1
|
Comparative Transcriptome Analysis Reveals the Potential Cardiovascular Protective Targets of the Thyroid Hormone Metabolite 3-Iodothyronamine (3-T1AM). BIOMED RESEARCH INTERNATIONAL 2020; 2020:1302453. [PMID: 32685439 PMCID: PMC7322601 DOI: 10.1155/2020/1302453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Background The thyroid hormone metabolite 3-iodothyronamine (3-T1AM) is rapidly emerging as a promising compound in decreasing the heart rate and lowering the cardiac output. The aim of our study was to fully understand the molecular mechanism of 3-T1AM on cardiomyocytes and its potential targets in cardiovascular diseases. Materials and Methods In our study, we utilized RNA-Seq to characterize the gene expression in H9C2 cells after 3-T1AM treatment. Comparative transcriptome analysis, including gene ontology, signaling pathways, disease connectivity analysis, and protein-protein interaction networks (PPI), was presented to find the critical gene function, hub genes, and related pathways. Results A total of 1494 differently expressed genes (DEGs) were identified (192 upregulated and 1302 downregulated genes) in H9C2 cells for 3-T1AM treatment. Of these, 90 genes were associated with cardiovascular diseases. The PPI analysis indicated that 5 hub genes might be the targets of 3-T1AM. Subsequently, eight DEGs characterized using RNA-Seq were confirmed by RT-qPCR assays. Conclusions Our study provides a comprehensive analysis of 3-T1AM on H9C2 cells and delineates a new insight into the therapeutic intervention of 3-T1AM for the cardiovascular diseases.
Collapse
|
2
|
Zhou H, Hu B, Liu X. Thyroid Hormone Metabolite 3-Iodothyronamine (T1AM) Alleviates Hypoxia/Reoxygenation-Induced Cardiac Myocyte Apoptosis via Akt/FoxO1 Pathway. Med Sci Monit 2020; 26:e923195. [PMID: 32162616 PMCID: PMC7081925 DOI: 10.12659/msm.923195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background The thyroid hormone metabolite 3-iodothyronamine (T1AM) is rapidly emerging as promising compound of decreasing heart rate and lowering cardiac output. The aim of our study was to fully understand the molecular mechanism of T1AM on cardiomyocytes and its potential targets in cardiovascular diseases. Material/Methods We developed an in vitro myocardial ischemia-reperfusion injury model of AC-16 cells by hypoxia-reoxygenation injury. Cell viability of AC-16 cells was detected using CCK-8 assay and apoptosis was detected by flow cytometry. RNA-seq was used to characterize the gene expression in H/R-induced AC-16 cells after T1AM treatment. The mRNA levels of FoxO1, PPARα, Akt, and GCK and the protein levels of PPARα, GCK, and components of the Akt/FoxO1 pathway were detected by qRT-PCR and Western blotting, respectively. Results Exogenous T1AM increased the H/R-induced AC-16 cell viability in a relatively low concentration. A total of 210 DEGs, including 142 upregulated and 68 downregulated genes, were determined in H/R-induced AC-16 cells treated with or without T1AM. A Venn diagram showed 135 common DEGs. The FoxO signaling pathway was identified via KEGG enrichment analysis of these 135 DEGs. Moreover, T1AM mediated hypometabolism and reduced the apoptosis of H/R-induced AC-16 cells via the Akt/FoxO1 pathway. Conclusions Exogenous T1AM protects against cell injury induced by H/R in AC-16 cells via regulation of the FoxO signaling pathway. Our results suggest that T1AM can play a preventive role in myocardial H/R injury and also provide new insight for clinical management of AMI patients.
Collapse
Affiliation(s)
- Haiyan Zhou
- Deparment of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China (mainland)
| | - Bailong Hu
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China (mainland)
| | - Xingde Liu
- Deparment of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China (mainland).,Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China (mainland)
| |
Collapse
|
3
|
la Cour JL, Christensen HM, Köhrle J, Lehmphul I, Kistorp C, Nygaard B, Faber J. Association Between 3-Iodothyronamine (T1am) Concentrations and Left Ventricular Function in Chronic Heart Failure. J Clin Endocrinol Metab 2019; 104:1232-1238. [PMID: 30383216 DOI: 10.1210/jc.2018-01466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/26/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT Thyroid hormone metabolites might affect the heart. The endogenous aminergic metabolite 3-iodothyronamine (T1am) reduces left ventricular ejection fraction (LVEF) in rodents. OBJECTIVE To investigate concentration of T1am and its association with LVEF and biomarkers of heart function in patients with chronic heart failure (CHF) without thyroid disease, including patients with cardiac cachexia (nonedematous weight loss >5% over 6 months). METHODS Cross-sectional study. CHF was characterized by LVEF <45% and symptoms. Three groups were included (n = 19 in each group, matched on age, sex, and kidney function): patients with cachexia (CAC), patients without (non-CAC), and control (C) patients with prior myocardial infarction and LVEF >45%. T1am was measured by a monoclonal antibody-based chemiluminescence immunoassay. N-amino terminal pro-BNP (NT-proBNP) concentrations were also analyzed. RESULTS Mean (SD) LVEF: CAC, 32 ± 9%; non-CAC, 38 ± 8%; and C, 60 ± 8% (P < 0.0001). TSH, T4, and T3 levels did not differ between groups and did not correlate to T1am. Serum T1am (nmol/L) concentrations were higher in CHF: CAC (mean ± SD), 12.4 ± 6.6; non-CAC, 9.1 ± 5; and C, 7.3 ± 2.9. A negative association between T1am and LVEF was present after adjusting for sex, age, T3, and estimated glomerular filtration rate (P = 0.03). Further, serum T1am levels tended to be associated with NT-proBNP (P = 0.053). CONCLUSION Serum T1am levels were increased in patients with CHF and numerically highest (although nonsignificant) in patients with cardiac cachexia. Increasing T1am concentrations were independently associated with reduced LVEF, suggesting a direct effect on the human heart.
Collapse
Affiliation(s)
| | - Heidi M Christensen
- Department of Endocrinology, Herlev University Hospital, Herlev, Denmark
- Department of Gynecology and Obstetrics, Herlev University Hospital, Herlev, Denmark
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ina Lehmphul
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Caroline Kistorp
- Department of Endocrinology, Herlev University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Birte Nygaard
- Department of Endocrinology, Herlev University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Jens Faber
- Department of Endocrinology, Herlev University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Köhrle J, Biebermann H. 3-Iodothyronamine-A Thyroid Hormone Metabolite With Distinct Target Profiles and Mode of Action. Endocr Rev 2019; 40:602-630. [PMID: 30649231 DOI: 10.1210/er.2018-00182] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
The rediscovery of the group of thyronamines (TAMs), especially the first detailed description of their most prominent congener 3-iodothyronamine (3T1AM) 14 years ago, boosted research on this thyroid hormone metabolite tremendously. TAMs exert actions partly opposite to and distinct from known functions of thyroid hormones. These fascinating metabolic, anapyrexic, cytoprotective, and brain effects quickly evoked the hope to use hormone-derived TAMs as a therapeutic option. The G protein-coupled receptor (GPCR) TAAR1, a member of the trace amine-associated receptor (TAAR) family, was identified as the first target and effector of TAM action. The initial enthusiasm on pharmacological actions of exogenous TAMs elicited many questions, such as sites of biosynthesis, analytics, modes of action, inactivation, and role of TAMs in (patho)physiology. Meanwhile, it became clear that TAMs not only interact with TAAR1 or other TAAR family members but also with several aminergic receptors and non-GPCR targets such as transient receptor potential channels, mitochondrial proteins, and the serum TAM-binding protein apolipoprotein B100, thus classifying 3T1AM as a multitarget ligand. The physiological mode of action of TAMs is still controversial because regulation of endogenous TAM production and the sites of its biosynthesis are not fully elucidated. Methods for 3T1AM analytics need further validation, as they revealed different blood and tissue concentrations depending on detection principles used such as monoclonal antibody-based immunoassay vs liquid chromatography- matrix-assisted laser desorption/ionization mass spectrometry or time-of-flight mass spectrometry. In this review, we comprehensively summarize and critically evaluate current basic, translational, and clinical knowledge on 3T1AM and its main metabolite 3-iodothyroacetic acid, focusing on endocrine-relevant aspects and open but highly challenging issues.
Collapse
Affiliation(s)
- Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
5
|
Abstract
Trace amines are endogenous compounds classically regarded as comprising β-phenylethyalmine, p-tyramine, tryptamine, p-octopamine, and some of their metabolites. They are also abundant in common foodstuffs and can be produced and degraded by the constitutive microbiota. The ability to use trace amines has arisen at least twice during evolution, with distinct receptor families present in invertebrates and vertebrates. The term "trace amine" was coined to reflect the low tissue levels in mammals; however, invertebrates have relatively high levels where they function like mammalian adrenergic systems, involved in "fight-or-flight" responses. Vertebrates express a family of receptors termed trace amine-associated receptors (TAARs). Humans possess six functional isoforms (TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9), whereas some fish species express over 100. With the exception of TAAR1, TAARs are expressed in olfactory epithelium neurons, where they detect diverse ethological signals including predators, spoiled food, migratory cues, and pheromones. Outside the olfactory system, TAAR1 is the most thoroughly studied and has both central and peripheral roles. In the brain, TAAR1 acts as a rheostat of dopaminergic, glutamatergic, and serotonergic neurotransmission and has been identified as a novel therapeutic target for schizophrenia, depression, and addiction. In the periphery, TAAR1 regulates nutrient-induced hormone secretion, suggesting its potential as a novel therapeutic target for diabetes and obesity. TAAR1 may also regulate immune responses by regulating leukocyte differentiation and activation. This article provides a comprehensive review of the current state of knowledge of the evolution, physiologic functions, pharmacology, molecular mechanisms, and therapeutic potential of trace amines and their receptors in vertebrates and invertebrates.
Collapse
Affiliation(s)
- Raul R Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Marius C Hoener
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| | - Mark D Berry
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia (R.R.G.); Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia (R.R.G.); Neuroscience, Ophthalmology, and Rare Diseases Discovery and Translational Area, pRED, Roche Innovation Centre Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (M.C.H.); and Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada (M.D.B.)
| |
Collapse
|
6
|
Walcher L, Budde C, Böhm A, Reinach PS, Dhandapani P, Ljubojevic N, Schweiger MW, von der Waydbrink H, Reimers I, Köhrle J, Mergler S. TRPM8 Activation via 3-Iodothyronamine Blunts VEGF-Induced Transactivation of TRPV1 in Human Uveal Melanoma Cells. Front Pharmacol 2018. [DOI: 10.3389/fphar.2018.01234 ecollection 2018.pmid: 30483120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2022] Open
|
7
|
Walcher L, Budde C, Böhm A, Reinach PS, Dhandapani P, Ljubojevic N, Schweiger MW, von der Waydbrink H, Reimers I, Köhrle J, Mergler S. TRPM8 Activation via 3-Iodothyronamine Blunts VEGF-Induced Transactivation of TRPV1 in Human Uveal Melanoma Cells. Front Pharmacol 2018; 9:1234. [PMID: 30483120 PMCID: PMC6243059 DOI: 10.3389/fphar.2018.01234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/11/2018] [Indexed: 01/17/2023] Open
Abstract
In human uveal melanoma (UM), tumor enlargement is associated with increases in aqueous humor vascular endothelial growth factor-A (VEGF-A) content that induce neovascularization. 3-Iodothyronamine (3-T1AM), an endogenous thyroid hormone metabolite, activates TRP melastatin 8 (TRPM8), which blunts TRP vanilloid 1 (TRPV1) activation by capsaicin (CAP) in human corneal, conjunctival epithelial cells, and stromal cells. We compare here the effects of TRPM8 activation on VEGF-induced transactivation of TRPV1 in an UM cell line (92.1) with those in normal primary porcine melanocytes (PM) since TRPM8 is upregulated in melanoma. Fluorescence Ca2+-imaging and planar patch-clamping characterized functional channel activities. CAP (20 μM) induced Ca2+ transients and increased whole-cell currents in both the UM cell line and PM whereas TRPM8 agonists, 100 μM menthol and 20 μM icilin, blunted such responses in the UM cells. VEGF (10 ng/ml) elicited Ca2+ transients and augmented whole-cell currents, which were blocked by capsazepine (CPZ; 20 μM) but not by a highly selective TRPM8 blocker, AMTB (20 μM). The VEGF-induced current increases were not augmented by CAP. Both 3-T1AM (1 μM) and menthol (100 μM) increased the whole-cell currents, whereas 20 μM AMTB blocked them. 3-T1AM exposure suppressed both VEGF-induced Ca2+ transients and increases in underlying whole-cell currents. Taken together, functional TRPM8 upregulation in UM 92.1 cells suggests that TRPM8 is a potential drug target for suppressing VEGF induced increases in neovascularization and UM tumor growth since TRPM8 activation blocked VEGF transactivation of TRPV1.
Collapse
Affiliation(s)
- Lia Walcher
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clara Budde
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arina Böhm
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
| | | | - Nina Ljubojevic
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus W Schweiger
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Henriette von der Waydbrink
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ilka Reimers
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Mergler
- Klinik für Augenheilkunde, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin Institute of Health, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
8
|
Bräunig J, Mergler S, Jyrch S, Hoefig CS, Rosowski M, Mittag J, Biebermann H, Khajavi N. 3-Iodothyronamine Activates a Set of Membrane Proteins in Murine Hypothalamic Cell Lines. Front Endocrinol (Lausanne) 2018; 9:523. [PMID: 30298050 PMCID: PMC6161562 DOI: 10.3389/fendo.2018.00523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/21/2018] [Indexed: 01/26/2023] Open
Abstract
3-Iodothyronamine (3-T1AM) is an endogenous thyroid hormone metabolite. The profound pharmacological effects of 3-T1AM on energy metabolism and thermal homeostasis have raised interest to elucidate its signaling properties in tissues that pertain to metabolic regulation and thermogenesis. Previous studies identified G protein-coupled receptors (GPCRs) and transient receptor potential channels (TRPs) as targets of 3-T1AM in different cell types. These two superfamilies of membrane proteins are largely expressed in tissue which influences energy balance and metabolism. As the first indication that 3-T1AM virtually modulates the function of the neurons in hypothalamus, we observed that intraperitoneal administration of 50 mg/kg bodyweight of 3-T1AM significantly increased the c-FOS activation in the paraventricular nucleus (PVN) of C57BL/6 mice. To elucidate the underlying mechanism behind this 3-T1AM-induced signalosome, we used three different murine hypothalamic cell lines, which are all known to express PVN markers, GT1-7, mHypoE-N39 (N39) and mHypoE-N41 (N41). Various aminergic GPCRs, which are the known targets of 3-T1AM, as well as numerous members of TRP channel superfamily, are expressed in these cell lines. Effects of 3-T1AM on activation of GPCRs were tested for the two major signaling pathways, the action of Gαs/adenylyl cyclase and Gi/o. Here, we demonstrated that this thyroid hormone metabolite has no significant effect on Gi/o signaling and only a minor effect on the Gαs/adenylyl cyclase pathway, despite the expression of known GPCR targets of 3-T1AM. Next, to test for other potential mechanisms involved in 3-T1AM-induced c-FOS activation in PVN, we evaluated the effect of 3-T1AM on the intracellular Ca2+ concentration and whole-cell currents. The fluorescence-optic measurements showed a significant increase of intracellular Ca2+ concentration in the three cell lines in the presence of 10 μM 3-T1AM. Furthermore, this thyroid hormone metabolite led to an increase of whole-cell currents in N41 cells. Interestingly, the TRPM8 selective inhibitor (10 μM AMTB) reduced the 3-T1AM stimulatory effects on cytosolic Ca2+ and whole-cell currents. Our results suggest that the profound pharmacological effects of 3-T1AM on selected brain nuclei of murine hypothalamus, which are known to be involved in energy metabolism and thermoregulation, might be partially attributable to TRP channel activation in hypothalamic cells.
Collapse
Affiliation(s)
- Julia Bräunig
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Stefan Mergler
- Klinik für Augenheilkunde, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sabine Jyrch
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Carolin S. Hoefig
- Institute of Experimental Endocrinology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Cell & Molecular Biology, Karolinska Instituet, Stockholm, Sweden
| | - Mark Rosowski
- Department Medical Biotechnology, Institute of Biotechnology, Technical University of Berlin, Berlin, Germany
| | - Jens Mittag
- Department of Cell & Molecular Biology, Karolinska Instituet, Stockholm, Sweden
- University of Lübeck – Center of Brain Behavior and Metabolism, Lübeck, Germany
| | - Heike Biebermann
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| | - Noushafarin Khajavi
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Institute of Experimental Pediatric Endocrinology, Berlin, Germany
| |
Collapse
|
9
|
Metabolic Reprogramming by 3-Iodothyronamine (T1AM): A New Perspective to Reverse Obesity through Co-Regulation of Sirtuin 4 and 6 Expression. Int J Mol Sci 2018; 19:ijms19051535. [PMID: 29786646 PMCID: PMC5983833 DOI: 10.3390/ijms19051535] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022] Open
Abstract
Obesity is a complex disease associated with environmental and genetic factors. 3-Iodothyronamine (T1AM) has revealed great potential as an effective weight loss drug. We used metabolomics and associated transcriptional gene and protein expression analysis to investigate the tissue specific metabolic reprogramming effects of subchronic T1AM treatment at two pharmacological daily doses (10 and 25 mg/kg) on targeted metabolic pathways. Multi-analytical results indicated that T1AM at 25 mg/kg can act as a novel master regulator of both glucose and lipid metabolism in mice through sirtuin-mediated pathways. In liver, we observed an increased gene and protein expression of Sirt6 (a master gene regulator of glucose) and Gck (glucose kinase) and a decreased expression of Sirt4 (a negative regulator of fatty acids oxidation (FAO)), whereas in white adipose tissue only Sirt6 was increased. Metabolomics analysis supported physiological changes at both doses with most increases in FAO, glycolysis indicators and the mitochondrial substrate, at the highest dose of T1AM. Together our results suggest that T1AM acts through sirtuin-mediated pathways to metabolically reprogram fatty acid and glucose metabolism possibly through small molecules signaling. Our novel mechanistic findings indicate that T1AM has a great potential as a drug for the treatment of obesity and possibly diabetes.
Collapse
|
10
|
Zhang X, Mantas I, Alvarsson A, Yoshitake T, Shariatgorji M, Pereira M, Nilsson A, Kehr J, Andrén PE, Millan MJ, Chergui K, Svenningsson P. Striatal Tyrosine Hydroxylase Is Stimulated via TAAR1 by 3-Iodothyronamine, But Not by Tyramine or β-Phenylethylamine. Front Pharmacol 2018; 9:166. [PMID: 29545750 PMCID: PMC5837966 DOI: 10.3389/fphar.2018.00166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/14/2018] [Indexed: 01/16/2023] Open
Abstract
The trace amine-associated receptor 1 (TAAR1) is expressed by dopaminergic neurons, but the precise influence of trace amines upon their functional activity remains to be fully characterized. Here, we examined the regulation of tyrosine hydroxylase (TH) by tyramine and beta-phenylethylamine (β-PEA) compared to 3-iodothyronamine (T1AM). Immunoblotting and amperometry were performed in dorsal striatal slices from wild-type (WT) and TAAR1 knockout (KO) mice. T1AM increased TH phosphorylation at both Ser19 and Ser40, actions that should promote functional activity of TH. Indeed, HPLC data revealed higher rates of L-dihydroxyphenylalanine (DOPA) accumulation in WT animals treated with T1AM after the administration of a DOPA decarboxylase inhibitor. These effects were abolished both in TAAR1 KO mice and by the TAAR1 antagonist, EPPTB. Further, they were specific inasmuch as Ser845 phosphorylation of the post-synaptic GluA1 AMPAR subunit was unaffected. The effects of T1AM on TH phosphorylation at both Ser19 (CamKII-targeted), and Ser40 (PKA-phosphorylated) were inhibited by KN-92 and H-89, inhibitors of CamKII and PKA respectively. Conversely, there was no effect of an EPAC analog, 8-CPT-2Me-cAMP, on TH phosphorylation. In line with these data, T1AM increased evoked striatal dopamine release in TAAR1 WT mice, an action blunted in TAAR1 KO mice and by EPPTB. Mass spectrometry imaging revealed no endogenous T1AM in the brain, but detected T1AM in several brain areas upon systemic administration in both WT and TAAR1 KO mice. In contrast to T1AM, tyramine decreased the phosphorylation of Ser40-TH, while increasing Ser845-GluA1 phosphorylation, actions that were not blocked in TAAR1 KO mice. Likewise, β-PEA reduced Ser40-TH and tended to promote Ser845-GluA1 phosphorylation. The D1 receptor antagonist SCH23390 blocked tyramine-induced Ser845-GluA1 phosphorylation, but had no effect on tyramine- or β-PEA-induced Ser40-TH phosphorylation. In conclusion, by intracellular cascades involving CaMKII and PKA, T1AM, but not tyramine and β-PEA, acts via TAAR1 to promote the phosphorylation and functional activity of TH in the dorsal striatum, supporting a modulatory influence on dopamine transmission.
Collapse
Affiliation(s)
- Xiaoqun Zhang
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Ioannis Mantas
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Alexandra Alvarsson
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Takashi Yoshitake
- Section of Pharmacological Neurochemistry, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Mohammadreza Shariatgorji
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Marcela Pereira
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Nilsson
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jan Kehr
- Section of Pharmacological Neurochemistry, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Per E Andrén
- Biomolecular Mass Spectrometry Imaging, National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mark J Millan
- Centre for Therapeutic Innovation-CNS, Institut de Recherches Servier, Centre de Recherches de Croissy, Paris, France
| | - Karima Chergui
- Section of Molecular Neurophysiology, Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Per Svenningsson
- Section of Translational Neuropharmacology, Department of Clinical Neuroscience, Center for Molecular Medicine L8:01, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
11
|
Chiellini G, Bellusci L, Sabatini M, Zucchi R. Thyronamines and Analogues - The Route from Rediscovery to Translational Research on Thyronergic Amines. Mol Cell Endocrinol 2017; 458:149-155. [PMID: 28069535 DOI: 10.1016/j.mce.2017.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/07/2016] [Accepted: 01/02/2017] [Indexed: 11/18/2022]
Abstract
Thyronamines are a novel class of endogenous signaling compounds, structurally related to thyroid hormones (THs). Specific thyronamines, particularly 3-iodothyronamine (T1AM), stimulate with nanomolar affinity trace amine-associated receptor 1 (TAAR1), a G protein-coupled membrane receptor, and may also interact with other TAAR subtypes (particularly TAAR5), adrenergic receptors (particularly α2 receptors), amine transporters, and mitochondrial proteins. In addition to its structural similarities with THs, T1AM also contains the arylethylamine scaffold as in monoamine neurotransmitters, implicating an intriguing role for T1AM as both a neuromodulator and a hormone-like molecule constituting a part of thyroid hormone signaling. A large number of T1AM derivatives have already been synthesized. We discuss the different chemical strategies followed to obtain thyronamine analogues, their potency at TAAR1, and their structure-activity relationship. Preliminary characterization of the functional effects of these synthetic compounds is also provided.
Collapse
|
12
|
Rutigliano G, Zucchi R. Cardiac actions of thyroid hormone metabolites. Mol Cell Endocrinol 2017; 458:76-81. [PMID: 28069537 DOI: 10.1016/j.mce.2017.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/23/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
Thyroid hormones (THs) have a major role in regulating cardiac function. Their classical mechanism of action is genomic. Recent findings have broadened our knowledge about the (patho)physiology of cardiac regulation by THs, to include non-genomic actions of THs and their metabolites (THM). This review provides an overview of classical and non-classical cardiac effects controlled by: i) iodothyronines (thyroxine, T4; 3,5,3'-triiodothyronine,T3; 3, 5-diiodothyronine, T2); ii) thyronamines (thyronamine, T0AM; 3-iodothyronamine, T1AM); and iii) iodothyroacetic acids (3, 5, 3', 5'-tetraiodothyroacetic acid, tetrac; 3, 5, 3'-triiodothyroacetic acid, triac; 3-iodothyroacetic acid, TA1). Whereas iodothyronines enhance both diastolic and systolic function and heart rate, thyronamines were observed to have negative inotropic and chronotropic effects and might function as a brake with respect to THs, although their physiological role is unclear. Moreover, thyronamines showed a cardioprotective effect at physiological concentrations. The cardiac effects of iodothyroacetic acids seem to be limited and need to be elucidated.
Collapse
Affiliation(s)
- Grazia Rutigliano
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; National Research Council (CNR), Institute of Clinical Physiology (IFC), Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Riccardo Zucchi
- Department of Pathology, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|
13
|
Hoefig CS, Zucchi R, Köhrle J. Thyronamines and Derivatives: Physiological Relevance, Pharmacological Actions, and Future Research Directions. Thyroid 2016; 26:1656-1673. [PMID: 27650974 DOI: 10.1089/thy.2016.0178] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thyronamines (3-T1AM, T0AM) are endogenous compounds probably derived from L-thyroxine or its intermediate metabolites. Combined activities of intestinal deiodinases and ornithine decarboxylase generate 3-T1AM in vitro. Alternatively, 3-T1AM might be formed by the thyroid gland and secreted into the blood. 3-T1AM and T0AM concentrations have been determined by liquid chromatography-tandem mass spectrometry analysis (LC-MS/MS) in tissues, serum, and cell lines. However, large variations of 3-T1AM concentrations in human serum were reported by LC-MS/MS compared with a monoclonal antibody-based immunoassay. These differences might be caused by strong binding of the highly hydrophobic 3-T1AM to apolipoprotein B100. Pharmacological administration of 3-T1AM results in dose-dependent reversible effects on body temperature, cardiac function, energy metabolism, and neurological functions. The physiological relevance of these actions is unclear, but may occur at tissue concentrations close to the estimated endogenous concentrations of 3-T1AM or its metabolites T0AM or thyroacetic acid (TA1). A number of putative receptors, binding sites, and cellular target molecules mediating actions of the multi-target ligand 3-T1AM have been proposed. Among those are members of the trace amine associated receptor family, the adrenergic receptor ADRα2a, and the thermosensitive transient receptor potential melastatin 8 channel. Preclinical studies employing various animal experimental models are in progress, and more stable receptor-selective agonistic and antagonistic analogues of 3-T1AM are now available for testing. The potent endogenous thyroid hormone-derived biogenic amine 3-T1AM exerts marked cryogenic, metabolic, cardiac and central actions and represents a valuable lead compound linking endocrine, metabolic, and neuroscience research to advance development of new drugs.
Collapse
Affiliation(s)
- Carolin Stephanie Hoefig
- 1 Institut für Experimentelle Endokrinologie Charité, Universitätsmedizin Berlin , Berlin, Germany
| | - Riccardo Zucchi
- 2 Laboratory of Biochemistry, Department of Pathology, University of Pisa , Pisa, Italy
| | - Josef Köhrle
- 1 Institut für Experimentelle Endokrinologie Charité, Universitätsmedizin Berlin , Berlin, Germany
| |
Collapse
|
14
|
Gnocchi D, Steffensen KR, Bruscalupi G, Parini P. Emerging role of thyroid hormone metabolites. Acta Physiol (Oxf) 2016; 217:184-216. [PMID: 26748938 DOI: 10.1111/apha.12648] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 01/03/2016] [Indexed: 12/15/2022]
Abstract
Thyroid hormones (THs) are essential for the regulation of development and metabolism in key organs. THs produce biological effects both by directly affecting gene expression through the interaction with nuclear receptors (genomic effects) and by activating protein kinases and/or ion channels (short-term effects). Such activations can be either direct, in the case of ion channels, or mediated by membrane or cytoplasmic receptors. Short-term-activated signalling pathways often play a role in the regulation of genomic effects. Several TH intermediate metabolites, which were previously considered without biological activity, have now been associated with a broad range of actions, mostly attributable to short-term effects. Here, we give an overview of the physiological roles and mechanisms of action of THs, focusing on the emerging position that TH metabolites are acquiring as important regulators of physiology and metabolism.
Collapse
Affiliation(s)
- D. Gnocchi
- Division of Clinical Chemistry; Department of Laboratory Medicine; Karolinska Institutet at Karolinska University Hospital Huddinge; Stockholm Sweden
| | - K. R. Steffensen
- Division of Clinical Chemistry; Department of Laboratory Medicine; Karolinska Institutet at Karolinska University Hospital Huddinge; Stockholm Sweden
| | - G. Bruscalupi
- Department of Biology and Biotechnology ‘Charles Darwin’; Sapienza University of Rome; Rome Italy
| | - P. Parini
- Division of Clinical Chemistry; Department of Laboratory Medicine; Karolinska Institutet at Karolinska University Hospital Huddinge; Stockholm Sweden
- Metabolism Unit; Department of Medicine; Karolinska Institutet at Karolinska University Hospital Huddinge; Stockholm Sweden
| |
Collapse
|
15
|
|
16
|
Dinter J, Khajavi N, Mühlhaus J, Wienchol CL, Cöster M, Hermsdorf T, Stäubert C, Köhrle J, Schöneberg T, Kleinau G, Mergler S, Biebermann H. The Multitarget Ligand 3-Iodothyronamine Modulates β-Adrenergic Receptor 2 Signaling. Eur Thyroid J 2015; 4:21-9. [PMID: 26601070 PMCID: PMC4640289 DOI: 10.1159/000381801] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/19/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND 3-Iodothyronamine (3-T1AM), a signaling molecule with structural similarities to thyroid hormones, induces numerous physiological responses including reversible body temperature decline. One target of 3-T1AM is the trace amine-associated receptor 1 (TAAR1), which is a member of the rhodopsin-like family of G protein-coupled receptors (GPCRs). Interestingly, the effects of 3-T1AM remain detectable in TAAR1 knockout mice, suggesting further targets for 3-T1AM such as adrenergic receptors. Therefore, we evaluated whether β-adrenergic receptor 1 (ADRB1) and 2 (ADRB2) signaling is affected by 3-T1AM in HEK293 cells and in human conjunctival epithelial cells (IOBA-NHC), where these receptors are highly expressed endogenously. METHODS A label-free EPIC system for prescreening the 3-T1AM-induced effects on ADRB1 and ADRB2 in transfected HEK293 cells was used. In addition, ADRB1 and ADRB2 activation was analyzed using a cyclic AMP assay and a MAPK reporter gene assay. Finally, fluorescence Ca(2+) imaging was utilized to delineate 3-T1AM-induced Ca(2+) signaling. RESULTS 3-T1AM (10(-5)-10(-10)M) enhanced isoprenaline-induced ADRB2-mediated Gs signaling but not that of ADRB1-mediated signaling. MAPK signaling remained unaffected for both receptors. In IOBA-NHC cells, norepinephrine-induced Ca(2+) influxes were blocked by the nonselective ADRB blocker timolol (10 µM), indicating that ADRBs are most likely linked with Ca(2+) channels. Notably, timolol was also found to block 3-T1AM (10(-5)M)-induced Ca(2+) influx. CONCLUSIONS The presented data support that 3-T1AM directly modulates β-adrenergic receptor signaling. The relationship between 3-T1AM and β-adrenergic signaling also reveals a potential therapeutic value for suppressing Ca(2+) channel-mediated inflammation processes, occurring in eye diseases such as conjunctivitis.
Collapse
Affiliation(s)
- Juliane Dinter
- Institut für Experimentelle Pädiatrische Endokrinologie, Berlin, Germany
| | - Noushafarin Khajavi
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jessica Mühlhaus
- Institut für Experimentelle Pädiatrische Endokrinologie, Berlin, Germany
| | | | - Maxi Cöster
- Institut für Biochemie, Molekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, Germany
| | - Thomas Hermsdorf
- Institut für Biochemie, Molekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, Germany
| | - Claudia Stäubert
- Institut für Biochemie, Molekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Torsten Schöneberg
- Institut für Biochemie, Molekulare Biochemie, Medizinische Fakultät, University of Leipzig, Leipzig, Germany
| | - Gunnar Kleinau
- Institut für Experimentelle Pädiatrische Endokrinologie, Berlin, Germany
| | - Stefan Mergler
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heike Biebermann
- Institut für Experimentelle Pädiatrische Endokrinologie, Berlin, Germany
- *Heike Biebermann, Institut für Experimentelle Pädiatrische Endokrinologie, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, DE-13353 Berlin (Germany), E-Mail , Stefan Mergler, Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, DE-13353 Berlin (Germany), E-Mail
| |
Collapse
|
17
|
Abstract
: We used the isolated working rat model to evaluate the effect of therapeutic concentrations (5-10 μM) of ranolazine on contractile performance, oxygen consumption, irreversible ischemic injury, and sarcoplasmic reticulum (SR) function. Ischemic injury was induced by 30 minutes of global ischemia followed by 120 minutes of Langendorff reperfusion and evaluated on the basis of triphenyltetrazolium chloride staining. SR function was determined on the basis of [H]-ryanodine binding, the kinetics of calcium-induced calcium release, measured by quick filtration technique, and oxalate-supported calcium uptake. In working hearts, ranolazine significantly reduced oxygen consumption (P = 0.031), in the absence of significant changes in contractile performance, and decreased irreversible ischemic injury (P = 0.011), if administered either before ischemia-reperfusion (25.4% ± 4.7% vs. 42.7% ± 6.0%) or only at the time of reperfusion (20.2% ± 5.2% vs. 43.7% ± 9.9%). In SR experiments, treatment with ranolazine determined a significant reduction in [H]-ryanodine binding (P = 0.029), because of decreased binding site density (369 ± 9 vs. 405 ± 12 fmol/mg), and in the kinetics of SR calcium release (P = 0.011), whose rate constant was decreased, whereas active calcium uptake was not affected. Ranolazine effectiveness at reperfusion and its ability to module SR calcium release suggest that this drug might be particularly useful to induce cardioprotection during coronary revascularization interventions, although the relevance of the effects on calcium homeostasis remains to be determined.
Collapse
|
18
|
Hoefig CS, Jacobi SF, Warner A, Harder L, Schanze N, Vennström B, Mittag J. 3-Iodothyroacetic acid lacks thermoregulatory and cardiovascular effects in vivo. Br J Pharmacol 2015; 172:3426-33. [PMID: 25765843 DOI: 10.1111/bph.13131] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/20/2015] [Accepted: 03/10/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE 3-Iodothyronamine (3-T1 AM) is an endogenous thyroid hormone derivative reported to induce strong hypothermia and bradycardia within minutes upon injection in rodents. Although 3-T1 AM is rapidly converted to several other metabolites in vivo, these strong pharmacological responses were solely attributed to 3-T1 AM, leaving potential contributions of downstream products untested. We therefore examined the cardiometabolic effects of 3-iodothyroacetic acid (TA1 ), the main degradation product of 3-T1 AM. EXPERIMENTAL APPROACH We used a sensitive implantable radiotelemetry system in C57/Bl6J mice to study the effects of TA1 on body temperature and heart rate, as well as other metabolic parameters. KEY RESULTS Interestingly, despite using pharmacological TA1 doses, we observed no effects on heart rate or body temperature after a single TA1 injection (50 mg·kg(-1) , i.p.) compared to sham-injected controls. Repeated administration of TA1 (5 mg·kg(-1) , i.p. for 7 days) likewise did not alter body weight, food and water intake, heart rate, blood pressure, brown adipose tissue (BAT) thermogenesis or body temperature. Moreover, mRNA expression of tissue specific genes in heart, kidney, liver, BAT and lung was also not altered by TA1 compared to sham-injected controls. CONCLUSIONS AND IMPLICATIONS Our data therefore conclusively demonstrate that TA1 does not contribute to the cardiovascular or thermoregulatory effects observed after 3-T1 AM administration in mice, suggesting that the oxidative deamination constitutes an important deactivation mechanism for 3-T1 AM with possible implications for cardiovascular and thermoregulatory functions.
Collapse
Affiliation(s)
- Carolin S Hoefig
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Simon F Jacobi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Amy Warner
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lisbeth Harder
- Center of Brain Behavior and Metabolism CBBM/Medizinische Klinik I, University of Lübeck, Lübeck, Germany
| | - Nancy Schanze
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Björn Vennström
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jens Mittag
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Center of Brain Behavior and Metabolism CBBM/Medizinische Klinik I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
19
|
Chiellini G, Nesi G, Digiacomo M, Malvasi R, Espinoza S, Sabatini M, Frascarelli S, Laurino A, Cichero E, Macchia M, Gainetdinov RR, Fossa P, Raimondi L, Zucchi R, Rapposelli S. Design, Synthesis, and Evaluation of Thyronamine Analogues as Novel Potent Mouse Trace Amine Associated Receptor 1 (mTAAR1) Agonists. J Med Chem 2015; 58:5096-107. [DOI: 10.1021/acs.jmedchem.5b00526] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Giulia Nesi
- Deptartment
of Pharmacy, University of Pisa, via Bonanno 6, 56100 Pisa, Italy
| | - Maria Digiacomo
- Deptartment
of Pharmacy, University of Pisa, via Bonanno 6, 56100 Pisa, Italy
| | - Rossella Malvasi
- Deptartment
of Pharmacy, University of Pisa, via Bonanno 6, 56100 Pisa, Italy
| | - Stefano Espinoza
- Department
of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | | | | | - Annunziatina Laurino
- Department
of NEUROFARBA, Section of Pharmacology, University of Florence, 50121 Firenze, Italy
| | - Elena Cichero
- Department
of Pharmacy, University of Genoa, 16126 Genoa, Italy
| | - Marco Macchia
- Deptartment
of Pharmacy, University of Pisa, via Bonanno 6, 56100 Pisa, Italy
| | - Raul R. Gainetdinov
- Institute
of Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199034, Russia
- Skolkovo Institute of Science and Technology (Skoltech), Skolkovo, Moscow region, 143025, Russia
| | - Paola Fossa
- Department
of Pharmacy, University of Genoa, 16126 Genoa, Italy
| | - Laura Raimondi
- Department
of NEUROFARBA, Section of Pharmacology, University of Florence, 50121 Firenze, Italy
| | - Riccardo Zucchi
- Department
of Pathology, University of Pisa, 56100 Pisa, Italy
| | - Simona Rapposelli
- Deptartment
of Pharmacy, University of Pisa, via Bonanno 6, 56100 Pisa, Italy
| |
Collapse
|
20
|
Zucchi R, Accorroni A, Chiellini G. Update on 3-iodothyronamine and its neurological and metabolic actions. Front Physiol 2014; 5:402. [PMID: 25360120 PMCID: PMC4199266 DOI: 10.3389/fphys.2014.00402] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/28/2014] [Indexed: 11/23/2022] Open
Abstract
3-iodothyronamine (T1AM) is an endogenous amine, that has been detected in many rodent tissues, and in human blood. It has been hypothesized to derive from thyroid hormone metabolism, but this hypothesis still requires validation. T1AM is not a ligand for nuclear thyroid hormone receptors, but stimulates with nanomolar affinity trace amine-associated receptor 1 (TAAR1), a G protein-coupled membrane receptor. With a lower affinity it interacts with alpha2A adrenergic receptors. Additional targets are represented by apolipoprotein B100, mitochondrial ATP synthase, and membrane monoamine transporters, but the functional relevance of these interactions is still uncertain. Among the effects reported after administration of exogenous T1AM to experimental animals, metabolic and neurological responses deserve special attention, because they were obtained at low dosages, which increased endogenous tissue concentration by about one order of magnitude. Systemic T1AM administration favored fatty acid over glucose catabolism, increased ketogenesis and increased blood glucose. Similar responses were elicited by intracerebral infusion, which inhibited insulin secretion and stimulated glucagon secretion. However, T1AM administration increased ketogenesis and gluconeogenesis also in hepatic cell lines and in perfused liver preparations, providing evidence for a peripheral action, as well. In the central nervous system, T1AM behaved as a neuromodulator, affecting adrenergic and/or histaminergic neurons. Intracerebral T1AM administration favored learning and memory, modulated sleep and feeding, and decreased the pain threshold. In conclusion T1AM should be considered as a component of thyroid hormone signaling and might play a significant physiological and/or pathophysiological role. T1AM analogs have already been synthetized and their therapeutical potential is currently under investigation. 3-iodothyronamine (T1AM) is a biogenic amine whose structure is closely related to that of thyroid hormone (3,5,3′-triiodothyronine, or T3). The differences with T3 are the absence of the carboxylate group and the substitution of iodine with hydrogen in 5 and 3′ positions (Figure 1). In this paper we will review the evidence supporting the hypothesis that T1AM is a chemical messenger, namely that it is an endogenous substance able to interact with specific receptors producing significant functional effects. Special emphasis will be placed on neurological and metabolic effects, which are likely to have physiological and pathophysiological importance.
Collapse
Affiliation(s)
- Riccardo Zucchi
- Laboratory of Biochemistry, Department of Pathology, University of Pisa Pisa, Italy
| | - Alice Accorroni
- Laboratory of Biochemistry, Department of Pathology, University of Pisa Pisa, Italy
| | - Grazia Chiellini
- Laboratory of Biochemistry, Department of Pathology, University of Pisa Pisa, Italy
| |
Collapse
|
21
|
Neuber C, Uebeler J, Schulze T, Sotoud H, El-Armouche A, Eschenhagen T. Guanabenz interferes with ER stress and exerts protective effects in cardiac myocytes. PLoS One 2014; 9:e98893. [PMID: 24892553 PMCID: PMC4044035 DOI: 10.1371/journal.pone.0098893] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/08/2014] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic reticulum (ER) stress has been implicated in a variety of cardiovascular diseases. During ER stress, disruption of the complex of protein phosphatase 1 regulatory subunit 15A and catalytic subunit of protein phosphatase 1 by the small molecule guanabenz (antihypertensive, α2-adrenoceptor agonist) and subsequent inhibition of stress-induced dephosphorylation of eukaryotic translation initiation factor 2α (eIF2α) results in prolonged eIF2α phosphorylation, inhibition of protein synthesis and protection from ER stress. In this study we assessed whether guanabenz protects against ER stress in cardiac myocytes and affects the function of 3 dimensional engineered heart tissue (EHT). We utilized neonatal rat cardiac myocytes for the assessment of cell viability and activation of ER stress-signalling pathways and EHT for functional analysis. (i) Tunicamycin induced ER stress as measured by increased mRNA and protein levels of glucose-regulated protein 78 kDa, P-eIF2α, activating transcription factor 4, C/EBP homologous protein, and cell death. (ii) Guanabenz had no measurable effect alone, but antagonized the effects of tunicamycin on ER stress markers. (iii) Tunicamycin and other known inducers of ER stress (hydrogen peroxide, doxorubicin, thapsigargin) induced cardiac myocyte death, and this was antagonized by guanabenz in a concentration- and time-dependent manner. (iv) ER stressors also induced acute or delayed contractile dysfunction in spontaneously beating EHTs and this was, with the notable exception of relaxation deficits under thapsigargin, not significantly affected by guanabenz. The data confirm that guanabenz interferes with ER stress-signalling and has protective effects on cell survival. Data show for the first time that this concept extends to cardiac myocytes. The modest protection in EHTs points to more complex mechanisms of force regulation in intact functional heart muscle.
Collapse
Affiliation(s)
- Christiane Neuber
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Hamburg/Kiel/Luebeck, Germany
| | - June Uebeler
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Hamburg/Kiel/Luebeck, Germany
| | - Thomas Schulze
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Hamburg/Kiel/Luebeck, Germany
| | - Hannieh Sotoud
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Hamburg/Kiel/Luebeck, Germany
| | - Ali El-Armouche
- Department of Pharmacology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany
- Department of Pharmacology, University of Technology Dresden, Dresden, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Hamburg/Kiel/Luebeck, Germany
- * E-mail:
| |
Collapse
|
22
|
Cumero S, Fogolari F, Domenis R, Zucchi R, Mavelli I, Contessi S. Mitochondrial F(0) F(1) -ATP synthase is a molecular target of 3-iodothyronamine, an endogenous metabolite of thyroid hormone. Br J Pharmacol 2012; 166:2331-47. [PMID: 22452346 DOI: 10.1111/j.1476-5381.2012.01958.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE 3-iodothyronamine (T1AM) is a metabolite of thyroid hormone acting as a signalling molecule via non-genomic effectors and can reach intracellular targets. Because of the importance of mitochondrial F(0) F(1) -ATP synthase as a drug target, here we evaluated interactions of T1AM with this enzyme. EXPERIMENTAL APPROACH Kinetic analyses were performed on F(0) F(1) -ATP synthase in sub-mitochondrial particles and soluble F(1) -ATPase. Activity assays and immunodetection of the inhibitor protein IF(1) were used and combined with molecular docking analyses. Effects of T1AM on H9c2 cardiomyocytes were measured by in situ respirometric analysis. KEY RESULTS T1AM was a non-competitive inhibitor of F(0) F(1) -ATP synthase whose binding was mutually exclusive with that of the inhibitors IF(1) and aurovertin B. Both kinetic and docking analyses were consistent with two different binding sites for T1AM. At low nanomolar concentrations, T1AM bound to a high-affinity region most likely located within the IF(1) binding site, causing IF(1) release. At higher concentrations, T1AM bound to a low affinity-region probably located within the aurovertin binding cavity and inhibited enzyme activity. Low nanomolar concentrations of T1AM increased ADP-stimulated mitochondrial respiration in cardiomyocytes, indicating activation of F(0) F(1) -ATP synthase consistent with displacement of endogenous IF(1,) , reinforcing the in vitro results. CONCLUSIONS AND IMPLICATIONS Effects of T1AM on F(0) F(1) -ATP synthase were twofold: IF(1) displacement and enzyme inhibition. By targeting F(0) F(1) -ATP synthase within mitochondria, T1AM might affect cell bioenergetics with a positive effect on mitochondrial energy production at low, endogenous, concentrations. T1AM putative binding locations overlapping with IF(1) and aurovertin binding sites are described.
Collapse
Affiliation(s)
- S Cumero
- Department of Medical and Biological Sciences, MATI Centre of Excellence, University of Udine, Udine, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Galli E, Marchini M, Saba A, Berti S, Tonacchera M, Vitti P, Scanlan TS, Iervasi G, Zucchi R. Detection of 3-iodothyronamine in human patients: a preliminary study. J Clin Endocrinol Metab 2012; 97:E69-74. [PMID: 22031514 DOI: 10.1210/jc.2011-1115] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CONTEXT AND OBJECTIVE The primary purpose of this study was to detect and quantify 3-iodothyronamine (T(1)AM), an endogenous biogenic amine related to thyroid hormone, in human blood. DESIGN T(1)AM, total T(3), and total T(4) were assayed in serum by a novel HPLC tandem mass spectrometry assay, which has already been validated in animal investigations, and the results were related to standard clinical and laboratory variables. SETTING AND PATIENTS The series included one healthy volunteer, 24 patients admitted to a cardiological ward, and 17 ambulatory patients suspected of thyroid disease, who underwent blood sampling at admission for routine diagnostic purposes. Seven patients were affected by type 2 diabetes, and six patients showed echocardiographic evidence of impaired left ventricular function. INTERVENTIONS No intervention or any patient selection was performed. MAIN OUTCOME MEASURES serum T(1)AM, total and free T(3) and T(4), routine chemistry, routine hematology, and echocardiographic parameters were measured. RESULTS T(1)AM was detected in all samples, and its concentration averaged 0.219 ± 0.012 pmol/ml. The T(1)AM concentration was significantly correlated to total T(4) (r = 0.654, P < 0.001), total T(3) (r = 0.705, P < 0.001), glycated hemoglobin (r = 0.508, P = 0.013), brain natriuretic peptide (r = 0.543, P = 0.016), and γ-glutamyl transpeptidase (r = 0.675, P < 0.001). In diabetic vs. nondiabetic patients T(1)AM concentration was significantly increased (0.232 ± 0.014 vs. 0.203 ± 0.006 pmol/ml, P = 0.044), whereas no significant difference was observed in patients with cardiac dysfunction. CONCLUSIONS T(1)AM is an endogenous messenger that can be assayed in human blood. Our results are consistent with the hypothesis that circulating T(1)AM is produced from thyroid hormones and encourage further investigations on the potential role of T(1)AM in insulin resistance and heart failure.
Collapse
|
24
|
Cardioprotective effect of 3-iodothyronamine in perfused rat heart subjected to ischemia and reperfusion. Cardiovasc Drugs Ther 2011; 25:307-13. [PMID: 21786214 DOI: 10.1007/s10557-011-6320-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
3-iodothyronamine (T(1)AM) is an endogenous compound which shares structural and functional features with biogenic amines and is able to interact with a specific class of receptors, designed as trace amine associated receptors. T(1)AM has significant physiological effects in mammals and produces a reversible, dose-dependent negative inotropic and chronotropic effect in heart. The aim of the present study was to investigate if T(1)AM is able to reduce irreversible tissue injury in isolated rat hearts subjected to ischemia and reperfusion, as evaluated by triphenyltetrazolium chloride staining. We observed that T(1)AM reduced infarct size at concentrations (125 nM to 12.5 μM) which did not produce any significant hemodynamic action. The dose-response curve was bell-shaped and peaked at 1.25 μM. T(1)AM-induced cardioprotection was completely reversed by the administration of chelerythrine and glibenclamide, suggesting a protein kinase C and K (ATP) (+) -dependent pathway, while it was not additive to the protection induced by cyclosporine A, suggesting modulation of mitochondrial permeability transition. At cardioprotective concentration, T(1)AM reduced the time needed for cardiac attest during ischemia, but it did not affect sarcoplasmatic reticulum Ca(2+) handling, as demonstrated by unaltered ryanodine receptor binding properties. In conclusion, in isolated rat heart T(1)AM produces a cardioprotective effect which is mediated by a protein kinase C and K (ATP) (+) -dependent pathway and is probably linked to modulation of mitochondrial permeability transition and/or ischemic arrest time.
Collapse
|
25
|
Differential modulation of Beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists. PLoS One 2011; 6:e27073. [PMID: 22073124 PMCID: PMC3205048 DOI: 10.1371/journal.pone.0027073] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 10/09/2011] [Indexed: 11/19/2022] Open
Abstract
Trace amine-associated receptors (TAAR) are rhodopsin-like G-protein-coupled receptors (GPCR). TAAR are involved in modulation of neuronal, cardiac and vascular functions and they are potentially linked with neurological disorders like schizophrenia and Parkinson's disease. Subtype TAAR1, the best characterized TAAR so far, is promiscuous for a wide set of ligands and is activated by trace amines tyramine (TYR), phenylethylamine (PEA), octopamine (OA), but also by thyronamines, dopamine, and psycho-active drugs. Unfortunately, effects of trace amines on signaling of the two homologous β-adrenergic receptors 1 (ADRB1) and 2 (ADRB2) have not been clarified yet in detail. We, therefore, tested TAAR1 agonists TYR, PEA and OA regarding their effects on ADRB1/2 signaling by co-stimulation studies. Surprisingly, trace amines TYR and PEA are partial allosteric antagonists at ADRB1/2, whereas OA is a partial orthosteric ADRB2-antagonist and ADRB1-agonist. To specify molecular reasons for TAAR1 ligand promiscuity and for observed differences in signaling effects on particular aminergic receptors we compared TAAR, tyramine (TAR) octopamine (OAR), ADRB1/2 and dopamine receptors at the structural level. We found especially for TAAR1 that the remarkable ligand promiscuity is likely based on high amino acid similarity in the ligand-binding region compared with further aminergic receptors. On the other hand few TAAR specific properties in the ligand-binding site might determine differences in ligand-induced effects compared to ADRB1/2. Taken together, this study points to molecular details of TAAR1-ligand promiscuity and identified specific trace amines as allosteric or orthosteric ligands of particular β-adrenergic receptor subtypes.
Collapse
|
26
|
Agretti P, De Marco G, Russo L, Saba A, Raffaelli A, Marchini M, Chiellini G, Grasso L, Pinchera A, Vitti P, Scanlan TS, Zucchi R, Tonacchera M. 3-Iodothyronamine metabolism and functional effects in FRTL5 thyroid cells. J Mol Endocrinol 2011; 47:23-32. [PMID: 21511808 DOI: 10.1530/jme-10-0168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
3-Iodothyronamine (T(1)AM), produced from thyroid hormones (TH) through decarboxylation and deiodination, is a potent agonist of trace amine-associated receptor 1 (TAAR1), a G protein-coupled receptor belonging to the family of TAARs. In vivo T(1)AM induces functional effects opposite to those produced on a longer time scale by TH and might represent a novel branch of TH signaling. In this study, we investigated the action of T(1)AM on thyroid and determined its uptake and catabolism using FRTL5 cells. The expression of TAAR1 was determined by PCR and western blot in FRTL5 cells, and cAMP, iodide uptake, and glucose uptake were measured after incubation with increasing concentrations of T(1)AM for different times. T(1)AM and its catabolites thyronamine (T(0)AM), 3-iodothyroacetic acid (TA(1)), and thyroacetic acid (TA(0)) were analyzed in FRTL5 cells by HPLC coupled to tandem mass spectrometry. The product of amplification of TAAR1 gene and TAAR1 protein was demonstrated in FRTL5 cells. No persistent and dose-dependent response to T(1)AM was observed after treatment with increasing doses of this substance for different times in terms of cAMP production and iodide uptake. A slight inhibition of glucose uptake was observed in the presence of 100 μM T(1)AM after 60 and 120 min (28 and 32% respectively), but the effect disappeared after 18 h. T(1)AM was taken up by FRTL5 cells and catabolized to T(0)AM, TA(1), and TA(0) confirming the presence of deiodinase and amine oxidase activity in thyroid. In conclusion, T(1)AM determined a slight inhibition of glucose uptake in FRTL5 cells, but it was taken up and catabolized by these cells.
Collapse
Affiliation(s)
- Patrizia Agretti
- Dipartimento di Endocrinologia e Metabolismo, Centro Eccellenza AmbiSEN, Università di Pisa, Via Paradisa 2, 56124 Cisanello, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Thyronamines (TAMs) are a newly identified class of endogenous signaling compounds. Their structure is identical to that of thyroid hormone and deiodinated thyroid hormone derivatives, except that TAMs do not possess a carboxylate group. Despite some initial publications dating back to the 1950s, TAMs did not develop into an independent area of research until 2004, when they were rediscovered as potential ligands to a class of G protein-coupled receptors called trace-amine associated receptors. Since this discovery, two representatives of TAMs, namely 3-iodothyronamine (3-T(1)AM) and thyronamine (T(0)AM), have been detected in vivo. Intraperitoneal or central injection of 3-T(1)AM or T(0)AM into mice, rats, or Djungarian hamsters caused various prompt effects, such as metabolic depression, hypothermia, negative chronotropy, negative inotropy, hyperglycemia, reduction of the respiratory quotient, ketonuria, and reduction of fat mass. Although their physiological function remains elusive, 3-T(1)AM and T(0)AM have already revealed promising therapeutic potential because they represent the only endogenous compounds inducing hypothermia as a prophylactic or acute treatment of stroke and might thus be expected to cause fewer side effects than synthetic compounds. This review article summarizes the still somewhat scattered data on TAMs obtained both recently and more than 20 yr ago to yield a complete and updated picture of the current state of TAM research.
Collapse
Affiliation(s)
- S Piehl
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Charité Campus Virchow-Klinikum (Südring 10), Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | |
Collapse
|
28
|
Saba A, Chiellini G, Frascarelli S, Marchini M, Ghelardoni S, Raffaelli A, Tonacchera M, Vitti P, Scanlan TS, Zucchi R. Tissue distribution and cardiac metabolism of 3-iodothyronamine. Endocrinology 2010; 151:5063-73. [PMID: 20739399 DOI: 10.1210/en.2010-0491] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
3-iodothyronamine (T1AM) is a novel relative of thyroid hormone, able to interact with specific G protein-coupled receptors, known as trace amine-associated receptors. Significant functional effects are produced by exogenous T1AM, including a negative inotropic and chronotropic effect in cardiac preparations. This work was aimed at estimating endogenous T1AM concentration in different tissues and determining its cardiac metabolism. A novel HPLC tandem mass spectrometry assay was developed, allowing detection of T1AM, thyronamine, 3-iodothyroacetic acid, and thyroacetic acid. T1AM was detected in rat serum, at the concentration of 0.3±0.03 pmol/ml, and in all tested organs (heart, liver, kidney, skeletal muscle, stomach, lung, and brain), at concentrations significantly higher than the serum concentration, ranging from 5.6±1.5 pmol/g in lung to 92.9±28.5 pmol/g in liver. T1AM was also identified for the first time in human blood. In H9c2 cardiomyocytes and isolated perfused rat hearts, significant Na+-dependent uptake of exogenous T1AM was observed, and at the steady state total cellular or tissue T1AM concentration exceeded extracellular concentration by more than 20-fold. In both preparations T1AM underwent oxidative deamination to 3-iodothyroacetic acid. T1AM deamination was inhibited by iproniazid but not pargyline or semicarbazide, suggesting the involvement of both monoamine oxidase and semicarbazide-sensitive amine oxidase. Thyronamine and thyroacetic acid were not detected in heart. Finally, evidence of T1AM production was observed in cardiomyocytes exposed to exogenous thyroid hormone, although the activity of this pathway was very low.
Collapse
Affiliation(s)
- Alessandro Saba
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Saba A, Chiellini G, Frascarelli S, Marchini M, Ghelardoni S, Raffaelli A, Tonacchera M, Vitti P, Scanlan TS, Zucchi R. Tissue Distribution and Cardiac Metabolism of 3-Iodothyronamine. Endocrinology 2010. [DOI: 10.1210/en.2010-0491 pmid: 20739399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
3-Iodothyronamine (T1AM) is a novel relative of thyroid hormone, able to interact with specific G protein-coupled receptors, known as trace amine-associated receptors. Significant functional effects are produced by exogenous T1AM, including a negative inotropic and chronotropic effect in cardiac preparations. This work was aimed at estimating endogenous T1AM concentration in different tissues and determining its cardiac metabolism. A novel HPLC tandem mass spectrometry assay was developed, allowing detection of T1AM, thyronamine, 3-iodothyroacetic acid, and thyroacetic acid. T1AM was detected in rat serum, at the concentration of 0.3 ± 0.03 pmol/ml, and in all tested organs (heart, liver, kidney, skeletal muscle, stomach, lung, and brain), at concentrations significantly higher than the serum concentration, ranging from 5.6 ± 1.5 pmol/g in lung to 92.9 ± 28.5 pmol/g in liver. T1AM was also identified for the first time in human blood. In H9c2 cardiomyocytes and isolated perfused rat hearts, significant Na+-dependent uptake of exogenous T1AM was observed, and at the steady state total cellular or tissue T1AM concentration exceeded extracellular concentration by more than 20-fold. In both preparations T1AM underwent oxidative deamination to 3-iodothyroacetic acid. T1AM deamination was inhibited by iproniazid but not pargyline or semicarbazide, suggesting the involvement of both monoamine oxidase and semicarbazide-sensitive amine oxidase. Thyronamine and thyroacetic acid were not detected in heart. Finally, evidence of T1AM production was observed in cardiomyocytes exposed to exogenous thyroid hormone, although the activity of this pathway was very low.
Collapse
Affiliation(s)
- Alessandro Saba
- Dipartimento di Chimica e Chimica Industriale (A.S.), University of Pisa, 56126 Pisa, Italy
| | - Grazia Chiellini
- Dipartimento di Scienze dell’Uomo e dell’Ambiente (G.C., S.F., M.M., S.G., R.Z.), University of Pisa, 56126 Pisa, Italy
| | - Sabina Frascarelli
- Dipartimento di Scienze dell’Uomo e dell’Ambiente (G.C., S.F., M.M., S.G., R.Z.), University of Pisa, 56126 Pisa, Italy
| | - Maja Marchini
- Dipartimento di Scienze dell’Uomo e dell’Ambiente (G.C., S.F., M.M., S.G., R.Z.), University of Pisa, 56126 Pisa, Italy
| | - Sandra Ghelardoni
- Dipartimento di Scienze dell’Uomo e dell’Ambiente (G.C., S.F., M.M., S.G., R.Z.), University of Pisa, 56126 Pisa, Italy
| | - Andrea Raffaelli
- Consiglio Nazionale delle Ricerche (A.R.), Istituto di Chimica dei Composti Organo Metallici, Pisa, Italy
| | - Massimo Tonacchera
- Dipartimento di Endocrinologia (M.T., P.V.), University of Pisa, 56126 Pisa, Italy
| | - Paolo Vitti
- Dipartimento di Endocrinologia (M.T., P.V.), University of Pisa, 56126 Pisa, Italy
| | - Thomas S. Scanlan
- Departments of Physiology and Pharmacology and Cell and Developmental Biology (T.S.S.), Oregon Health and Science University, Portland, Oregon 97239
| | - Riccardo Zucchi
- Dipartimento di Scienze dell’Uomo e dell’Ambiente (G.C., S.F., M.M., S.G., R.Z.), University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
30
|
Axelband F, Dias J, Ferrão FM, Einicker-Lamas M. Nongenomic signaling pathways triggered by thyroid hormones and their metabolite 3-iodothyronamine on the cardiovascular system. J Cell Physiol 2010; 226:21-8. [PMID: 20658515 DOI: 10.1002/jcp.22325] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- F Axelband
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|