of specific cell signaling pathways like the Phosphoinositide 3-kinase, Protein kinase B, Mammalian target of rapamycin (PI3K/AKT/mTOR) and the Extracellular signal-regulated kinase (ERK) signaling pathway. The study highlights the significance of comprehending and controlling oxidative stress in preventing and treating cancer. We suggested that incorporating dietary antioxidants and targeting cancer cells through mechanisms involving ROS could be potential interventions to mitigate the impact of oxidative stress on HPV-related malignancies.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Taghiabadi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Negar Zafarian
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Roxana Tajdini
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mozhgan Mondeali
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Amir Aboofazeli
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology, Vittorio Erspamer", Sapienza University, Rome, Italy.
| | - Seyed Mohammad Jazayeri
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
2
|
Lee JY, Bhandare RR, Boddu SHS, Shaik AB, Saktivel LP, Gupta G, Negi P, Barakat M, Singh SK, Dua K, Chellappan DK. Molecular mechanisms underlying the regulation of tumour suppressor genes in lung cancer. Biomed Pharmacother 2024; 173:116275. [PMID: 38394846 DOI: 10.1016/j.biopha.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates
| | - Afzal B Shaik
- St. Mary's College of Pharmacy, St. Mary's Group of Institutions Guntur, Affiliated to Jawaharlal Nehru Technological University Kakinada, Chebrolu, Guntur, Andhra Pradesh 522212, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Lakshmana Prabu Saktivel
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli 620024, India
| | - Gaurav Gupta
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Al-Jurf, P.O. Box 346, Ajman, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan 302017, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, PO Box 9, Solan, Himachal Pradesh 173229, India
| | - Muna Barakat
- Department of Clinical Pharmacy & Therapeutics, Applied Science Private University, Amman-11937, Jordan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara 144411, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
| |
Collapse
|
3
|
Zhou F, Deng Z, Shen D, Lu M, Li M, Yu J, Xiao Y, Wang G, Qian K, Ju L, Wang X. DLGAP5 triggers proliferation and metastasis of bladder cancer by stabilizing E2F1 via USP11. Oncogene 2024; 43:594-607. [PMID: 38182895 DOI: 10.1038/s41388-023-02932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Bladder cancer (BLCA) is one of the most widespread malignancies worldwide, and displays significant tumor heterogeneity. Understanding the molecular mechanisms exploitable for treating aggressive BLCA represents a crucial objective. Despite the involvement of DLGAP5 in tumors, its precise molecular role in BLCA remains unclear. BLCA tissues exhibit a substantial increase in DLGAP5 expression compared with normal bladder tissues. This heightened DLGAP5 expression positively correlated with the tumor's clinical stage and significantly affected prognosis negatively. Additionally, experiments conducted in vitro and in vivo revealed that alterations in DLGAP5 expression notably influence cell proliferation and migration. Mechanistically, the findings demonstrated that DLGAP5 was a direct binding partner of E2F1 and that DLGAP5 stabilized E2F1 by preventing the ubiquitination of E2F1 through USP11. Furthermore, as a pivotal transcription factor, E2F1 fosters the transcription of DLGAP5, establishing a positive feedback loop between DLGAP5 and E2F1 that accelerates BLCA development. In summary, this study identified DLGAP5 as an oncogene in BLCA. Our research unveils a novel oncogenic mechanism in BLCA and offers a potential target for both diagnosing and treating BLCA.
Collapse
Affiliation(s)
- Fenfang Zhou
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dexin Shen
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengxin Lu
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingxing Li
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingtian Yu
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xinghuan Wang
- Department of Urology, Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Yang Q, Yang B, Chen M. Partner of NOB1 homolog transcriptionally activated by E2F transcription factor 1 promotes the malignant progression and inhibits ferroptosis of pancreatic cancer. CHINESE J PHYSIOL 2023; 66:388-399. [PMID: 37929351 DOI: 10.4103/cjop.cjop-d-23-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies. Partner of NOB1 homolog (PNO1) has been reported to be involved in tumorigenesis. However, the role of PNO1 in PC remains to be elucidated. The purpose of this study was to examine the effects of PNO1 on the progression of PC and the possible mechanism related to E2F transcription factor 1 (E2F1), a transcription factor predicted by the JASPAR database to bind to the PNO1 promoter region and promoted the proliferation of pancreatic ductal adenocarcinoma. First, PNO1 expression in PC tissues and its association with survival rate were analyzed by the Gene Expression Profiling Interactive Analysis database. Western blot and reverse transcription-quantitative polymerase chain reaction were used to evaluate PNO1 expression in several PC cell lines. After PNO1 silencing, cell proliferation, migration, and invasion were measured by colony formation assay, 5-ethynyl-2'-deoxyuridine staining, wound healing, and transwell assays. Then, the lipid reactive oxygen species in PANC-1 cells was estimated by using C11-BODIPY581/591 probe. The levels of glutathione, malondialdehyde, and iron were measured. The binding between PNO1 and E2F1 was confirmed by luciferase and chromatin immunoprecipitation (ChIP) assays. Subsequently, E2F1 was overexpressed in PANC-1 cells with PNO1 knockdown to perform the rescue experiments. Results revealed that PNO1 was highly expressed in PC tissues and PNO1 expression was positively correlated with overall survival rate and disease-free survival rate. Significantly elevated PNO1 expression was also observed in PC cell lines. PNO1 knockdown inhibited the proliferation, migration, and invasion of PANC-1 cells. Moreover, ferroptosis was promoted in PNO1-silenced PANC-1 cells. Results of luciferase and ChIP assays indicated that E2F1 could bind to PNO1 promoter region. Rescue experiments suggested that E2F1 overexpression reversed the impacts of PNO1 depletion on the malignant behaviors and ferroptosis in PANC-1 cells. Summing up, PNO1 transcriptionally activated by E2F1 promotes the malignant progression and inhibits the ferroptosis of PC.
Collapse
Affiliation(s)
- Qin Yang
- Department of Laboratory Medicine, General Hospital of Central Theatre Command, Wuhan, Hubei, China
| | - Bin Yang
- Department of Burn and Plastic Surgery, General Hospital of Central Theatre Command, Wuhan, Hubei, China
| | - Min Chen
- Department of Laboratory Medicine, General Hospital of Central Theatre Command, Wuhan, Hubei, China
| |
Collapse
|
5
|
Tang Y, Dai G, Yang Y, Liu H. GSG2 facilitates the progression of human breast cancer through MDM2-mediated ubiquitination of E2F1. J Transl Med 2023; 21:523. [PMID: 37537694 PMCID: PMC10398932 DOI: 10.1186/s12967-023-04358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/15/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Breast cancer (BC) has posed a great threat to world health as the leading cause of cancer death among women. Previous evidence demonstrated that germ cell-specific gene 2 (GSG2) was involved in the regulation of multiple cancers. Thus, the clinical value, biological function and underlying mechanism of GSG2 in BC were investigated in this study. METHODS The expression of GSG2 in BC was revealed by immunohistochemistry (IHC), qPCR and western blotting. Secondly, the biological function of GSG2 in BC was evaluated by MTT assay, flow cytometry, Transwell assay and wound healing assay. Furthermore, the potential molecular mechanism of GSG2 regulating the progression of BC by co-immunoprecipitation (Co-IP) and protein stability detection. RESULTS Our data indicated that GSG2 was frequently overexpressed in BC. Moreover, there was a significant correlation between the GSG2 expression and the poor prognosis of BC patients. Functionally, GSG2 knockdown inhibited the malignant progression of BC characterized by reduced proliferation, enhanced apoptosis and attenuated tumor growth. Migration inhibition of GSG2 knockdown BC cells via epithelial-mesenchymal transition (EMT), such as downregulation of Vimentin and Snail. In addition, E2F transcription factor 1 (E2F1) was regarded as a target protein of GSG2. Downregulation of E2F1 attenuated the promoting role of GSG2 on BC cells. Mechanistically, knockdown of GSG2 accelerated the ubiquitination of E2F1 protein, which was mediated by E3 ubiquitin ligase MDM2. CONCLUSIONS GSG2 facilitated the development and progression of BC through MDM2-mediated ubiquitination of E2F1, which may be a promising candidate target with potential therapeutic value.
Collapse
Affiliation(s)
- Yu Tang
- Day Ward, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, No. 44 Xianheyan Road, Shenyang, 110042, China
| | - Gaosai Dai
- Department of Breast Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, 250012, Shandong, China
| | - Yupeng Yang
- Department of Thyroid and Breast Surgery, Jinan Zhangqiu District Hospital of TCM, Xiushui Street 1463, Jinan, 250200, Shandong, China
| | - Huantao Liu
- Department of Breast Surgery, Qilu Hospital of Shandong University, No. 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
6
|
Mulla SW, Venkatraman P. Novel Nexus with NFκB, β-catenin, and RB1 empowers PSMD10/Gankyrin to counteract TNF-α induced apoptosis establishing its oncogenic role. Int J Biochem Cell Biol 2022; 146:106209. [PMID: 35378311 DOI: 10.1016/j.biocel.2022.106209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/06/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
Abstract
NFκB is a critical rapid-acting transcription factor that protects cancer cells from programmed cell death induced by stress or therapy. While NFκB works in nexus with non-classical oncoproteins such as STAT3 and AKT under a variety of conditions, it is a major antiapoptotic factor activated by TNF-α of the tumor microenvironment. Therefore, it is surprising that PSMD10, an oncoprotein overexpressed in several cancers and a marker of poor prognosis, is reported to inhibit the NFκB pathway. In this study, we explore the role of PSMD10 in cancer cells exposed to TNF-α. We screen several breast and colon cancer cell lines and select SW480, a colon cancer cell line highly resistant to TNF-α, and demonstrate that PSMD10 knockdown sensitizes these cells to TNF-α induced cell death. One of the mechanisms involves transcriptional regulation of β-catenin and RB1, two key colon cancer cell specific anti-apoptotic factors. Surprisingly, we find that PSMD10 is required for optimal phosphorylation and transcriptional activation of NFκB (RELA). Thus, upon PSMD10 knockdown, there is significant downregulation of anti-apoptotic NFκB target genes TNFAIP3 (A20), BIRC2 (cIAP1), BIRC3 (cIAP2), and XIAP. Our study, for the first time, shows that PSMD10 is required for the activation of the pro-survival arm via NFκB transcriptional activation to prevent cancer cells from succumbing to TNF-induced cell death. In addition by transcriptional regulation of two major antiapoptotic players RB1 and β-catenin, PSMD10 proves to be a coveted oncoprotein with a key role in tumorigenesis.
Collapse
Affiliation(s)
- Saim Wasi Mulla
- Protein Interactome Lab for Structural and Functional Biology, Tata Memorial Centre -Advanced Centre for Treatment Research and Education in Cancer (TMC-ACTREC), Navi Mumbai, India; Homi Bhabha National Institute, Department of Atomic Energy, Mumbai, India
| | - Prasanna Venkatraman
- Protein Interactome Lab for Structural and Functional Biology, Tata Memorial Centre -Advanced Centre for Treatment Research and Education in Cancer (TMC-ACTREC), Navi Mumbai, India; Homi Bhabha National Institute, Department of Atomic Energy, Mumbai, India.
| |
Collapse
|
7
|
Beltran JF, Viafara-Garcia SM, Labrador AP, Basterrechea J. The Role of Periodontopathogens and Oral Microbiome in the Progression of Oral Cancer. A Review. Open Dent J 2021. [DOI: 10.2174/1874210602115010367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic periodontal disease and oral bacteria dysbiosis can lead to the accumulation of genetic mutations that eventually stimulate Oral Squamous Cell Cancer (OSCC). The annual incidence of OSCC is increasing significantly, and almost half of the cases are diagnosed in an advanced stage. Worldwide there are more than 380,000 new cases diagnosed every year, and a topic of extensive research in the last few years is the alteration of oral bacteria, their compositional changes and microbiome. This review aims to establish the relationship between bacterial dysbiosis and OSCC. Several bacteria implicated in periodontal disease, including Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, and some Streptococcus species, promote angiogenesis, cell proliferation, and alteration in the host defense process; these same bacteria have been present in different stages of OSCC. Our review showed that genes involved in bacterial chemotaxis, the lipopolysaccharide (LPS) of the cell wall membrane of gram negatives bacteria, were significantly increased in patients with OSCC. Additionally, some bacterial diversity, particularly with Firmicutes, and Actinobacteria species, has been identified in pre-cancerous stage samples. This review suggests the importance of an early diagnosis and more comprehensive periodontal therapy for patients by the dental care professional.
Collapse
|
8
|
Tsai HC, Wei KC, Chen PY, Huang CY, Chen KT, Lin YJ, Cheng HW, Huang CH, Wang HT. Receptor-Interacting Protein 140 Enhanced Temozolomide-Induced Cellular Apoptosis Through Regulation of E2F1 in Human Glioma Cell Lines. Neuromolecular Med 2021; 24:113-124. [PMID: 34075570 DOI: 10.1007/s12017-021-08667-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/21/2021] [Indexed: 11/28/2022]
Abstract
Glioblastoma (GBM), a grade IV glioma, is responsible for the highest years of potential life lost among cancers. The poor prognosis is attributable to its high recurrence rate, caused in part by the development of resistance to chemotherapy. Receptor-interacting protein 140 (RIP140) is a very versatile coregulator of nuclear receptors and transcription factors. Although many of the pathways regulated by RIP140 contribute significantly to cancer progression, the function of RIP140 in GBM remains to be determined. In this study, we found that higher RIP140 expression was associated with prolonged survival in patients with newly diagnosed GBM. Intracellular RIP140 levels were increased after E2F1 activation following temozolomide (TMZ) treatment, which in turn modulated the expression of E2F1-targeted apoptosis-related genes. Overexpression of RIP140 reduced glioma cell proliferation and migration, induced cellular apoptosis, and sensitized GBM cells to TMZ. Conversely, knockdown of RIP140 increased TMZ resistance. Taken together, our results suggest that RIP140 prolongs the survival of patients with GBM both by inhibiting tumor cell proliferation and migration and by increasing cellular sensitivity to chemotherapy. This study helps improve our understanding of glioma recurrence and may facilitate the development of more effective treatments.
Collapse
Affiliation(s)
- Hong-Chieh Tsai
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.,Graduate Institute of Clinical Medical Sciences and School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei Municipal, Taipei, 236, Taiwan.,Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chiung-Yin Huang
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Ko-Ting Chen
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Ya-Jui Lin
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Hsiao-Wei Cheng
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.,Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.,Department of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chun-Hao Huang
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Hsiang-Tsui Wang
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan. .,Department of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
9
|
Usman S, Jamal A, Teh MT, Waseem A. Major Molecular Signaling Pathways in Oral Cancer Associated With Therapeutic Resistance. FRONTIERS IN ORAL HEALTH 2021; 1:603160. [PMID: 35047986 PMCID: PMC8757854 DOI: 10.3389/froh.2020.603160] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Oral cancer is a sub-category of head and neck cancers that primarily initiates in the oral cavity. The primary treatment option for oral cancer remains surgery but it is associated with massive disfigurement, inability to carry out normal oral functions, psycho-social stress and exhaustive rehabilitation. Other treatment options such as chemotherapy and radiotherapy have their own limitations in terms of toxicity, intolerance and therapeutic resistance. Immunological treatments to enhance the body's ability to recognize cancer tissue as a foreign entity are also being used but they are new and underdeveloped. Although substantial progress has been made in the treatment of oral cancer, its complex heterogeneous nature still needs to be explored, to elucidate the molecular basis for developing resistance to therapeutic agents and how to overcome it, with the aim of improving the chances of patients' survival and their quality of life. This review provides an overview of up-to-date information on the complex role of the major molecules and associated signaling, epigenetic changes, DNA damage repair systems, cancer stem cells and micro RNAs in the development of therapeutic resistance and treatment failure in oral cancer. We have also summarized the current strategies being developed to overcome these therapeutic challenges. This review will help not only researchers but also oral oncologists in the management of the disease and in developing new therapeutic modalities.
Collapse
Affiliation(s)
| | | | | | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
10
|
Wang T, Huang Z, Huang N, Peng Y, Gao M, Wang X, Feng W. Inhibition of KPNB1 Inhibits Proliferation and Promotes Apoptosis of Chronic Myeloid Leukemia Cells Through Regulation of E2F1. Onco Targets Ther 2019; 12:10455-10467. [PMID: 31819526 PMCID: PMC6896920 DOI: 10.2147/ott.s210048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023] Open
Abstract
Background Karyopherin-β1 (KPNB1) belongs to the karyopherin superfamily, which functions as shuttling proteins from the cytoplasm to nuclear. A high level of KPNB1 has been reported in various cancers which promotes cell proliferation and inhibits apoptosis. However, the role of KPNB1 in chronic myeloid leukemia (CML) remains uncertain. Methods Expression level of KPNB1 in CML patient samples and cell lines was analyzed by Western blotting. The proliferation assays and colony formation assay were used to study the CML cell proliferation when KPNB1 knockdown in vitro. Next, Western blotting was used to evaluate the effects of KPNB1 on E2F1 and other cell cycle regulators. Then, the location of E2F1 was detected by immunofluorescence. Finally, flow cytometry was used to detect the effect of KPNB1 inhibitor importazole (IPZ) on CML cells. Results In this study, we firstly showed that KPNB1 is over-expressed in CML cells. Targeting KPNB1 with small interfering RNA (siRNA) and IPZ reduced proliferation and induced apoptosis of CML cells. The underlying mechanisms were also investigated that E2F1 nuclear transport was blocked after inhibiting KPNB1 with siRNA, suggesting KPNB1 over-expression mediates the excessive nuclear transport of E2F1 in CML cells. Moreover, the expression of the E2F1 targeted molecule such as c-Myc and KPNA2 was markedly reduced. The IPZ arrested CML cells at G2/M phase and induced cell apoptosis. Conclusion In summary, our results clearly showed that KPNB1 is over-expressed in CML cells and mediates the translocation of E2F1 into the nucleus of CML cells, thereby inhibition of KPNB1 reduced proliferation and induced apoptosis of CML cells which provides new insights for targeted CML therapies.
Collapse
Affiliation(s)
- Teng Wang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhenglan Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Ningshu Huang
- Department of Clinical Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yuhang Peng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Miao Gao
- Department of Laboratory Medicine, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Wenli Feng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
11
|
Pan TJ, Li LX, Zhang JW, Yang ZS, Shi DM, Yang YK, Wu WZ. Antimetastatic Effect of Fucoidan-Sargassum against Liver Cancer Cell Invadopodia Formation via Targeting Integrin αVβ3 and Mediating αVβ3/Src/E2F1 Signaling. J Cancer 2019; 10:4777-4792. [PMID: 31598149 PMCID: PMC6775528 DOI: 10.7150/jca.26740] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/06/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Fucoidan is a fucose-enriched, sulfated polysaccharide found in brown algae; in recent years, this polysaccharide has been found to exert several biological effects, including antitumor effects, such as antiproliferation, activating apoptosis, and anti-angiogenesis of cancer cells. However, the antimetastatic effect of fucoidan and the related targeting receptors remain unknown. In the present study, we examined the inhibition of invadopodia formation and underlying mechanism of fucoidan on human liver cancer cells. Methods: We used 98% purified fucoidan from Sargassum species to treat the hepatocellular carcinoma (HCC) cells SMMC-7721, Huh7 and HCCLM3 in vitro and the HCCLM3 cell line in vivo. The HCC cells were cultured with various concentrations of Fucoidan-Sargassum (0-30 mg/mL). Migration, invasion and wound healing assays were performed to determine the antimetastatic effect of fucoidan on the HCC cells. Western blot analysis and immunofluorescence staining were conducted to determine the expression levels of invadopodia formation-regulating proteins and the targeting membrane receptor proteins. Results: Fucoidan-Sargassum inhibited the migration and invasion of HCC SMMC-7721, Huh7 and HCCLM3 cells in a dose-dependent manner. In the HCCLM3 cells, Fucoidan-Sargassum also decreased the expression levels of invadopodia-related proteins including Src, Cortactin, N-WASP, ARP3, CDC42, MMP2, MT1-MMP, and the targeting receptors integrin αV and β3 in a dose-dependent manner. Fucoidan-Sargassum also increased the levels of endoplasmic reticulum-related proteins, including GRP78, IRE1, SPARC, and the type IV collagen receptor proteins integrin α1 and β1. In vivo, Fucoidan-Sargassum reduced the size of liver tumors and decreased the number of lung metastatic foci in nude mice with hepatocellular carcinoma xenografts. Conclusion: These findings indicate that Fucoidan-Sargassum has an antimetastatic effect on SMMC-7721, Huh7 and HCCLM3 liver cancer cells, and the underlying mechanism involves targeting ITGαVβ3 and mediating the ITGαVβ3/SRC/E2F1 signaling pathway. These results suggest that Fucoidan-Sargassum may be a promising therapeutic antimetastatic compound in the development of a metastasis-preventive drug for treating liver cancer.
Collapse
Affiliation(s)
- Ting-Jia Pan
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Li-Xin Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Jia-Wei Zhang
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Zhao-Shuo Yang
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Dong-Min Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Yun-Ke Yang
- Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
12
|
ThankGod Eze C, Michelangeli F, Otitoloju AA. In vitro cyto-toxic assessment of heavy metals and their binary mixtures on mast cell-like, rat basophilic leukemia (RBL-2H3) cells. CHEMOSPHERE 2019; 223:686-693. [PMID: 30802834 DOI: 10.1016/j.chemosphere.2019.02.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
We investigated the cytotoxicity and mechanisms of cell death induced by salts of Cadmium (Cd2+), Lead (Pb2+), Arsenic (AsO43-) and Chromium (Cr+6) on RBL-2H3 cells (a model mast cell line). In addition, cyto-toxic effect on cell viability was assessed to reveal their nature of interaction in binary mixture. The individual cytotoxic characteristics of these metals on RBL-2H3 cell viability showed a concentration-dependent reduction of cell viability. We observed that concentration-dependent cytotoxic potency on RBL-2H3 cells of these metals range in the following order Cd2+>Cr+6>As O43- > Pb2+ with LC50 values of 0.11 μM, 93.58 μM, 397.9 μM and 485.3 μM respectively. Additive effects were observed with Pb2+ + Cd2+, Pb2+ + AsO43-, Pb2+ + Cr+6 and AsO43- + Cr+6. The study revealed that Pb2+, Cd2+, AsO43- and Cr+6 could induce significant (P < 0.01) cell death by apoptosis in RBL-2H3. Highly significant necrotic cell death was observed with Pb2+ and Cr+6 (P < 0.01) than Cd2+ and AsO43- (P < 0.05). Overall, it can be deduced that several cell death executing pathways may be concomitantly activated on exposure to heavy metals and the predominance of one over others might depend on the type of heavy metal, concentration and the metabolic state of the cell. Eventually, binary mixtures of some of these metals showed less cytotoxicity than would be expected from their individual actions and may depend on the co-exposure of the metal ions and their modes of action.
Collapse
|
13
|
Uddin A, Chakraborty S. Role of miRNAs in lung cancer. J Cell Physiol 2018. [PMID: 29676470 DOI: 10.1002/jcp.26607] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/16/2018] [Indexed: 12/18/2022]
Abstract
Lung cancer (LC) is the leading cause of cancer-related deaths all over the world, among both men and women, with an incidence of over 200,000 new cases per year coupled with a very high mortality rate. LC comprises of two major clinicopathological categories: small-cell (SCLC) and nonsmall-cell lung carcinoma (NSCLC). The microRNAs (miRNAs) are small noncoding RNAs, usually 18-25 nucleotides long, which repress protein translation through binding to complementary target mRNAs. The miRNAs regulate many biological processes including cell cycle regulation, cellular growth, proliferation, differentiation, apoptosis, metabolism, neuronal patterning, and aging. This review summarizes the role of miRNAs expression in LC. It also provides information about the miRNAs as biomarker and therapeutic target for lung cancer. Understanding the role of miRNAs in LC may provide insights into the diagnosis and treatment strategy for LC.
Collapse
Affiliation(s)
- Arif Uddin
- Department of Zoology, Moinul Hoque Choudhury Memorial Science College, Algapur, Hailakandi, Assam, India
| | | |
Collapse
|
14
|
Bondy-Chorney E, Denoncourt A, Sai Y, Downey M. Nonhistone targets of KAT2A and KAT2B implicated in cancer biology 1. Biochem Cell Biol 2018; 97:30-45. [PMID: 29671337 DOI: 10.1139/bcb-2017-0297] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lysine acetylation is a critical post-translation modification that can impact a protein's localization, stability, and function. Originally thought to only occur on histones, we now know thousands of nonhistone proteins are also acetylated. In conjunction with many other proteins, lysine acetyltransferases (KATs) are incorporated into large protein complexes that carry out these modifications. In this review we focus on the contribution of two KATs, KAT2A and KAT2B, and their potential roles in the development and progression of cancer. Systems biology demands that we take a broad look at protein function rather than focusing on individual pathways or targets. As such, in this review we examine KAT2A/2B-directed nonhistone protein acetylations in cancer in the context of the 10 "Hallmarks of Cancer", as defined by Hanahan and Weinberg. By focusing on specific examples of KAT2A/2B-directed acetylations with well-defined mechanisms or strong links to a cancer phenotype, we aim to reinforce the complex role that these enzymes play in cancer biology.
Collapse
Affiliation(s)
- Emma Bondy-Chorney
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Alix Denoncourt
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Yuka Sai
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada.,Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, 451 Smyth Rd., Ottawa, ON KIH 8M5, Canada
| |
Collapse
|
15
|
TACC3 transcriptionally upregulates E2F1 to promote cell growth and confer sensitivity to cisplatin in bladder cancer. Cell Death Dis 2018; 9:72. [PMID: 29358577 PMCID: PMC5833822 DOI: 10.1038/s41419-017-0112-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/28/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Accumulating evidence has shown that transforming acidic coiled-coil 3 (TACC3) is deregulated in a broad spectrum of cancers. In the present study, we reported that TACC3 was markedly elevated in bladder cancer, especially in muscle-invasive bladder cancers (MIBCs). The upregulation of TACC3 was positively associated with tumor invasiveness, grade, T stage, and progression in patients with bladder cancer. Furthermore, a Kaplan-Meier survival analysis showed that patients with bladder cancer whose tumors had high TACC3 expression experienced a dismal prognosis compared with patients whose tumors had low TACC3 expression. Functional studies have found that TACC3 is a prerequisite for the development of malignant characteristics of bladder cancer cells, including cell proliferation and invasion. Moreover, TACC3 promoted G1/S transition, which was mediated via activation of the transcription of E2F1, eventually enhancing cell proliferation. Notably, the overexpression of TACC3 or E2F1 indicates a high sensitivity to cisplatin. Taken together, these findings define a tumor-supportive role for TACC3, which may also serve as a prognostic and therapeutic indicator in bladder cancers.
Collapse
|
16
|
Lee M, Rivera-Rivera Y, Moreno CS, Saavedra HI. The E2F activators control multiple mitotic regulators and maintain genomic integrity through Sgo1 and BubR1. Oncotarget 2017; 8:77649-77672. [PMID: 29100415 PMCID: PMC5652806 DOI: 10.18632/oncotarget.20765] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/14/2017] [Indexed: 02/01/2023] Open
Abstract
The E2F1, E2F2, and E2F3a transcriptional activators control proliferation. However, how the E2F activators regulate mitosis to maintain genomic integrity is unclear. Centrosome amplification (CA) and unregulated spindle assembly checkpoint (SAC) are major generators of aneuploidy and chromosome instability (CIN) in cancer. Previously, we showed that overexpression of single E2F activators induced CA and CIN in mammary epithelial cells, and here we show that combined overexpression of E2F activators did not enhance CA. Instead, the E2F activators elevated expression of multiple mitotic regulators, including Sgo1, Nek2, Hec1, BubR1, and Mps1/TTK. cBioPortal analyses of the TCGA database showed that E2F overexpression in lobular invasive breast tumors correlates with overexpression of multiple regulators of chromosome segregation, centrosome homeostasis, and the SAC. Kaplan-Meier plots identified correlations between individual or combined overexpression of E2F1, E2F3a, Mps1/TTK, Nek2, BubR1, or Hec1 and poor overall and relapse-free survival of breast cancer patients. In MCF10A normal mammary epithelial cells co-overexpressing E2Fs, transient Sgo1 knockdown induced CA, high percentages of premature sister chromatid separation, chromosome losses, increased apoptosis, and decreased cell clonogenicity. BubR1 silencing resulted in chromosome losses without CA, demonstrating that Sgo1 and BubR1 maintain genomic integrity through two distinct mechanisms. Our results suggest that deregulated activation of the E2Fs in mammary epithelial cells is counteracted by activation of a Sgo1-dependent mitotic checkpoint.
Collapse
Affiliation(s)
- Miyoung Lee
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Yainyrette Rivera-Rivera
- Department of Basic Sciences, Program of Pharmacology, Ponce Health Sciences University-School of Medicine/Ponce Research Institute, Ponce, 00716-2348 Puerto Rico
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Harold I Saavedra
- Department of Basic Sciences, Program of Pharmacology, Ponce Health Sciences University-School of Medicine/Ponce Research Institute, Ponce, 00716-2348 Puerto Rico
| |
Collapse
|
17
|
Silencing of E2F3 suppresses tumor growth of Her2+ breast cancer cells by restricting mitosis. Oncotarget 2016; 6:37316-34. [PMID: 26512919 PMCID: PMC4741932 DOI: 10.18632/oncotarget.5686] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 10/16/2015] [Indexed: 12/25/2022] Open
Abstract
The E2F transcriptional activators E2F1, E2F2 and E2F3a regulate many important cellular processes, including DNA replication, apoptosis and centrosome duplication. Previously, we demonstrated that silencing E2F1 or E2F3 suppresses centrosome amplification (CA) and chromosome instability (CIN) in Her2+ breast cancer cells without markedly altering proliferation. However, it is unknown whether and how silencing a single E2F activator, E2F3, affects malignancy of human breast cancer cells. Thus, we injected HCC1954 Her2+ breast cancer cells silenced for E2F3 into mammary fat pads of immunodeficient mice and demonstrated that loss of E2F3 retards tumor growth. Surprisingly, silencing of E2F3 led to significant reductions in mitotic indices relative to vector controls, while the percentage of cells undergoing S phase were not affected. Nek2 is a mitotic kinase commonly upregulated in breast cancers and a critical regulator of Cdk4- or E2F-mediated CA. In this report, we found that Nek2 overexpression rescued back the CA caused by silencing of shE2F3. However, the effects of Nek2 overexpression in affecting tumor growth rates of shE2F3 and shE2F3; GFP cells were inconclusive. Taken together, our results indicate that E2F3 silencing decreases mammary tumor growth by reducing percentage of cells undergoing mitosis.
Collapse
|
18
|
Ju C, Colgan SP, Eltzschig HK. Hypoxia-inducible factors as molecular targets for liver diseases. J Mol Med (Berl) 2016; 94:613-27. [PMID: 27094811 PMCID: PMC4879168 DOI: 10.1007/s00109-016-1408-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022]
Abstract
Liver disease is a growing global health problem, as deaths from end-stage liver cirrhosis and cancer are rising across the world. At present, pharmacologic approaches to effectively treat or prevent liver disease are extremely limited. Hypoxia-inducible factor (HIF) is a transcription factor that regulates diverse signaling pathways enabling adaptive cellular responses to perturbations of the tissue microenvironment. HIF activation through hypoxia-dependent and hypoxia-independent signals have been reported in liver disease of diverse etiologies, from ischemia-reperfusion-induced acute liver injury to chronic liver diseases caused by viral infection, excessive alcohol consumption, or metabolic disorders. This review summarizes the evidence for HIF stabilization in liver disease, discusses the mechanistic involvement of HIFs in disease development, and explores the potential of pharmacological HIF modifiers in the treatment of liver disease.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Bevacizumab/therapeutic use
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Clinical Trials as Topic
- Fatty Liver/genetics
- Fatty Liver/metabolism
- Fatty Liver/pathology
- Fatty Liver/therapy
- Gene Expression Regulation
- Hepatitis, Viral, Human/genetics
- Hepatitis, Viral, Human/metabolism
- Hepatitis, Viral, Human/pathology
- Hepatitis, Viral, Human/therapy
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver Cirrhosis/genetics
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Liver Cirrhosis/therapy
- Liver Diseases, Alcoholic/genetics
- Liver Diseases, Alcoholic/metabolism
- Liver Diseases, Alcoholic/pathology
- Liver Diseases, Alcoholic/therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Molecular Targeted Therapy
- Oligonucleotides/therapeutic use
- Signal Transduction
Collapse
Affiliation(s)
- Cynthia Ju
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy, University of Colorado, Auroa, Colorado, 800045, USA.
| | - Sean P Colgan
- Department of Medicine and Mucosal Inflammation Program, School of Medicine, University of Colorado, Auroa, Colorado, 800045, USA
| | - Holger K Eltzschig
- Department of Anesthesiology and Organ Protection Program, School of Medicine, University of Colorado, Auroa, Colorado, 800045, USA
| |
Collapse
|
19
|
Peng W, Feng J. Long noncoding RNA LUNAR1 associates with cell proliferation and predicts a poor prognosis in diffuse large B-cell lymphoma. Biomed Pharmacother 2015; 77:65-71. [PMID: 26796267 DOI: 10.1016/j.biopha.2015.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/19/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous group of B-cell lymphomas. Exploring a novel and important biomarker is indispensable for understanding the mechanism and clinical course of DLBCL. Emerging studies have shown that aberrant expression of long noncoding RNA (lncRNAs) is strongly associated with carcinogenesis. The aim of this study was to investigate the value of lncRNA LUNAR1 in DLBCL. Quantitative real-time PCR was performed to illustrate the patterns of LUNAR1 expression in tumor tissues and cell lines. The higher expression of LUNAR1 was significantly correlated with stage, rituximab and IPI. Univariate and multivariate analyses showed that LUNAR1 expression served as an independent predictor for overall survival and progression-free survival. Receiver operating characteristic (ROC) curve was constructed to evaluate the diagnostic values and the area under the ROC curve of LUNAR1 was up to 0.9420. Further experiments revealed that LUNAR1 knockdown significantly repressed cell proliferation of DLBCL by regulating E2F1, cyclin D1 and p21. In conclusion, our results indicate that LUNAR1 may serve as a candidate prognostic biomarker through growth regulation in DLBCL.
Collapse
Affiliation(s)
- Wei Peng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Nanjing Medical University, No. 42 Baiziting Road, Nanjing, China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Nanjing Medical University, No. 42 Baiziting Road, Nanjing, China.
| |
Collapse
|
20
|
Georgiadi EC, Dimtsas GS, Vassilakopoulos TP, Pangalis GA, Kittas C, Doussis-Anagnostopoulou IA. Functional p53 can modulate the relationship between E2F-1 expression and tumor kinetics in Hodgkin lymphoma. Leuk Lymphoma 2014; 56:748-54. [DOI: 10.3109/10428194.2014.930850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Morales LD, Casillas Pavón EA, Shin JW, Garcia A, Capetillo M, Kim DJ, Lieman JH. Protein tyrosine phosphatases PTP-1B, SHP-2, and PTEN facilitate Rb/E2F-associated apoptotic signaling. PLoS One 2014; 9:e97104. [PMID: 24809452 PMCID: PMC4014576 DOI: 10.1371/journal.pone.0097104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/15/2014] [Indexed: 11/20/2022] Open
Abstract
To maintain tissue homeostasis, apoptosis is functionally linked to the cell cycle through the retinoblastoma (Rb)/E2F pathway. When the Rb tumor suppressor protein is functionally inactivated, E2F1 elicits an apoptotic response through both intrinsic (caspase-9 mediated) and extrinsic (caspase-8 mediated) apoptotic pathways in order to eliminate hyperproliferative cells. Rb/E2F-associated apoptosis has been demonstrated to be associated with the loss of constitutive transcriptional repression by Rb/E2F complexes and mediated by caspase-8. Protein tyrosine phosphatases (PTPs) PTP-1B and SHP-2 have been previously shown to be directly activated by loss of Rb/E2F repression during Rb/E2F-associated apoptosis. In this current study, we demonstrate that the PTEN tumor suppressor is also directly activated by loss of Rb/E2F repression. We also demonstrate that PTP-1B, SHP-2, and PTEN play a functional role in Rb/E2F-associated apoptosis. Knockdown of PTP1B, SHP2, or PTEN expression with small interfering RNA (siRNA) in apoptotic cells increases cell viability and rescues cells from the Rb/E2F-associated apoptotic response. Furthermore, rescue from apoptosis coincides with inhibition of caspase-8 and caspase-3 cleavage (activation). Our results indicate PTP-1B, SHP-2, and PTEN all play a functional role in Rb/E2F-associated apoptotic signal transduction and provide further evidence that PTP-1B, SHP-2, and PTEN can contribute to tumor suppression through an Rb/E2F-associated mechanism.
Collapse
Affiliation(s)
- Liza D. Morales
- Edinburg Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Edgar A. Casillas Pavón
- Department of Biology, University of Texas-Pan American, Edinburg, Texas, United States of America
| | - Jun Wan Shin
- Edinburg Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
| | - Alexander Garcia
- Department of Biology, University of Texas-Pan American, Edinburg, Texas, United States of America
| | - Mario Capetillo
- Department of Biology, University of Texas-Pan American, Edinburg, Texas, United States of America
| | - Dae Joon Kim
- Edinburg Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, Texas, United States of America
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jonathan H. Lieman
- Department of Biology, University of Texas-Pan American, Edinburg, Texas, United States of America
- Department of Biology, South Texas College, McAllen, Texas, United States of America
| |
Collapse
|
22
|
Zhang L, Zhou Q, Zhang N, Li W, Ying M, Ding W, Yang B, He Q. E2F1 impairs all-trans retinoic acid-induced osteogenic differentiation of osteosarcoma via promoting ubiquitination-mediated degradation of RARα. Cell Cycle 2014; 13:1277-87. [PMID: 24608861 DOI: 10.4161/cc.28190] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
All-trans retinoic acid (ATRA) is a widely used differentiation drug that can effectively induce osteogenic differentiation of osteosarcoma cells, but the underlying mechanism remains elusive, which limits the clinical application for ATRA in osteosarcoma patients. In this study, we identified E2F1 as a novel regulator involved in ATRA-induced osteogenic differentiation of osteosarcoma cells. We observed that osteosarcoma cells are coupled with individual differences in the expression levels of E2F1 in patients, and E2F1 impairs ATRA-induced differentiation of osteosarcoma cells. Moreover, remarkable anti-proliferative and differentiation-inducing effects of ATRA treatment are only observed in E2F1 low to negative expressed primary osteosarcoma cultures. These results strongly suggested that E2F1 may serve as a potent indicator for the effectiveness of ATRA treatment in osteosarcoma. Interestingly, E2F1 is found to downregulate retinoic acid receptor α (RARα), a key factor determines the effectiveness of ATRA. E2F1 specifically binds to RARα and promotes its ubiquitination-mediated degradation; as a consequence, RARα-mediated differentiation is inhibited in osteosarcoma. Therefore, our studies present E2F1 as a potent biomarker, as well as a therapeutic target for ATRA-based differentiation therapeutics, and raise the hope of using differentiation-based approaches for osteosarcoma patients.
Collapse
Affiliation(s)
- Lei Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Qian Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Ning Zhang
- Department of Orthopedics; The Second Affiliated Hospital of Zhejiang University; Zhejiang University; Hangzhou, China
| | - Weixu Li
- Department of Orthopedics; The Second Affiliated Hospital of Zhejiang University; Zhejiang University; Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Wanjing Ding
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| |
Collapse
|
23
|
Hsu TH, Chu CC, Hung MW, Lee HJ, Hsu HJ, Chang TC. Caffeic acid phenethyl ester induces E2F-1-mediated growth inhibition and cell-cycle arrest in human cervical cancer cells. FEBS J 2013; 280:2581-93. [DOI: 10.1111/febs.12242] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Tzu-Hui Hsu
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei; Taiwan
| | | | - Mei-Whey Hung
- Department of Research and Education; Veteran General Hospital; Taipei; Taiwan
| | - Hwei-Jen Lee
- Department of Biochemistry; National Defense Medical Center; Taipei; Taiwan
| | - Hsien-Jun Hsu
- Department of Biochemistry; National Defense Medical Center; Taipei; Taiwan
| | | |
Collapse
|
24
|
CTSL2 is a pro-apoptotic target of E2F1 and a modulator of histone deacetylase inhibitor and DNA damage-induced apoptosis. Oncogene 2013; 33:1249-57. [PMID: 23542171 DOI: 10.1038/onc.2013.72] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/03/2012] [Accepted: 12/27/2012] [Indexed: 12/26/2022]
Abstract
Aberrant regulation of the pRB/E2F1 pathway has been invariably linked to inappropriate proliferation and/apoptosis in human cancers. Therefore, understanding the intricacies of the signaling pathway and identification of novel E2F1 targets involved in apoptosis could pave way for new therapeutic manipulation. Here, we identified CTSL2 (cathepsin L2/cathepsin V) as a novel E2F1 target that participates in E2F1-dependent apoptosis. We showed that E2F1 directly binds to CTSL2 promoter and that CTSL2 is regulated by both exogenous and endogenous E2F1. RNAi-mediated depletion of CTSL2 effectively abrogated ectopic E2F1-induced apoptosis, coupled with reduced lysosomal membrane permeabilization (LMP) and mitochondrial membrane depolarization. CTSL2 knockdown also inhibited apoptosis mediated by the endogenous E2F1 activated by DNA damage. Furthermore, we showed that CTSL2 depletion in cancer cells resulted in inhibition of histone deacetylase inhibitor (HDACi)-induced apoptosis, and conversely ectopic overexpression of CTSL2-sensitized cancer cells to HDACi. This study uncovered a novel E2F1 target implicated in LMP and apoptosis activation, as well as in the modulation of HDACi and chemotherapeutic drugs response.
Collapse
|
25
|
Sun HX, Xu Y, Yang XR, Wang WM, Bai H, Shi RY, Nayar SK, Devbhandari RP, He YZ, Zhu QF, Sun YF, Hu B, Khan M, Anders RA, Fan J. Hypoxia inducible factor 2 alpha inhibits hepatocellular carcinoma growth through the transcription factor dimerization partner 3/ E2F transcription factor 1-dependent apoptotic pathway. Hepatology 2013; 57:1088-97. [PMID: 23212661 PMCID: PMC3594482 DOI: 10.1002/hep.26188] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hypoxia inducible factors (HIFs) are activated in many tumors and show either promoter or suppressor activity, depending on tumor cell biology and background. However, the role of HIF member HIF-2α remains unclear in hepatocellular carcinoma (HCC). Here, HIF-2α expression was measured in HCC and paired peritumoral tissues by quantitative real-time polymerase chain reaction, western blotting, and immunofluorescence assays, and the clinical significance was explored in 246 HCC patients. In cell culture, HIF-2α levels were up-regulated or down-regulated by use of expression or short hairpin RNA recombinant plasmid, respectively. Cells were analyzed by immunoblotting, chromatin immunoprecipitation coupled with microarray, coimmunoprecipitation, and immunohistochemical staining. In vivo tumor growth was analyzed in nude mice. We found that the average expression of HIF-2α was relatively low in HCC tissues, and the decreased level was associated with lower overall survival (P=0.006). High HIF-2α expression in HCC cells induced higher levels of apoptosis and expression of proapoptotic proteins and inhibited cell and tumor growth. Furthermore, HIF-2α inhibited expression of the novel target gene, transcription factor dimerization partner 3 (TFDP3). TFDP3 protein was found to bind with E2F transcription factor 1 (E2F1) and inhibit its transcriptional activity through both p53-dependent and -independent pathways. Reintroduction of TFDP3 expression reversed HIF-2α-induced apoptosis. CONCLUSIONS Data gathered from cell lines, tumorigenicity studies, and primary HCC samples demonstrate a negative role of HIF-2α in tumors, which is mediated by the TFDP3/E2F1 pathway. Our study provides evidence supporting a possible tumor-suppressor role for HIF-2α and has uncovered a mechanism that links HIF-2α to a fundamental biological regulator, E2F1.
Collapse
Affiliation(s)
- Hai-Xiang Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China,The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD 21205, USA
| | - Yang Xu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China,The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD 21205, USA
| | - Xin-Rong Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China
| | - Wei-Min Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China
| | - Haibo Bai
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD 21205, USA
| | - Ruo-Yu Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China
| | - Suresh K. Nayar
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD 21205, USA
| | - Ranjan Prasad Devbhandari
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China
| | - Yi-zhou He
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China
| | - Qin-Feng Zhu
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD 21205, USA,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| | - Yun-Fan Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China
| | - Bo Hu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China
| | - Mehtab Khan
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD 21205, USA
| | - Robert A. Anders
- The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Division of Gastrointestinal and Liver Pathology, Baltimore, MD 21205, USA
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai 200032, P. R. China,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
26
|
Vasilatou D, Papageorgiou SG, Kontsioti F, Kontos CK, Tsiotra P, Mpakou V, Pavlou MAS, Economopoulou C, Dimitriadis G, Dervenoulas J, Pappa V. Expression analysis of mir-17-5p, mir-20a and let-7a microRNAs and their target proteins in CD34+ bone marrow cells of patients with myelodysplastic syndromes. Leuk Res 2012; 37:251-8. [PMID: 23246221 DOI: 10.1016/j.leukres.2012.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 11/16/2012] [Accepted: 11/18/2012] [Indexed: 12/12/2022]
Abstract
Mir-17-5p and mir-20a, members of the mir-17-92 family, down-regulate E2F1, which is over-expressed in myelodysplastic syndromes (MDS). Moreover, let-7a down-regulates KRAS, which is aberrantly expressed in MDS. We evaluated the expression of the aforementioned microRNAs in CD34+ cells of 43 MDS patients using real-time PCR and their target proteins (E2F1, MYC, BCL2, CCND1, and KRAS) by Western blot. Mir-17-5p and mir-20a were under expressed in high risk MDS patients, compared to low risk MDS patients. Similarly, let-7a was under expressed in patients with intermediate or high-risk karyotype. Interestingly, there was an inverse correlation between microRNA and the expression levels of their targets. Importantly, mir-17-5p and mir-20a constitute favorable prognostic factors in MDS, since their expression was associated with increased overall survival of MDS patients.
Collapse
Affiliation(s)
- Diamantina Vasilatou
- Second Department of Internal Medicine and Research Institute, Athens University Medical School, "Attikon" University General Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Espada L, Meo-Evoli N, Sancho P, Real S, Fabregat I, Ambrosio S, Tauler A. ROS production is essential for the apoptotic function of E2F1 in pheochromocytoma and neuroblastoma cell lines. PLoS One 2012; 7:e51544. [PMID: 23251571 PMCID: PMC3520901 DOI: 10.1371/journal.pone.0051544] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 11/02/2012] [Indexed: 12/04/2022] Open
Abstract
In this study we demonstrate that accumulation of reactive oxygen species (ROS) is essential for E2F1 mediated apoptosis in ER-E2F1 PC12 pheochromocytoma, and SH-SY5Y and SK-N-JD neuroblastoma stable cell lines. In these cells, the ER-E2F1 fusion protein is expressed in the cytosol; the addition of 4-hydroxytamoxifen (OHT) induces its translocation to the nucleus and activation of E2F1target genes. Previously we demonstrated that, in ER-E2F1 PC12 cells, OHT treatment induced apoptosis through activation of caspase-3. Here we show that caspase-8 activity did not change upon treatment with OHT. Moreover, over-expression of Bcl-xL arrested OHT-induced apoptosis; by contrast, over-expression of c-FLIP, did not have any effect on OHT-induced apoptosis. OHT addition induces BimL expression, its translocation to mitochondria and activation of Bax, which is paralleled by diminished mitochondrial enrichment of Bcl-xL. Treatment with a Bax-inhibitory peptide reduced OHT-induced apoptosis. These results point out the essential role of mitochondria on the apoptotic process driven by E2F1. ROS accumulation followed E2F1 induction and treatment with the antioxidant N-acetylcysteine, inhibited E2F1-induced Bax translocation to mitochondria and subsequent apoptosis. The role of ROS in mediating OHT-induced apoptosis was also studied in two neuroblastoma cell lines, SH-SY5Y and SK-N-JD. In SH-SY5Y cells, activation of E2F1 by the addition of OHT induced ROS production and apoptosis, whereas over-expression of E2F1 in SK-N-JD cells failed to induce either response. Transcriptional profiling revealed that many of the genes responsible for scavenging ROS were down-regulated following E2F1-induction in SH-SY5Y, but not in SK-N-JD cells. Finally, inhibition of GSK3β blocked ROS production, Bax activation and the down regulation of ROS scavenging genes. These findings provide an explanation for the apparent contradictory role of E2F1 as an apoptotic agent versus a cell cycle activator.
Collapse
Affiliation(s)
- Lilia Espada
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia. Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Nathalie Meo-Evoli
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia. Universitat de Barcelona, Barcelona, Catalunya, Spain
- Cancer and Metabolism Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Catalunya, Spain
| | - Patricia Sancho
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Catalunya, Spain
| | - Sebastian Real
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia. Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Isabel Fabregat
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Catalunya, Spain
- Unitat de Bioquímica, Departament de Ciències Fisiològiques II, Facultat de Medicina, Campus Universitaride Bellvitge - IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat, Catalunya, Spain
| | - Santiago Ambrosio
- Unitat de Bioquímica, Departament de Ciències Fisiològiques II, Facultat de Medicina, Campus Universitaride Bellvitge - IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat, Catalunya, Spain
| | - Albert Tauler
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia. Universitat de Barcelona, Barcelona, Catalunya, Spain
- Cancer and Metabolism Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Catalunya, Spain
- * E-mail:
| |
Collapse
|
28
|
Walker T, Nolte A, Steger V, Makowiecki C, Mustafi M, Friedel G, Schlensak C, Wendel HP. Small interfering RNA-mediated suppression of serum response factor, E2-promotor binding factor and survivin in non-small cell lung cancer cell lines by non-viral transfection†. Eur J Cardiothorac Surg 2012; 43:628-33; discussion 633-4. [DOI: 10.1093/ejcts/ezs337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
29
|
Morales LD, Pena K, Kim DJ, Lieman JH. SHP-2 and PTP-pest induction during Rb-E2F associated apoptosis. Cell Mol Biol Lett 2012; 17:422-32. [PMID: 22644489 PMCID: PMC6275625 DOI: 10.2478/s11658-012-0020-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 05/22/2012] [Indexed: 12/28/2022] Open
Abstract
Apoptosis is intimately connected to cell cycle regulation via the Retinoblastoma (Rb)-E2F pathway and thereby serves an essential role in tumor suppression by eliminating aberrant hyperproliferative cells. Upon loss of Rb activity, an apoptotic response can be elicited through both p53-dependent and p53-independent mechanisms. While much of this apoptotic response has been attributed to the p19ARF/p53 pathway, increasing evidence has supported the role of protein tyrosine phosphatases (PTPs) in contributing to the initiation of the Rb-E2F-associated apoptotic response. One protein tyrosine phosphatase, PTP-1B, which is induced by the Rb-E2F pathway, has been shown to contribute to a p53-independent apoptotic pathway by inactivating focal adhesion kinase. This report identifies two additional PTPs, SHP-2 and PTP-PEST, that are also directly activated by the Rb-E2F pathway and which can contribute to signal transduction during p53-independent apoptosis.
Collapse
Affiliation(s)
- Liza D. Morales
- Department of Biology, The University of Texas-Pan American, Edinburg, TX USA
- Edinburg Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, TX USA
| | - Karina Pena
- Department of Biology, The University of Texas-Pan American, Edinburg, TX USA
| | - Dae Joon Kim
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Edinburg, TX USA
- Edinburg Regional Academic Health Center, Medical Research Division, University of Texas Health Science Center at San Antonio, Edinburg, TX USA
| | - Jonathan H. Lieman
- Department of Biology, The University of Texas-Pan American, Edinburg, TX USA
| |
Collapse
|
30
|
Hubaux R, Becker-Santos DD, Enfield KSS, Lam S, Lam WL, Martinez VD. MicroRNAs As Biomarkers For Clinical Features Of Lung Cancer. METABOLOMICS : OPEN ACCESS 2012; 2:1000108. [PMID: 25221729 PMCID: PMC4159950 DOI: 10.4172/2153-0769.1000108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Each year about 1.4 million people die from lung cancer worldwide. Despite efforts in prevention, diagnosis and treatment, survival rate remains poor for this disease. This unfortunate situation is largely due to the fact that a high proportion of cases are diagnosed at advanced stages, highlighting the great need for identifying new biomarkers in order to improve early diagnosis and treatment. Recent studies on microRNAs have not only shed light on their involvement in tumor development and progression, but also suggested their potential utility as biomarkers for subtype diagnostics, staging and prediction of treatment response. This review article summarizes the impact of microRNAs on lung cancer biology, and highlights their role in the detection and classification of lung cancer as well as direct targets for drug development.
Collapse
Affiliation(s)
- Roland Hubaux
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, V5Z 1L3 Vancouver, B.C., Canada
| | - Daiana D. Becker-Santos
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, V5Z 1L3 Vancouver, B.C., Canada
| | - Katey S. S. Enfield
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, V5Z 1L3 Vancouver, B.C., Canada
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, V5Z 1L3 Vancouver, B.C., Canada
| | - Wan L. Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, V5Z 1L3 Vancouver, B.C., Canada
| | - Victor D. Martinez
- Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, V5Z 1L3 Vancouver, B.C., Canada
| |
Collapse
|
31
|
Al-Khalaf HH, Colak D, Al-Saif M, Al-Bakheet A, Hendrayani SF, Al-Yousef N, Kaya N, Khabar KS, Aboussekhra A. p16( INK4a) positively regulates cyclin D1 and E2F1 through negative control of AUF1. PLoS One 2011; 6:e21111. [PMID: 21799732 PMCID: PMC3140473 DOI: 10.1371/journal.pone.0021111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/19/2011] [Indexed: 11/23/2022] Open
Abstract
Background The cyclin-D/CDK4,6/p16INK4a/pRB/E2F pathway, a key regulator of the critical G1 to S phase transition of the cell cycle, is universally disrupted in human cancer. However, the precise function of the different members of this pathway and their functional interplay are still not well defined. Methodology/Principal Findings We have shown here that the tumor suppressor p16INK4a protein positively controls the expression of cyclin D1 and E2F1 in both human and mouse cells. p16INK4a stabilizes the mRNAs of the corresponding genes through negative regulation of the mRNA decay-promoting AUF1 protein. Immunoprecipitation of AUF1-associated RNAs followed by RT-PCR indicated that endogenous AUF1 binds to the cyclin D1 and E2F1 mRNAs. Furthermore, AUF1 down-regulation increased the expression levels of these genes, while concurrent silencing of AUF1 and p16INK4a, using specific siRNAs, restored normal expression of both cyclinD1 and E2F1. Besides, we have shown the presence of functional AU-rich elements in the E2F1 3′UTR, which contributed to p16/AUF1-mediated regulation of E2F1 post-transcriptional events in vivo. Importantly, genome-wide gene expression microarray analysis revealed the presence of a large number of genes differentially expressed in a p16INK4a -dependent manner, and several of these genes are also members of the AUF1 and E2F1 regulons. We also present evidence that E2F1 mediates p16-dependent regulation of several pro- and anti-apoptotic proteins, and the consequent induction of spontaneous as well as doxorubicin-induced apoptosis. Conclusion/Significance These findings show that the cyclin-dependent kinase inhibitor p16 INK4a is also a modulator of transcription and apoptosis through controlling the expression of two major transcription regulators, AUF1 and E2F1.
Collapse
Affiliation(s)
- Huda H. Al-Khalaf
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Maher Al-Saif
- Program in Biomolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Albandary Al-Bakheet
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Siti-Faujiah Hendrayani
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nujoud Al-Yousef
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khalid S. Khabar
- Program in Biomolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdelilah Aboussekhra
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- * E-mail:
| |
Collapse
|
32
|
Thymidylate synthase inhibition induces p53-dependent and p53-independent apoptotic responses in human urinary bladder cancer cells. J Cancer Res Clin Oncol 2010; 137:359-74. [PMID: 20425122 DOI: 10.1007/s00432-010-0891-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 04/12/2010] [Indexed: 01/08/2023]
Abstract
PURPOSE In search for more effective clinical protocols, the antimetabolite drug 5-fluorouracil (5-FU) has been successfully included in new regimens of bladder cancer combination chemotherapy. In the present study, we have investigated the effects of 5-FU treatment on apoptosis induction in wild-type and mutant p53 urinary bladder cancer cells. METHODS We have used MTT-based assays, FACS analysis, Western blotting and semi-quantitative RT-PCR in RT4 and RT112 (grade I, wild-type p53), as well as in T24 (grade III, mutant p53) and TCCSUP (grade IV, mutant p53) human urinary bladder cancer cell lines. RESULTS In the urothelial bladder cancer cell lines RT4 and T24, 5-FU-induced TS inhibition proved to be associated with cell type-dependent (a) sensitivity to the drug, (b) Caspase-mediated apoptosis, (c) p53 stabilization and activation, as well as Rb phosphorylation and E2F1 expression and (d) transcriptional regulation of p53 target genes and their cognate proteins, while an E2F-dependent transcriptional network did not seem to be critically engaged in such type of responses. CONCLUSIONS We have shown that in the wild-type p53 context of RT4 cells, 5-FU-triggered apoptosis was prominently efficient and mainly regulated by p53-dependent mechanisms, whereas the mutant p53 environment of T24 cells was able to provide notable levels of resistance to apoptosis, basically ascribed to E2F-independent, and still unidentified, pathways. Nevertheless, the differential vulnerability of RT4 and T24 cells to 5-FU administration could also be associated with cell-type-specific transcriptional expression patterns of certain genes critically involved in 5-FU metabolism.
Collapse
|
33
|
Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010; 2010:214074. [PMID: 20182529 PMCID: PMC2825543 DOI: 10.1155/2010/214074] [Citation(s) in RCA: 819] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 11/20/2009] [Indexed: 12/13/2022] Open
Abstract
Cells can respond to stress in various ways ranging from the activation of survival pathways to the initiation of cell death that eventually eliminates damaged cells. Whether cells mount a protective or destructive stress response depends to a large extent on the nature and duration of the stress as well as the cell type. Also, there is often the interplay between these responses that ultimately determines the fate of the stressed cell. The mechanism by which a cell dies (i.e., apoptosis, necrosis, pyroptosis, or autophagic cell death) depends on various exogenous factors as well as the cell's ability to handle the stress to which it is exposed. The implications of cellular stress responses to human physiology and diseases are manifold and will be discussed in this review in the context of some major world health issues such as diabetes, Parkinson's disease, myocardial infarction, and cancer.
Collapse
|
34
|
Abstract
IMPORTANCE OF THE FIELD Since its discovery in 1997, the antiapoptotic factor AAC-11 has rapidly gained attention due to its potential use in cancer therapy. Indeed, most cancer cells express elevated levels of AAC-11, which is now known to be involved in both tumor cells growth as well as sensitivity to chemotherapeutic drugs. AREAS COVERED IN THIS REVIEW In this review, we examine the most recent evidence about the role of AAC-11 in cancer biology and the therapeutic perspectives associated with its specific targeting. For that purpose, literature dealing with AAC-11 in the PubMed database was reviewed from 1997 up to date. WHAT THE READER WILL GAIN AAC-11 is an antiapoptotic gene that has the potential to be a target for anti-cancer therapy, and warrants further investigation. As its expression seems to predict unfavorable prognosis, at least in some cancers, it also may become a potent prognostic marker. TAKE HOME MESSAGE Blocking AAC-11 function in cancer for therapeutic purposes might be of great interest. The recent report of efficient AAC-11 inhibiting peptides that sensitize tumor cells to chemotherapeutic drugs has raise the exciting notion that AAC-11 might be a druggable target and fueled the search for new therapeutic agents that could block AAC-11 function.
Collapse
Affiliation(s)
- Audrey Faye
- INSERM UMRS 940, Equipe Avenir, Université Paris 7, Institut de Génétique Moléculaire, 75010 Paris, France
| | | |
Collapse
|
35
|
Wu ZL, Zheng SS, Li ZM, Qiao YY, Aau MY, Yu Q. Polycomb protein EZH2 regulates E2F1-dependent apoptosis through epigenetically modulating Bim expression. Cell Death Differ 2009; 17:801-10. [PMID: 19893569 DOI: 10.1038/cdd.2009.162] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Deregulation of the pRB/E2F pathway, which occurs frequently in human malignancy, is often associated with inappropriate proliferation and/or apoptosis. While the role of E2F1 in apoptosis induction has been well-established, it remains unclear how this pro-apoptotic activity is regulated in cancer. Here we describe EZH2, an oncogenic polycomb histone methyltransferase and an E2F1 target, as an important regulator of E2F1-dependent apoptosis. We show that E2F1 induces EZH2 expression, which in turn antagonizes the induction of E2F1 pro-apoptotic target Bim expression. RNAi-mediated gene depletion of EZH2 enhances E2F1-dependent Bim expression, thereby promoting the pro-apoptotic activity of E2F1. Hence, the concomitant induction of EZH2 and Bim by E2F1 constitutes a fail-safe mechanism to allow tumor cells with aberrant E2F1 activity to evade apoptosis. These findings reveal a novel mechanism by which the apoptotic activity of E2F1 is restrained in human cancer and also provide the first evidence that EZH2 directly regulates apoptotic process in cancer cells.
Collapse
Affiliation(s)
- Z L Wu
- Genome Institute of Singapore, Biopolis, Singapore
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
MicroRNAs are a class of small regulatory RNAs that function to modulate protein expression. This control allows for fine-tuning of the cellular phenotype, including regulation of proliferation, cell signaling, and apoptosis; not surprisingly, microRNAs contribute to liver cancer biology. Recent investigations in human liver cancers and tumor-derived cell lines have demonstrated decreased or increased expression of particular microRNAs in hepatobiliary cancer cells. Based on predicted and validated protein targets as well as functional consequences of altered expression, microRNAs with decreased expression in liver tumor cells may normally aid in limiting neoplastic transformation. Conversely, selected microRNAs that are up-regulated in liver tumor cells can promote malignant features, contributing to carcinogenesis. In addition, microRNAs themselves are subject to regulated expression, including regulation by tumor suppressor and oncogene pathways. This review will focus on the expression and function of cancer-related microRNAs, including their intimate involvement in tumor suppressor and oncogene signaling networks relevant to hepatobiliary neoplasia.
Collapse
Affiliation(s)
- Justin L Mott
- Division of Gastroenterology and Hepatology, Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
37
|
Ebi H, Sato T, Sugito N, Hosono Y, Yatabe Y, Matsuyama Y, Yamaguchi T, Osada H, Suzuki M, Takahashi T. Counterbalance between RB inactivation and miR-17-92 overexpression in reactive oxygen species and DNA damage induction in lung cancers. Oncogene 2009; 28:3371-9. [PMID: 19597473 DOI: 10.1038/onc.2009.201] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small-cell lung cancer (SCLC) is a highly aggressive disease that exhibits rapid growth and genetic instability. We found earlier frequent overexpression of the miR-17-92 microRNA cluster, and showed that SCLC cells were addicted to continued expressions of miR-17-5p and miR-20a, major components of this microRNA cluster. In this study, we identified the frequent presence of constitutively phosphorylated H2AX (gamma-H2AX), which reflects continuing DNA damage, preferentially in SCLC. Knockdown of RB induced gamma-H2AX foci formation in non-small cell lung cancer (NSCLC) cells with wild-type RB, in association with growth inhibition and reactive oxygen species (ROS) generation, which was canceled by overexpression of miR-17-92. Conversely, induction of gamma-H2AX was observed in a miR-17-92-overexpressing SCLC cell line with miR-20a antisense oligonucleotides. These findings suggest that miR-17-92 overexpression may serve as a fine-tuning influence to counterbalance the generation of DNA damage in RB-inactivated SCLC cells, thus reducing excessive DNA damage to a tolerable level and consequently leading to genetic instability. Therefore, miR-17-92 may be an excellent therapeutic target candidate to elicit excessive DNA damage in combination with DNA-damaging chemotherapeutics.
Collapse
Affiliation(s)
- H Ebi
- Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Showa-ku, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wu Z, Zheng S, Yu Q. The E2F family and the role of E2F1 in apoptosis. Int J Biochem Cell Biol 2009; 41:2389-97. [PMID: 19539777 DOI: 10.1016/j.biocel.2009.06.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/02/2009] [Accepted: 06/08/2009] [Indexed: 12/22/2022]
Abstract
The E2F family of transcription factors plays a pivotal role in the regulation of cellular proliferation and differentiation. Although the deregulation of E2Fs is considered an oncogenic event that predisposes immortalized cells to transformation, paradoxically, E2F1 is also equipped with an ability to induce apoptosis under certain cellular contexts. It has become evident that E2Fs, in particular E2F1, participate in many aspects of the apoptotic process, either by acting alone or in cooperation with other factors, such as p53, to protect organisms from tumor development in the face of oncogenic lesions. Given the frequent inactivation of p53 in human cancers, the E2F1-induced apoptosis pathway is rapidly gaining attention as a key mechanism to compensate the loss of p53 in human tumors. In this review, we will focus on the recent progress in our understanding of E2F1-mediated apoptosis and discuss how these discoveries can be translated into potential therapeutic intervention.
Collapse
Affiliation(s)
- Zhenlong Wu
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A*Star (Agency for Science, Technology and Research), Biopolis 02-01, Singapore 138672, Singapore
| | | | | |
Collapse
|
39
|
Jenal M, Trinh E, Britschgi C, Britschgi A, Roh V, Vorburger SA, Tobler A, Leprince D, Fey MF, Helin K, Tschan MP. The tumor suppressor gene hypermethylated in cancer 1 is transcriptionally regulated by E2F1. Mol Cancer Res 2009; 7:916-22. [PMID: 19491197 DOI: 10.1158/1541-7786.mcr-08-0359] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Hypermethylated in Cancer 1 (HIC1) gene encodes a zinc finger transcriptional repressor that cooperates with p53 to suppress cancer development. We and others recently showed that HIC1 is a transcriptional target of p53. To identify additional transcriptional regulators of HIC1, we screened a set of transcription factors for regulation of a human HIC1 promoter reporter. We found that E2F1 strongly activates the full-length HIC1 promoter reporter. Promoter deletions and mutations identified two E2F responsive elements in the HIC1 core promoter region. Moreover, in vivo binding of E2F1 to the HIC1 promoter was shown by chromatin immunoprecipitation assays in human TIG3 fibroblasts expressing tamoxifen-activated E2F1. In agreement, activation of E2F1 in TIG3-E2F1 cells markedly increased HIC1 expression. Interestingly, expression of E2F1 in the p53(-/-) hepatocellular carcinoma cell line Hep3B led to an increase of endogenous HIC1 mRNA, although bisulfite genomic sequencing of the HIC1 promoter revealed that the region bearing the two E2F1 binding sites is hypermethylated. In addition, endogenous E2F1 induced by etoposide treatment bound to the HIC1 promoter. Moreover, inhibition of E2F1 strongly reduced the expression of etoposide-induced HIC1. In conclusion, we identified HIC1 as novel E2F1 transcriptional target in DNA damage responses.
Collapse
Affiliation(s)
- Mathias Jenal
- Department of Clinical Research, University of Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lau LMS, Wolter JK, Lau JTML, Cheng LS, Smith KM, Hansford LM, Zhang L, Baruchel S, Robinson F, Irwin MS. Cyclooxygenase inhibitors differentially modulate p73 isoforms in neuroblastoma. Oncogene 2009; 28:2024-33. [PMID: 19363520 DOI: 10.1038/onc.2009.59] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
p73 encodes multiple functionally distinct isoforms. Proapoptotic TAp73 isoforms contain a transactivation (TA) domain, and like p53, have tumor suppressor properties and are activated by chemotherapies to induce cell death. In contrast, antiapoptotic DeltaNp73 isoforms lack the TA domain and are dominant-negative inhibitors of p53 and TAp73. DeltaNp73 proteins are overexpressed in a variety of tumors including neuroblastoma. Thus, identification of drugs that upregulate TAp73 and/or downregulate DeltaNp73 represents a potential therapeutic strategy. Here, we report that cyclooxygenase (COX) inhibitors induce apoptosis independent of p53, and differentially modulate endogenous p73 isoforms in neuroblastoma and other tumors. COX inhibitor-mediated apoptosis is associated with the induction of TAp73beta and its target genes. COX inhibitors also downregulate the alternative-spliced DeltaNp73(AS) isoforms, Deltaexon2 and Deltaexon2/3. Furthermore, forced expression of DeltaNp73(AS) results in diminished apoptosis in response to the selective COX-2 inhibitor celecoxib. Celecoxib-mediated downregulation of DeltaNp73(AS) is associated with decreased E2F1 levels and diminished E2F1 activation of the p73 promoter. These results provide the first evidence that COX inhibitors differentially modulate p73 isoforms leading to enhanced apoptosis, and support the potential use of COX inhibitors as novel regulators of p73 to enhance chemosensitivity in tumors with deregulated E2F1 and in those with wild-type (wt) or mutant p53.
Collapse
Affiliation(s)
- L M S Lau
- Hospital for Sick Children, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Common and specific roles of the related CDK inhibitors p27 and p57 revealed by a knock-in mouse model. Proc Natl Acad Sci U S A 2009; 106:5192-7. [PMID: 19276117 DOI: 10.1073/pnas.0811712106] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although p27 and p57 are structurally related cyclin-dependent kinase inhibitors (CKIs), and are thought to perform similar functions, p27 knockout (p27(KO)) and p57(KO) mice show distinct phenotypes. To elucidate the in vivo functions of these CKIs, we have now generated a knock-in mouse model (p57(p27KI)), in which the p57 gene has been replaced with the p27 gene. The p57(p27KI) mice are viable and appear healthy, with most of the developmental defects characteristic of p57(KO) mice having been corrected by p27 knock-in. Such developmental defects of p57(KO) mice were also ameliorated in mice deficient in both p57 and the transcription factor E2F1, suggesting that loss of p57 promotes E2F1-dependent apoptosis. The developmental defects apparent in a few tissues of p57(KO) mice were unaffected or only partially corrected by knock-in expression of p27. Thus, these observations indicate that p57 and p27 share many characteristics in vivo, but that p57 also performs specific functions not amenable to substitution with p27.
Collapse
|
42
|
Racek T, Buhlmann S, Rüst F, Knoll S, Alla V, Pützer BM. Transcriptional repression of the prosurvival endoplasmic reticulum chaperone GRP78/BIP by E2F1. J Biol Chem 2008; 283:34305-14. [PMID: 18840615 DOI: 10.1074/jbc.m803925200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum chaperone GRP78/BIP plays a central role in the prosurvival machinery, and its enhanced expression has been implicated in drug resistance, carcinogenesis, and metastasis. E2F1, as part of an antitumor safeguard mechanism, promotes apoptosis regardless of functional p53. Using cells that are defective in p53, we show that E2F1 represses GRP78/BIP at the transcriptional level, and this requires its DNA binding domain. Analysis of human GRP78/BIP promoter reporter constructs revealed that the region between -371 and -109 of the proximal promoter contains major E2F1-responsive elements. Toward understanding the underlying mechanism of this regulation, we performed chromatin immunoprecipitation and gel shift assays, demonstrating that E2F1 directly binds to GC-rich regions in the distal GC-box and endoplasmic reticulum stress response element -126 by interfering with the binding of positive regulatory proteins Sp1 and TFII-I of the ER stress response element-binding factor complex. We further show that TFII-I, which is required for optimal stress induction of GRP78/BIP, is suppressed by E2F1 on the protein level. Finally, our studies suggest a molecular link between the inhibition of GRP78/BIP and E2F1-mediated chemosensitization of tumor cells, underscoring its relevance for cancer treatment. Together, the data provide a new mechanism for the incompletely understood tumor suppressor function of E2F1.
Collapse
Affiliation(s)
- Tomás Racek
- Department of Vectorology and Experimental Gene Therapy, Biomedical Research Center, University of Rostock, 18055 Rostock, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Kwon HS, Ott M. The ups and downs of SIRT1. Trends Biochem Sci 2008; 33:517-25. [PMID: 18805010 DOI: 10.1016/j.tibs.2008.08.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/13/2008] [Accepted: 08/14/2008] [Indexed: 10/21/2022]
Abstract
Reversible acetylation has emerged as a key post-translational modification of proteins. Although the number of acetylated proteins is rapidly growing, the ways in which protein acetyltransferases and deacetylases connect with extracellular stimuli remain unclear. Recently, a regulatory network has emerged that controls the expression and activity of SIRT1, a mammalian class-III protein deacetylase. SIRT1 is an important regulator of metabolism, senescence, cancer and, possibly, longevity and is connected with crucial stress-responsive signal-transduction pathways. These connections provide important clues about how protein acetylation and deacetylation mediate cellular adaptations to extrinsic stress.
Collapse
Affiliation(s)
- Hye-Sook Kwon
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
44
|
Britschgi A, Trinh E, Rizzi M, Jenal M, Ress A, Tobler A, Fey MF, Helin K, Tschan MP. DAPK2 is a novel E2F1/KLF6 target gene involved in their proapoptotic function. Oncogene 2008; 27:5706-16. [PMID: 18521079 DOI: 10.1038/onc.2008.179] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Death-associated protein kinase 2 (DAPK2) belongs to a family of proapoptotic Ca(2+)/calmodulin-regulated serine/threonine kinases. We recently identified DAPK2 as an enhancing factor during granulocytic differentiation. To identify transcriptional DAPK2 regulators, we cloned 2.7 kb of the 5'-flanking region of the DAPK2 gene. We found that E2F1 and Krüppel-like factor 6 (KLF6) strongly activate the DAPK2 promoter. We mapped the E2F1 and KLF6 responsive elements to a GC-rich region 5' of exon 1 containing several binding sites for KLF6 and Sp1 but not for E2F. Moreover, we showed that transcriptional activation of DAPK2 by E2F1 and KLF6 is dependent on Sp1 using Sp1/KLF6-deficient insect cells, mithramycin A treatment to block Sp1-binding or Sp1 knockdown cells. Chromatin immunoprecipitation revealed recruitment of Sp1 and to lesser extent that of E2F1 and KLF6 to the DAPK2 promoter. Activation of E2F1 in osteosarcoma cells led to an increase of endogenous DAPK2 paralleled by cell death. Inhibition of DAPK2 expression resulted in significantly reduced cell death upon E2F1 activation. Similarly, KLF6 expression in H1299 cells increased DAPK2 levels accompanied by cell death that is markedly decreased upon DAPK2 knockdown. Moreover, E2F1 and KLF6 show cooperation in activating the DAPK2 promoter. In summary, our findings establish DAPK2 as a novel Sp1-dependent target gene for E2F1 and KLF6 in cell death response.
Collapse
Affiliation(s)
- A Britschgi
- 1Experimental Oncology/Hematology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ferkingstad E, Frigessi A, Lyng H. Indirect genomic effects on survival from gene expression data. Genome Biol 2008; 9:R58. [PMID: 18358079 PMCID: PMC2397510 DOI: 10.1186/gb-2008-9-3-r58] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 01/24/2008] [Accepted: 03/22/2008] [Indexed: 12/29/2022] Open
Abstract
A novel methodology is presented for detecting and quantifying indirect effects on cancer survival mediated through several target genes of transcription factors in cancer microarray data. In cancer, genes may have indirect effects on patient survival, mediated through interactions with other genes. Methods to study the indirect effects that contribute significantly to survival are not available. We propose a novel methodology to detect and quantify indirect effects from gene expression data. We discover indirect effects through several target genes of transcription factors in cancer microarray data, pointing to genetic interactions that play a significant role in tumor progression.
Collapse
Affiliation(s)
- Egil Ferkingstad
- Department of Biostatistics and (sfi) Statistics for Innovation, University of Oslo, Gaustadalleen, Oslo, NO-0314, Norway.
| | | | | |
Collapse
|
46
|
Li Z, Pützer BM. Spliceosomal protein E regulates neoplastic cell growth by modulating expression of cyclin E/CDK2 and G2/M checkpoint proteins. J Cell Mol Med 2008; 12:2427-38. [PMID: 18208561 PMCID: PMC4514120 DOI: 10.1111/j.1582-4934.2008.00244.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Small nuclear ribonucleoproteins are essential splicing factors. We previously identified the spliceosomal protein E (SmE) as a downstream effector of E2F1 in p53-deficient human carcinoma cells. Here, we investigated the biological relevance of SmE in determining the fate of cancer and non-tumourigenic cells. Adenovirus-mediated expression of SmE selectively reduces growth of cancerous cells due to decreased cell proliferation but not apoptosis. A similar growth inhibitory effect for SmD1 suggests that this is a general function of Sm-family members. Deletion of Sm-motifs reveals the importance of the Sm-1 domain for growth suppression. Consistently, SmE overexpression leads to inhibition of DNA synthesis and G2 arrest as shown by BrdU-incorporation and MPM2-staining. Real-time RT-PCR and immunoblotting showed that growth arrest by SmE directly correlates with the reduction of cyclin E, CDK2, CDC25C and CDC2 expression, and up-regulation of p27Kip. Importantly, SmE activity was not associated with enhanced expression of other spliceosome components such as U1 SnRNP70, suggesting that the growth inhibitory effect of SmE is distinct from its pre-mRNA splicing function. Furthermore, specific inactivation of SmE by shRNA significantly increased the percentage of cells in S phase, whereas the amount of G2/M arrested cells was reduced. Our data provide evidence that Sm proteins function as suppressors of tumour cell growth and may have major implications as cancer therapeutics.
Collapse
Affiliation(s)
- Z Li
- Department of Vectorology & Experimental Gene Therapy, Biomedical Research Center, University of Rostock, Germany
| | | |
Collapse
|
47
|
Affiliation(s)
- Afshin Samali
- *Correspondence to: Afshin SAMALI, , Department of Biochemistry, National University of Ireland, Galway, Galway City, Ireland. E-mail:
| |
Collapse
|