1
|
Mao T, Wang Y. PEDF Overexpression Ameliorates Cardiac Lipotoxicity in Diabetic Cardiomyopathy via Regulation of Energy Metabolism. Diabetes Metab Syndr Obes 2025; 18:217-231. [PMID: 39896707 PMCID: PMC11784309 DOI: 10.2147/dmso.s482346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025] Open
Abstract
Background Early alterations in cardiac energy metabolism and lipotoxicity are crucial factors in the pathogenesis and progression of diabetic cardiomyopathy (DCM). The excessive accumulation of lipid metabolic intermediates within the myocardium can lead to increased production of reactive oxygen species (ROS) and promote apoptosis. Pigment epithelium-derived factor (PEDF) has been shown to regulate cardiac energy metabolism; however, its role in modulating energy metabolism, ROS generation, and apoptosis in the context of DCM requires further investigation. Methods PEDF was overexpressed in db/db mice via tail vein injection of adeno-associated virus 9(AAV9)-PEDF. At week 24, assessments were conducted on cardiac hypertrophy, fibrosis, cardiac function, and alterations in energy metabolism. Additionally, H9c2 cells were transfected with a PEDF plasmid and cultured under HG+PA conditions (33 mm glucose + 250 μM palmitic acid) for 24 hours. Subsequent analyses focused on changes in energy metabolism, ROS levels, and apoptosis. Results At 24 weeks, db/db mice exhibited hallmark features of DCM, including hyperglycemia, hyperlipidemia, cardiac hypertrophy, fibrosis, and diastolic dysfunction. Overexpression of PEDF reversed cardiac remodeling in these mice. In both db/db mice and HG+PA-treated H9c2 cells, PEDF overexpression modulated cardiac energy metabolism, mitigated lipotoxicity, and promoted the expression of adipose triglyceride lipase(ATGL) and glucose transporter type 4(Glut4) while inhibiting the expression of peroxisome proliferator-activated receptor alpha (PPARα), carnitine palmitoyltransferase 1 alpha (CPT1α), and scavenger receptor B2 (CD36). Additionally, PEDF overexpression reduced ROS generation and apoptosis in db/db mice myocardium and HG+PA-treated h9c2 cells. Conclusion PEDF can effectively prevent cardiac hypertrophy, fibrosis remodeling, and the deterioration of diastolic dysfunction in DCM by modulating cardiac energy metabolism and mitigating ROS production and apoptosis induced by lipotoxicity.
Collapse
Affiliation(s)
- Tuohua Mao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Ye Wang
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| |
Collapse
|
2
|
Lu P, Qi Y, Li X, Zhang C, Chen Z, Shen Z, Liang J, Zhang H, Yuan Y. PEDF and 34-mer peptide inhibit cardiac microvascular endothelial cell ferroptosis via Nrf2/HO-1 signalling in myocardial ischemia-reperfusion injury. J Cell Mol Med 2024; 28:e18558. [PMID: 39048917 PMCID: PMC11269049 DOI: 10.1111/jcmm.18558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/13/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) represents a critical pathology in acute myocardial infarction (AMI), which is characterized by high mortality and morbidity. Cardiac microvascular dysfunction contributes to MIRI, potentially culminating in heart failure (HF). Pigment epithelium-derived factor (PEDF), which belongs to the non-inhibitory serpin family, exhibits several physiological effects, including anti-angiogenesis, anti-inflammatory and antioxidant properties. Our study aims to explore the impact of PEDF and its functional peptide 34-mer on both cardiac microvascular perfusion in MIRI rats and human cardiac microvascular endothelial cells (HCMECs) injury under hypoxia reoxygenation (HR). It has been shown that MIRI is accompanied by ferroptosis in HCMECs. Furthermore, we investigated the effect of PEDF and its 34-mer, particularly regarding the Nrf2/HO-1 signalling pathway. Our results demonstrated that PEDF 34-mer significantly ameliorated cardiac microvascular dysfunction following MIRI. Additionally, they exhibited a notable suppression of ferroptosis in HCMECs, and these effects were mediated through activation of Nrf2/HO-1 signalling. These findings highlight the therapeutic potential of PEDF and 34-mer in alleviating microvascular dysfunction and MIRI. By enhancing cardiac microvascular perfusion and mitigating endothelial ferroptosis, PEDF and its derivative peptide represent promising candidates for the treatment of AMI.
Collapse
Affiliation(s)
- Peng Lu
- Department of Thoracic SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
- Department of Cardiovascular SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Yuanpu Qi
- Department of Cardiovascular SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Xiangyu Li
- Department of Cardiovascular SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Cheng Zhang
- Department of Thoracic SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Zhipeng Chen
- Department of Thoracic SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Zihao Shen
- Department of Cardiovascular SurgeryThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Jingtian Liang
- Department of Thoracic SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Hao Zhang
- Department of Thoracic SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Yanliang Yuan
- Department of Thoracic SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
3
|
Jones IC, Dass CR. Roles of pigment epithelium-derived factor in cardiomyocytes: implications for use as a cardioprotective therapeutic. J Pharm Pharmacol 2023:7146108. [PMID: 37104852 DOI: 10.1093/jpp/rgad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
OBJECTIVES Cardiovascular diseases are the leading cause of death worldwide, with patients having limited options for treatment. Pigment epithelium-derived factor (PEDF) is an endogenous multifunctional protein with several mechanisms of action. Recently, PEDF has emerged as a potential cardioprotective agent in response to myocardial infarction. However, PEDF is also associated with pro-apoptotic effects, complicating its role in cardioprotection. This review summarises and compares knowledge of PEDF's activity in cardiomyocytes with other cell types and draws links between them. Following this, the review offers a novel perspective of PEDF's therapeutic potential and recommends future directions to understand the clinical potential of PEDF better. KEY FINDINGS PEDF's mechanisms as a pro-apoptotic and pro-survival protein are not well understood, despite PEDF's implication in several physiological and pathological activities. However, recent evidence suggests that PEDF may have significant cardioprotective properties mediated by key regulators dependent on cell type and context. CONCLUSIONS While PEDF's cardioprotective activity shares some key regulators with its apoptotic activity, cellular context and molecular features likely allow manipulation of PEDF's cellular activity, highlighting the importance of further investigation into its activities and its potential to be applied as a therapeutic to mitigate damage from a range of cardiac pathologies.
Collapse
Affiliation(s)
- Isobel C Jones
- Curtin Medical School, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Australia
| |
Collapse
|
4
|
Wang Y, Liu X, Quan X, Qin X, Zhou Y, Liu Z, Chao Z, Jia C, Qin H, Zhang H. Pigment epithelium-derived factor and its role in microvascular-related diseases. Biochimie 2022; 200:153-171. [DOI: 10.1016/j.biochi.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023]
|
5
|
Wang Y, Liu X, Chao Z, Qin X, Quan X, Liu Z, Zhou Y, Jia C, Qin H, Zhang H. Pigment epithelium-derived factor maintains tight junction stability after myocardial infarction in rats through inhibition of the Wnt/β-catenin signaling pathway. Exp Cell Res 2022; 417:113213. [PMID: 35618012 DOI: 10.1016/j.yexcr.2022.113213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE The impairment of the coronary microcirculatory barrier caused by acute myocardial infarction (AMI) is closely related to poor prognosis. Recently, pigment epithelial-derived factor (PEDF) has been proven to be a promising cardiovascular protective drug. In this study, we demonstrated the protective role of PEDF in endothelial tight junctions (TJs) and the vascular barrier in AMI. MATERIALS AND METHODS 2, 3, 5-triphenyltetrazolium chloride (TTC), echocardiography and immunofluorescence staining were used to observe the size of infarcted myocardium area and cardiac function in myocardial tissue, and the distribution of tight junction proteins in human coronary endothelial cells (HCAEC). Dextran leakage assay and Transwell were used to assess the extent of vascular and HCAEC leakage. PCR and Western blot were used to detect tight junction-related mRNA and protein, and signaling pathway protein expression. RESULTS PEDF effectively reduced the infarction area and improved cardiac function in AMI rats, and lowered the leakage in AMI rats' angiocarpy and oxygen-glucose deprivation (OGD)-treated HCAEC. Furthermore, PEDF upregulated the expression of TJ mRNA and proteins in vivo and vitro. Mechanistically, PEDF inhibited the expression of phosphorylated low-density lipoprotein receptor-related protein 6 (p-LRP6) and active β-catenin under OGD, thus suppressing the activation of the classical Wnt pathway. CONCLUSIONS These novel findings demonstrated that PEDF maintained the expression of TJ proteins and endothelial barrier integrity by inhibiting the classical Wnt pathway during AMI.
Collapse
Affiliation(s)
- Yuzhuo Wang
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Xiucheng Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Zhixiang Chao
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Xichun Qin
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Xiaoyu Quan
- Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Zhiwei Liu
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yeqing Zhou
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Caili Jia
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Hao Qin
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Hao Zhang
- Thoracic Surgery Laboratory, Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China; Department of Thoracic Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China.
| |
Collapse
|
6
|
Phang RJ, Ritchie RH, Hausenloy DJ, Lees JG, Lim SY. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovasc Res 2022; 119:668-690. [PMID: 35388880 PMCID: PMC10153440 DOI: 10.1093/cvr/cvac049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with Type 2 diabetes mellitus (T2DM) frequently exhibit a distinctive cardiac phenotype known as diabetic cardiomyopathy. Cardiac complications associated with T2DM include cardiac inflammation, hypertrophy, fibrosis and diastolic dysfunction in the early stages of the disease, which can progress to systolic dysfunction and heart failure. Effective therapeutic options for diabetic cardiomyopathy are limited and often have conflicting results. The lack of effective treatments for diabetic cardiomyopathy is due in part, to our poor understanding of the disease development and progression, as well as a lack of robust and valid preclinical human models that can accurately recapitulate the pathophysiology of the human heart. In addition to cardiomyocytes, the heart contains a heterogeneous population of non-myocytes including fibroblasts, vascular cells, autonomic neurons and immune cells. These cardiac non-myocytes play important roles in cardiac homeostasis and disease, yet the effect of hyperglycaemia and hyperlipidaemia on these cell types are often overlooked in preclinical models of diabetic cardiomyopathy. The advent of human induced pluripotent stem cells provides a new paradigm in which to model diabetic cardiomyopathy as they can be differentiated into all cell types in the human heart. This review will discuss the roles of cardiac non-myocytes and their dynamic intercellular interactions in the pathogenesis of diabetic cardiomyopathy. We will also discuss the use of sodium-glucose cotransporter 2 inhibitors as a therapy for diabetic cardiomyopathy and their known impacts on non-myocytes. These developments will no doubt facilitate the discovery of novel treatment targets for preventing the onset and progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ren Jie Phang
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebecca H Ritchie
- School of Biosciences, Parkville, Victoria 3010, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Li J, Zhao Y, Zhu W. Targeting angiogenesis in myocardial infarction: Novel therapeutics (Review). Exp Ther Med 2022; 23:64. [PMID: 34934435 PMCID: PMC8649855 DOI: 10.3892/etm.2021.10986] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) remains the main cause of mortality worldwide. Despite surgery and medical treatment, the non-regeneration of dead cardiomyocytes and the limited contractile ability of scar tissue can lead to heart failure. Therefore, restoring blood flow in the infarcted area is important for the repair of myocardial injury. The objective of the present review was to summarize the factors influencing angiogenesis after AMI, and to describe the application of angiogenesis for cardiac repair. Collectively, this review may be helpful for relevant studies and to provide insight into future therapeutic applications in clinical practice.
Collapse
Affiliation(s)
- Jiejie Li
- Jiangsu Key Laboratory of Medical Science and Laboratory of Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuanyuan Zhao
- Jiangsu Key Laboratory of Medical Science and Laboratory of Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Wei Zhu
- Jiangsu Key Laboratory of Medical Science and Laboratory of Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
8
|
Atta G, Tempfer H, Kaser-Eichberger A, Traweger A, Heindl LM, Schroedl F. Is the human sclera a tendon-like tissue? A structural and functional comparison. Ann Anat 2021; 240:151858. [PMID: 34798297 DOI: 10.1016/j.aanat.2021.151858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022]
Abstract
Collagen rich connective tissues fulfill a variety of important functions throughout the human body, most of which having to resist mechanical challenges. This review aims to compare structural and functional aspects of tendons and sclera, two tissues with distinct location and function, but with striking similarities regarding their cellular content, their extracellular matrix and their low degree of vascularization. The description of these similarities meant to provide potential novel insight for both the fields of orthopedic research and ophthalmology.
Collapse
Affiliation(s)
- Ghada Atta
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Herbert Tempfer
- Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Andreas Traweger
- Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Integrated Oncology (CIO) Aachen - Bonn - Cologne - Düsseldorf, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria.
| |
Collapse
|
9
|
Guo F, Hall AR, Tape CJ, Ling S, Pointon A. Intra- and intercellular signaling pathways associated with drug-induced cardiac pathophysiology. Trends Pharmacol Sci 2021; 42:675-687. [PMID: 34092416 DOI: 10.1016/j.tips.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022]
Abstract
Cardiac physiology and homeostasis are maintained by the interaction of multiple cell types, via both intra- and intercellular signaling pathways. Perturbations in these signaling pathways induced by oncology therapies can reduce cardiac function, ultimately leading to heart failure. As cancer survival increases, related cardiovascular complications are becoming increasingly prevalent, thus identifying the perturbations and cell signaling drivers of cardiotoxicity is increasingly important. Here, we discuss the homotypic and heterotypic cellular interactions that form the basis of intra- and intercellular cardiac signaling pathways, and how oncological agents disrupt these pathways, leading to heart failure. We also highlight the emerging systems biology techniques that can be applied, enabling a deeper understanding of the intra- and intercellular signaling pathways across multiple cell types associated with cardiovascular toxicity.
Collapse
Affiliation(s)
- Fei Guo
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK; Cell Communication Laboratory, Department of Oncology, University College London Cancer Institute, London, WC1E 6DD, UK
| | - Andrew R Hall
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK
| | - Christopher J Tape
- Cell Communication Laboratory, Department of Oncology, University College London Cancer Institute, London, WC1E 6DD, UK
| | - Stephanie Ling
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK
| | - Amy Pointon
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK.
| |
Collapse
|
10
|
Single cell transcriptomic analysis identifies novel vascular smooth muscle subsets under high hydrostatic pressure. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1677-1690. [PMID: 33486587 DOI: 10.1007/s11427-020-1852-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Although some co-risk factors and hemodynamic alterations are involved in hypertension progression, their direct biomechanical effects are unclear. Here, we constructed a high-hydrostatic-pressure cell-culture system to imitate constant hypertension and identified novel molecular classifications of human aortic smooth muscle cells (HASMCs) by single-cell transcriptome analysis. Under 100-mmHg (analogous to healthy human blood pressure) or 200-mmHg (analogous to hypertension) hydrostatic pressure for 48 h, HASMCs showed six distinct vascular SMC (VSMC) clusters according to differential gene expression and gene ontology enrichment analysis. Especially, two novel HASMC subsets were identified, named the inflammatory subset, with CXCL2, CXCL3 and CCL2 as markers, and the endothelial-function inhibitory subset, with AKR1C2, AKR1C3, SERPINF1 as markers. The inflammatory subset promoted CXCL2&3 and CCL2 chemokine expression and secretion, triggering monocyte migration; the endothelial-function inhibitory subset secreted SERPINF1 and accelerated prostaglandin F2α generation to inhibit angiogenesis. The expression of the two VSMC subsets was greatly increased in arterial media from patients with hypertension and experimental animal models of hypertension. Collectively, we identified high hydrostatic pressure directly driving VSMCs into two new subsets, promoting or exacerbating endothelial dysfunction, thereby contributing to the pathogenesis of cardiovascular diseases.
Collapse
|
11
|
Guo X, Liu X, Wang J, Fu X, Yao J, Zhang X, Jackson S, Li J, Zhang W, Sun D. Pigment epithelium-derived factor (PEDF) ameliorates arsenic-induced vascular endothelial dysfunction in rats and toxicity in endothelial EA.hy926 cells. ENVIRONMENTAL RESEARCH 2020; 186:109506. [PMID: 32315827 DOI: 10.1016/j.envres.2020.109506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/28/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Although the harmful effects of arsenic exposure on the cardiovascular system have received great attention, there is still no effective treatment. Vascular endothelial dysfunction (VED) is the initial step of cardiovascular diseases, where pigment epithelium-derived factor (PEDF) plays an important role in maintaining endothelial function. Here, we explored the protective role of PEDF in VED induced by arsenic, and its underlying molecular mechanism, designing an in vivo rat model of arsenic exposure recovery and in vitro endothelial EA. hy926 cell-based assays. The edema of aortic endothelial cells in rats significantly improved during recovery from arsenite exposure compared with rats exposed to 10 and 50 mg/L arsenite continuously. In addition, serum levels of nitric oxide (NO), von Willebrand factor, and nitric oxide synthase (inducible and total activities) in rats, which were greatly affected by arsenite exposure, returned to levels similar to those in the control group after recovery with distilled water. The recovery from arsenite exposure was associated with increased levels of PEDF; decreased protein levels of Fas, FasL, P53, and phospho-p38; and inhibited apoptosis in aortic endothelial cells in vivo. Recombinant human PEDF treatment (100 nM) prevented the toxic effects of arsenite (50 μM) on endothelial cells in vitro by increasing NO content, decreasing reactive oxygen species (ROS) levels, and inhibiting apoptosis, as well as increasing cell viability and decreasing levels of P53 and phospho-p38. Our findings suggest that PEDF protects endothelial cells from arsenic-induced VED by increasing NO release and inhibiting apoptosis, where P53 and p38MAPK are its main targets.
Collapse
Affiliation(s)
- Xiangnan Guo
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China; Harbin Medical University Cancer Hospital, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Jingqiu Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Xiaoyan Fu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Jinyin Yao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Xiaodan Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Sira Jackson
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Jinyu Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China
| | - Wei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China.
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China.
| |
Collapse
|
12
|
Ma D, Chen L, Shi J, Zhao Y, Vasani S, Chen K, Romana‐Souza B, Henkin J, DiPietro LA. Pigment epithelium‐derived factor attenuates angiogenesis and collagen deposition in hypertrophic scars. Wound Repair Regen 2020; 28:684-695. [DOI: 10.1111/wrr.12828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Da Ma
- Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital Guanghua School of Stomatology, SunYat‐sen University Guangzhou Guangdong China
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Junhe Shi
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Yan Zhao
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Shruti Vasani
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Kevin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| | - Bruna Romana‐Souza
- Tissue Repair Laboratory State University of Rio de Janeiro Rio de Janeiro Brazil
| | - Jack Henkin
- Center for Developmental Therapeutics and Department of Chemistry Northwestern University Evanston Illinois USA
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry University of Illinois at Chicago Chicago Illinois USA
| |
Collapse
|
13
|
He D, Mao A, Zheng CB, Kan H, Zhang K, Zhang Z, Feng L, Ma X. Aortic heterogeneity across segments and under high fat/salt/glucose conditions at the single-cell level. Natl Sci Rev 2020; 7:881-896. [PMID: 34692110 PMCID: PMC8289085 DOI: 10.1093/nsr/nwaa038] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/23/2020] [Accepted: 02/08/2020] [Indexed: 12/24/2022] Open
Abstract
The aorta, with ascending, arch, thoracic and abdominal segments, responds to the heartbeat, senses metabolites and distributes blood to all parts of the body. However, the heterogeneity across aortic segments and how metabolic pathologies change it are not known. Here, a total of 216 612 individual cells from the ascending aorta, aortic arch, and thoracic and abdominal segments of mouse aortas under normal conditions or with high blood glucose levels, high dietary salt, or high fat intake were profiled using single-cell RNA sequencing. We generated a compendium of 10 distinct cell types, mainly endothelial (EC), smooth muscle (SMC), stromal and immune cells. The distributions of the different cells and their intercommunication were influenced by the hemodynamic microenvironment across anatomical segments, and the spatial heterogeneity of ECs and SMCs may contribute to differential vascular dilation and constriction that were measured by wire myography. Importantly, the composition of aortic cells, their gene expression profiles and their regulatory intercellular networks broadly changed in response to high fat/salt/glucose conditions. Notably, the abdominal aorta showed the most dramatic changes in cellular composition, particularly involving ECs, fibroblasts and myeloid cells with cardiovascular risk factor-related regulons and gene expression networks. Our study elucidates the nature and range of aortic cell diversity, with implications for the treatment of metabolic pathologies.
Collapse
Affiliation(s)
- Dongxu He
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Aiqin Mao
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, China
| | - Hao Kan
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ka Zhang
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Zhang
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Lei Feng
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Ma
- Wuxi School of Medicine and School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
14
|
Atta G, Tempfer H, Kaser-Eichberger A, Guo Y, Schroedl F, Traweger A, Heindl LM. The lymphangiogenic and hemangiogenic privilege of the human sclera. Ann Anat 2020; 230:151485. [PMID: 32120002 DOI: 10.1016/j.aanat.2020.151485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Most organs of the human body are supplied with a dense network of blood and lymphatic vessels. However, some tissues are either hypovascular or completely devoid of vessels for proper function, such as the ocular tissues sclera and cornea, cartilage and tendons. Since many pathological conditions are affecting the human sclera, this review is focussing on the lymphangiogenic and hemangiogenic privilege in the human sclera. METHODS This article gives an overview of the current literature based on a PubMed search as well as observations and experience from clinical practice. RESULTS The healthy human sclera is the outer covering layer of the eye globe consisting mainly of collagenous extracellular matrix and fibroblasts. Physiologically, the sclera shows only a superficial network of blood vessels and a lack of lymphatic vessels. This vascular privilege is actively regulated by balancing anti- and proangiogenic factors expressed by cells within the sclera. In pathological situations, such as open globe injuries or ciliary body melanomas with extraocular extension, lymphatic vessels can secondarily invade the sclera and the inner eye. This mechanism most likely is important for tumor cell metastasis, wound healing, immunologic defense against intruding microorganism, and autoimmune reactions against intraocular antigens. CONCLUSIONS The human sclera is characterized by a tightly regulated vascular network that can be compromised in pathological situations, such as injuries or intraocular tumors affecting healing outcomes Therefore, the molecular and cellular mechanisms underlying wound healing following surgical interventions deserve further attention, in order to devise more effective therapeutic strategies.
Collapse
Affiliation(s)
- Ghada Atta
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Herbert Tempfer
- Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | | | - Yongwei Guo
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Falk Schroedl
- Department of Anatomy and Cell Biology, Paracelsus Medical University, Salzburg, Austria
| | - Andreas Traweger
- Institute for Tendon and Bone Regeneration, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Paracelsus Medical University, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Integrated Oncology (CIO) Aachen - Bonn - Cologne - Düsseldorf, Cologne, Germany.
| |
Collapse
|
15
|
Yuan Y, Huang B, Miao H, Liu X, Zhang H, Qiu F, Liu Z, Zhang Y, Dong H, Zhang Z. A “Hibernating-Like” Viable State Induced by Lentiviral Vector-Mediated Pigment Epithelium-Derived Factor Overexpression in Rat Acute Ischemic Myocardium. Hum Gene Ther 2019; 30:762-776. [PMID: 30734585 DOI: 10.1089/hum.2018.186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yanliang Yuan
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Bing Huang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Haoran Miao
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Xiucheng Liu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Hao Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Fan Qiu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Zhiwei Liu
- Morphological Research Experiment Center, Xuzhou Medical University, Xuzhou, P.R. China
| | - Yiqian Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| | - Hongyan Dong
- Morphological Research Experiment Center, Xuzhou Medical University, Xuzhou, P.R. China
| | - Zhongming Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, P.R. China
| |
Collapse
|
16
|
Yuan Y, Liu X, Miao H, Huang B, Liu Z, Chen J, Quan X, Zhu L, Dong H, Zhang Z. PEDF increases GLUT4-mediated glucose uptake in rat ischemic myocardium via PI3K/AKT pathway in a PEDFR-dependent manner. Int J Cardiol 2019; 283:136-143. [PMID: 30819588 DOI: 10.1016/j.ijcard.2019.02.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/07/2019] [Accepted: 02/18/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Targeted increase in glucose uptake of ischemic myocardium is a potential therapeutic strategy for myocardial ischemia. PEDF presents a profound moderating effect on glucose metabolism of cells, but its role is still controversial. Here, we try to demonstrate the direct effect of PEDF on glucose uptake in ischemic myocyte and to elucidate its underlying mechanism. METHODS AND RESULTS Lentivirus vectors carrying PEDF gene were delivered into the myocardium to locally overexpress PEDF in a myocardial ischemia/reperfusion rat model. PET imaging showed that PEDF local overexpression increased [18F]-FDG uptake of ischemic myocardium. In vitro, PEDF directly increased the glucose uptake in hypoxic cardiomyocytes. The expression of glucose transporter 4 (GLUT4) on plasma membrane of hypoxic cardiomyocytes was significantly upregulated by PEDF, but its total amount was not changed. The increased glucose uptake and cardioprotective effects induced by PEDF were blocked by the GLUT4 inhibitor indinavir. PEDF-mediated GLUT4 translocation and glucose uptake increase in hypoxic cardiomyocytes were prevented by phosphatidyl-inositol-3 kinase (PI3K) inhibitor or AKT inhibitor. The PEDF-mediated glucose uptake was also diminished when PEDF receptor (PEDFR) was downregulated or potent phospholipase A2 enzymatic activity was inhibited. CONCLUSIONS PEDF can increase glucose uptake in ischemic myocardium through a PEDFR-dependent mechanism, involving PI3K/AKT signaling and GLUT4 translocation.
Collapse
Affiliation(s)
- Yanliang Yuan
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Xiucheng Liu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Haoran Miao
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Bing Huang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Zhiwei Liu
- Morphological Research Experiment Center, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Jiali Chen
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Xiaoyu Quan
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Lidong Zhu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Hongyan Dong
- Morphological Research Experiment Center, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Zhongming Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China..
| |
Collapse
|
17
|
Schlereth SL, Karlstetter M, Hos D, Matthaei M, Cursiefen C, Heindl LM. Detection of Pro- and Antiangiogenic Factors in the Human Sclera. Curr Eye Res 2018; 44:172-184. [PMID: 30358460 DOI: 10.1080/02713683.2018.1540704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Avascular tissues can be used to identify antilymph- or antihemangiogenic factors. The human sclera-the outer covering layer of the eye, lacks lymphatic vessels and contains only a superficial network of blood vessels and was used here to identify endogenous antiangiogenic factors. METHODS Expression levels of a panel of 96 known pro- and antiangiogenic factors were analyzed in 12 scleral or conjunctival control samples from normal human donors using real-time PCR. In vitro, scleral homogenate was cocultured with blood- and lymphatic endothelial cells (BECs and LECs) and immunohistochemistry was performed of scleral fibroblasts and BECs. RESULTS Three antiangiogenic factors were significantly upregulated in the human sclera compared to the conjunctiva, including FBLN5 (fibulin 5), SERPINF1 (serpin peptidase inhibitor, clade F, member 1 = pigment epithelium derived factor) and TIMP2 (Tissue inhibitor of metalloproteinases 2). Six proangiogenic factors were significantly downregulated in the sclera, including FLT4 (Fms-related tyrosine kinase 4=VEGF-R3), HGF (hepatocyte growth factor), KIT (CD117 / c-kit), PROX1 (prospero homeobox 1), SEMA3F (semaphorin-3F) and TGFA (transforming growth factor alpha). In vitro, scleral homogenate inhibited the growth of both BECs and LECs. Immunohistochemistry labeling of three major antiangiogenic factors from scleral tissue confirmed TIMP3 and PEDF expression both in scleral fibroblasts and in blood endothelial cells, whereas TIMP2 was not detectable. CONCLUSION Balancing anti- and proangiogenic factors actively regulates human scleral avascularity, inhibits endothelial cell growth in vitro, and thus may help maintaining the vascular privilege of the inner eye.
Collapse
Affiliation(s)
- Simona L Schlereth
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| | - Marcus Karlstetter
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| | - Deniz Hos
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| | - Mario Matthaei
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| | - Claus Cursiefen
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| | - Ludwig M Heindl
- a Department of Ophthalmology , University of Cologne , Cologne , Germany
| |
Collapse
|
18
|
Ma S, Wang S, Li M, Zhang Y, Zhu P. The effects of pigment epithelium-derived factor on atherosclerosis: putative mechanisms of the process. Lipids Health Dis 2018; 17:240. [PMID: 30326915 PMCID: PMC6192115 DOI: 10.1186/s12944-018-0889-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide. Atherosclerosis is believed to be the major cause of CVD, characterized by atherosclerotic lesion formation and plaque disruption. Although remarkable advances in understanding the mechanisms of atherosclerosis have been made, the application of these theories is still limited in the prevention and treatment of atherosclerosis. Therefore, novel and effective strategies to treat high-risk patients with atherosclerosis require further development. Pigment epithelium-derived factor (PEDF), a glycoprotein with anti-inflammatory, anti-oxidant, anti-angiogenic, anti-thrombotic and anti-tumorigenic properties, is of considerable interest in the prevention of atherosclerosis. Accumulating research has suggested that PEDF exerts beneficial effects on atherosclerotic lesions and CVD patients. Our group, along with colleagues, has demonstrated that PEDF may be associated with acute coronary syndrome (ACS), and that the polymorphisms of rs8075977 of PEDF are correlated with coronary artery disease (CAD). Moreover, we have explored the anti-atherosclerosis mechanisms of PEDF, showing that oxidized-low density lipoprotein (ox-LDL) reduced PEDF concentrations through the upregulation of reactive oxygen species (ROS), and that D-4F can protect endothelial cells against ox-LDL-induced injury by preventing the downregulation of PEDF. Additionally, PEDF might alleviate endothelial injury by inhibiting the Wnt/β-catenin pathway. These data suggest that PEDF may be a novel therapeutic target for the treatment of atherosclerosis. In this review, we will summarize the role of PEDF in the development of atherosclerosis, focusing on endothelial dysfunction, inflammation, oxidative stress, angiogenesis and cell proliferation. We will also discuss its promising therapeutic implications for atherosclerosis.
Collapse
Affiliation(s)
- Shouyuan Ma
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shuxia Wang
- Department of Cadre Clinic, Chinese PLA General Hospital, Beijing, 100853, China
| | - Man Li
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Zhang
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ping Zhu
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
19
|
Miao H, Qiu F, Huang B, Liu X, Zhang H, Liu Z, Yuan Y, Zhao Q, Zhang H, Dong H, Zhang Z. PKCα replaces AMPK to regulate mitophagy: Another PEDF role on ischaemic cardioprotection. J Cell Mol Med 2018; 22:5732-5742. [PMID: 30230261 PMCID: PMC6201373 DOI: 10.1111/jcmm.13849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/09/2018] [Accepted: 07/20/2018] [Indexed: 11/29/2022] Open
Abstract
Both decreased autophagy positive regulator AMP activated protein kinase (AMPK) level and promoted mitophagy are observed in oxygen‐glucose deprivation (OGD) cardiomyocytes treated with pigment epithelium‐derived factor (PEDF). This contradictory phenomenon and its underlying mechanisms have not been thoroughly elucidated. Our previous study reveals that PEDF increases the protein kinase Cα (PKCα) and phospho‐PKCα (p‐PKCα) contents to promote mitophagy. Thus, we investigated the association between PKCα and mitophagy. Here we identify an interaction between PKCα and Unc‐51‐like kinase 1 (ULK1), essential component of mitophagy. Further analyses show this is a direct interaction within a domain of ULK1 that termed the serine/threonine‐rich domain (S/T domain). Notably, a deletion mutant ULK1 that lacks the binding domain is defective in mediating PEDF‐induced mitophagy. Furthermore, we demonstrate that ULK1 is phosphorylated at Ser317/555/777 and Raptor is also phosphorylated by phospho‐PKCα. Phospho‐ULK1 (p‐ULK1) at these sites are all essential for PEDF‐induced mitophagy and reduce the release of mitochondrial ROS and DNA. This study therefore identifies a previously uncharacterized interaction between the ULK1 and PKCα that can replace the AMPK‐dependent mitophagy processes.
Collapse
Affiliation(s)
- Haoran Miao
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Fan Qiu
- Morphological Research Experiment Center, Xuzhou Medical University, Xuzhou, China.,Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bing Huang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Liu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hao Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhiwei Liu
- Morphological Research Experiment Center, Xuzhou Medical University, Xuzhou, China
| | - Yanliang Yuan
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qixiang Zhao
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hu Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongyan Dong
- Morphological Research Experiment Center, Xuzhou Medical University, Xuzhou, China
| | - Zhongming Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
20
|
Varga I, Kyselovič J, Galfiova P, Danisovic L. The Non-cardiomyocyte Cells of the Heart. Their Possible Roles in Exercise-Induced Cardiac Regeneration and Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 999:117-136. [PMID: 29022261 DOI: 10.1007/978-981-10-4307-9_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The non-cardiomyocyte cellular microenvironment of the heart includes diverse types of cells of mesenchymal origin. During development, the majority of these cells derive from the epicardium, while a subset derives from the endothelium/endocardium and neural crest derived mesenchyme. This subset includes cardiac fibroblasts and telocytes, the latter of which are a controversial type of "connecting cell" that support resident cardiac progenitors in the postnatal heart. Smooth muscle cells, pericytes, and endothelial cells are also present, in addition to adipocytes, which accumulate as epicardial adipose connective tissue. Furthermore, the heart harbors many cells of hematopoietic origin, such as mast cells, macrophages, and other immune cell populations. Most of these control immune reactions and inflammation. All of the above-mentioned non-cardiomyocyte cells of the heart contribute to this organ's well-orchestrated physiology. These cells also contribute to regeneration as a result of injury or age, in addition to tissue remodeling triggered by chronic disease or increased physical activity (exercise-induced cardiac growth). These processes in the heart, the most important vital organ in the human body, are not only fascinating from a scientific standpoint, but they are also clinically important. It is well-known that regular exercise can help prevent many cardiovascular diseases. However, the precise mechanisms underpinning myocardial remodeling triggered by physical activity are still unknown. Surprisingly, exercise-induced adaptation mechanisms are often identical or very similar to tissue remodeling caused by pathological conditions, such as hypertension, cardiac hypertrophy, and cardiac fibrosis. This review provides a summary of our current knowledge regarding the cardiac cellular microenvironment, focusing on the clinical applications this information to the study of heart remodeling during regular physical exercise.
Collapse
Affiliation(s)
- Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| | - Jan Kyselovič
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Paulina Galfiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
21
|
Zhao Q, Liu Z, Huang B, Yuan Y, Liu X, Zhang H, Qiu F, Zhang Y, Li Y, Miao H, Dong H, Zhang Z. PEDF improves cardiac function in rats subjected to myocardial ischemia/reperfusion injury by inhibiting ROS generation via PEDF‑R. Int J Mol Med 2018. [PMID: 29532859 PMCID: PMC5881792 DOI: 10.3892/ijmm.2018.3552] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The prevention and management of myocardial ischemia/reperfusion (MI/R) injury is an essential part of coronary heart disease surgery and is becoming a major clinical problem in the treatment of ischemic heart disease. Previous studies by our group have demonstrated that pigment epithelium-derived factor (PEDF) improves cardiac function in rats with acute myocardial infarction and reduces hypoxia-induced cell injury. However, the protective function and mechanisms underlying the effect of PEDF in MI/R injury remain to be fully understood. In the present study, the positive effect of PEDF in MI/R injury was confirmed by construction of the adult Sprague-Dawley rat MI/R model. PEDF reduced myocardial infarct size and downregulated cardiomyocyte apoptosis in the I/R myocardium in this model. In addition, PEDF improved cardiac function and increased cardiac functional reserve in rats subjected to MI/R Injury. To further study the protective effect of PEDF and the underlying mechanisms in MI/R injury, a H9c2 cardiomyocyte hypoxia/reoxygenation (H/R) model was constructed. PEDF was confirmed to decrease H/R-induced apoptosis in H9c2 cells, and this anti-apoptotic function was abolished by pigment epithelium-derived factor-receptor (PEDF R) small interfering (si)RNA. Furthermore, administration of PEDF decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in H/R H9c2 cells. Compared with the H/R group, PEDF decreased mitochondrial ROS, increased the mitochondrial DNA copy number, reduced xanthine oxidase and NADPH oxidase activity, as well as RAC family small GTPase 1 protein expression. However, these effects of PEDF were markedly attenuated by PEDF-R siRNA. To the best of our knowledge, the present study is the first to identify the protective effect of PEDF in MI/R injury, and confirm that the antioxidative effect PEDF occurred via inhibition of ROS generation via PEDF-R under MI/R conditions.
Collapse
Affiliation(s)
- Qixiang Zhao
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Zhiwei Liu
- Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Bing Huang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Yanliang Yuan
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Xiucheng Liu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Hu Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Fan Qiu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Yiqian Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Yufeng Li
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Haoran Miao
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| | - Hongyan Dong
- Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Zhongming Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221006, P.R. China
| |
Collapse
|
22
|
Qiu F, Zhang H, Yuan Y, Liu Z, Huang B, Miao H, Liu X, Zhao Q, Zhang H, Dong H, Zhang Z. A decrease of ATP production steered by PEDF in cardiomyocytes with oxygen-glucose deprivation is associated with an AMPK-dependent degradation pathway. Int J Cardiol 2018; 257:262-271. [PMID: 29361350 DOI: 10.1016/j.ijcard.2018.01.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/08/2018] [Indexed: 01/01/2023]
Abstract
AIMS The activated AMP activated protein kinase (AMPK) serves as a transient protective cardiovascular kinase via preserving adenosine triphosphate (ATP) production under ischemic conditions. However, recent studies reveal that inhibition of AMPK in stroke is neuroprotection. Pigment epithelium derived factor (PEDF) is also known for the protection of ischemic cardiomyocytes. However, the relationship between PEDF and AMPK in cardiomyocytes is poorly understood. METHODS AND RESULTS Rat neonatal and adult left ventricular cardiomyocytes were isolated and subjected to oxygen-glucose deprivation (OGD). During OGD, PEDF significantly reduced AMPKα levels to decrease ATP production and reduced ATP expenditure both in neonatal and adult cardiomyocytes, which increased energy reserves and cell viability. Importantly, pharmacological AMPK inhibitor reduced ATP production but failed to decrease ATP expenditure, thus leading cells into death. Furthermore, AMPKα was degraded by a ubiquitin-dependent proteasomal degradation pathway, which is associated with a PEDF/PEDFR/peroxisome proliferator activated receptor γ (PPARγ) axis. Inhibition of PPARγ or proteasome disrupted the interaction of AMPKα and PPARγ, which abolished AMPKα degradation. Importantly, the decrease of AMPKα and ATP level was normalized after recovery of oxygen and glucose. CONCLUSIONS We demonstrate a novel mechanism for regulation of cardiac ATP production by PEDF involving AMPKα and PPARγ. PEDF promotes proteasomal degradation of AMPK and, subsequently, reduces ATP production. The reduction of ATP production associated with the decrease of ATP expenditure completed by PEDF increase energy reserves and reduces cell energy failure, prolonging the cell activity during OGD.
Collapse
Affiliation(s)
- Fan Qiu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Hao Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Yanliang Yuan
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Zhiwei Liu
- Morphological Research Experiment Center, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China
| | - Bing Huang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Haoran Miao
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Xiucheng Liu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Qixiang Zhao
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Hu Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China
| | - Hongyan Dong
- Morphological Research Experiment Center, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, China.
| | - Zhongming Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou 221006, Jiangsu, China.
| |
Collapse
|
23
|
Pigment epithelium-derived factor attenuates myocardial fibrosis via inhibiting Endothelial-to-Mesenchymal Transition in rats with acute myocardial infarction. Sci Rep 2017; 7:41932. [PMID: 28167820 PMCID: PMC5294634 DOI: 10.1038/srep41932] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 01/03/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial mesenchymal transition (EndMT) plays a critical role in the pathogenesis and progression of interstitial and perivascular fibrosis after acute myocardial infarction (AMI). Pigment epithelium-derived factor (PEDF) is shown to be a new therapeutic target owing to its protective role in cardiovascular disease. In this study, we tested the hypothesis that PEDF is an endogenous inhibitor of EndMT and represented a novel mechanism for its protective effects against overactive cardiac fibrosis after AMI. Masson’s trichrome (MTC) staining and picrosirius red staining revealed decreased interstitial and perivascular fibrosis in rats overexpressing PEDF. The protective effect of PEDF against EndMT was confirmed by co-labeling of cells with the myofibroblast and endothelial cell markers. In the endothelial cells of microvessels in the ischemic myocardium, the inhibitory effect of PEDF against nuclear translocation of β-catenin was observed through confocal microscopic imaging. The correlation between antifibrotic effect of PEDF and inactivation of β-catenin was confirmed by co-transfecting cells with lentivirus carrying PEDF or PEDF RNAi and plasmids harboring β-catenin siRNA(r) or constitutive activation of mutant β-catenin. Taken together, these results establish a novel finding that PEDF could inhibit EndMT related cardiac fibrosis after AMI by a mechanism dependent on disruption of β-catenin activation and translocation.
Collapse
|
24
|
Lu P, Zhang YQ, Zhang H, Li YF, Wang XY, Xu H, Liu ZW, Li L, Dong HY, Zhang ZM. Pigment Epithelium-Derived Factor (PEDF) Improves Ischemic Cardiac Functional Reserve Through Decreasing Hypoxic Cardiomyocyte Contractility Through PEDF Receptor (PEDF-R). J Am Heart Assoc 2016; 5:e003179. [PMID: 27413044 PMCID: PMC5015364 DOI: 10.1161/jaha.115.003179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/21/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Pigment epithelium-derived factor (PEDF), which belongs to the noninhibitory serpin family, has shown the ability to stimulate several physiological processes, such as antiangiogenesis, anti-inflammation, and antioxidation. In the present study, the effects of PEDF on contractility and calcium handling of rat ventricular myocytes were investigated. METHODS AND RESULTS Adult Sprague-Dawley rat models of acute myocardial infarction (AMI) were surgically established. PEDF-lentivirus was delivered into the myocardium along and away from the infarction border to overexpress PEDF. Video edge detection was used to measure myocyte shortening in vitro. Intracellular Ca(2+) was measured in cells loaded with the Ca(2+) sensitive fluorescent indicator, Fura-2-acetoxymethyl ester. PEDF local overexpression enhanced cardiac functional reserve in AMI rats and reduced myocardial contracture bordering the infracted area. Exogenous PEDF treatment (10 nmol/L) caused a significant decrease in amplitudes of isoproterenol-stimulated myocyte shortening, Ca(2+) transients, and caffeine-evoked Ca(2+) transients in vitro. We then tested a potential role for PEDF receptor-mediated effects on upregulation of protein kinase C (PKC) and found evidence of signaling through the diacylglycerol/PKCα pathway. We also confirmed that pretreatment of cardiomyocytes with PEDF exhibited dephosphorylation of phospholamban at Ser(16), which could be attenuated with PKC inhibition. CONCLUSIONS The results suggest that PEDF depresses myocyte contractility by suppressing phosphorylation of phospholamban and Ca(2+) transients in a PKCα-dependent manner through its receptor, PEDF receptor, therefore improving cardiac functional reserve during AMI.
Collapse
Affiliation(s)
- Peng Lu
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yi-Qian Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Feng Li
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao-Yu Wang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hao Xu
- Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhi-Wei Liu
- Research Center for Morphology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lei Li
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong-Yan Dong
- Research Center for Morphology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhong-Ming Zhang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
25
|
Fountoulaki K, Dagres N, Iliodromitis EK. Cellular Communications in the Heart. Card Fail Rev 2015; 1:64-68. [PMID: 28785434 PMCID: PMC5490974 DOI: 10.15420/cfr.2015.1.2.64] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/12/2015] [Indexed: 11/04/2022] Open
Abstract
Heart failure is one of the leading causes of morbidity and mortality worldwide. Cardiac remodelling is first an adaptive, becoming a maladaptive, compensatory mechanism that finally causes ventricular dysfunction independently of the etiology of the initial insult. In the present article the authors describe the elements of the human heart, examining their basic functions and their inter-communication under both normal and pathological circumstances. Cardiac myocytes carry out mechanical and electrical functions of the heart and cardiac fibroblasts maintain its structural integrity. Several factors can affect fibroblast activation and under pathological stress they transdifferentiate into myofibroblasts. Endothelial cells have complex biological functions, including the control of vascular permeability, vasomotion, regulation of haemostasis, immune responses and angiogenesis. The extracellular matrix is a complex architectural network consisting of a variety of proteins. Various routes using a plethora of products and mediators contribute to the cross-talk of the myocytes with endothelial cells, extracellular matrix and cardiac fibroblasts. A better understanding of the entire mechanism of cellular communication by the established or the more recently discovered agents will certainly emerge promising new perspectives when looking at the prevention of heart failure and leading to more substantial therapeutic interventions.
Collapse
Affiliation(s)
- Katerina Fountoulaki
- Cardiothoracic Intensive Care Unit, Onassis Cardiac Surgery Centre, Athens, Greece
| | - Nikolaos Dagres
- Second University Department of Cardiology, Attikon General Hospial, University of Athens, Athens, Greece
| | - Efstathios K Iliodromitis
- Second University Department of Cardiology, Attikon General Hospial, University of Athens, Athens, Greece
| |
Collapse
|
26
|
Vigneswara V, Esmaeili M, Deer L, Berry M, Logan A, Ahmed Z. Eye drop delivery of pigment epithelium-derived factor-34 promotes retinal ganglion cell neuroprotection and axon regeneration. Mol Cell Neurosci 2015; 68:212-21. [PMID: 26260110 PMCID: PMC4604765 DOI: 10.1016/j.mcn.2015.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/16/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022] Open
Abstract
Axotomised retinal ganglion cells (RGCs) die rapidly by apoptosis and fail to regenerate because of the limited availability of neurotrophic factors and a lack of axogenic stimuli. However, we have recently showed that pigment epithelium-derived factor (PEDF) promotes RGC survival and axon regeneration after optic nerve crush injury. PEDF has multiple fragments of the native peptide that are neuroprotective, anti-angiogenic and anti-inflammatory. Here we investigated the neuroprotective and axogenic properties of a fragment of PEDF, PEDF-34, in retinal neurons in vitro and when delivered by intravitreal injection and eye drops in vivo. We found that PEDF-34 was 43% more neuroprotective and 52% more neuritogenic than PEDF-44 in vitro. Moreover, in vivo, intravitreal delivery of 1.88 nM PEDF-34 was 71% RGC neuroprotective at 21 days after optic nerve crush compared to intact controls, whilst daily eye drops containing 1.88 nM PEDF-34 promoted 87% RGC survival. After topical eye drop delivery, PEDF-34 was detected in the vitreous body within 30 min and attained physiologically relevant concentrations in the retina by 4 h peaking at 1.4 ± 0.05 nM by 14 days. In eye drop- compared to intravitreal-treated PEDF-34 animals, 55% more RGC axons regenerated 250 μm beyond the optic nerve lesion. We conclude that daily topical eye drop application of PEDF-34 is superior to weekly intravitreal injections in promoting RGC survival and axon regeneration through both direct effects on retinal neurons and indirect effects on other retinal cells. PEDF-34 is more neuroprotective and neuritogenic than PEDF-44. PEDF-34 is more neuroprotective and neuritogenic than full-length PEDF. PEDF-34 can reach the retina after topical application to the eyes. PEDF-34 eye drops are more neuroprotective and axogenic than intravitreal injection.
Collapse
Affiliation(s)
- Vasanthy Vigneswara
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maryam Esmaeili
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Louise Deer
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Berry
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ann Logan
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neurotrauma Research Group, Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
27
|
Wietecha MS, Król MJ, Michalczyk ER, Chen L, Gettins PG, DiPietro LA. Pigment epithelium-derived factor as a multifunctional regulator of wound healing. Am J Physiol Heart Circ Physiol 2015; 309:H812-26. [PMID: 26163443 DOI: 10.1152/ajpheart.00153.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/08/2015] [Indexed: 01/12/2023]
Abstract
During dermal wound repair, hypoxia-driven proliferation results in dense but highly permeable, disorganized microvascular networks, similar to those in solid tumors. Concurrently, activated dermal fibroblasts generate an angiopermissive, provisional extracellular matrix (ECM). Unlike cancers, wounds naturally resolve via blood vessel regression and ECM maturation, which are essential for reestablishing tissue homeostasis. Mechanisms guiding wound resolution are poorly understood; one candidate regulator is pigment epithelium-derived factor (PEDF), a secreted glycoprotein. PEDF is a potent antiangiogenic in models of pathological angiogenesis and a promising cancer and cardiovascular disease therapeutic, but little is known about its physiological function. To examine the roles of PEDF in physiological wound repair, we used a reproducible model of excisional skin wound healing in BALB/c mice. We show that PEDF is abundant in unwounded and healing skin, is produced primarily by dermal fibroblasts, binds to resident microvascular endothelial cells, and accumulates in dermal ECM and epidermis. PEDF transcript and protein levels were low during the inflammatory and proliferative phases of healing but increased in quantity and colocalization with microvasculature during wound resolution. Local antibody inhibition of endogenous PEDF delayed vessel regression and collagen maturation during the remodeling phase. Treatment of wounds with intradermal injections of exogenous, recombinant PEDF inhibited nascent angiogenesis by repressing endothelial proliferation, promoted vascular integrity and function, and increased collagen maturity. These results demonstrate that PEDF contributes to the resolution of healing wounds by causing regression of immature blood vessels and stimulating maturation of the vascular microenvironment, thus promoting a return to tissue homeostasis after injury.
Collapse
Affiliation(s)
- Mateusz S Wietecha
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Mateusz J Król
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Elizabeth R Michalczyk
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| | - Peter G Gettins
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
28
|
Dostal D, Glaser S, Baudino TA. Cardiac Fibroblast Physiology and Pathology. Compr Physiol 2015; 5:887-909. [DOI: 10.1002/cphy.c140053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Zhang H, Sun T, Jiang X, Yu H, Wang M, Wei T, Cui H, Zhuang W, Liu Z, Zhang Z, Dong H. PEDF and PEDF-derived peptide 44mer stimulate cardiac triglyceride degradation via ATGL. J Transl Med 2015; 13:68. [PMID: 25890298 PMCID: PMC4344780 DOI: 10.1186/s12967-015-0432-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/10/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Pigment epithelium-derived factor (PEDF) is a 50-kDa secreted glycoprotein that is highly expressed in cardiomyocytes. A variety of peptides derived from PEDF exerts diverse physiological activities including anti-angiogenesis, antivasopermeability, and neurotrophic activities. Recent studies demonstrated that segmental functional peptides of PEDF, 44mer peptide (Val78-Thr121), show similar neurotrophic and cytoprotective effect to that of the holoprotein. We found that PEDF can reduce infarct size and protect cardiac function after acute myocardial infarction (AMI). However, the effects of PEDF on cardiac triglyceride (TG) accumulation after AMI remain unknown. The present study was performed to demonstrate the influence of PEDF and its functional peptides 44mer on TG degradation in AMI. METHODS The left ascending coronary artery (LAD) was ligated to induce AMI. PEDF-small interfering RNA (siRNA)-lentivirus (PEDF-RNAi-LV) or PEDF-LV was delivered to the ischemic myocardium in order to knock down or overexpress PEDF, respectively. Oil Red O staining and a TG assay kit were used to analyze the TG content in cardiomyocytes and infarcted areas. RESULTS The TG content significantly decreased in the PEDF-overexpressing heart compared to the sham group (P < 0.05). Both rPEDF and 44mer administration stimulate the TG degradation in cultured cardiomyocytes (P < 0.05). Adipose triglyceride lipase (ATGL)-specific inhibitor, atglistatin, attenuated the PEDF or 44mer-induced TG lipolysis activation of cardiomyocytes at 10 μmol/L. The effects of PEDF and 44mer on myocardial TG degradation were also abolished when ATGL was downregulated. CONCLUSIONS We conclude that PEDF and 44mer promote TG degradation in cardiomyocytes after AMI via ATGL. The substitution of PEDF and 44mer may be a novel therapeutic strategy for cardiac TG accumulation after AMI.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221006, China.
| | - Teng Sun
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221006, China.
| | - Xia Jiang
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221006, China.
| | - Hongli Yu
- Research Facility Center for Morphology, Xuzhou Medical College, Xuzhou, 221004, China.
| | - Meng Wang
- Research Facility Center for Morphology, Xuzhou Medical College, Xuzhou, 221004, China.
| | - Tengteng Wei
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221006, China.
| | - Huazhu Cui
- Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221006, China.
| | - Wei Zhuang
- Research Facility Center for Morphology, Xuzhou Medical College, Xuzhou, 221004, China.
| | - Zhiwei Liu
- Research Facility Center for Morphology, Xuzhou Medical College, Xuzhou, 221004, China.
| | - Zhongming Zhang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. .,Department of Thoracic Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical College, Xuzhou, 221006, China.
| | - Hongyan Dong
- Research Facility Center for Morphology, Xuzhou Medical College, Xuzhou, 221004, China.
| |
Collapse
|
30
|
D-4F, an apolipoprotein A-I mimetic peptide, protects human umbilical vein endothelial cells from oxidized low-density lipoprotein-induced injury by preventing the downregulation of pigment epithelium-derived factor expression. J Cardiovasc Pharmacol 2015; 63:553-61. [PMID: 24709637 DOI: 10.1097/fjc.0000000000000080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
AIM To investigate the protective effects of D-4F, an apolipoprotein A-I mimetic peptide, on oxidized low-density lipoprotein (ox-LDL)-induced injury of vascular endothelial cells and the potential role of pigment epithelium-derived factor (PEDF). METHODS Cytotoxicity was assessed by the apoptotic rate, 3-(4,5-dimethylthiazol-2-y-l)-2,5-diphenyl-2H-tetrazolium bromide assay, and lactate dehydrogenase release. PEDF levels were analyzed with Western blot and quantitative real-time polymerase chain reaction. Redox status was measured by the levels of the reactive oxygen species, malondialdehyde, superoxide dismutase, and nitric oxide. RESULTS Ox-LDL reduced cell viability and induced apoptosis and LDH release from human umbilical vein endothelial cells, but the cytotoxic effects of ox-LDL were significantly inhibited by pretreatment with D-4F. Additionally, D-4F could scavenge intracellular reactive oxygen species, suppress the production of lipid peroxides, and improve endogenous antioxidant activity. Ox-LDL decreased PEDF expression in human umbilical vein endothelial cells in a concentration-dependent manner, and this decrease was markedly attenuated by D-4F. However, silencing PEDF by short interfering RNA blocked the inhibitory effects of D-4F on ox-LDL-induced oxidative stress and cellular injury. CONCLUSIONS D-4F effectively protects vascular endothelial cells against ox-LDL-induced injury by preventing the downregulation of PEDF expression.
Collapse
|
31
|
Howard CM, Baudino TA. Dynamic cell-cell and cell-ECM interactions in the heart. J Mol Cell Cardiol 2013; 70:19-26. [PMID: 24140801 DOI: 10.1016/j.yjmcc.2013.10.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 12/17/2022]
Abstract
Recent studies have placed an increasing amount of emphasis on the cardiovascular system and understanding how the heart and its vasculature can be regenerated following pathological stresses, such as hypertension and myocardial infarction. The remodeling process involves the permanent cellular constituents of the heart including myocytes, fibroblasts, endothelial cells, pericytes, smooth muscle cells and stem cells. It also includes transient cell populations, such as immune cells (e.g. lymphocytes, mast cells and macrophages) and circulating stem cells. Following injury, there are dramatic shifts in the various cardiac cell populations that can affect cell-cell and cell-extracellular matrix interactions and cardiac function. Cardiac fibroblasts are a key component in normal heart function, as well as during the remodeling process through dynamic cell-cell interactions and synthesis and degradation of the extracellular matrix. Fibroblasts dynamically interact with the various cardiac cell populations through mechanical, chemical (autocrine and/or paracrine) and electrophysiological means to alter gene and protein expression, cellular processes and ultimately cardiac function. Better understanding these cell-cell and cell-extracellular matrix interactions and their biological consequences should provide novel therapeutic targets for the treatment of heart disease. In this review we discuss the nature of these interactions and the importance of these interactions in maintaining normal heart function, as well as their role in the cardiac remodeling process. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium."
Collapse
Affiliation(s)
| | - Troy A Baudino
- Department of Medicine, Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M Health Science Center, Temple, TX 76504, USA; Central Texas Veterans Health Care System, Temple, TX 76504, USA.
| |
Collapse
|
32
|
Li JK, Liang HL, Li Z, Gu CH, Yi DH, Pei JM. Pigment epithelium-derived factor promotes Fas-induced cardiomyocyte apoptosis via its receptor phospholipase A2. Life Sci 2013; 99:18-23. [PMID: 23892196 DOI: 10.1016/j.lfs.2013.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 12/19/2022]
Abstract
AIMS Cardiovascular diseases cause significant morbidity and mortality worldwide. Recently, our research team demonstrated that a multifunctional cytokine, pigment epithelium-derived factor (PEDF), plays a critical role in regulating myocardial infarction. However, few researchers have studied the molecular mechanisms by which PEDF and its receptors influence the pathophysiology of cardiovascular disease. We tested the hypothesis that PEDF affects cardiomyocyte apoptosis under hypoxic conditions and determined the role that its receptors phospholipase A2 (PLA2) and laminin receptor play in this process. MAIN METHODS Cardiomyocytes were isolated from neonatal mice and treated with PEDF under normoxic and hypoxic conditions; then, apoptosis was assessed using Annexin V/PI staining and flow cytometry. Western blotting and immunofluorescence staining were used to detect PEDF receptor expression, and siRNA knockdown of PEDF receptors was performed to determine which receptor was involved in mediating cardiomyocyte apoptosis. KEY FINDINGS Our results demonstrated that PEDF increased cardiomyocyte apoptosis during hypoxia via Fas and that PEDF receptors were expressed on cardiomyocyte cell membranes. Furthermore, siRNA experiments indicated that the PEDF receptor PLA2 was responsible for inducing cardiomyocyte apoptosis via the Fas pathway. SIGNIFICANCE PEDF promoted Fas-induced cardiomyocyte apoptosis via its receptor PLA2.
Collapse
Affiliation(s)
- Ji-ke Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, No. 172 West Changle Rd, Xi'an 710032, China
| | - Hong-liang Liang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, No. 172 West Changle Rd, Xi'an 710032, China
| | - Zhi Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, No. 172 West Changle Rd, Xi'an 710032, China
| | - Chun-hu Gu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, No. 172 West Changle Rd, Xi'an 710032, China
| | - Ding-hua Yi
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, No. 172 West Changle Rd, Xi'an 710032, China.
| | - Jian-ming Pei
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, No. 172 West Changle Rd, Xi'an 710032, China; Department of Physiology, Fourth Military Medical University, No. 169 West Changle Rd, Xi'an, 710032, China.
| |
Collapse
|
33
|
Riddell MR, Winkler-Lowen B, Jiang Y, Guilbert LJ, Davidge ST. Fibrocyte-like cells from intrauterine growth restriction placentas have a reduced ability to stimulate angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1025-33. [PMID: 23835310 DOI: 10.1016/j.ajpath.2013.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 05/27/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
Intrauterine growth restriction (IUGR) is a common complication of pregnancy whereby the fetus fails to achieve its genetic growth potential. Malformation of the placental vasculature is observed in IUGR and may be due to the development of the placenta in a chronically hypoxic environment. Recently, we identified that the predominant stromal cells in the angiogenic zones of the placenta are fibrocyte-like cells. The conditioned medium from fibrocyte-like cells (FcCM) has been shown to stimulate angiogenesis in vitro. Thus, we hypothesized that FcCM from IUGR cells would have a reduced ability to stimulate angiogenesis and that chronic hypoxia would decrease the ability of both normal and IUGR fibrocyte-like cells to stimulate angiogenesis. IUGR FcCM had a reduced ability to stimulate endothelial tubule-like structure formation and an increased ability to stimulate endothelial migration compared with normal FcCM. However, normal and IUGR FcCM produced in chronic hypoxia did not alter endothelial proliferation, migration, or tubule-like structure formation. IUGR FcCM was found to have reduced levels of the pro-angiogenic cytokine IL-8 and increased levels of the anti-angiogenic factors activin-A and pigment epithelium-derived growth factor. Thus, alterations in the ability of IUGR fibrocyte-like cells to stimulate angiogenesis may contribute to the development of vascular malformation in IUGR, but in vitro these changes cannot be attributed to a chronically hypoxic environment.
Collapse
Affiliation(s)
- Meghan R Riddell
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
34
|
Li CM, Li W, Man XY, Liu ZG, Zheng M. Expression of pigment epithelium-derived factor in human cutaneous appendages. Clin Exp Dermatol 2013; 38:652-8. [PMID: 23675974 DOI: 10.1111/ced.12066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2012] [Indexed: 01/10/2023]
Abstract
BACKGROUND Pigment epithelium-derived factor (PEDF), a 50-kDa glycoprotein and a member of the serine protease inhibitor gene family, is well known as a potent endogenous inhibitor of angiogenesis. However, the expression of PEDF in human cutaneous appendages has not yet been determined. AIM To investigate the expression of PEDF in human cutaneous appendages. METHODS Immunohistochemical staining was used to detect the expression of PEDF in human cutaneous appendages. Reverse transcriptase PCR, western blotting and indirect immunofluorescence were used to determine the mRNA and protein expression of PEDF on cells of the outer root sheath (ORS). A wound-healing assay was used to determine the effect of different concentrations of PEDF on the migration of ORS cells. RESULTS PEDF was expressed in the hair follicle (including epidermal matrix, inner root sheath, ORS and fibrous root sheath), sebaceous glands and eccrine sweat glands. Both protein and RNA expression of PEDF was detected, and expression was localized to both cytoplasm and nucleus of ORS cells. Both interleukin (IL)-4 and IL-17 at 25 ng/mL upregulated the expression of PEDF of ORS cells, with IL-4 having the greater effect. PEDF 50 ng/mL decreased migration of ORS cells. CONCLUSIONS PEDF is expressed in human cutaneous appendages and may play a modulatory role in the physiology of ORS cells.
Collapse
Affiliation(s)
- C-M Li
- Department of Dermatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
35
|
Vigneswara V, Berry M, Logan A, Ahmed Z. Pigment epithelium-derived factor is retinal ganglion cell neuroprotective and axogenic after optic nerve crush injury. Invest Ophthalmol Vis Sci 2013; 54:2624-33. [PMID: 23513062 DOI: 10.1167/iovs.13-11803] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate neuroprotective and axogenic properties of pigment epithelium-derived factor (PEDF) in retinal ganglion cells (RGC) in vitro and in vivo. METHODS Adult rat retinal cultures were treated with combinations of PBS and PEDF with or without a cell permeable analogue of cAMP, and RGC survival and neurite lengths quantified. The optic nerves of anesthetised rats were also crushed intraorbitally to transect all RGC axons followed by intravitreal injections of either PBS, PEDF, or cAMP+PEDF every 7 days. RGC were back filled with FluoroGold to quantify RGC survival and longitudinal optic nerve sections were stained with GAP43 antibodies to detect regenerating RGC axons. RESULTS An optimal dose of 2.5 × 10(-5) μg/μL, promoted 65% more RGC survival than controls in vitro, increasing by 4.4- and 5-fold the number of RGC with neurites and the mean neurite length, respectively. Addition of cAMP with or without PEDF did not potentiate RGC survival or the mean number of RGC with neurites, but enhanced RGC neurite length by 1.4-fold, compared with PEDF alone. After optic nerve crush (ONC), PEDF protected RGC from apoptosis and increased the numbers of regenerating RGC axons in the optic nerve by 4.6- and 3.4-fold, respectively when compared with controls. cAMP did not enhance PEDF-induced RGC neuroprotection, but potentiated its neuroregenerative effects by 2- to 3-fold, increasing the number of RGC axons regenerating at 500 and 1000 μm from the lesions site. CONCLUSIONS This study is the first to demonstrate that PEDF enhances both RGC survival and axon regeneration in vitro and in vivo.
Collapse
Affiliation(s)
- Vasanthy Vigneswara
- Neurotrauma and Neurodegeneration Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | |
Collapse
|
36
|
Dong YH, Li ZQ, Sun Y, Zhuang L, Wang YK, Sun Q. Downregulation of pigment epithelium-derived factor in condyloma acuminatum. J Int Med Res 2013; 41:365-70. [PMID: 23569025 DOI: 10.1177/0300060513476584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES To investigate pigment epithelium-derived factor (PEDF) mRNA and protein levels in condyloma acuminatum, and their relationship with angiogenesis and keratinocyte proliferation. METHODS Lesions from male patients with condyloma acuminatum and skin from healthy male (control) subjects were collected. Levels of PEDF protein and its corresponding mRNA (SERPINF1) were determined via Western blotting and reverse transcription-polymerase chain reaction, respectively. Immunohistochemical staining for Ki-67 and CD34 was performed to calculate keratinocyte proliferation index (PI) and microvessel density (MVD), respectively. RESULTS Levels of both PEDF protein and SERPINF1 mRNA were significantly lower in lesions from patients with condyloma acuminatum (n = 30) than in skin from healthy control subjects (n = 30). There were significant negative correlations between PEDF levels and both PI and MVD. CONCLUSIONS The reduction in PEDF levels in condyloma acuminatum was associated with an increase in angiogenesis and cell proliferation. PEDF may be involved in the pathogenesis of condyloma acuminatum.
Collapse
Affiliation(s)
- Yu-hao Dong
- Shandong University School of Medicine, Jinan, China
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Manalo KB, Choong PFM, Becerra SP, Dass CR. Pigment epithelium-derived factor as an anticancer drug and new treatment methods following the discovery of its receptors: a patent perspective. Expert Opin Ther Pat 2011; 21:121-30. [PMID: 21204726 PMCID: PMC4026095 DOI: 10.1517/13543776.2011.545347] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Traditional forms of cancer therapy, which include chemotherapy, have largely been overhauled due to the significant degree of toxicity they pose to normal, otherwise healthy tissue. It is hoped that the use of biological agents, most of which are endogenously present in the body, will lead to safer treatment outcomes, without sacrificing efficacy. The finding that pigment epithelium-derived factor (PEDF), a naturally-occurring protein, is a potent angiogenesis inhibitor has become the basis for studying the role of PEDF in tumours that are highly resistant to chemotherapy. The determination of the direct role of PEDF against cancer paves the way for understanding and developing PEDF as a novel drug. This review focuses on the patent applications behind testing the anticancer therapeutic effect of PEDF via its receptors as an antiangiogenic agent and as a direct anticancer agent. The majority of the PEDF patents describe the antiangiogenic ability and usage of recombinant vectors as the mode of treatment delivery. PEDF's therapeutic potential against different diseases and the discovery of its receptors open possibilities for improving PEDF-based peptide design and drug delivery modes.
Collapse
Affiliation(s)
- Katrina B Manalo
- Department of Orthopaedics, University of Melbourne, St. Vincent's Hospital, VIC, Australia
| | | | | | | |
Collapse
|
39
|
Cina DP, Xu H, Liu L, Farkas L, Farkas D, Kolb M, Margetts PJ. Renal tubular angiogenic dysregulation in anti-Thy1.1 glomerulonephritis. Am J Physiol Renal Physiol 2010; 300:F488-98. [PMID: 21048020 DOI: 10.1152/ajprenal.00214.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Peritubular vascular changes and hypoxia after glomerular injury may explain subsequent tubulointerstitial injury and fibrosis. Several studies suggested that the expected tubulointerstitial angiogenic response is actively suppressed in this setting. The mechanism of this aberrant response has not been clearly identified. We used a common model of glomerular injury in rats to assess vascular changes and to identify potential factors associated with this aberrant response. Anti-Thy1.1 antibody administration (1 or 4 weekly doses) led to a dose-dependent renal damage characterized by elevated urea and tubulointerstitial fibrosis as assessed by Picro-Sirius Red staining. We quantified peritubular capillaries using CD31 and CD34 immunohistochemistry and showed that tubular angiogenic dysregulation was associated with peritubular capillary rarefaction. Using laser capture microdissection, we demonstrated an early induction of fibrogenic and angiogenic factors in the glomeruli and a subsequent dysregulated angiogenic response in the tubulointerstitial compartment. Proximal tubules of anti-Thy1.1-treated animals had increased pigment epithelial-derived factor (PEDF) expression by immunohistochemistry. Protein taken by laser capture microdissection also showed that PEDF was upregulated. Temporally associated with PEDF expression was a transient downregulation of tubular hypoxia-inducible factor (HIF)1α. In a human proximal tubular cell culture, we show that PEDF downregulates HIF1α protein and gene expression in cells exposed to 1% oxygen. In anti-Thy1.1 glomerulonephritis, there is aberrent tubular angiogenesis associated with glomerular injury and tubulointersititial fibrosis. We showed that PEDF may be involved by downregulating HIF1α. Further work is needed to elucidate the mechanism of PEDF upregulation and action in the tubules.
Collapse
Affiliation(s)
- Davide P Cina
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
40
|
Pigment epithelium-derived factor plays an inhibitory role in proliferation and migration of HaCaT cells. Mol Biol Rep 2010; 38:2099-105. [PMID: 20857208 DOI: 10.1007/s11033-010-0336-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
The normal vasculature is maintained by a balance between angiogenic factors and anti-angiogenic factors. Recent studies have shown that pigment epithelium-derived factor (PEDF) can induce differentiation and inhibit angiogenesis of tumors. This study was designed to investigate the expression of PEDF and its roles in proliferation, adhesion and migration of HaCaT cells, a human keratinocyte cell line. Our results have shown that PEDF is expressed in HaCaT cells at both mRNA and protein levels determined by RT-PCR and Western blot, separately. PEDF signal mainly localizes in the cytoplasm of HaCaT cell, as determined by immunofluorescence. Furthermore, expression of PEDF is decreased by 50 ng/ml of VEGF(165). Proliferation and migration of HaCaT cells are decreased by PEDF, while adhesion of HaCaT cells is upregulated approximately by 29%. PEDF also induce the S phase accumulation of HaCaT cells. In addition, phosphorylation of ERK1/2, not JNK and p38, is decreased by PEDF. These results indicate that PEDF may play an inhibitory role on growth and migration of HaCaT cells through dephosphorylation of ERK1/2.
Collapse
|
41
|
Abstract
Pigment epithelium-derived factor (PEDF) is an endogenously produced glycoprotein with a spectrum of biological roles across diverse pathologies. Recent research has focused on the biochemical properties of PEDF and its associated receptors. This review discusses the recent developments in PEDF biochemistry and how this new knowledge will help progress our understanding of PEDF as a molecular mediator for anti-angiogenesis and -tumorigenesis. Additionally, pathophysiological roles for PEDF in healing and tissue homeostasis are being revealed and our enhanced understanding of the interactions between PEDF and its receptors may yet prove useful in propelling PEDF towards clinical application.
Collapse
Affiliation(s)
- Matthew L Broadhead
- Department of Orthopaedics, St Vincent's Hospital, University of Melbourne, Melbourne, Vic., Australia
| | | | | | | |
Collapse
|
42
|
Rychli K, Niessner A, Hohensinner PJ, Mahdy Ali K, Kaun C, Neuhold S, Zorn G, Richter B, Hülsmann M, Berger R, Mörtl D, Huber K, Maurer G, Pacher R, Wojta J. Prognostic value of pigment epithelium-derived factor in patients with advanced heart failure. Chest 2010; 138:656-64. [PMID: 20435653 DOI: 10.1378/chest.09-2739] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Whereas angiogenesis, the formation of new blood vessels from preexisting vessels, may be beneficial in restoring failing myocardium, apoptosis may contribute to the progression of heart failure (HF). We investigated the role of pigment epithelium-derived factor (PEDF), a recently discovered antiangiogenic factor with additional proapoptotic effects, in patients with advanced HF. METHODS We assayed PEDF levels in 351 patients with advanced HF at baseline. During the median follow-up time of 16 months, 50% of patients experienced the composite end point of rehospitalization and/or death. RESULTS The risk of a clinical event increased with concentrations of the antiangiogenic marker PEDF, with a 1.94-fold higher risk in the third tertile compared with the first tertile (95% CI, 1.33-2.84). This association remained significant after adjustment for B-type natriuretic peptide (BNP) and other risk factors in a Cox regression model (P = .015). Experimental data revealed that PEDF may contribute to the progression of HF by inducing apoptosis in human cardiac myocytes and fibroblasts via activation of caspase 3. CONCLUSIONS We suggest a role of PEDF in the progression of HF by inducing apoptosis of human cardiac myocytes and fibroblasts. Our clinical data suggest that PEDF concentrations may have the potential to become a valuable marker of the prognosis of HF, in addition to BNP.
Collapse
Affiliation(s)
- Kathrin Rychli
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The permanent cellular constituents of the heart include cardiac fibroblasts, myocytes, endothelial cells, and vascular smooth muscle cells. Previous studies have demonstrated that there are undulating changes in cardiac cell populations during embryonic development, through neonatal development and into the adult. Transient cell populations include lymphocytes, mast cells, and macrophages, which can interact with these permanent cell types to affect cardiac function. It has also been observed that there are marked differences in the makeup of the cardiac cell populations depending on the species, which may be important when examining myocardial remodeling. Current dogma states that the fibroblast makes up the largest cell population of the heart; however, this appears to vary for different species, especially mice. Cardiac fibroblasts play a critical role in maintaining normal cardiac function, as well as in cardiac remodeling during pathological conditions such as myocardial infarct and hypertension. These cells have numerous functions, including synthesis and deposition of extracellular matrix, cell-cell communication with myocytes, cell-cell signaling with other fibroblasts, as well as with endothelial cells. These contacts affect the electrophysiological properties, secretion of growth factors and cytokines, as well as potentiating blood vessel formation. Although a plethora of information is known about several of these processes, relatively little is understood about fibroblasts and their role in angiogenesis during development or cardiac remodeling. In this review, we provide insight into the various properties of cardiac fibroblasts that helps illustrate their importance in maintaining proper cardiac function, as well as their critical role in the remodeling heart.
Collapse
Affiliation(s)
- Colby A. Souders
- Texas A&M Health Science Center College of Medicine, Division of Molecular Cardiology, Temple, TX 76504
| | - Stephanie L.K. Bowers
- Texas A&M Health Science Center College of Medicine, Division of Molecular Cardiology, Temple, TX 76504
| | - Troy A. Baudino
- Texas A&M Health Science Center College of Medicine, Division of Molecular Cardiology, Temple, TX 76504
| |
Collapse
|