1
|
Wang H, Chen G, Gong Q, Wu J, Chen P. Primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome: a Mendelian randomization study. Front Immunol 2024; 15:1403429. [PMID: 39253091 PMCID: PMC11381235 DOI: 10.3389/fimmu.2024.1403429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Background Currently, evidence regarding the causal relationship between primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome is limited and inconsistent. Therefore, this study employs Mendelian randomization (MR) methodology to investigate the causal relationship between the two. Methods This study selected 110 single-nucleotide polymorphisms (SNPs) of primary immunodeficiency-related genes as instrumental variables (IVs). Genetic associations of primary immunodeficiency-related genes were derived from recent genome-wide association studies (GWAS) data on human plasma protein levels and circulating immune cells. Data on genes associated with varicella-zoster virus reactivation syndrome were obtained from the GWAS Catalog and FINNGEN database, primarily analyzed using inverse variance weighting (IVW) and sensitivity analysis. Results Through MR analysis, we identified 9 primary immunodeficiency-related genes causally associated with herpes zoster and its subsequent neuralgia; determined causal associations of 20 primary immunodeficiency-related genes with three vascular lesions (stroke, cerebral aneurysm, giant cell arteritis); revealed causal associations of 10 primary immunodeficiency-related genes with two ocular diseases (retinopathy, keratitis); additionally, three primary immunodeficiency-related genes each were associated with encephalitis, cranial nerve palsy, and gastrointestinal infections. Conclusions This study discovers a certain association between primary immunodeficiency-related genes and varicella-zoster virus reactivation syndrome, yet further investigations are warranted to explore the specific mechanisms underlying these connections.
Collapse
Affiliation(s)
- Hao Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Guanglei Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qian Gong
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jing Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Peng Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Albain KS, Yau C, Petricoin EF, Wolf DM, Lang JE, Chien AJ, Haddad T, Forero-Torres A, Wallace AM, Kaplan H, Pusztai L, Euhus D, Nanda R, Elias AD, Clark AS, Godellas C, Boughey JC, Isaacs C, Tripathy D, Lu J, Yung RL, Gallagher RI, Wulfkuhle JD, Brown-Swigart L, Krings G, Chen YY, Potter DA, Stringer-Reasor E, Blair S, Asare SM, Wilson A, Hirst GL, Singhrao R, Buxton M, Clennell JL, Sanil A, Berry S, Asare AL, Matthews JB, DeMichele AM, Hylton NM, Melisko M, Perlmutter J, Rugo HS, Symmans WF, van’t Veer LJ, Yee D, Berry DA, Esserman LJ. Neoadjuvant Trebananib plus Paclitaxel-based Chemotherapy for Stage II/III Breast Cancer in the Adaptively Randomized I-SPY2 Trial-Efficacy and Biomarker Discovery. Clin Cancer Res 2024; 30:729-740. [PMID: 38109213 PMCID: PMC10956403 DOI: 10.1158/1078-0432.ccr-22-2256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 10/11/2023] [Accepted: 12/13/2023] [Indexed: 12/20/2023]
Abstract
PURPOSE The neutralizing peptibody trebananib prevents angiopoietin-1 and angiopoietin-2 from binding with Tie2 receptors, inhibiting angiogenesis and proliferation. Trebananib was combined with paclitaxel±trastuzumab in the I-SPY2 breast cancer trial. PATIENTS AND METHODS I-SPY2, a phase II neoadjuvant trial, adaptively randomizes patients with high-risk, early-stage breast cancer to one of several experimental therapies or control based on receptor subtypes as defined by hormone receptor (HR) and HER2 status and MammaPrint risk (MP1, MP2). The primary endpoint is pathologic complete response (pCR). A therapy "graduates" if/when it achieves 85% Bayesian probability of success in a phase III trial within a given subtype. Patients received weekly paclitaxel (plus trastuzumab if HER2-positive) without (control) or with weekly intravenous trebananib, followed by doxorubicin/cyclophosphamide and surgery. Pathway-specific biomarkers were assessed for response prediction. RESULTS There were 134 participants randomized to trebananib and 133 to control. Although trebananib did not graduate in any signature [phase III probabilities: Hazard ratio (HR)-negative (78%), HR-negative/HER2-positive (74%), HR-negative/HER2-negative (77%), and MP2 (79%)], it demonstrated high probability of superior pCR rates over control (92%-99%) among these subtypes. Trebananib improved 3-year event-free survival (HR 0.67), with no significant increase in adverse events. Activation levels of the Tie2 receptor and downstream signaling partners predicted trebananib response in HER2-positive disease; high expression of a CD8 T-cell gene signature predicted response in HR-negative/HER2-negative disease. CONCLUSIONS The angiopoietin (Ang)/Tie2 axis inhibitor trebananib combined with standard neoadjuvant therapy increased estimated pCR rates across HR-negative and MP2 subtypes, with probabilities of superiority >90%. Further study of Ang/Tie2 receptor axis inhibitors in validated, biomarker-predicted sensitive subtypes is warranted.
Collapse
Affiliation(s)
- Kathy S. Albain
- Loyola University Chicago Stritch School of Medicine, Chicago, IL
| | - Christina Yau
- University of California San Francisco, San Francisco, CA
| | | | - Denise M. Wolf
- University of California San Francisco, San Francisco, CA
| | | | - A. Jo Chien
- University of California San Francisco, San Francisco, CA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Debu Tripathy
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Janice Lu
- University of Southern California, Los Angeles, CA
| | | | | | | | | | - Gregor Krings
- University of California San Francisco, San Francisco, CA
| | - Yunn Yi Chen
- University of California San Francisco, San Francisco, CA
| | | | | | - Sarah Blair
- University of California San Diego, La Jolla, CA
| | - Smita M. Asare
- Quantum Leap Healthcare Collaborative, San Francisco, CA
| | - Amy Wilson
- Quantum Leap Healthcare Collaborative, San Francisco, CA
| | | | - Ruby Singhrao
- University of California San Francisco, San Francisco, CA
| | | | | | | | | | - Adam L. Asare
- Quantum Leap Healthcare Collaborative, San Francisco, CA
| | | | | | - Nola M. Hylton
- University of California San Francisco, San Francisco, CA
| | | | | | - Hope S. Rugo
- University of California San Francisco, San Francisco, CA
| | | | | | | | | | | |
Collapse
|
3
|
Thapa K, Khan H, Kaur G, Kumar P, Singh TG. Therapeutic targeting of angiopoietins in tumor angiogenesis and cancer development. Biochem Biophys Res Commun 2023; 687:149130. [PMID: 37944468 DOI: 10.1016/j.bbrc.2023.149130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
The formation and progression of tumors in humans are linked to the abnormal development of new blood vessels known as neo-angiogenesis. Angiogenesis is a broad word that encompasses endothelial cell migration, proliferation, tube formation, and intussusception, as well as peri-EC recruitment and extracellular matrix formation. Tumor angiogenesis is regulated by angiogenic factors, out of which some of the most potent angiogenic factors such as vascular endothelial growth factor and Angiopoietins (ANGs) in the body are produced by macrophages and other immune cells within the tumor microenvironment. ANGs have a distinct function in tumor angiogenesis and behavior. ANG1, ANG 2, ANG 3, and ANG 4 are the family members of ANG out of which ANG2 has been extensively investigated owing to its unique role in modifying angiogenesis and its tight association with tumor progression, growth, and invasion/metastasis, which makes it an excellent candidate for therapeutic intervention in human malignancies. ANG modulators have demonstrated encouraging outcomes in the treatment of tumor development, either alone or in conjunction with VEGF inhibitors. Future development of more ANG modulators targeting other ANGs is needed. The implication of ANG1, ANG3, and ANG4 as probable therapeutic targets for anti-angiogenesis treatment in tumor development should be also evaluated. The article has described the role of ANG in tumor angiogenesis as well as tumor growth and the treatment strategies modulating ANGs in tumor angiogenesis as demonstrated in clinical studies. The pharmacological modulation of ANGs and ANG-regulated pathways that are responsible for tumor angiogenesis and cancer development should be evaluated for the development of future molecular therapies.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara School of Pharmacy, Chitkara University, 174103, Himachal Pradesh, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Gagandeep Kaur
- Chitkara School of Pharmacy, Chitkara University, 174103, Himachal Pradesh, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, 151401, Bathinda, India
| | | |
Collapse
|
4
|
Wang Y, Wang T, Han Z, Wang R, Hu Y, Yang Z, Shen T, Zheng Y, Luo J, Ma Y, Luo Y, Jiao L. Explore the role of long noncoding RNAs and mRNAs in intracranial atherosclerotic stenosis: From the perspective of neutrophils. Brain Circ 2023; 9:240-250. [PMID: 38284107 PMCID: PMC10821680 DOI: 10.4103/bc.bc_63_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2024] Open
Abstract
CONTEXT Circulating neutrophils and long noncoding RNAs (lncRNAs) play various roles in intracranial atherosclerotic stenosis (ICAS). OBJECTIVE Our study aimed to detect differentially expressed (DE) lncRNAs and mRNAs in circulating neutrophils and explore the pathogenesis of atherosclerosis from the perspective of neutrophils. METHODS Nineteen patients with ICAS and 15 healthy controls were enrolled. The peripheral blood of the participants was collected, and neutrophils were separated. The expression profiles of lncRNAs and mRNAs in neutrophils from five patients and five healthy controls were obtained, and DE lncRNAs and mRNAs were selected. Six lncRNAs were selected and validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and ceRNA and lncRNA-RNA binding protein (RBP)-mRNA networks were constructed. Correlation analysis between lncRNAs and mRNAs was performed. Functional enrichment annotations were also performed. RESULTS Volcano plots and heat maps displayed the expression profiles and DE lncRNAs and mRNAs, respectively. The qRT-PCR results revealed that the four lncRNAs showed a tendency consistent with the expression profile, with statistical significance. The ceRNA network revealed three pairs of regulatory networks: lncRNA RP3-406A7.3-NAGLU, lncRNA HOTAIRM1-MVK/IL-25/GBF1/CNOT4/ANKK1/PLEKHG6, and lncRNA RP11-701H16.4-ZNF416. The lncRNA-RBP-mRNA network showed five pairs of regulatory networks: lncRNA RP11-701H16.4-TEK, lncRNA RP11-701H16.4-MED17, lncRNA SNHG19-NADH-ubiquinone oxidoreductase core subunit V1, lncRNA RP3-406A7.3-Angel1, and lncRNA HOTAIRM1-CARD16. CONCLUSIONS Our study identified and verified four lncRNAs in neutrophils derived from peripheral blood, which may explain the transcriptional alteration of neutrophils during the pathophysiological process of ICAS. Our results provide insights for research related to the pathogenic mechanisms and drug design of ICAS.
Collapse
Affiliation(s)
- Yilin Wang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yue Hu
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenhong Yang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tong Shen
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yangmin Zheng
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yan Ma
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Ngaha TYS, Zhilenkova AV, Essogmo FE, Uchendu IK, Abah MO, Fossa LT, Sangadzhieva ZD, D. Sanikovich V, S. Rusanov A, N. Pirogova Y, Boroda A, Rozhkov A, Kemfang Ngowa JD, N. Bagmet L, I. Sekacheva M. Angiogenesis in Lung Cancer: Understanding the Roles of Growth Factors. Cancers (Basel) 2023; 15:4648. [PMID: 37760616 PMCID: PMC10526378 DOI: 10.3390/cancers15184648] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Research has shown the role of growth factors in lung cancer angiogenesis. Angiogenesis promotes lung cancer progression by stimulating tumor growth, enhancing tumor invasion, contributing to metastasis, and modifying immune system responses within the tumor microenvironment. As a result, new treatment techniques based on the anti-angiogenic characteristics of compounds have been developed. These compounds selectively block the growth factors themselves, their receptors, or the downstream signaling pathways activated by these growth factors. The EGF and VEGF families are the primary targets in this approach, and several studies are being conducted to propose anti-angiogenic drugs that are increasingly suitable for the treatment of lung cancer, either as monotherapy or as combined therapy. The efficacy of the results are encouraging, but caution must be placed on the higher risk of toxicity, outlining the importance of personalized follow-up in the management of these patients.
Collapse
Affiliation(s)
- Tchawe Yvan Sinclair Ngaha
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
- Department of Public Health, James Lind Institute, Rue de la Cité 1, 1204 Geneva, Switzerland
| | - Angelina V. Zhilenkova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Freddy Elad Essogmo
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Ikenna K. Uchendu
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
- Medical Laboratory Science Department, Faculty of Health Science and Technology, College of Medicine, University of Nigeria, Enugu Campus, Enugu 410001, Nigeria
| | - Moses Owoicho Abah
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Lionel Tabola Fossa
- Department of Oncology, Bafoussam Regional Hospital, Bafoussam 980, Cameroon;
| | - Zaiana D. Sangadzhieva
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Varvara D. Sanikovich
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Alexander S. Rusanov
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Yuliya N. Pirogova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Alexander Boroda
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Alexander Rozhkov
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Jean D. Kemfang Ngowa
- Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde 1364, Cameroon;
| | - Leonid N. Bagmet
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| | - Marina I. Sekacheva
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), 8-2 Trubetskaya str., Moscow 119991, Russia; (T.Y.S.N.); (A.V.Z.); (F.E.E.); (I.K.U.); (M.O.A.); (Z.D.S.); (V.D.S.); (A.S.R.); (Y.N.P.); (A.B.); (A.R.); (L.N.B.)
| |
Collapse
|
6
|
Li Y, Lih TSM, Dhanasekaran SM, Mannan R, Chen L, Cieslik M, Wu Y, Lu RJH, Clark DJ, Kołodziejczak I, Hong R, Chen S, Zhao Y, Chugh S, Caravan W, Naser Al Deen N, Hosseini N, Newton CJ, Krug K, Xu Y, Cho KC, Hu Y, Zhang Y, Kumar-Sinha C, Ma W, Calinawan A, Wyczalkowski MA, Wendl MC, Wang Y, Guo S, Zhang C, Le A, Dagar A, Hopkins A, Cho H, Leprevost FDV, Jing X, Teo GC, Liu W, Reimers MA, Pachynski R, Lazar AJ, Chinnaiyan AM, Van Tine BA, Zhang B, Rodland KD, Getz G, Mani DR, Wang P, Chen F, Hostetter G, Thiagarajan M, Linehan WM, Fenyö D, Jewell SD, Omenn GS, Mehra R, Wiznerowicz M, Robles AI, Mesri M, Hiltke T, An E, Rodriguez H, Chan DW, Ricketts CJ, Nesvizhskii AI, Zhang H, Ding L. Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness. Cancer Cell 2023; 41:139-163.e17. [PMID: 36563681 PMCID: PMC9839644 DOI: 10.1016/j.ccell.2022.12.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/18/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Clear cell renal cell carcinomas (ccRCCs) represent ∼75% of RCC cases and account for most RCC-associated deaths. Inter- and intratumoral heterogeneity (ITH) results in varying prognosis and treatment outcomes. To obtain the most comprehensive profile of ccRCC, we perform integrative histopathologic, proteogenomic, and metabolomic analyses on 305 ccRCC tumor segments and 166 paired adjacent normal tissues from 213 cases. Combining histologic and molecular profiles reveals ITH in 90% of ccRCCs, with 50% demonstrating immune signature heterogeneity. High tumor grade, along with BAP1 mutation, genome instability, increased hypermethylation, and a specific protein glycosylation signature define a high-risk disease subset, where UCHL1 expression displays prognostic value. Single-nuclei RNA sequencing of the adverse sarcomatoid and rhabdoid phenotypes uncover gene signatures and potential insights into tumor evolution. In vitro cell line studies confirm the potential of inhibiting identified phosphoproteome targets. This study molecularly stratifies aggressive histopathologic subtypes that may inform more effective treatment strategies.
Collapse
Affiliation(s)
- Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Tung-Shing M Lih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Saravana M Dhanasekaran
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yige Wu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rita Jiu-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - David J Clark
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Iga Kołodziejczak
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Runyu Hong
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Seema Chugh
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Noshad Hosseini
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Yuanwei Xu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Kyung-Cho Cho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Michael C Wendl
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Mathematics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yuefan Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Shenghao Guo
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Aniket Dagar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex Hopkins
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hanbyul Cho
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xiaojun Jing
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guo Ci Teo
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Melissa A Reimers
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Russell Pachynski
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Alexander J Lazar
- Departments of Pathology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian A Van Tine
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Gilbert S Omenn
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Heliodor Swiecicki Clinical Hospital in Poznań, ul. Przybyszewskiego 49, 60-355 Poznań, Poland; Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Eunkyung An
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
7
|
Molecular Mechanisms in the Vascular and Nervous Systems following Traumatic Spinal Cord Injury. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010009. [PMID: 36675958 PMCID: PMC9866624 DOI: 10.3390/life13010009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Traumatic spinal cord injury (SCI) induces various complex pathological processes that cause physical impairment and psychological devastation. The two phases of SCI are primary mechanical damage (the immediate result of trauma) and secondary injury (which occurs over a period of minutes to weeks). After the mechanical impact, vascular disruption, inflammation, demyelination, neuronal cell death, and glial scar formation occur during the acute phase. This sequence of events impedes nerve regeneration. In the nervous system, various extracellular secretory factors such as neurotrophic factors, growth factors, and cytokines are involved in these events. In the vascular system, the blood-spinal cord barrier (BSCB) is damaged, allowing immune cells to infiltrate the parenchyma. Later, endogenous angiogenesis is promoted during the subacute phase. In this review, we describe the roles of secretory factors in the nervous and vascular systems following traumatic SCI, and discuss the outcomes of their therapeutic application in traumatic SCI.
Collapse
|
8
|
Amelio GS, Provitera L, Raffaeli G, Amodeo I, Gulden S, Cortesi V, Manzoni F, Pesenti N, Tripodi M, Pravatà V, Lonati C, Cervellini G, Mosca F, Cavallaro G. Proinflammatory Endothelial Phenotype in Very Preterm Infants: A Pilot Study. Biomedicines 2022; 10:biomedicines10051185. [PMID: 35625922 PMCID: PMC9138391 DOI: 10.3390/biomedicines10051185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Very preterm infants are exposed to prenatal inflammatory processes and early postnatal hemodynamic and respiratory complications, but limited data are available about the endothelial effect of these conditions. The present pilot study investigates the perinatal endothelial phenotype in very preterm infants (VPIs) and explores its predictive value on neonatal mortality and hemodynamic and respiratory complications. Angiopoietin 1 (Ang-1), Ang-2, E-selectin, vascular adhesion molecule 1 (VCAM-1), tissue factor (TF), and endothelin 1 (ET-1) concentrations were tested in first (T1), 3rd (T2), and 7–10th (T3) day of life in 20 VPIs using Luminex technology and compared with 14 healthy full-term infants (FTIs). Compared to FTIs, VPIs had lower Ang-1 at T1 and T2; higher Ang-2 at T1, T2, and T3; higher Ang-2/Ang-1 ratio at T1, T2, and T3; lower E-selectin at T1, T2, and T3; higher VCAM-1 at T1; higher TF at T2. No differences in concentrations were found in neonatal deaths. VPIs with hemodynamic or respiratory complications had higher Ang-2 at T3. Perinatal low Ang-1 and high Ang-2 associated with high VCAM-1 and TF in VPIs suggest a proinflammatory endothelial phenotype, resulting from the synergy of a pathological prenatal inheritance and a premature extrauterine transition.
Collapse
Affiliation(s)
- Giacomo S. Amelio
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.S.A.); (L.P.); (G.R.); (I.A.); (S.G.); (V.C.); (F.M.); (N.P.); (M.T.); (V.P.); (G.C.); (F.M.)
| | - Livia Provitera
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.S.A.); (L.P.); (G.R.); (I.A.); (S.G.); (V.C.); (F.M.); (N.P.); (M.T.); (V.P.); (G.C.); (F.M.)
| | - Genny Raffaeli
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.S.A.); (L.P.); (G.R.); (I.A.); (S.G.); (V.C.); (F.M.); (N.P.); (M.T.); (V.P.); (G.C.); (F.M.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Ilaria Amodeo
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.S.A.); (L.P.); (G.R.); (I.A.); (S.G.); (V.C.); (F.M.); (N.P.); (M.T.); (V.P.); (G.C.); (F.M.)
| | - Silvia Gulden
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.S.A.); (L.P.); (G.R.); (I.A.); (S.G.); (V.C.); (F.M.); (N.P.); (M.T.); (V.P.); (G.C.); (F.M.)
| | - Valeria Cortesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.S.A.); (L.P.); (G.R.); (I.A.); (S.G.); (V.C.); (F.M.); (N.P.); (M.T.); (V.P.); (G.C.); (F.M.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Francesca Manzoni
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.S.A.); (L.P.); (G.R.); (I.A.); (S.G.); (V.C.); (F.M.); (N.P.); (M.T.); (V.P.); (G.C.); (F.M.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Nicola Pesenti
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.S.A.); (L.P.); (G.R.); (I.A.); (S.G.); (V.C.); (F.M.); (N.P.); (M.T.); (V.P.); (G.C.); (F.M.)
- Department of Statistics and Quantitative Methods, Division of Biostatistics, Epidemiology, and Public Health, University of Milano-Bicocca, 20126 Milan, Italy
| | - Matteo Tripodi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.S.A.); (L.P.); (G.R.); (I.A.); (S.G.); (V.C.); (F.M.); (N.P.); (M.T.); (V.P.); (G.C.); (F.M.)
| | - Valentina Pravatà
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.S.A.); (L.P.); (G.R.); (I.A.); (S.G.); (V.C.); (F.M.); (N.P.); (M.T.); (V.P.); (G.C.); (F.M.)
| | - Caterina Lonati
- Center for Preclinical Investigation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Gaia Cervellini
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.S.A.); (L.P.); (G.R.); (I.A.); (S.G.); (V.C.); (F.M.); (N.P.); (M.T.); (V.P.); (G.C.); (F.M.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Fabio Mosca
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.S.A.); (L.P.); (G.R.); (I.A.); (S.G.); (V.C.); (F.M.); (N.P.); (M.T.); (V.P.); (G.C.); (F.M.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.S.A.); (L.P.); (G.R.); (I.A.); (S.G.); (V.C.); (F.M.); (N.P.); (M.T.); (V.P.); (G.C.); (F.M.)
- Correspondence: ; Tel.: +39-(02)-55032234; Fax: +39-(02)-55032217
| |
Collapse
|
9
|
Luxen M, van Meurs M, Molema G. Unlocking the Untapped Potential of Endothelial Kinase and Phosphatase Involvement in Sepsis for Drug Treatment Design. Front Immunol 2022; 13:867625. [PMID: 35634305 PMCID: PMC9136877 DOI: 10.3389/fimmu.2022.867625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022] Open
Abstract
Sepsis is a devastating clinical condition that can lead to multiple organ failure and death. Despite advancements in our understanding of molecular mechanisms underlying sepsis and sepsis-associated multiple organ failure, no effective therapeutic treatment to directly counteract it has yet been established. The endothelium is considered to play an important role in sepsis. This review highlights a number of signal transduction pathways involved in endothelial inflammatory activation and dysregulated endothelial barrier function in response to sepsis conditions. Within these pathways – NF-κB, Rac1/RhoA GTPases, AP-1, APC/S1P, Angpt/Tie2, and VEGF/VEGFR2 – we focus on the role of kinases and phosphatases as potential druggable targets for therapeutic intervention. Animal studies and clinical trials that have been conducted for this purpose are discussed, highlighting reasons why they might not have resulted in the expected outcomes, and which lessons can be learned from this. Lastly, opportunities and challenges that sepsis and sepsis-associated multiple organ failure research are currently facing are presented, including recommendations on improved experimental design to increase the translational power of preclinical research to the clinic.
Collapse
Affiliation(s)
- Matthijs Luxen
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Matthijs Luxen,
| | - Matijs van Meurs
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Grietje Molema
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Ferro Desideri L, Traverso CE, Nicolò M. The emerging role of the angiopoietin-Tie pathway as therapeutic target for treating retinal diseases. Expert Opin Ther Targets 2022; 26:145-154. [DOI: 10.1080/14728222.2022.2036121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Carlo Enrico Traverso
- University Eye Clinic of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy
| | - Massimo Nicolò
- University Eye Clinic of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Italy
- Macula Onlus Foundation, Genoa, Italy
| |
Collapse
|
11
|
Francis CR, Claflin S, Kushner EJ. Synaptotagmin-Like Protein 2a Regulates Angiogenic Lumen Formation via Weibel-Palade Body Apical Secretion of Angiopoietin-2. Arterioscler Thromb Vasc Biol 2021; 41:1972-1986. [PMID: 33853352 DOI: 10.1161/atvbaha.121.316113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Shea Claflin
- Department of Biological Sciences, University of Denver, CO
| | | |
Collapse
|
12
|
Dynamic angiopoietin-2 assessment predicts survival and chronic course in hospitalized patients with COVID-19. Blood Adv 2021; 5:662-673. [PMID: 33560382 PMCID: PMC7876870 DOI: 10.1182/bloodadvances.2020003736] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
This study examined the association between dynamic angiopoietin-2 assessment and COVID-19 short- and long-term clinical course. We included consecutive hospitalized patients from 1 February to 31 May 2020 with laboratory-confirmed COVID-19 from 2 Italian tertiary referral centers (derivation cohort, n = 187 patients; validation cohort, n = 62 patients). Serum biomarker levels were measured by sandwich enzyme-linked immunosorbent assay. Lung tissue from 9 patients was stained for angiopoietin-2, Tie2, CD68, and CD34. Cox model was used to identify risk factors for mortality and nonresolving pulmonary condition. Area under the receiver operating characteristic curve (AUROC) was used to assess the accuracy of 3- and 10-day angiopoietin-2 for in-hospital mortality and nonresolving pulmonary condition, respectively. Three-day angiopoietin-2 increase of at least twofold from baseline was significantly associated with in-hospital mortality by multivariate analysis (hazard ratio [HR], 6.69; 95% confidence interval [CI], 1.85-24.19; P = .004) with AUROC = 0.845 (95% CI, 0.725-0.940). Ten-day angiopoietin-2 of at least twofold from baseline was instead significantly associated with nonresolving pulmonary condition by multivariate analysis (HR, 5.33; 95% CI, 1.34-11.77; P ≤ .0001) with AUROC = 0.969 (95% CI, 0.919-1.000). Patients with persistent elevation of 10-day angiopoietin-2 levels showed severe reticular interstitial thickening and fibrous changes on follow-up computed tomography scans. Angiopoietin-2 and Tie2 were diffusely colocalized in small-vessel endothelia and alveolar new vessels and macrophages. Angiopoietin-2 course is strongly associated with COVID-19 in-hospital mortality and nonresolving pulmonary condition. Angiopoietin-2 may be an early and useful predictor of COVID-19 clinical course, and it could be a relevant part of disease pathogenesis. Angiopoietin-2 blockade may be a COVID-19 treatment option.
Collapse
|
13
|
Heier JS, Singh RP, Wykoff CC, Csaky KG, Lai TYY, Loewenstein A, Schlottmann PG, Paris LP, Westenskow PD, Quezada-Ruiz C. THE ANGIOPOIETIN/TIE PATHWAY IN RETINAL VASCULAR DISEASES: A Review. Retina 2021; 41:1-19. [PMID: 33136975 DOI: 10.1097/iae.0000000000003003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To provide a concise overview for ophthalmologists and practicing retina specialists of available clinical evidence of manipulating the angiopoietin/tyrosine kinase with immunoglobulin-like and endothelial growth factor-like domains (Tie) pathway and its potential as a therapeutic target in retinal vascular diseases. METHODS A literature search for articles on the angiopoietin/Tie pathway and molecules targeting this pathway that have reached Phase 2 or 3 trials was undertaken on PubMed, Association for Research in Vision and Ophthalmology meeting abstracts (2014-2019), and ClinicalTrials.gov databases. Additional information on identified pipeline drugs was obtained from publicly available information on company websites. RESULTS The PubMed and Association for Research in Vision and Ophthalmology meeting abstract search yielded 462 results, of which 251 publications not relevant to the scope of the review were excluded. Of the 141 trials related to the angiopoietin/Tie pathway on ClinicalTrials.gov, seven trials focusing on diseases covered in this review were selected. Vision/anatomic outcomes from key clinical trials on molecules targeting the angiopoietin/Tie pathway in patients with retinal vascular diseases are discussed. CONCLUSION Initial clinical evidence suggests a potential benefit of targeting the angiopoietin/Tie pathway and vascular endothelial growth factor-A over anti-vascular endothelial growth factor-A monotherapy alone, in part due to of the synergistic nature of the pathways.
Collapse
Affiliation(s)
| | - Rishi P Singh
- Department of Ophthalmology, Center for Ophthalmic Bioinformatics, Cleveland Clinic, Cleveland, Ohio
| | - Charles C Wykoff
- Retina Consultants of Houston, Retina Consultants of America, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas
| | - Karl G Csaky
- Retina Foundation of the Southwest, Dallas, Texas
| | - Timothy Y Y Lai
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Anat Loewenstein
- Department of Ophthalmology, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | - Carlos Quezada-Ruiz
- Genentech, Inc., South San Francisco, California; and
- Retina y Vitreo, Clínica de Ojos Garza Viejo, San Pedro Garza Garcia, Mexico
| |
Collapse
|
14
|
Lin FL, Wang PY, Chuang YF, Wang JH, Wong VHY, Bui BV, Liu GS. Gene Therapy Intervention in Neovascular Eye Disease: A Recent Update. Mol Ther 2020; 28:2120-2138. [PMID: 32649860 PMCID: PMC7544979 DOI: 10.1016/j.ymthe.2020.06.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant growth of blood vessels (neovascularization) is a key feature of severe eye diseases that can cause legal blindness, including neovascular age-related macular degeneration (nAMD) and diabetic retinopathy (DR). The development of anti-vascular endothelial growth factor (VEGF) agents has revolutionized the treatment of ocular neovascularization. Novel proangiogenic targets, such as angiopoietin and platelet-derived growth factor (PDGF), are under development for patients who respond poorly to anti-VEGF therapy and to reduce adverse effects from long-term VEGF inhibition. A rapidly advancing area is gene therapy, which may provide significant therapeutic benefits. Viral vector-mediated transgene delivery provides the potential for continuous production of antiangiogenic proteins, which would avoid the need for repeated anti-VEGF injections. Gene silencing with RNA interference to target ocular angiogenesis has been investigated in clinical trials. Proof-of-concept gene therapy studies using gene-editing tools such as CRISPR-Cas have already been shown to be effective in suppressing neovascularization in animal models, highlighting the therapeutic potential of the system for treatment of aberrant ocular angiogenesis. This review provides updates on the development of anti-VEGF agents and novel antiangiogenic targets. We also summarize current gene therapy strategies already in clinical trials and those with the latest approaches utilizing CRISPR-Cas gene editing against aberrant ocular neovascularization.
Collapse
Affiliation(s)
- Fan-Li Lin
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Peng-Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | - Yu-Fan Chuang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia; Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia.
| |
Collapse
|
15
|
Isolation and Characterization of Human Synovial Fluid-Derived Mesenchymal Stromal Cells from Popliteal Cyst. Stem Cells Int 2020; 2020:7416493. [PMID: 33014069 PMCID: PMC7519976 DOI: 10.1155/2020/7416493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells in adult tissues. The aim of this study is to isolate and identify synovial fluid-derived mesenchymal stromal cells (SF-MSCs) from the popliteal cyst fluid of pediatric patients. SF-MSCs were collected from the popliteal cyst fluid of pediatric patients during cystectomy surgery. After cyst fluid extraction and adherent culturing, in vitro morphology, growth curve, and cell cycle were observed. The expression of stem cell surface markers was analyzed by flow cytometry, and expression of cell marker protein was detected by immunofluorescence. SF-MSCs were cultured in osteogenic, adipogenic, and chondrogenic differentiation medium. The differentiation potential of SF-MSCs was analyzed by alkaline phosphatase (Alizarin Red), Oil Red O, and Alcian blue. Antibody detection of human angiogenesis-related proteins was performed compared with bone marrow mesenchymal stem cells (BM-MSCs). The results show that SF-MSCs from the popliteal cyst fluid of pediatric patients showed a shuttle appearance and logarithmic growth. Flow cytometry analysis revealed that SF-MSCs were negative for hematopoietic lineage markers (CD34, CD45) and positive for MSC markers (CD44, CD73, CD90, and CD105). Interstitial cell marker (vimentin) and myofibroblast-like cell marker alpha-smooth muscle actin (α-SMA) were positive. These cells could differentiate into osteogenic, adipogenic, and chondrogenic lineages, respectively. Several types of human angiogenesis-related proteins were detected in the cell secretory fluid. These results show that we successfully obtained SF-MSCs from the popliteal cyst fluid of pediatric patients, which have the potential to be a valuable source of MSCs.
Collapse
|
16
|
Signaling Pathways Involved in the Development of Bronchopulmonary Dysplasia and Pulmonary Hypertension. CHILDREN-BASEL 2020; 7:children7080100. [PMID: 32824651 PMCID: PMC7465273 DOI: 10.3390/children7080100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/31/2022]
Abstract
The alveolar and vascular developmental arrest in the premature infants poses a major problem in the management of these infants. Although, with the current management, the survival rate has improved in these infants, but bronchopulmonary dysplasia (BPD) is a serious complication associated with a high mortality rate. During the neonatal developmental period, these infants are vulnerable to stress. Hypoxia, hyperoxia, and ventilation injury lead to oxidative and inflammatory stress, which induce further damage in the lung alveoli and vasculature. Development of pulmonary hypertension (PH) in infants with BPD worsens the prognosis. Despite considerable progress in the management of premature infants, therapy to prevent BPD is not yet available. Animal experiments have shown deregulation of multiple signaling factors such as transforming growth factorβ (TGFβ), connective tissue growth factor (CTGF), fibroblast growth factor 10 (FGF10), vascular endothelial growth factor (VEGF), caveolin-1, wingless & Int-1 (WNT)/β-catenin, and elastin in the pathogenesis of BPD. This article reviews the signaling pathways entailed in the pathogenesis of BPD associated with PH and the possible management.
Collapse
|
17
|
Vascularity and Angiogenic Signaling in the Dentine-Pulp Complex of Immature and Mature Permanent Teeth. Eur Endod J 2020; 4:80-85. [PMID: 32161892 PMCID: PMC7006546 DOI: 10.14744/eej.2019.26349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 01/09/2023] Open
Abstract
ABSTRACT. Objective This study aimed to examine the protein and gene expression of vascular endothelial growth factor (VEGF) and angiopoietins-1 and 2 in tissue from healthy and inflamed dental pulps. Methods Permanent teeth with pulps diagnosed as healthy or reversible pulpitis were used for immunohistochemistry (IHC) and gene expression experiments. For IHC, a whole pulp tissue was excavated from the pulp chamber, and it was formalin-fixed and processed for routine IHC with angiogenic markers anti-VEGF, anti-Ang1, and anti-Ang2. Staining was visualized with diaminobenzidine (DAB), and examined using light microscopy. The distribution of markers in healthy and inflamed pulps was qualitatively and quantitatively analyzed. Real-time quantitative polymerase chain reaction (RT qPCR) was used to ascertain the gene expression levels of ANGPT1, ANGPT2, and TEK in the presence of inflammation. Statistical analysis was performed using the Mann-Whitney test with the statistical significance level set at 0.05. Results There was increased protein and mRNA expression of VEGF and Ang-1 markers in inflamed pulp samples as compared with that in the healthy pulp tissue. IHC demonstrated intense expression of the VEGF protein on endothelial cells (EC) and some non-ECs, and there was significantly more staining on ECs associated with inflamed tissue (P<0.001). Ang-1 and Ang-2 were significantly expressed on ECs and non-ECs (P<0.05). RT qPCR did not show significant differences in gene expression between healthy and inflamed samples although similar trends were observed to IHC. Conclusion The presence of Ang-1, Ang-2, VEGF, and TEK gene in healthy and mildly inflamed pulp tissue associated with reversible pulpitis indicates that these angiogenic factors may participate in physiological and pathological angiogenesis and healing. The inflammatory process may regulate Ang-1/Ang2/Tie2 signaling; and together with VEGF, these growth factors have an important role in modulating pulp angiogenesis.
Collapse
|
18
|
Chen H, Fu X, Jiang J, Han S. C16 Peptide Promotes Vascular Growth and Reduces Inflammation in a Neuromyelitis Optica Model. Front Pharmacol 2019; 10:1373. [PMID: 31849648 PMCID: PMC6902286 DOI: 10.3389/fphar.2019.01373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023] Open
Abstract
The goal of this study was to elucidate the mechanism of action of C16, a laminin-1 peptide that competes with αvβ3 for integrin binding, in treating neuromyelitis optica (NMO). A NMO rat model was established and specific inhibitors were used to investigate the effect of Tie2 kinase, integrin, and PI3K/Akt signaling pathways on C16 function in NMO using histological, immunohistochemical, immunofluorescence, Western blot, and ELISA assays. A total of 150 rats were divided into five groups: a control untreated group (n = 18) and four test groups (n = 33 per group) including vehicle-treated control, C16, Tie2 kinase inhibitor + C16, and PI3K/Akt inhibitor LY294002 + C16. We found that inhibiting Tie2 kinase resulted in partial loss of C16 peptide-mediated effects, while suppressing PI3K/Akt signaling reduced C16 peptide-mediated effects. In addition, activation of the αvβ3 integrin axis and Tie2 kinase promoted PI3K/Akt signaling. Our study showed that the Tie2-PI3K/Akt, Tie2 integrin, and integrin-PI3K/Akt signaling pathways regulate C16 peptide function in vascular growth and stabilization as well as inflammation in NMO.
Collapse
Affiliation(s)
- Haohao Chen
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Xiaoxiao Fu
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| | - Jinzhan Jiang
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Shu Han
- Institute of Anatomy and Cell Biology, Medical College, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Chowkwale M, Mahler GJ, Huang P, Murray BT. A multiscale in silico model of endothelial to mesenchymal transformation in a tumor microenvironment. J Theor Biol 2019; 480:229-240. [PMID: 31430445 DOI: 10.1016/j.jtbi.2019.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 08/01/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022]
Abstract
Endothelial to mesenchymal transformation (EndMT) is a process in which endothelial cells gain a mesenchymal-like phenotype in response to mechanobiological signals that results in the remodeling or repair of underlying tissue. While initially associated with embryonic development, this process has since been shown to occur in adult tissue remodeling including wound healing, fibrosis, and cancer. In an attempt to understand the role of EndMT in cancer progression and metastasis, we present a multiscale, three-dimensional, in silico model. The model couples tissue level phenomena such as extracellular matrix remodeling, cellular level phenomena such as migration and proliferation, and chemical transport in the tumor microenvironment to mimic in vitro tissue models of the cancer microenvironment. The model is used to study the presence of EndMT-derived activated fibroblasts (EDAFs) and varying substrate stiffness on tumor cell migration and proliferation. The simulations accurately model the behavior of tumor cells under given conditions. The presence of EDAFs and/or an increase in substrate stiffness resulted in an increase in tumor cell activity. This model lays the foundation of further studies of EDAFs in a tumor microenvironment on a cellular and subcellular physiological level.
Collapse
Affiliation(s)
- M Chowkwale
- Department of Biomedical Engineering, Binghamton University, PO Box 6000, Binghamton, NY 13902, USA
| | - G J Mahler
- Department of Biomedical Engineering, Binghamton University, PO Box 6000, Binghamton, NY 13902, USA
| | - P Huang
- Department of Mechanical Engineering, Binghamton University, PO Box 6000, Binghamton, NY 13902, USA
| | - B T Murray
- Department of Mechanical Engineering, Binghamton University, PO Box 6000, Binghamton, NY 13902, USA.
| |
Collapse
|
20
|
Ou X, Gao JH, He LH, Yu XH, Wang G, Zou J, Zhao ZW, Zhang DW, Zhou ZJ, Tang CK. Angiopoietin-1 aggravates atherosclerosis by inhibiting cholesterol efflux and promoting inflammatory response. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158535. [PMID: 31678621 DOI: 10.1016/j.bbalip.2019.158535] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Angiopoietin-1 (Ang-1), a secreted protein, mainly regulates angiogenesis. Ang-1 has been shown to promote the development of atherosclerosis, whereas little is known about its effects on lipid metabolism and inflammation in this process. METHOD Ang-1 was transfected into ApoE-/- mice via lentiviral vector or incubated with THP-1 derived macrophages. Oil red O and HE staining were performed to measure the size of atherosclerotic plaques in ApoE-/- mice. Immunofluorescence was employed to show the expression of target proteins in aorta. [3H] labeled cholesterol was performed to examine the efficiency of cholesterol efflux and reverse cholesterol transport (RCT) both in vivo and vitro. Western blot and qPCR were used to quantify target proteins both in vivo and vitro. ELISA detected the levels of pro-inflammatory cytokines in mouse peritoneal macrophage. RESULTS Our data showed that Ang-1 augmented atherosclerotic plaques formation and inhibited cholesterol efflux. The binding of Ang-1 to Tie2 resulted in downregulation of LXRα, ABCA1 and ABCG1 expression via inhibiting the translocation of TFE3 into nucleus. In addition, Ang-1 decreased serum HDL-C levels and reduced reverse cholesterol transport (RCT) in ApoE-/- mice. Furthermore, Ang-1 induced lipid accumulation followed by increasing TNF-α, IL-6, IL-1β,and MCP-1 produced by MPMs, as well as inducing M1 phenotype macrophage marker iNOS and CD86 expression in aorta of ApoE-/- mice. CONCLUSION Ang-1 has an adverse effect on cholesterol efflux by decreasing the expression of ABCA1 and ABCG1 via Tie2/TFE3/LXRα pathway, thereby promoting inflammation and accelerating atherosclerosis progression.
Collapse
Affiliation(s)
- Xiang Ou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China; Department of Endocrinology, The First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Jia-Hui Gao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Lin-Hao He
- School of Pharmacy and Life Science College, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Gang Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Jin Zou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Zhen-Wang Zhao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Zhi-Jiao Zhou
- Department of Pathology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
21
|
华 欣, 朱 晓. [Research Advances of Ang-2 in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:868-874. [PMID: 30454550 PMCID: PMC6247002 DOI: 10.3779/j.issn.1009-3419.2018.11.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 11/26/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the malignant tumors with highest mortality in the world, it is still a difficult problem in clinical field. Its occurrence and development are closely associated with tumor angiogenesis. Angiopoietin-2 (Ang-2) is an important angiogenesis factor that has involved in many researches and it has been confirmed that the expression of Ang-2 is significantly up-regulated in tissues and blood of NSCLC. Meanwhile, Ang-2 is related to malignant biological behavior of cancer cells, making it a potential biological marker for the diagnosis and prognosis of NSCLC. At present, researches on Ang-2 how to promote the progression of NSCLC around the world are focused on Ang-2 regulating the proliferation, invasion, and metastasis of NSCLC. This paper summarized and estimated the studies and literature reports of regulatory mechanisms of Ang-2 in NSCLC, hopefully it could help looking for targeted drug treatment of Ang-2 in the future.
.
Collapse
Affiliation(s)
- 欣 华
- 210000 南京,东南大学医学院Medical College of Southeast University, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, China
| | - 晓莉 朱
- 210000 南京,东南大学附属中大医院呼吸科Department of Respiration, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, China
| |
Collapse
|
22
|
Wang L, Chopp M, Szalad A, Lu X, Lu M, Zhang T, Zhang ZG. Angiopoietin-1/Tie2 signaling pathway contributes to the therapeutic effect of thymosin β4 on diabetic peripheral neuropathy. Neurosci Res 2018; 147:1-8. [PMID: 30326249 DOI: 10.1016/j.neures.2018.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022]
Abstract
Angiopoietin-1 (Ang1) and its receptor Tie2 regulate vascular function. Our previous study demonstrated that thymosin beta 4 (Tβ4) ameliorates neurological function of diabetic peripheral neuropathy. Mechanisms underlying the therapeutic effect of Tβ4 on diabetic peripheral neuropathy have not been fully investigated. The present in vivo study investigated whether the Ang1/Tie2 signaling pathway is involved in Tβ4-improved neurovascular remodeling in diabetic peripheral neuropathy. Diabetic BKS. Cg-m+/+Leprdb/J (db/db) mice at age 20 weeks were treated with Tβ4 and neutralizing antibody against mouse Tie2 for 4 consecutive weeks. Neurological functional and neurovascular remodeling were measured. Administration of the neutralizing antibody against Tie2 attenuated the therapeutic effect of Tβ4 on improved diabetic peripheral neuropathy as measured by motor and sensory nerve conduction velocity and thermal hypoesthesia compared to diabetic db/db mice treated with Tβ4 only. Histopathological analysis revealed that the neutralizing antibody against Tie2 abolished Tβ4-increased microvascular density in sciatic nerve and intraepidermal nerve fiber density, which were associated with suppression of Tβ4-upregulated occludin expression and Tβ4-reduced protein levels of nuclear factor-κB (NF-κB) and vascular cell adhesion molecule-1 (VCAM1). Our data provide in vivo evidence that the Ang1/Tie2 pathway contributes to the therapeutic effect of Tβ4 on diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurology, Henry Ford Hospital, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, USA; Department of Physics, Oakland University, Rochester, MI 48309, USA
| | | | - XueRong Lu
- Department of Neurology, Henry Ford Hospital, USA
| | - Mei Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, USA
| | - Talan Zhang
- Department of Biostatistics and Research Epidemiology, Henry Ford Hospital, 2799 W. Grand Boulevard, Detroit, MI 48202, USA
| | | |
Collapse
|
23
|
A Review of Anti-Angiogenic Targets for Monoclonal Antibody Cancer Therapy. Int J Mol Sci 2017; 18:ijms18081786. [PMID: 28817103 PMCID: PMC5578174 DOI: 10.3390/ijms18081786] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 12/13/2022] Open
Abstract
Tumor angiogenesis is a key event that governs tumor progression and metastasis. It is controlled by the complicated and coordinated actions of pro-angiogenic factors and their receptors that become upregulated during tumorigenesis. Over the past several decades, vascular endothelial growth factor (VEGF) signaling has been identified as a central axis in tumor angiogenesis. The remarkable advent of recombinant antibody technology has led to the development of bevacizumab, a humanized antibody that targets VEGF and is a leading clinical therapy to suppress tumor angiogenesis. However, despite the clinical efficacy of bevacizumab, its significant side effects and drug resistance have raised concerns necessitating the identification of novel drug targets and development of novel therapeutics to combat tumor angiogenesis. This review will highlight the role and relevance of VEGF and other potential therapeutic targets and their receptors in angiogenesis. Simultaneously, we will also cover the current status of monoclonal antibodies being developed to target these candidates for cancer therapy.
Collapse
|
24
|
Moritz F, Schniering J, Distler JHW, Gay RE, Gay S, Distler O, Maurer B. Tie2 as a novel key factor of microangiopathy in systemic sclerosis. Arthritis Res Ther 2017; 19:105. [PMID: 28545512 PMCID: PMC5445339 DOI: 10.1186/s13075-017-1304-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 05/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The angiopoietin(Ang)/Tie2 system is a key regulator of vascular biology. The expression of membrane bound (mb) Tie2 and Ang-1 ensures vessel stability, whereas Ang-2, inducible by vascular endothelial growth factor (VEGF), hypoxia, and inflammation, acts as an antagonist. Tie2 signalling is also attenuated by soluble Tie2 (sTie2), the extracellular domain of the receptor, which is shed upon stimulation with VEGF. Herein, we investigate the role of Ang/Tie2 in the peripheral vasculopathy in systemic sclerosis (SSc) including animal models. METHODS The expression of Ang-1/-2 and Tie2 in skin/serum of SSc patients was compared with healthy controls by immunohistochemistry (IHC)/ELISA. Expression of Ang/Tie2 was analysed in different animal models: VEGF transgenic (tg) mice, hypoxia model, bleomycin-induced skin fibrosis, and tight skin 1 (TSK1) mice. RESULTS In SSc, dermal microvessels abundantly expressed Ang-2, but not Ang-1 compared with healthy controls. The percentage of mbTie2+ microvessels was profoundly decreased whereas the levels of sTie2 were increased already in early disease. Both in skin and sera of SSc patients, the Ang1/2 ratio was reduced, being lowest in patients with digital ulcers indicating vessel destabilizing conditions. We next studied potential influencing factors in animal models. The VEGF tg mouse model, the hypoxia, and the inflammation-dependent bleomycin model all showed a similar dysregulation of Ang/Tie2 as in SSc, which did not apply for the non-inflammatory TSK1 model. CONCLUSION Peripheral microvasculopathy in SSc results from a complex dysregulation of angiogenic signalling networks including the VEGF and the Ang/Tie2 system. The profoundly disturbed Ang-/Tie-2 balance might represent an important target for vascular therapeutic approaches in SSc.
Collapse
Affiliation(s)
- Falk Moritz
- Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland.,Department of Oncology, St. Georg Hospital, Leipzig, Germany
| | - Janine Schniering
- Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | - Jörg H W Distler
- Department of Internal Medicine 3, University Hospital, Erlangen, Germany
| | - Renate E Gay
- Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | - Steffen Gay
- Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland
| | - Britta Maurer
- Department of Rheumatology, University Hospital Zurich, Gloriastrasse 25, 8091, Zurich, Switzerland.
| |
Collapse
|
25
|
Rufaihah AJ, Johari NA, Vaibavi SR, Plotkin M, Di Thien DT, Kofidis T, Seliktar D. Dual delivery of VEGF and ANG-1 in ischemic hearts using an injectable hydrogel. Acta Biomater 2017; 48:58-67. [PMID: 27756647 DOI: 10.1016/j.actbio.2016.10.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 01/08/2023]
Abstract
Acute myocardial infarction (MI) caused by ischemia is the most common cause of cardiac dysfunction. While growth factor therapy is promising, the retention in the highly vascularized myocardium is limited and prevents sustained activation needed for adequate cellular responses. Here, we demonstrated the use of polyethylene glycol-fibrinogen (PF) hydrogels for sustained dual delivery of vascular endothelial growth factor (VEGF) and angiopoietin-1 (ANG-1) to enhance myocardial repair and function. VEGF and ANG-1 were incorporated in PF hydrogels and their in vitro characteristics were studied. Acute MI was generated in a rodent model with rats randomly assigned to 4 groups; sham, saline, PF and PF-VEGF-ANG1 (n=10 each group). Saline or hydrogel was injected in infarct and peri-infarct areas of the myocardium. After 4weeks, myocardial function was assessed using echocardiography. Tissue samples were harvested for Hematoxylin and Eosin, Masson Trichrome and capillary staining to assess the extent of fibrotic scar and arteriogenesis. Both VEGF and ANG-1 were released in a sustained and controlled manner over 30days. PF-VEGF-ANG1 treated animals showed the best improvement in cardiac function, highest degree of cardiac muscle preservation, and arteriogenesis. This study demonstrates that PF hydrogels can simultaneously provide mechanical support to attenuate adverse myocardial remodelling, and a pro-angiogenic benefit from the sustained VEGF and ANG1 delivery that culminates in a restorative effect following MI. The utility of this synergistic, biomaterial-based growth factor delivery may have clinical implications in the prevention of post-MI cardiac dysfunction. STATEMENT OF SIGNIFICANCE Acute myocardial infarction (MI) caused by ischemia is the most common cause of cardiac dysfunction. Here, we demonstrated the use of polyethylene glycol-fibrinogen (PF) hydrogels for sustained dual delivery of vascular endothelial growth factor (VEGF) and angiopoietin-1 (ANG-1) to enhance myocardial repair and function. Treated animals showed the best improvement in cardiac function, highest degree of cardiac muscle preservation, and arteriogenesis. This study demonstrates that PF hydrogels can simultaneously provide mechanical support to attenuate adverse myocardial remodelling, and a pro-angiogenic benefit from the sustained VEGF and ANG1 delivery that culminates in a restorative effect following MI.
Collapse
|
26
|
Bourdeau A, Van Slyke P, Kim H, Cruz M, Smith T, Dumont DJ. Vasculotide, an Angiopoietin-1 mimetic, ameliorates several features of experimental atopic dermatitis-like disease. BMC Res Notes 2016; 9:289. [PMID: 27236199 PMCID: PMC4884390 DOI: 10.1186/s13104-015-1817-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 12/17/2015] [Indexed: 01/21/2023] Open
Abstract
Background Earlier studies by our group have demonstrated that a transgenic animal engineered to express Tie2 under the control of the Tie2 promoter produced animals with a scaly skin phenotype that recapitulated many of the hallmarks of atopic dermatitis (AT-Derm). To test the hypothesis that this model of AT-Derm is driven by dysregulated Tie2-signalling, we have bred AT-Derm transgenic (TG) animals with TG-animals engineered to overexpress Angiopoietin-1 or -2, the cognate Tie2 ligands. These two ligands act to antagonize one another in a context-dependent manner. To further evaluate the role of Ang1-driven-Tie2 signalling, we examined the ability of Vasculotide, an Ang1-mimetic, to modulate the AT-Derm phenotype. Results AT-Derm+Ang2 animals exhibited an accentuated phenotype, whereas AT-Derm+Ang1 presented with a markedly reduced skin disease, similarly VT-treated AT-Derm animals present with a clear decrease in the skin phenotype. Moreover, a decrease in several important inflammatory cytokines and a decrease in the number of eosinophils was noted in VT-treated animals. Bone marrow differentiation in the presence of VT produced fewer CFU-G colonies, further supporting a role for Tie2-signalling in eosinophil development. Importantly, we demonstrate activation of Tie2, the VT-target, in lung tissue from naïve animals treated with increasing amounts of VT. Conclusions The AT-Derm phenotype in these animals is driven through dysregulation of Tie2 receptor signalling and is augmented by supplemental Ang2-dependent stimulation. Overexpression of Ang1 or treatment with VT produced a similar amelioration of the phenotype supporting the contention that VT and Ang1 have a similar mechanism of action on the Tie2 receptor and can both counteract the signalling driven by Ang2. Our results also support a possible role for Tie2-signalling in the development of eosinophilic diseases and that activation of Tie2 may directly or indirectly modulate the differentiation of eosinophils, which express Tie2. In summary, these data support the hypothesis that this AT-Derm mouse model is driven by dysregulation of the Tie2 signalling pathway and increased Ang2 levels can aggravate it, whereas it can be reversed by either Ang1-overexpression or VT treatment. Moreover, our data supports the contention that VT acts as an Angiopoietin-1 mimetic and may provide a novel entry point for Tie2-agonist-based therapies for atopic diseases.
Collapse
Affiliation(s)
- Annie Bourdeau
- Department of Immunology, University of Toronto, Toronto, ON, USA.,Sunnybrook Research Institute, Toronto, ON, USA
| | - Paul Van Slyke
- Vasomune Therapeutics, 101 College Street, Toronto, ON, USA.
| | - Harold Kim
- Sunnybrook Research Institute, Toronto, ON, USA.,Vasomune Therapeutics, 101 College Street, Toronto, ON, USA.,Department of Medical Biophysics, University of Toronto, Toronto, ON, USA
| | | | - Tracy Smith
- Sunnybrook Research Institute, Toronto, ON, USA.,Department of Medical Biophysics, University of Toronto, Toronto, ON, USA
| | - Daniel J Dumont
- Sunnybrook Research Institute, Toronto, ON, USA.,Department of Medical Biophysics, University of Toronto, Toronto, ON, USA
| |
Collapse
|
27
|
Liu X, Zhou X, Yuan W. The angiopoietin1–Akt pathway regulates barrier function of the cultured spinal cord microvascular endothelial cells through Eps8. Exp Cell Res 2014; 328:118-131. [DOI: 10.1016/j.yexcr.2014.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/05/2014] [Accepted: 08/13/2014] [Indexed: 12/19/2022]
|
28
|
Kawamura K, Takahashi T, Kanazawa M, Igarashi H, Nakada T, Nishizawa M, Shimohata T. Effects of angiopoietin-1 on hemorrhagic transformation and cerebral edema after tissue plasminogen activator treatment for ischemic stroke in rats. PLoS One 2014; 9:e98639. [PMID: 24896569 PMCID: PMC4045756 DOI: 10.1371/journal.pone.0098639] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 05/06/2014] [Indexed: 01/01/2023] Open
Abstract
An angiogenesis factor, angiopoietin-1 (Ang1), is associated with the blood-brain barrier (BBB) disruption after focal cerebral ischemia. However, whether hemorrhagic transformation and cerebral edema after tissue plasminogen activator (tPA) treatment are related to the decrease in Ang1 expression in the BBB remains unknown. We hypothesized that administering Ang1 might attenuate hemorrhagic transformation and cerebral edema after tPA treatment by stabilizing blood vessels and inhibiting hyperpermeability. Sprague-Dawley rats subjected to thromboembolic focal cerebral ischemia were assigned to a permanent ischemia group (permanent middle cerebral artery occlusion; PMCAO) and groups treated with tPA at 1 h or 4 h after ischemia. Endogenous Ang1 expression was observed in pericytes, astrocytes, and neuronal cells. Western blot analyses revealed that Ang1 expression levels on the ischemic side of the cerebral cortex were decreased in the tPA-1h, tPA-4h, and PMCAO groups as compared to those in the control group (P = 0.014, 0.003, and 0.014, respectively). Ang1-positive vessel densities in the tPA-4h and PMCAO groups were less than that in the control group (p = 0.002 and <0.001, respectively) as well as that in the tPA-1h group (p = 0.047 and 0.005, respectively). These results suggest that Ang1-positive vessel density was maintained when tPA was administered within the therapeutic time window (1 h), while it was decreased when tPA treatment was given after the therapeutic time window (4 h). Administering Ang1 fused with cartilage oligomeric protein (COMP) to supplement this decrease has the potential to suppress hemorrhagic transformation as measured by hemoglobin content in a whole cerebral homogenate (p = 0.007) and cerebral edema due to BBB damage (p = 0.038), as compared to administering COMP protein alone. In conclusion, Ang1 might be a promising target molecule for developing vasoprotective therapies for controlling hemorrhagic transformation and cerebral edema after tPA treatment.
Collapse
Affiliation(s)
- Kunio Kawamura
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tetsuya Takahashi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hironaka Igarashi
- Department of Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tsutomu Nakada
- Department of Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masatoyo Nishizawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
- * E-mail:
| |
Collapse
|
29
|
McKelvey K, Jackson CJ, Xue M. Activated protein C: A regulator of human skin epidermal keratinocyte function. World J Biol Chem 2014; 5:169-179. [PMID: 24921007 PMCID: PMC4050111 DOI: 10.4331/wjbc.v5.i2.169] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 04/03/2014] [Indexed: 02/05/2023] Open
Abstract
Activated protein C (APC) is a physiological anticoagulant, derived from its precursor protein C (PC). Independent of its anticoagulation, APC possesses strong anti-inflammatory, anti-apoptotic and barrier protective properties which appear to be protective in a number of disorders including chronic wound healing. The epidermis is the outermost skin layer and provides the first line of defence against the external environment. Keratinocytes are the most predominant cells in the epidermis and play a critical role in maintaining epidermal barrier function. PC/APC and its receptor, endothelial protein C receptor (EPCR), once thought to be restricted to the endothelium, are abundantly expressed by skin epidermal keratinocytes. These cells respond to APC by upregulating proliferation, migration and matrix metalloproteinase-2 activity and inhibiting apoptosis/inflammation leading to a wound healing phenotype. APC also increases barrier function of keratinocyte monolayers by promoting the expression of tight junction proteins and re-distributing them to cell-cell contacts. These cytoprotective properties of APC are mediated through EPCR, protease-activated receptors, epidermal growth factor receptor or Tie2. Future preventive and therapeutic uses of APC in skin disorders associated with disruption of barrier function and inflammation look promising. This review will focus on APC’s function in skin epidermis/keratinocytes and its therapeutical potential in skin inflammatory conditions.
Collapse
|
30
|
van de Sande MGH, de Launay D, de Hair MJH, García S, van de Sande GPM, Wijbrandts CA, Gerlag DM, Reedquist KA, Tak PP. Local synovial engagement of angiogenic TIE-2 is associated with the development of persistent erosive rheumatoid arthritis in patients with early arthritis. ACTA ACUST UNITED AC 2014; 65:3073-83. [PMID: 23982963 DOI: 10.1002/art.38128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To examine the role of vascular endothelial growth factor (VEGF) and angiopoietin signaling in the diagnosis and disease outcome of patients with early arthritis. METHODS Fifty patients with early arthritis (disease duration <1 year) who had not been treated with disease-modifying antirheumatic drugs (DMARDs) were monitored prospectively and were classified at baseline and after 2 years as having undifferentiated arthritis (UA), rheumatoid arthritis (RA), or spondyloarthritis (SpA). All patients underwent arthroscopic synovial biopsy at baseline. Synovial expression of VEGF, VEGF receptor, angiopoietin 1 (Ang-1), Ang-2, TIE-2, and activated p-TIE-2 was evaluated by immunohistochemistry. Serum levels of VEGF, Ang-1, and Ang-2 were measured by enzyme-linked immunosorbent assay. Secreted products of macrophages stimulated with Ang-1 and Ang-2 were measured using a multiplex system. RESULTS Expression of Ang-1 was comparable between the patients with RA at baseline and patients with UA who fulfilled the criteria for RA over time (UA/RA), and it was significantly higher in patients with RA (P < 0.05) or UA/RA (P < 0.005) than in patients with SpA. TIE-2 and p-TIE-2 were more highly expressed in patients with RA (P < 0.005) or UA/RA (P < 0.05) than in patients with SpA. Ang-1 significantly enhanced the tumor necrosis factor-dependent macrophage production of cytokines and chemokines that are known to be elevated in the synovial fluid of patients with early RA. In RA, relative TIE-2 activation predicted the development of erosive disease (R(2) = 0.35, P < 0.05). CONCLUSION Local engagement of synovial TIE-2 is observed during the earliest phases of RA, suggesting that TIE-2 signaling may contribute to disease development and progression or may indicate an attempt to protect against these processes. Early therapeutic targeting of TIE-2 signaling may be useful in improving outcome in arthritis.
Collapse
|
31
|
Chowdhury HR, Patel N, Sivaprasad S. Ocular neovascularization: potential for the angiopoietin/Tie-2 pathway. EXPERT REVIEW OF OPHTHALMOLOGY 2014. [DOI: 10.1586/17469899.4.1.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Zhang ZQ, Huang XM, Lu H. Early biomarkers as predictors for bronchopulmonary dysplasia in preterm infants: a systematic review. Eur J Pediatr 2014; 173:15-23. [PMID: 23996017 DOI: 10.1007/s00431-013-2148-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 08/04/2013] [Accepted: 08/09/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) is usually diagnosed in preterm infants at least 28 days after birth. Great interest lies in the potential to identify biomarkers that predict development of the disease and future neurodevelopmental outcomes. We have reviewed the existing literature on early biomarkers as predictors for BPD in preterm infants. METHODS Two reviewers independently searched the databases of PubMed, EMBASE, and Google Scholar for studies pertaining to biomarkers for BPD. Studies were assessed using Quality Assessment of Diagnostic Accuracy Studies criteria. RESULTS We identified 46 relevant articles that are summarized in the review. These studies assessed over 30 potential biomarkers. Sensitivity and specificity of biomarkers were reported or could be calculated for only 16 articles, and ranged from 0 to 100 %. Based on the nine highest quality studies, serum KL-6, CC16, neutrophil gelatinase-associated lipocalin, and end-tidal carbon monoxide (etCO) perform extremely well in predicting the early diagnosis of established BPD, highlighting these biomarkers as promising candidates for future research. CONCLUSIONS Published data from studies on serum biomarkers and etCO suggest that biomarkers may have great potential to predict the subsequent BPD and neurodevelopmental outcomes. These biomarkers need validation in larger studies, and the generalizability of biomarkers for predicting BPD, as well as the neurodevelopmental outcomes, needs to be further explored.
Collapse
Affiliation(s)
- Zhi-Qun Zhang
- Division of Neonatology, Department of Pediatrics, Hangzhou First People's Hospital, No. 261 Huansha Road, Hangzhou, Zhejiang, 310002, China
| | | | | |
Collapse
|
33
|
Xue M, Jackson CJ. Activated protein C and its potential applications in prevention of islet β-cell damage and diabetes. VITAMINS AND HORMONES 2014; 95:323-63. [PMID: 24559924 DOI: 10.1016/b978-0-12-800174-5.00013-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activated protein C (APC) is derived from its precursor, protein C (PC). Originally thought to be synthesized exclusively by the liver, recent reports have shown that PC is also produced by many other cells including pancreatic islet β cells. APC functions as a physiological anticoagulant with anti-inflammatory, anti-apoptotic, and barrier-stabilizing properties. APC exerts its protective effects via an intriguing mechanism requiring combinations of endothelial PC receptor, protease-activated receptors, epidermal growth factor receptor, Tie2 or CD11b, depending on cell types. Diabetes is a chronic condition resulted from the body's inability to produce and/or properly use insulin. The prevalence of diabetes has risen dramatically and has become one of the major causes of premature mortality and morbidity worldwide. Diabetes prevention is an ideal approach to reduce this burden. Type 1 and type 2 diabetes are the major forms of diabetes mellitus, and both are characterized by an autoimmune response, intraislet inflammation, β-cell apoptosis, and progressive β-cell loss. Protecting β-cell from damage is critical in both prevention and treatment of diabetes. Recent in vitro and animal studies show that APC's strong anti-inflammatory and anti-apoptotic properties are beneficial in preventing β-cell destruction and diabetes in the NOD mouse model of type 1 diabetes. Future preventive and therapeutic uses of APC in diabetes look very promising.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratories, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| | - Christopher J Jackson
- Sutton Arthritis Research Laboratories, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
34
|
Kim DH, Kim HS. Serial changes of serum endostatin and angiopoietin-1 levels in preterm infants with severe bronchopulmonary dysplasia and subsequent pulmonary artery hypertension. Neonatology 2014; 106:55-61. [PMID: 24818792 DOI: 10.1159/000358374] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/07/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND In bronchopulmonary dysplasia (BPD), disrupted angiogenesis may result from an imbalance between pro- and anti-angiogenic factors triggered by inflammation, leading to the late development of pulmonary artery hypertension (PAH). OBJECTIVES To investigate whether the levels of serum endostatin (as an anti-angiogenic factor) and angiopoietin-1 (AP-1; as a pro-angiogenic factor) in early life are associated with the development of PAH in preterm infants with severe BPD. METHODS In this prospective cohort study, the levels of serum endostatin and AP-1 were measured from 56 infants (gestational age <30 weeks or birth weight <1,250 g) including severe BPD with PAH ('PAH'; 15 infants) or without PAH ('non-PAH'; 22 infants) and no/mild BPD (19 infants) groups on days 1, 7, 14, and 28 of life. RESULTS The PAH group consistently underwent more aggressive respiratory management than the non-PAH group, over 1 month after birth. The endostatin level and the ratio of endostatin to AP-1 on day 7 of life were significantly higher in the PAH group than in the non-PAH group or no/mild BPD groups (median 146.6 vs. 102.4/108.0 ng/ml; 62.1 vs. 18.6/14.9). The ratio of endostatin to AP-1 on day 1 was also significantly higher in the PAH group than in the no/mild BPD group (median 31.8 vs. 11.3). CONCLUSIONS An increased serum endostatin to AP-1 ratio may reflect impaired angiogenesis that may lead to the development of PAH [corrected].
Collapse
Affiliation(s)
- Do-Hyun Kim
- Department of Pediatrics, Dongguk University Ilsan Hospital, Goyang, Korea
| | | |
Collapse
|
35
|
Shaik-Dasthagirisaheb YB, Varvara G, Murmura G, Saggini A, Potalivo G, Caraffa A, Antinolfi P, Tete' S, Tripodi D, Conti F, Cianchetti E, Toniato E, Rosati M, Conti P, Speranza L, Pantalone A, Saggini R, Theoharides TC, Pandolfi F. Vascular endothelial growth factor (VEGF), mast cells and inflammation. Int J Immunopathol Pharmacol 2013; 26:327-35. [PMID: 23755748 DOI: 10.1177/039463201302600206] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is one of the most important inducers of angiogenesis, therefore blocking angiogenesis has led to great promise in the treatment of various cancers and inflammatory diseases. VEGF, expressed in response to soluble mediators such as cytokines and growth factors, is important in the physiological development of blood vessels as well as development of vessels in tumors. In cancer patients VEGF levels are increased, and the expression of VEGF is associated with poor prognosis in diseases. VEGF is a mediator of angiogenesis and inflammation which are closely integrated processes in a number of physiological and pathological conditions including obesity, psoriasis, autoimmune diseases and tumor. Mast cells can be activated by anti-IgE to release potent mediators of inflammation and can also respond to bacterial or viral antigens, cytokines, growth factors and hormones, leading to differential release of distinct mediators without degranulation. Substance P strongly induces VEGF in mast cells, and IL-33 contributes to the stimulation and release of VEGF in human mast cells in a dose-dependent manner and acts synergistically in combination with Substance P. Here we report a strong link between VEGF and mast cells and we depict their role in inflammation and immunity.
Collapse
|
36
|
The angiopoietin:Tie 2 interaction: a potential target for future therapies in human vascular disease. Cytokine Growth Factor Rev 2013; 24:579-92. [PMID: 23838360 DOI: 10.1016/j.cytogfr.2013.05.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 01/06/2023]
Abstract
Angiopoietin-1 and -2 are endogenous ligands for the vascular endothelial receptor tyrosine kinase Tie2. Signalling by angiopoietin-1 promotes vascular endothelial cell survival and the sprouting and reorganisation of blood vessels, as well as inhibiting activation of the vascular endothelial barrier to reduce leakage and leucocyte migration into tissues. Angiopoietin-2 generally has an opposing action, and is released naturally at times of vascular growth and inflammation. There is a significant body of emerging evidence that promoting the actions of angiopoietin-1 through Tie2 is of benefit in pathologies of vascular activation, such as sepsis, stroke, diabetic retinopathy and asthma. Similarly, methods to inhibit the actions of angiopoietin-2 are emerging and have been demonstrated to be of preclinical and clinical benefit in reducing tumour angiogenesis. Here the author reviews the evidence for potential benefits of modulation of the interaction of angiopoietins with Tie2, and the potential applications. Additionally, methods for delivery of the complex protein angiopoietin-1 are discussed, as well as potentially deleterious consequences of administering angiopoietin-1.
Collapse
|
37
|
Prapansilp P, Medana I, Mai NTH, Day NPJ, Phu NH, Yeo TW, Hien TT, White NJ, Anstey NM, Turner GDH. A clinicopathological correlation of the expression of the angiopoietin-Tie-2 receptor pathway in the brain of adults with Plasmodium falciparum malaria. Malar J 2013; 12:50. [PMID: 23383853 PMCID: PMC3570345 DOI: 10.1186/1475-2875-12-50] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/14/2013] [Indexed: 02/08/2023] Open
Abstract
Background Plasma angiopoietin (Ang)-2 is associated with disease severity and mortality in adults and children with falciparum malaria. However the mechanism of action of the angiopoietins in fatal malaria is unclear. This study aimed to determine whether the expression of Ang-1 and Ang-2 and their receptor Tie-2 in cerebral endothelial or parenchymal cells was specific to cerebral malaria (CM), correlated with coma or other severe clinical features, and whether plasma and CSF levels of these markers correlated with the clinical and neuropathological features of severe and fatal malaria in Vietnamese adults. Methods Immunohistochemistry was performed for Ang-1, Ang-2 and Tie-2 on post-mortem brain tissue from fatal malaria cases and controls. Quantitative ELISA for plasma and cerebrospinal fluid levels of Ang-1, Ang-2 and Tie-2 was done to compare fatal cases with surviving patients from the same study. Results Immunohistochemistry revealed significant differences in expression in endothelial and parenchymal cells compared to controls. However there was no significant difference in expression of these markers on endothelial cells, astroglial cells or neurons between CM and non-cerebral malaria cases. Immunostaining of Ang-1, Ang-2 and Tie-2 was also not associated with Plasmodium falciparum-infected erythrocyte sequestration in the brain. However Ang-1 and Ang-2 expression in neurons was significantly correlated with the incidence of microscopic haemorrhages. Plasma levels of Ang-2 and Ang-2/Ang-1 ratio were associated with the number of severe malaria complications and were significant and independent predictors of metabolic acidosis and fatal outcome. Conclusions The independent prognostic significance of Ang-2 and the Ang-2/Ang-1 ratio in severe malaria was confirmed, although immunohistochemistry in fatal cases did not reveal increased expression on brain endothelium in cerebral versus non-cerebral cases. Activation of the Ang-Tie-2 pathway in severe malaria is therefore related to acidosis, number of severity criteria and outcome, but is not a specific event in the brain during cerebral malaria.
Collapse
|
38
|
Molecular and cellular mechanisms underlying the role of blood vessels in spinal cord injury and repair. Cell Tissue Res 2012; 349:269-88. [PMID: 22592628 DOI: 10.1007/s00441-012-1440-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 04/24/2012] [Indexed: 02/07/2023]
Abstract
Spinal cord injury causes immediate damage of nervous tissue accompanied by the loss of motor and sensory function. The limited self-repair ability of damaged nervous tissue underlies the need for reparative interventions to restore function after spinal cord injury. Blood vessels play a crucial role in spinal cord injury and repair. Injury-induced loss of local blood vessels and a compromised blood-brain barrier contribute to inflammation and ischemia and thus to the overall damage to the nervous tissue of the spinal cord. Lack of vasculature and leaking blood vessels impede endogenous tissue repair and limit prospective repair approaches. A reduction of blood vessel loss and the restoration of blood vessels so that they no longer leak might support recovery from spinal cord injury. The promotion of new blood vessel formation (i.e., angio- and vasculogenesis) might aid repair but also incorporates the danger of exacerbating tissue loss and thus functional impairment. The delicate interplay between cells and molecules that govern blood vessel repair and formation determines the extent of damage and the success of reparative interventions. This review deals with the cellular and molecular mechanisms underlying the role of blood vessels in spinal cord injury and repair.
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The roles of angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) during vascular development have been extensively investigated, as has been their role in controlling the responsiveness of the endothelium to exogenous cytokines. However, very little is known about the role of these vascular morphogenic molecules in the pathogenesis of atherosclerosis. Here, we summarize the recent research into angiopoietins in atherosclerosis. RECENT FINDINGS Angiopoietin-2 is a context-dependent agonist that protects against the development of arteriosclerosis in rat cardiac allograft. A recent study showed, contrary to expectations, that a single systemic administration of adenoviral Ang-2 to apoE mice, fed a Western diet, reduced atherosclerotic lesion size and LDL oxidation in a nitric oxide synthase dependent manner. In contrast, overexpression of Ang-1 fails to protect from rat cardiac allograft due to smooth muscle cell activation. The potential proatherogenic effect of Ang-1 is further supported by the induction of chemotaxis of monocytes by Ang-1 in a manner that is independent of Tie-2 and integrin binding. These studies highlight the need for extensive research to better understand the role of angiopoietins in the cardiovascular setting. SUMMARY Ang-2 inhibits atherosclerosis by limiting LDL oxidation via stimulation of nitric oxide production. In contrast, Ang-1 can promote monocyte and neutrophil migration. The angiopoietin-Tie-2 system provides an important new target for modulating vascular function.
Collapse
Affiliation(s)
- Asif Ahmed
- UoE/BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
40
|
Mohamed WAW, Niyazy WH, Mahfouz AA. Angiopoietin-1 and endostatin levels in cord plasma predict the development of bronchopulmonary dysplasia in preterm infants. J Trop Pediatr 2011; 57:385-8. [PMID: 21131270 DOI: 10.1093/tropej/fmq112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To determine whether angiopoietin-1 and endostatin levels in the cord blood could predict the subsequent development of bronchopulmonary dysplasia (BPD) in preterm infants. PATIENTS AND METHODS A total of 102 preterm (gestational age ≤ 32 weeks) infants (28 infants developed BPD and 74 had no BPD) were enrolled in the study. Cord plasma levels of angiopoietin-1 and endostatin were measured by enzyme-linked immunosorbent assay. RESULTS Preterm infants who subsequently developed BPD had significantly lower cord plasma levels of angiopoietin-1 than those who did not (p < 0.001). Our results showed that cord plasma levels of endostatin were significantly higher in infants with BPD than in those without (p < 0.001). In infants with BPD, angiopoietin-1 levels in cord plasma correlated negatively with endostatin (r = -0.48; p = 0.008). CONCLUSION In preterm infants, low-angiopoietin-1 and high-endostatin levels in cord plasma at birth predict the subsequent development of BPD.
Collapse
|
41
|
Rodríguez-Muñoz Y, Martín-Vílchez S, López-Rodríguez R, Hernández-Bartolomé A, Trapero-Marugán M, Borque MJ, Moreno-Otero R, Sanz-Cameno P. Peripheral blood monocyte subsets predict antiviral response in chronic hepatitis C. Aliment Pharmacol Ther 2011; 34:960-71. [PMID: 21848603 DOI: 10.1111/j.1365-2036.2011.04807.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatitis C virus infection evolves into chronic progressive liver disease in a significant percentage of patients. Monocytes constitute a diverse group of myeloid cells that mediate innate and adaptive immune response. In addition to proinflammatory CD16+ monocytes, a Tie-2+ subgroup - Tie-2 expressing monocytes (TEMs) - that has robust proangiogenic potential has been recently defined. AIM To study the heterogeneity of peripheral blood monocytes in chronic hepatitis C (CHC) patients and to examine their proposed pathophysiological roles on disease progression and response to antiviral therapy. METHODS We studied CD16+ and Tie-2+ peripheral monocyte subpopulations in 21 healthy subjects and 39 CHC patients in various stages of disease and responses to antiviral treatment using flow cytometry. Expression profiles of proangiogenic and tissue remodelling factors in monocyte supernatants were measured using ELISA and protein arrays. Intrahepatic expression of CD14, CD31 and Tie-2 was analysed using immunofluorescence. RESULTS Increases of certain peripheral monocyte subsets were observed in the blood of CHC patients, wherein those cells with proinflammatory (CD16+) or proangiogenic (TEMs) potential expanded (P < 0.005, both). Notably, TEMs were significantly increased in nonresponders, particularly those with lower CD16 expression. In addition, many angiogenic factors were differentially expressed by peripheral monocytes from control or CHC patients, such as angiopoietin-1 and angiogenin (P < 0.05). Interestingly, intrahepatic TEMs were distinguished within portal infiltrates of CHC patients. CONCLUSIONS These findings suggest for the first time the relevance of peripheral monocytes phenotypes for the achievement of response to treatment. Hence, the study of monocyte subset regulation might effect improved CHC prognoses and adjuvant therapies.
Collapse
Affiliation(s)
- Y Rodríguez-Muñoz
- Liver Unit, IIS Hospital Universitario de la Princesa, Universidad Autónoma de Madrid & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Thomas W, Seidenspinner S, Kramer BW, Wirbelauer J, Kawczyńska-Leda N, Szymankiewicz M, Speer CP. Airway angiopoietin-2 in ventilated very preterm infants: association with prenatal factors and neonatal outcome. Pediatr Pulmonol 2011; 46:777-84. [PMID: 21337734 DOI: 10.1002/ppul.21435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 11/11/2010] [Accepted: 12/13/2010] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Pulmonary angiogenesis is a prerequisite for lung development. Angiopoietin-2 (Ang2) destabilizes endothelial cells through its endothelial receptor TIE-2, enabling vascular sprouting. Ang1 stabilizes new blood vessels. Soluble TIE-2 (sTIE-2) modulates these effects. We hypothesized that histological funisitis is associated with alterations of Ang2 in airways and of the systemic angiopoietin-TIE-2 homeostasis in very low birth weight (VLBW) infants, contributing to pulmonary morbidity and mortality. METHODS We measured Ang2 in tracheobronchial aspirate fluid (TAF) of 42 VLBW <30 weeks of gestation from day 1 through 15 and Ang1, Ang2, and sTIE-2 in umbilical cord serum of 28 infants by enzyme-linked immunosorbent assay. Histological examination distinguished three groups: funisitis, chorioamnionitis, and controls. RESULTS Funisitis was associated with lower Ang2 values in TAF but not with changes of Ang1, Ang2, and sTIE-2 in umbilical cord serum. Infants who developed bronchopulmonary dysplasia (BPD) or died had a persistently decreased ratio of previously measured Ang1 to Ang2 in TAF on days 1-5 and increased cord serum concentrations of sTIE-2. Moderate BPD/death was associated with an increase of Ang2 in TAF on day 10 and decreased Ang1/Ang2 ratio from day 3-15. Small for gestational age (SGA) infants had increased Ang2 in TAF on day 1-7 and a lower Ang1/Ang2 ratio on days 5-7. CONCLUSIONS The predominance of Ang2 in airway fluid of infants with BPD/death and SGA infants suggests a link between disrupted placental and fetal pulmonary angiogenesis. Histological funisitis with reduced Ang2 in TAF was of minor relevance for outcome in our cohort.
Collapse
Affiliation(s)
- Wolfgang Thomas
- University Children's Hospital, University of Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Xue M, Chow SO, Dervish S, Chan YKA, Julovi SM, Jackson CJ. Activated protein C enhances human keratinocyte barrier integrity via sequential activation of epidermal growth factor receptor and Tie2. J Biol Chem 2010; 286:6742-50. [PMID: 21173154 DOI: 10.1074/jbc.m110.181388] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Keratinocytes play a critical role in maintaining epidermal barrier function. Activated protein C (APC), a natural anticoagulant with anti-inflammatory and endothelial barrier protective properties, significantly increased the barrier impedance of keratinocyte monolayers, measured by electric cell substrate impedance sensing and FITC-dextran flux. In response to APC, Tie2, a tyrosine kinase receptor, was rapidly activated within 30 min, and relocated to cell-cell contacts. APC also increased junction proteins zona occludens, claudin-1 and VE-cadherin. Inhibition of Tie2 by its peptide inhibitor or small interfering RNA abolished the barrier protective effect of APC. Interestingly, APC did not activate Tie2 through its major ligand, angiopoietin-1, but instead acted by binding to endothelial protein C receptor, cleaving protease-activated receptor-1 and transactivating EGF receptor. Furthermore, when activation of Akt, but not ERK, was inhibited, the barrier protective effect of APC on keratinocytes was abolished. Thus, APC activates Tie2, via a mechanism requiring, in sequential order, the receptors, endothelial protein C receptor, protease-activated receptor-1, and EGF receptor, which selectively enhances the PI3K/Akt signaling to enhance junctional complexes and reduce keratinocyte permeability.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratories, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia.
| | | | | | | | | | | |
Collapse
|
44
|
Gouw ASH, Zeng W, Buiskool M, Platteel I, van den Heuvel MC, Poppema S, de Jong KP, Molema G. Molecular characterization of the vascular features of focal nodular hyperplasia and hepatocellular adenoma: a role for angiopoietin-1. Hepatology 2010; 52:540-9. [PMID: 20683953 DOI: 10.1002/hep.23700] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
UNLABELLED Focal nodular hyperplasia (FNH) and hepatocellular adenoma (HCA) are two hepatic nodular lesions of different etiologies. FNH, a polyclonal lesion, is assumed to be a regenerative reaction following a vascular injury, whereas HCA is a monoclonal, benign neoplastic lesion. In addition to features that are predominantly found in either FNH or HCA (e.g., dystrophic vessels in FNH and single arteries in HCA), FNH and HCA share morphological vascular abnormalities such as dilated sinusoids. We hypothesized that these anomalous vascular features are associated with altered expression of growth factors involved in vascular remodeling. This was based on reports of morphologically abnormal hepatic vasculature and nodular lesions in transgenic models of hepatocytic overexpression of angiopoietin-1 (Ang-1), a member of the angiopoietin family, which is crucially involved in vascular morphogenesis and homeostasis. We investigated gene and protein expression of members of the angiopoietin system and vascular endothelial growth factor A (VEGF-A) and its receptors in 9 FNH samples, 13 HCA samples, and 9 histologically normal livers. In comparison with normal samples, a significant increase in Ang-1 was found in FNH (P < 0.01) and HCA (P < 0.05), whereas no significant changes in Ang-2, receptor tyrosine kinase with immunoglobulin-like and EGF-like domains 2, VEGF-A, or vascular endothelial growth factor receptor 2 (VEGFR-2) were observed. CONCLUSION Because of the different etiological contexts of a preceding vascular injury in FNH and a neoplastic growth in HCA, Ang-1 might exert different effects on the vasculature in these lesions. In FNH, it could predominantly stimulate recruitment of myofibroblasts and result in dystrophic vessels, whereas in HCA, it may drive vascular remodeling that produces enlarged vessels and arterial sprouting that generates single arteries.
Collapse
Affiliation(s)
- Annette S H Gouw
- Pathology Section, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Makinde TO, Agrawal DK. Increased expression of angiopoietins and Tie2 in the lungs of chronic asthmatic mice. Am J Respir Cell Mol Biol 2010; 44:384-93. [PMID: 20463289 DOI: 10.1165/rcmb.2009-0330oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Angiopoietin (Ang)1 and Ang2 are ligands for Tie2 tyrosine kinase receptor (Tie2). Elevated levels of Ang1 and Ang2 in induced sputum of patients with asthma have been reported, with a positive correlation of Ang2 levels with the severity of airway occlusion. Although studies have shown Tie2-mediated regulation of nonvascular cells in some pathological conditions, current knowledge on Tie2 signaling in asthma is limited to the vasculature. We examined the expression pattern of Ang1, Ang2, vascular endothelial growth factor (VEGF), and Tie2 and their correlation with the degree of airway remodeling in the lung of ovalbumin (OVA)-sensitized and OVA-challenged mice with airway hyperresponsiveness. Lung tissues were isolated from Balb/c mice after OVA sensitization and challenge. Hematoxylin and eosin, periodic acid-Schiff, and trichrome staining were used to show the lung pathology. The expression of Ang1, Ang2, VEGF, and Tie2 was examined using immunofluorescence, Western blot, ELISA, and real-time PCR. In the lung of normal mice, Tie2 expression was detected only in the blood vessels. However, in the lung of OVA-sensitized and OVA-challenged mice, Tie2 was abundantly expressed in airway epithelial cells and in a subset of macrophages in addition to constitutive expression in pulmonary vessels. The increase in Tie2 expression correlated with the severity of airway remodeling. Macrophages and airway epithelial cells express Ang2 and VEGF only in allergic models. Ang1 was constitutively expressed, with a decrease in mRNA level in allergic models. In conclusion, increased expression of Tie2 and Ang2 in allergic airway epithelium and alveolar macrophages correlates with the severity of airway remodeling.
Collapse
Affiliation(s)
- Toluwalope O Makinde
- Center for Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | |
Collapse
|
46
|
Xue M, Minhas N, Chow SO, Dervish S, Sambrook PN, March L, Jackson CJ. Endogenous protein C is essential for the functional integrity of human endothelial cells. Cell Mol Life Sci 2010; 67:1537-46. [PMID: 20127387 PMCID: PMC11115832 DOI: 10.1007/s00018-010-0269-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/04/2009] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
Abstract
Circulating protein C (PC) plays a vital role as an anti-coagulant and anti-inflammatory mediator. We show here that human endothelial cells produce PC that acts through novel mediators to enhance their own functional integrity. When endogenous PC or its receptor, endothelial protein C receptor (EPCR), was suppressed by small interfering (si) RNA, human umbilical cord endothelial cell (HUVEC) proliferation was decreased and apoptosis elevated. Interestingly, PC or EPCR siRNA significantly increased HUVEC permeability, which is likely via reduction of the angiopoietin (Ang)1/Ang2 ratio and inhibition of the peripheral localization of the tight junction protein, zona occludins-1. In addition, PC or EPCR siRNA inhibited type IV collagen and matrix metalloproteinase-2, providing the first evidence that PC contributes to vascular basement membrane formation. These newly described actions of endogenous PC act to stabilize endothelial cells and enhance barrier function, to potentially promote the functional integrity of blood vessels.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Research Laboratories, Institute of Bone and Joint Research, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, Level 10, The Kolling Building, St Leonards, NSW 2065, Australia.
| | | | | | | | | | | | | |
Collapse
|
47
|
The angiogenic factor angiopoietin-1 is a proneurogenic peptide on subventricular zone stem/progenitor cells. J Neurosci 2010; 30:4573-84. [PMID: 20357108 DOI: 10.1523/jneurosci.5597-09.2010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the adult mammalian brain, the subventricular zone (SVZ) hosts stem cells constantly generating new neurons. Angiopoietin-1 (Ang-1) is an endothelial growth factor with a critical role in division, survival, and adhesion of endothelial cells via Tie-2 receptor activity. Expression of Tie-2 in nonendothelial cells, especially neurons and stem cells, suggests that Ang-1 may be involved in neurogenesis. In the present work, we investigated the putative role of Ang-1 on SVZ neurogenesis. Immature cells from SVZ-derived neurospheres express Ang-1 and Tie-2 mRNA, suggesting a role for the Ang-1/Tie-2 system in the neurogenic niche. Moreover, we also found that Tie-2 protein expression is retained on differentiation in neurons and glial cells. Ang-1 triggered proliferation via activation of the ERK1/2 (extracellular signal-regulated kinase 1/2) mitogen-activated protein kinase (MAPK) kinase pathway but did not induce cell death. Accordingly, coincubation with an anti-Tie-2 neutralizing antibody prevented the pro-proliferative effect of Ang-1. Furthermore, Ang-1 increased the number of NeuN (neuronal nuclear protein)-positive neurons in cultures treated for 7 d, as well as the number of functional neurons, as assessed by monitoring [Ca(2+)](i) rises after application of specific stimuli for neurons and immature cells. The proneurogenic effect of Ang-1 is mediated by Tie-2 activation and subsequent mTOR (mammalian target of rapamycin kinase) mobilization. In agreement, neuronal differentiation significantly decreased after exposure to an anti-Tie-2 neutralizing antibody and to rapamycin. Moreover, Ang-1 elicited the activation of the SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase) MAPK, involved in axonogenesis. Our work shows a proneurogenic effect of Ang-1, highlighting the relevance of blood vessel/stem cell cross talk in health and disease.
Collapse
|
48
|
Gu H, Cui M, Bai Y, Chen F, Ma K, Zhou C, Guo L. Angiopoietin-1/Tie2 signaling pathway inhibits lipopolysaccharide-induced activation of RAW264.7 macrophage cells. Biochem Biophys Res Commun 2010; 392:178-82. [PMID: 20060382 DOI: 10.1016/j.bbrc.2010.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 01/05/2010] [Indexed: 11/26/2022]
Abstract
Angiopoietin-1 (Ang1) is a ligand for the endothelial-specific tyrosine kinase receptor Tie2 and has been shown to play an essential role in embryonic vasculature development. There have been many studies about the anti-inflammatory effects of Ang1, most of which focus on endothelium cells. In the present study, we explore the role of Ang1-Tie2 signaling in the activation of macrophages upon lipopolysaccharide (LPS) stimulation. We found that Tie2 receptor is expressed on macrophages and Ang1 could inhibit LPS-induced activation of macrophages, as evidenced by cell migration and TNF-alpha production, specifically through Tie2 receptor. We further investigated the mechanism and found that Ang1-Tie2 could block LPS-induced activation of NF-kappaB which has been shown to be necessary for macrophage activation with LPS treatment. Thus, we described, for the first time, the role of Ang1-Tie2 signaling in macrophage activation and the possible mechanisms in response to immune stimulation.
Collapse
Affiliation(s)
- Huiping Gu
- Department of Cardiology, Peking University Third Hospital, Beijing 100191, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Bai Y, Meng Z, Cui M, Zhang X, Chen F, Xiao J, Shen L, Zhang Y. An Ang1-Tie2-PI3K axis in neural progenitor cells initiates survival responses against oxygen and glucose deprivation. Neuroscience 2009; 160:371-81. [PMID: 19409199 DOI: 10.1016/j.neuroscience.2009.01.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/23/2009] [Accepted: 01/23/2009] [Indexed: 12/25/2022]
Abstract
Neural progenitor cells (NPCs) have the potential to survive brain ischemia and participate in neurogenesis after stroke. However, it is not clear how survival responses are initiated in NPCs. Using embryonic mouse NPCs and the in vitro oxygen and glucose deprivation (OGD) model, we found that angiopoietin-1 (Ang1) could prevent NPCs from OGD-induced apoptosis, as evidenced by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and annexin V labeling. Ang1 significantly elevated tunica intima endothelial kinase 2 (Tie2) autophosphorylation level, suggesting the existence of functional Tie2 receptors on NPCs. NPCs under OGD conditions exhibited reduction of Akt phosphorylation, decrease of the Bcl-2/Bax ratio, activation of caspase-3, cleavage of PARP, and downregulation of beta-catenin and nestin. Ang1 reversed the above changes concomitantly with significant rising of survival rates of NPCs under OGD, but all these effects of Ang1 could be blocked by either soluble extracellular domain of Tie2 Fc fusion protein (sTie2Fc) or the phosphoinositide 3-kinase (PI3K) inhibitor 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one (LY294002). Our findings suggest the existence of an Ang1-Tie2-PI3K signaling axis that is essential in initiation of survival responses in NPCs against cerebral ischemia and hypoxia.
Collapse
Affiliation(s)
- Y Bai
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, 38 XueYuan Road, Beijing, 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Horton BN, Solanki RB, Rajneesh KF, Kulesza P, Ardelt AA. Localization of angiopoietin-1 and Tie2 immunoreactivity in rodent ependyma and adjacent blood vessels suggests functional relationships. J Histochem Cytochem 2009; 58:53-60. [PMID: 19786610 DOI: 10.1369/jhc.2009.954610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Angiopoietin-1 (Angpt1; previously Ang-1) participates in vascular maintenance and remodeling. In the current study, we investigated the distribution of Angpt1 protein in rat brain. We detected Angpt1 immunoreactivity (IR) in cerebral blood vessels, cuboidal ependyma, and tanycytes, which are specialized hypothalamic bipolar ependymal cells. We also evaluated patterns of IR of endothelium-specific receptor tyrosine kinase 2 (Tie2, the receptor for Angpt1). Tie2 IR was present in Angpt1-immunoreactive cuboidal ependyma in a membranous pattern, suggesting an autocrine or paracrine role for Angpt1-Tie2. Tie2 IR was also associated with peri-ependymal blood vessels, some of which were contacted by tips of Angpt1-immunoreactive tanycyte processes, implying a potential functional ligand-receptor interaction mediating communication between the cerebrospinal fluid and vascular compartments. Because we previously found that cerebral Angpt1 expression was modulated by 17beta-estradiol (E2), and because some tanycyte functions are modulated by E2, we tested the hypothesis that E2 affects ependymal and tanycyte Angpt1 expression in vivo. No gross E2 effect on the ependymal pattern of Angpt1 IR or cerebral Angpt1 protein content was observed.
Collapse
Affiliation(s)
- Brooke N Horton
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | |
Collapse
|