1
|
Aluru N, Venkataraman YR, Murray CS, DePascuale V. Gene expression and DNA methylation changes in response to hypoxia in toxicant-adapted Atlantic killifish (Fundulus heteroclitus). Biol Open 2025; 14:BIO061801. [PMID: 39760289 PMCID: PMC11744052 DOI: 10.1242/bio.061801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Coastal fish populations are threatened by multiple anthropogenic impacts, including the accumulation of industrial contaminants and the increasing frequency of hypoxia. Some populations of the Atlantic killifish (Fundulus heteroclitus), like those in New Bedford Harbor (NBH), Massachusetts, USA, have evolved a resistance to dioxin-like polychlorinated biphenyls (PCBs) that may influence their ability to cope with secondary stressors. To address this question, we compared hepatic gene expression and DNA methylation patterns in response to mild or severe hypoxia in killifish from NBH and Scorton Creek (SC), a reference population from a relatively pristine environment. We hypothesized that NBH fish would show altered responses to hypoxia due to trade-offs linked to toxicant resistance. Our results revealed substantial differences between populations. SC fish demonstrated dose-dependent changes in gene expression in response to hypoxia, while NBH fish exhibited a muted transcriptional response to severe hypoxia. Interestingly, NBH fish showed significant DNA methylation changes in response to hypoxia, while SC fish did not exhibit notable epigenetic alterations. These findings suggest that toxicant-adapted killifish may face trade-offs in their molecular response to environmental stress, potentially impacting their ability to survive severe hypoxia in coastal habitats. Further research is needed to elucidate the functional implications of these epigenetic modifications and their role in adaptive stress responses.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543,USA
- Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543,USA
| | | | | | - Veronica DePascuale
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543,USA
- College of Arts and Sciences, Oberlin College and Conservatory, Oberlin, OH 44074,USA
| |
Collapse
|
2
|
Li HH, Hung HY, Yu JS, Liao YC, Lai MC. Hypoxia-induced translation of collagen-modifying enzymes PLOD2 and P4HA1 is dependent on RBM4 and eIF4E2 in human colon cancer HCT116 cells. FEBS J 2024. [PMID: 39710969 DOI: 10.1111/febs.17371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 09/04/2024] [Accepted: 12/12/2024] [Indexed: 12/24/2024]
Abstract
Hypoxia is a critical microenvironmental factor that induces tumorigenesis and cancer progression, including metastasis. The highly dynamic nature of the extracellular matrix (ECM) plays a crucial role in metastasis. Collagens are the predominant component of structural proteins embedded within the ECM. The biosynthesis of collagen typically undergoes a series of posttranslational modifications, such as hydroxylation of lysine and proline residues by procollagen-lysine, 2-oxoglutarate 5-dioxygenases (PLODs) and prolyl 4-hydroxylases (P4Hs), respectively. Collagen hydroxylation is critical for ECM remodeling and maintenance. We recently investigated hypoxia-induced translation in human colon cancer HCT116 cells and identified several collagen-modifying enzymes, including procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) and prolyl 4-hydroxylase subunit alpha 1 (P4HA1). Although the translation of bulk mRNAs is repressed in hypoxia, specific mRNAs remain efficiently translated under such conditions. We have found that PLOD2 and P4HA1 are significantly upregulated in hypoxic HCT116 cells compared to normoxic cells. HIF-1 is known to induce the transcription of PLOD2 and P4HA1 during hypoxia. However, the molecular mechanisms of hypoxia-induced translation of PLOD2 and P4HA1 remain largely unclear. We provide evidence that RBM4 and eIF4E2 are required for hypoxia-induced translation of PLOD2 and P4HA1 mRNAs. The 3' UTRs of PLOD2 and P4HA1 mRNAs are involved in translational control during hypoxia in HCT116 cells.
Collapse
Affiliation(s)
- Hung-Hsuan Li
- Master & Ph.D Program in Biotechnology Industry, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Yuan Hung
- Department of Colorectal Surgery, New Taipei Municipal Tucheng Hospital, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Cheng Liao
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Chih Lai
- Department of Colorectal Surgery, New Taipei Municipal Tucheng Hospital, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
3
|
Shatat AAS, Mahgoup EM, Rashed MH, Saleh IG, Akool ES. Molecular mechanisms of extracellular-ATP-mediated colorectal cancer progression: Implication of purinergic receptors-mediated nucleocytoplasmic shuttling of HuR. Purinergic Signal 2024; 20:669-680. [PMID: 38801618 PMCID: PMC11554961 DOI: 10.1007/s11302-024-10021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
One of the leading causes of cancer-related deaths worldwide is colorectal cancer (CRC). Extracellular ATP (e-ATP) and purinergic receptors (P2R) play a central role in CRC proliferation and progression. Human antigen R (HuR) is becoming more and more understood to be essential for the expression of genes linked to cancer. The current study demonstrates that ATP can mediate CRC (Caco-2 cells) progression via induction of HuR nucleocytoplasmic shuttling and subsequent expression of cancer-related genes, a consequence mostly mediated via the P2R receptor. It was also noted that suppression of HuR activity by using dihydrotanshinone I (DHTS) prevents cancer-related gene expression and subsequent CRC (Caco-2 cells) progression induced by ATP. The expression of cyclin A2/cyclin-dependent kinase 2 (CDK2), Bcl-2, ProT-α, hypoxia-inducible factor1-α (HIF1-α), vascular endothelial growth factor A (VEGF-A), transforming growth factor-β (TGF-β) and matrix metallopeptidase 9 (MMP-9) induced by ATP were highly reduced in the presence of either PPADS (non-selective P2R antagonist) or DHTS. In addition, e-ATP-induced Caco-2 cell proliferation as well as cell survival were highly reduced in the presence of either PPADS or DHTS or selective CDK-2 inhibitor (Roscovitine) or selective Bcl-2 inhibitor (ABT-263). Furthermore, it was found that MMP-9 is critical for Caco-2 cells migration induced by e-ATP as demonstrated by a clear reduction in cells migration in the presence of a selective MMP-9 inhibitor (Marimastat). Collectively, these data demonstrate that ATP through P2R activation can induce HuR nucleocytoplasmic shuttling that could be translated into an increase in cancer-related genes expression and subsequent, cell proliferation and progression.
Collapse
Affiliation(s)
- Abdel-Aziz S Shatat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Elsayed M Mahgoup
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohammed H Rashed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Ibrahim G Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Sinai University, Kantra, Ismailia, Egypt
| | - El-Sayed Akool
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
4
|
Aluru N, Venkataraman YR, Murray CS, DePascuale V. Gene expression and DNA methylation changes in response to hypoxia in toxicant-adapted Atlantic killifish ( Fundulus heteroclitus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.620405. [PMID: 39554046 PMCID: PMC11565929 DOI: 10.1101/2024.11.01.620405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Coastal fish populations are threatened by multiple anthropogenic impacts, including the accumulation of industrial contaminants and the increasing frequency of hypoxia. Some populations of the Atlantic killifish (Fundulus heteroclitus), like those in New Bedford Harbor (NBH), Massachusetts, have evolved a resistance to dioxin-like polychlorinated biphenyls (PCBs) that may influence their ability to cope with secondary stressors. To address this question, we compared hepatic gene expression and DNA methylation patterns in response to mild or severe hypoxia in killifish from NBH and Scorton Creek (SC), a reference population from a relatively pristine environment. We hypothesized that NBH fish would show altered responses to hypoxia due to trade-offs linked to toxicant resistance. Our results revealed substantial differences between populations. SC fish demonstrated a dose-dependent changes in gene expression in response to hypoxia, while NBH fish exhibited a muted transcriptional response to severe hypoxia. Interestingly, NBH fish showed significant DNA methylation changes in response to hypoxia, while SC fish did not exhibit notable epigenetic alterations. These findings suggest that toxicant-adapted killifish may face trade-offs in their molecular response to environmental stress, potentially impacting their ability to survive severe hypoxia in coastal habitats. Further research is needed to elucidate the functional implications of these epigenetic modifications and their role in adaptive stress responses.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole, Massachusetts 02543
- Woods Hole Center for Oceans and Human Health Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | | | | | - Veronica DePascuale
- Biology Department, Woods Hole, Massachusetts 02543
- College of Arts and Sciences, Oberlin College and Conservatory, Oberlin, Ohio 44074
| |
Collapse
|
5
|
Benak D, Holzerova K, Hrdlicka J, Kolar F, Olsen M, Karelson M, Hlavackova M. Epitranscriptomic regulation in fasting hearts: implications for cardiac health. RNA Biol 2024; 21:1-14. [PMID: 38326277 PMCID: PMC10854364 DOI: 10.1080/15476286.2024.2307732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Cardiac tolerance to ischaemia can be increased by dietary interventions such as fasting, which is associated with significant changes in myocardial gene expression. Among the possible mechanisms of how gene expression may be altered are epigenetic modifications of RNA - epitranscriptomics. N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) are two of the most prevalent modifications in mRNA. These methylations are reversible and regulated by proteins called writers, erasers, readers, and m6A-repelled proteins. We analysed 33 of these epitranscriptomic regulators in rat hearts after cardioprotective 3-day fasting using RT-qPCR, Western blot, and targeted proteomic analysis. We found that the most of these regulators were changed on mRNA or protein levels in fasting hearts, including up-regulation of both demethylases - FTO and ALKBH5. In accordance, decreased methylation (m6A+m6Am) levels were detected in cardiac total RNA after fasting. We also identified altered methylation levels in Nox4 and Hdac1 transcripts, both of which play a role in the cytoprotective action of ketone bodies produced during fasting. Furthermore, we investigated the impact of inhibiting demethylases ALKBH5 and FTO in adult rat primary cardiomyocytes (AVCMs). Our findings indicate that inhibiting these demethylases reduced the hypoxic tolerance of AVCMs isolated from fasting rats. This study showed that the complex epitranscriptomic machinery around m6A and m6Am modifications is regulated in the fasting hearts and might play an important role in cardiac adaptation to fasting, a well-known cardioprotective intervention.
Collapse
Affiliation(s)
- Daniel Benak
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kristyna Holzerova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Hrdlicka
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Frantisek Kolar
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mark Olsen
- Department of Pharmaceutical Sciences, College of Pharmacy-Glendale, Midwestern University, Glendale, Arizona, USA
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Marketa Hlavackova
- Laboratory of Developmental Cardiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Lee J, Kang H. Nucleolin Regulates Pulmonary Artery Smooth Muscle Cell Proliferation under Hypoxia by Modulating miRNA Expression. Cells 2023; 12:cells12050817. [PMID: 36899956 PMCID: PMC10000680 DOI: 10.3390/cells12050817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Hypoxia induces the abnormal proliferation of vascular smooth muscle cells (VSMCs), resulting in the pathogenesis of various vascular diseases. RNA-binding proteins (RBPs) are involved in a wide range of biological processes, including cell proliferation and responses to hypoxia. In this study, we observed that the RBP nucleolin (NCL) was downregulated by histone deacetylation in response to hypoxia. We evaluated its regulatory effects on miRNA expression under hypoxic conditions in pulmonary artery smooth muscle cells (PASMCs). miRNAs associated with NCL were assessed using RNA immunoprecipitation in PASMCs and small RNA sequencing. The expression of a set of miRNAs was increased by NCL but reduced by hypoxia-induced downregulation of NCL. The downregulation of miR-24-3p and miR-409-3p promoted PASMC proliferation under hypoxic conditions. These results clearly demonstrate the significance of NCL-miRNA interactions in the regulation of hypoxia-induced PASMC proliferation and provide insight into the therapeutic value of RBPs for vascular diseases.
Collapse
Affiliation(s)
- Jihui Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Institute for New Drug Development, Incheon National University, Incheon 22012, Republic of Korea
- Correspondence: ; Tel.: +82-32-835-8238; Fax: +82-32-835-0763
| |
Collapse
|
7
|
Trivlidis J, Aloufi N, Al-Habeeb F, Nair P, Azuelos I, Eidelman DH, Baglole CJ. HuR drives lung fibroblast differentiation but not metabolic reprogramming in response to TGF-β and hypoxia. Respir Res 2021; 22:323. [PMID: 34963461 PMCID: PMC8715577 DOI: 10.1186/s12931-021-01916-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
Background Pulmonary fibrosis is thought to be driven by recurrent alveolar epithelial injury which leads to the differentiation of fibroblasts into α-smooth muscle actin (α-SMA)-expressing myofibroblasts and subsequent deposition of extracellular matrix (ECM). Transforming growth factor beta-1 (TGF-β1) plays a key role in fibroblast differentiation, which we have recently shown involves human antigen R (HuR). HuR is an RNA binding protein that also increases the translation of hypoxia inducible factor (HIF-1α) mRNA, a transcription factor critical for inducing a metabolic shift from oxidative phosphorylation towards glycolysis. This metabolic shift may cause fibroblast differentiation. We hypothesized that under hypoxic conditions, HuR controls myofibroblast differentiation and glycolytic reprogramming in human lung fibroblasts (HLFs). Methods Primary HLFs were cultured in the presence (or absence) of TGF-β1 (5 ng/ml) under hypoxic (1% O2) or normoxic (21% O2) conditions. Evaluation included mRNA and protein expression of glycolytic and myofibroblast/ECM markers by qRT-PCR and western blot. Metabolic profiling was done by proton nuclear magnetic resonance (1H- NMR). Separate experiments were conducted to evaluate the effect of HuR on metabolic reprogramming using siRNA-mediated knock-down. Results Hypoxia alone had no significant effect on fibroblast differentiation or metabolic reprogramming. While hypoxia- together with TGFβ1- increased mRNA levels of differentiation and glycolysis genes, such as ACTA2, LDHA, and HK2, protein levels of α-SMA and collagen 1 were significantly reduced. Hypoxia induced cytoplasmic translocation of HuR. Knockdown of HuR reduced features of fibroblast differentiation in response to TGF-β1 with and without hypoxia, including α-SMA and the ECM marker collagen I, but had no effect on lactate secretion. Conclusions Hypoxia reduced myofibroblasts differentiation and lactate secretion in conjunction with TGF-β. HuR is an important protein in the regulation of myofibroblast differentiation but does not control glycolysis in HLFs in response to hypoxia. More research is needed to understand the functional implications of HuR in IPF pathogenesis.
Collapse
|
8
|
Wu F, Huang W, Tan Q, Guo Y, Cao Y, Shang J, Ping F, Wang W, Li Y. ZFP36L2 regulates myocardial ischemia/reperfusion injury and attenuates mitochondrial fusion and fission by LncRNA PVT1. Cell Death Dis 2021; 12:614. [PMID: 34131106 PMCID: PMC8206151 DOI: 10.1038/s41419-021-03876-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022]
Abstract
Among several leading cardiovascular disorders, ischemia–reperfusion (I/R) injury causes severe manifestations including acute heart failure and systemic dysfunction. Recently, there has been increasing evidence suggesting that alterations in mitochondrial morphology and dysfunction also play an important role in the prognosis of cardiac disorders. Long non-coding RNAs (lncRNAs) form major regulatory networks altering gene transcription and translation. While the role of lncRNAs has been extensively studied in cancer and tumor biology, their implications on mitochondrial morphology and functions remain to be elucidated. In this study, the functional roles of Zinc finger protein 36-like 2 (ZFP36L2) and lncRNA PVT1 were determined in cardiomyocytes under hypoxia/reoxygenation (H/R) injury in vitro and myocardial I/R injury in vivo. Western blot and qRT-PCR analysis were used to assess the levels of ZFP36L2, mitochondrial fission and fusion markers in the myocardial tissues and cardiomyocytes. Cardiac function was determined by immunohistochemistry, H&E staining, and echocardiogram. Ultrastructural analysis of mitochondrial fission was performed using transmission electron microscopy. The mechanistic model consisting of PVT1 with ZFP36L2 and microRNA miR-21-5p with E3 ubiquitin ligase MARCH5 was assessed by subcellular fraction, RNA pull down, FISH, and luciferase reporter assays. These results identified a novel regulatory axis involving PVT1, miR-21-5p, and MARCH5 that alters mitochondrial morphology and function during myocardial I/R injury. Using an in vivo I/R injury mouse model and in vitro cardiomyocytes H/R model, we demonstrated that ZFP36L2 directly associates with PVT1 and alters mitochondrial fission and fusion. PVT1 also interactes with miR-21-5p and suppresses its expression and activity. Furthermore, we identified MARCH5 as a modifier of miR-21-5p, and its effect on mitochondrial fission and fusion are directly proportional to PVT1 expression during H/R injury. Our findings show that manipulation of PVT1-miR-21-5p-MARCH5-mediated mitochondrial fission and fusion via ZFP36L2 may be a novel therapeutic approach to regulate myocardial I/R injury.
Collapse
Affiliation(s)
- Fang Wu
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Weifeng Huang
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Qin Tan
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Yong Guo
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Yongmei Cao
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Jiawei Shang
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Feng Ping
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China
| | - Wei Wang
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China.
| | - Yingchuan Li
- Department of Critical Care Medicine, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, Shanghai, China.
| |
Collapse
|
9
|
Natua S, Dhamdhere SG, Mutnuru SA, Shukla S. Interplay within tumor microenvironment orchestrates neoplastic RNA metabolism and transcriptome diversity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1676. [PMID: 34109748 DOI: 10.1002/wrna.1676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
The heterogeneous population of cancer cells within a tumor mass interacts intricately with the multifaceted aspects of the surrounding microenvironment. The reciprocal crosstalk between cancer cells and the tumor microenvironment (TME) shapes the cancer pathophysiome in a way that renders it uniquely suited for immune tolerance, angiogenesis, metastasis, and therapy resistance. This dynamic interaction involves a dramatic reconstruction of the transcriptomic landscape of tumors by altering the synthesis, modifications, stability, and processing of gene readouts. In this review, we categorically evaluate the influence of TME components, encompassing a myriad of resident and infiltrating cells, signaling molecules, extracellular vesicles, extracellular matrix, and blood vessels, in orchestrating the cancer-specific metabolism and diversity of both mRNA and noncoding RNA, including micro RNA, long noncoding RNA, circular RNA among others. We also highlight the transcriptomic adaptations in response to the physicochemical idiosyncrasies of TME, which include tumor hypoxia, extracellular acidosis, and osmotic stress. Finally, we provide a nuanced analysis of existing and prospective therapeutics targeting TME to ameliorate cancer-associated RNA metabolism, consequently thwarting the cancer progression. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Subhashis Natua
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Shruti Ganesh Dhamdhere
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Srinivas Abhishek Mutnuru
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
10
|
Mary S, Small H, Herse F, Carrick E, Flynn A, Mullen W, Dechend R, Delles C. Preexisting hypertension and pregnancy-induced hypertension reveal molecular differences in placental proteome in rodents. Physiol Genomics 2021; 53:259-268. [PMID: 33969702 PMCID: PMC8616587 DOI: 10.1152/physiolgenomics.00160.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 01/20/2023] Open
Abstract
Preexisting or new onset of hypertension affects pregnancy and is one of the leading causes of maternal and fetal morbidity and mortality. In certain cases, it also leads to long-term maternal cardiovascular complications. The placenta is a key player in the pathogenesis of complicated hypertensive pregnancies, however the pathomechanisms leading to an abnormal placenta are poorly understood. In this study, we compared the placental proteome of two pregnant hypertensive models with their corresponding normotensive controls: a preexisting hypertension pregnancy model (stroke-prone spontaneously hypertensive rats; SHRSP) versus Wistar-Kyoto and the transgenic RAS activated gestational hypertension model (transgenic for human angiotensinogen Sprague-Dawley rats; SD-PE) versus Sprague-Dawley rats, respectively. Label-free proteomics using nano LC-MS/MS was performed for identification and quantification of proteins. Between the two models, we found widespread differences in the expression of placental proteins including those related to hypertension, inflammation, and trophoblast invasion, whereas pathways such as regulation of serine endopeptidase activity, tissue injury response, coagulation, and complement activation were enriched in both models. We present for the first time the placental proteome of SHRSP and SD-PE and provide insight into the molecular make-up of models of hypertensive pregnancy. Our study informs future research into specific preeclampsia and chronic hypertension pregnancy mechanisms and translation of rodent data to the clinic.
Collapse
Affiliation(s)
- Sheon Mary
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Heather Small
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Florian Herse
- Experimental and Clinical Research Center, a joint cooperation between Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Emma Carrick
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Arun Flynn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Ralf Dechend
- Experimental and Clinical Research Center, a joint cooperation between Max-Delbrück-Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Clinic, Berlin, Germany
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| |
Collapse
|
11
|
Cao Y, Liu C, Wang Q, Wang W, Tao E, Wan L. Pum2 mediates Sirt1 mRNA decay and exacerbates hypoxia/reoxygenation-induced cardiomyocyte apoptosis. Exp Cell Res 2020; 393:112058. [PMID: 32437714 DOI: 10.1016/j.yexcr.2020.112058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/24/2020] [Accepted: 05/03/2020] [Indexed: 12/12/2022]
Abstract
Pum2 is a ribonucleic acid binding protein that controls target mRNA turnover. It has been reported to be potentially associated with cardiac fibrosis. However, little is known about the role of Pum2 in cardiac disease. In this study, we found that Pum2 was upregulated in the rat heart tissue subjected to ischemia/reperfusion procedure and cultured neonatal rat ventricular cardiomyocytes (NRVMs) with hypoxia/reoxygenation (H/R) treatment. Further, knockdown of Pum2 showed a beneficial effect on H/R treated NRVMs through decreasing caspase 3-associated apoptosis, whereas overexpression of Pum2 increased H/R-induced NRVMs apoptosis. Moreover, our results demonstrated that Sirt1 was identified as the target of Pum2-mediated mRNA decay in cardiomyocytes, and two Pum2 binding elements were found in the 3'-untranslated region of Sirt1 mRNA. Additionally, overexpression of Pum2 prompted the acetylation of LKB1 by decreasing Sirt1's mRNA level, which in turn repressed the activity of AMPK pathway in both normoxic and H/R-treated NRVMs. Finally, our data indicated that the pro-apoptotic effect of Pum2 was dependent on Sirt1 and AMPK. Collectively, our results provide the evidence that Pum2-mediated Sirt1 mRNA decay plays a detrimental role in H/R-induced cardiomyocytes injury.
Collapse
Affiliation(s)
- Yuanping Cao
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, China
| | - Caiyun Liu
- Operating Room, The First Affiliated Hospital of Nanchang University, China
| | - Qun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, China
| | - Wenjun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, China
| | - Ende Tao
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, China
| | - Li Wan
- Department of Cardiac Surgery, The First Affiliated Hospital of Nanchang University, China.
| |
Collapse
|
12
|
Ho JJD, Balukoff NC, Theodoridis PR, Wang M, Krieger JR, Schatz JH, Lee S. A network of RNA-binding proteins controls translation efficiency to activate anaerobic metabolism. Nat Commun 2020; 11:2677. [PMID: 32472050 PMCID: PMC7260222 DOI: 10.1038/s41467-020-16504-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 04/30/2020] [Indexed: 01/30/2023] Open
Abstract
Protein expression evolves under greater evolutionary constraint than mRNA levels, and translation efficiency represents a primary determinant of protein levels during stimuli adaptation. This raises the question as to the translatome remodelers that titrate protein output from mRNA populations. Here, we uncover a network of RNA-binding proteins (RBPs) that enhances the translation efficiency of glycolytic proteins in cells responding to oxygen deprivation. A system-wide proteomic survey of translational engagement identifies a family of oxygen-regulated RBPs that functions as a switch of glycolytic intensity. Tandem mass tag-pulse SILAC (TMT-pSILAC) and RNA sequencing reveals that each RBP controls a unique but overlapping portfolio of hypoxic responsive proteins. These RBPs collaborate with the hypoxic protein synthesis apparatus, operating as a translation efficiency checkpoint that integrates upstream mRNA signals to activate anaerobic metabolism. This system allows anoxia-resistant animals and mammalian cells to initiate anaerobic glycolysis and survive hypoxia. We suggest that an oxygen-sensitive RBP cluster controls anaerobic metabolism to confer hypoxia tolerance. mRNA translation efficiency is regulated in response to stimuli. Here the authors employ mass spectrometry analysis of ribosome fractions and show that under hypoxia, oxygen-sensitive RNA binding proteins enhance the translation efficiency of glycolysis pathway transcripts.
Collapse
Affiliation(s)
- J J David Ho
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Nathan C Balukoff
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Phaedra R Theodoridis
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Miling Wang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jonathan R Krieger
- The SickKids Proteomics, Analytics, Robotics & Chemical Biology Centre (SPARC Biocentre), The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.,Bioinformatics Solutions Inc., Waterloo, ON, N2L 6J2, Canada
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Stephen Lee
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA. .,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA. .,Department of Urology, Miller School of Medicine, University of Miami, Miami, 33136, USA.
| |
Collapse
|
13
|
Zhang Y, Sun J, Qi Y, Wang Y, Ding Y, Wang K, Zhou Q, Wang J, Ma F, Zhang J, Guo B. Long non-coding RNA TPT1-AS1 promotes angiogenesis and metastasis of colorectal cancer through TPT1-AS1/NF90/VEGFA signaling pathway. Aging (Albany NY) 2020; 12:6191-6205. [PMID: 32248186 PMCID: PMC7185097 DOI: 10.18632/aging.103016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
LncRNAs have been proven closely correlated to tumor progression. A recent study identified LncRNA TPT1-AS1 (TPT1-AS1) as one of the liver-metastasis associated LncRNAs in colorectal cancer (CRC). In this study, we report that TPT1-AS1 is upregulated in CRC tissues, which is associated with poor prognosis. Functional assays unravel a pro-angiogenesis and metastasis role of TPT1-AS1. Mechanistically, Flexmap 3D assays reveal that TPT1-AS1 upregulates the VEGFA secretion in CRC cells. RNA immunoprecipitation and mRNA stability assays further show that TPT1-AS1 interacts with nuclear factor 90 (NF90) and subsequently promotes the association between NF90 and VEGFA mRNA, which leads to the upregulation of VEGFA mRNA stability. Therefore, we elucidate a new regulatory mechanism of TPT1-AS1 in CRC angiogenesis and targeting the TPT1-AS1/NF90/VEGFA axis may provide a useful strategy for diagnosis and treatment for colorectal cancer patients.
Collapse
Affiliation(s)
- Yiyun Zhang
- Department of Endoscopy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiangyun Sun
- Department of Acupuncture, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan Qi
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yimin Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Ding
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kun Wang
- Department of Central Sterile Supply, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingxin Zhou
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingxuan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fei Ma
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianguo Zhang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baoliang Guo
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Li H, Shen S, Ruan X, Liu X, Zheng J, Liu Y, Yang C, Wang D, Liu L, Ma J, Ma T, Wang P, Cai H, Li Z, Zhao L, Xue Y. Biosynthetic CircRNA_001160 induced by PTBP1 regulates the permeability of BTB via the CircRNA_001160/miR-195-5p/ETV1 axis. Cell Death Dis 2019; 10:960. [PMID: 31862871 PMCID: PMC6925104 DOI: 10.1038/s41419-019-2191-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/30/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
The presence of the blood-tumor barrier (BTB) severely impedes the transport of anti-neoplasm drugs to the central nervous system, affecting the therapeutic effects of glioma. Glioma endothelial cells (GECs) are the main structural basis of the BTB. Circular RNA is considered to be an important regulator of endothelial cell growth. In this study, we found that polypyrimidine tract binding protein 1 (PTBP1) and circRNA_001160 were remarkably upregulated in GECs. Knockdown of PTBP1 or circRNA_001160 significantly increased BTB permeability, respectively. As a molecular sponge of miR-195-5p, circRNA_001160 attenuated its negative regulation of the target gene ETV1 by adsorbing miR-195-5p. In addition, ETV1 was overexpression in GECs. ETV1 bounded to the promoter regions of tight junction-related proteins and increased the promoter activities, which significantly promoted the expression levels of tight junction-related proteins. The present study showed that the combined application of PTBP1, circRNA_001160, and miR-195-5p with the anti-tumor drug Dox effectively promoted Dox through BTB and extremely induced the apoptosis of glioma cells. Our results demonstrated that the PTBP1/circRNA_001160/miR-195-5p/ETV1 axis was critical in the regulation of BTB permeability and provided new targets for the treatment of glioma.
Collapse
Affiliation(s)
- Hua Li
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Shuyuan Shen
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xuelei Ruan
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Teng Ma
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Ping Wang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China
| | - Heng Cai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.,Liaoning Clinical Medical Research Center in Nervous System Disease, Shenyang, 110004, People's Republic of China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, People's Republic of China
| | - Lini Zhao
- Department of pharmacology, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, 110122, People's Republic of China. .,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, People's Republic of China. .,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
15
|
Palanisamy K, Tsai TH, Yu TM, Sun KT, Yu SH, Lin FY, Wang IK, Li CY. RNA-binding protein, human antigen R regulates hypoxia-induced autophagy by targeting ATG7/ATG16L1 expressions and autophagosome formation. J Cell Physiol 2019; 234:7448-7458. [PMID: 30317574 DOI: 10.1002/jcp.27502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/07/2018] [Indexed: 01/01/2023]
Abstract
Autophagy, a prosurvival mechanism offers a protective role during acute kidney injury. We show novel findings on the functional role of RNA binding protein, HuR during hypoxia-induced autophagy in renal proximal tubular cells-2 (HK-2). HK-2 cells showed upregulated expressions of HuR and autophagy-related proteins such as autophagy related 7 (ATG7), autophagy related 16 like 1 (ATG16L1), and LC3II under hypoxia. Increased autophagosome formation was visualized as LC3 puncta in hypoxic cells. Further, short hairpin-RNA-mediated loss of HuR function in HK-2 cells significantly decreased ATG7 and ATG16L1 protein expressions. Bioinformatics prediction revealed HuR motif binding on the coding region of ATG7 and AU-rich element at 3'UTR ATG16L1 messnger RNA (mRNA). The RNA immunoprecipitation study showed that HuR was predominantly associated with ATG7 and ATG16L1 mRNAs under hypoxia. In addition, HuR enhanced autophagosome formation by regulating LC3II expressions. These results show that HuR regulates ATG7 and ATG16L1 expressions and thereby mediate autophagy in HK-2 cells. Importantly, HuR knockdown cells underwent apoptosis during hypoxia as observed through the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Collectively, these findings show the crucial role of HuR under hypoxia by regulating autophagy and suppressing apoptosis in renal tubular cells.
Collapse
Affiliation(s)
- Kalaiselvi Palanisamy
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Tsung-Hsun Tsai
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Division of Urology, Department of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Tung-Min Yu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuo-Ting Sun
- Department of Pediatric Dentistry, China Medical University Hospital, Taichung, Taiwan
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Shao-Hua Yu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - I-Kuan Wang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Division of Nephrology, China Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, China Medical University College of Medicine, Taichung, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
16
|
Mechanism of the natural product moracin-O derived MO-460 and its targeting protein hnRNPA2B1 on HIF-1α inhibition. Exp Mol Med 2019; 51:1-14. [PMID: 30755586 PMCID: PMC6372683 DOI: 10.1038/s12276-018-0200-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 10/12/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Hypoxia-inducible factor-1α (HIF-1α) mediates tumor cell adaptation to hypoxic conditions and is a potentially important anticancer therapeutic target. We previously developed a method for synthesizing a benzofuran-based natural product, (R)-(-)-moracin-O, and obtained a novel potent analog, MO-460 that suppresses the accumulation of HIF-1α in Hep3B cells. However, the molecular target and underlying mechanism of action of MO-460 remained unclear. In the current study, we identified heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) as a molecular target of MO-460. MO-460 inhibits the initiation of HIF-1α translation by binding to the C-terminal glycine-rich domain of hnRNPA2B1 and inhibiting its subsequent binding to the 3’-untranslated region of HIF-1α mRNA. Moreover, MO-460 suppresses HIF-1α protein synthesis under hypoxic conditions and induces the accumulation of stress granules. The data provided here suggest that hnRNPA2B1 serves as a crucial molecular target in hypoxia-induced tumor survival and thus offer an avenue for the development of novel anticancer therapies. A synthetic analog of a chemical found in fruit suppresses tumor growth by targeting an RNA-binding protein (hnRNPA2B1) and preventing the production of a pro-cancer regulatory factor. Nak-Kyun Soung from the Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea, and coworkers built on their previous discovery that a compound derived from a medicinal plant metabolite can suppress the activity of hypoxia-inducible factor-1α (HIF-1α). This protein, which is involved in many aspects of cancer biology, is activated in the low-oxygen microenvironments found inside tumors. The researchers show that the compound binds to a protein that helps with the conversion of HIF-1α–encoding RNA transcripts into HIF-1α proteins. Liver cancer cells treated with the compound grew slowly and produced less HIF-1α under both normal and low-oxygen culture conditions, highlighting the potential of this anti-cancer strategy.
Collapse
|
17
|
Liu N, Zou Z, Liu J, Zhu C, Zheng J, Yang R. A fluorescent nanoprobe based on azoreductase-responsive metal–organic frameworks for imaging VEGF mRNA under hypoxic conditions. Analyst 2019; 144:6254-6261. [DOI: 10.1039/c9an01671f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new fluorescent nanoprobe based on azoreductase-responsive functional AMOFs was developed to realize the imaging of VEGF mRNA under hypoxic conditions.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Zhen Zou
- School of Chemistry and Biological Engineering
- Changsha University of Science and Technology
- Changsha
- China
| | - Jin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Cong Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering
- Changsha University of Science and Technology
- Changsha
- China
| |
Collapse
|
18
|
Fortenbery GW, Sarathy B, Carraway KR, Mansfield KD. Hypoxic stabilization of mRNA is HIF-independent but requires mtROS. Cell Mol Biol Lett 2018; 23:48. [PMID: 30305827 PMCID: PMC6172842 DOI: 10.1186/s11658-018-0112-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023] Open
Abstract
Background Tissue ischemia can arise in response to numerous physiologic and pathologic conditions. The cellular response to decreased perfusion, most notably a decrease in glucose and oxygen, is important for cellular survival. In response to oxygen deprivation or hypoxia, one of the key response elements is hypoxia inducible factor (HIF) and a key protein induced by hypoxia is vascular endothelial growth factor (VEGF). Under hypoxia, we and others have reported an increase in the half-life of VEGF and other hypoxia related mRNAs including MYC and CYR61; however, the mediator of this response has yet to be identified. For this study, we sought to determine if HIF-mediated transcriptional activity is involved in the mRNA stabilization induced by hypoxia. Methods HEK293T or C6 cells were cultured in either normoxic or hypoxic (1% oxygen) conditions in the presence of 1 g/L glucose for all experiments. Pharmacological treatments were used to mimic hypoxia (desferroxamine, dimethyloxaloglutamate, CoCl2), inhibit mitochondrial respiration (rotenone, myxothiazol), scavenge reactive oxygen species (ROS; ebselen), or generate mitochondrial ROS (antimycin A). siRNAs were used to knock down components of the HIF transcriptional apparatus. mRNA half-life was determined via actinomycin D decay and real time PCR and western blotting was used to determine mRNA and protein levels respectively. Results Treatment of HEK293T or C6 cells with hypoxic mimetics, desferroxamine, dimethyloxaloglutamate, or CoCl2 showed similar induction of HIF compared to hypoxia treatment, however, in contrast to hypoxia, the mimetics caused no significant increase in VEGF, MYC or CYR61 mRNA half-life. Knockdown of HIF-alpha or ARNT via siRNA also had no effect on hypoxic mRNA stabilization. Interestingly, treatment of HEK293T cells with the mitochondrial inhibitors rotenone and myxothiazol, or the glutathione peroxidase mimetic ebselen did prevent the hypoxic stabilization of VEGF, MYC, and CYR61, suggesting a role for mtROS in the process. Additionally, treatment with antimycin A, which has been shown to generate mtROS, was able to drive the normoxic stabilization of these mRNAs. Conclusion Overall these data suggest that hypoxic mRNA stabilization is independent of HIF transcriptional activity but requires mtROS.
Collapse
Affiliation(s)
- Grey W Fortenbery
- 1Brody School of Medicine, East Carolina University, Greenville, NC 27834 USA
| | - Brinda Sarathy
- 2Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834 USA
| | - Kristen R Carraway
- 2Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834 USA
| | - Kyle D Mansfield
- 2Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834 USA
| |
Collapse
|
19
|
Kim C, Kang D, Lee EK, Lee JS. Long Noncoding RNAs and RNA-Binding Proteins in Oxidative Stress, Cellular Senescence, and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2062384. [PMID: 28811863 PMCID: PMC5547732 DOI: 10.1155/2017/2062384] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/27/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
Cellular senescence is a complex biological process that leads to irreversible cell-cycle arrest. Various extrinsic and intrinsic insults are associated with the onset of cellular senescence and frequently accompany genomic or epigenomic alterations. Cellular senescence is believed to contribute to tumor suppression, immune response, and tissue repair as well as aging and age-related diseases. Long noncoding RNAs (lncRNAs) are >200 nucleotides long, poorly conserved, and transcribed in a manner similar to that of mRNAs. They are tightly regulated during various cellular and physiological processes. Although many lncRNAs and their functional roles are still undescribed, the importance of lncRNAs in a variety of biological processes is widely recognized. RNA-binding proteins (RBPs) have a pivotal role in posttranscriptional regulation as well as in mRNA transport, storage, turnover, and translation. RBPs interact with mRNAs, other RBPs, and noncoding RNAs (ncRNAs) including lncRNAs, and they are involved in the regulation of a broad spectrum of cellular processes. Like other cell fate regulators, lncRNAs and RBPs, separately or cooperatively, are implicated in initiation and maintenance of cellular senescence, aging, and age-related diseases. Here, we review the current understanding of both lncRNAs and RBPs and their association with oxidative stress, senescence, and age-related diseases.
Collapse
Affiliation(s)
- Chongtae Kim
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 06591, Republic of Korea
| | - Donghee Kang
- Department of Molecular Medicine and Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon 22212, Republic of Korea
| | - Eun Kyung Lee
- Department of Biochemistry, The Catholic University of Korea College of Medicine, Seoul 06591, Republic of Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine and Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon 22212, Republic of Korea
| |
Collapse
|
20
|
Coronel MM, Geusz R, Stabler CL. Mitigating hypoxic stress on pancreatic islets via in situ oxygen generating biomaterial. Biomaterials 2017; 129:139-151. [PMID: 28342320 PMCID: PMC5497707 DOI: 10.1016/j.biomaterials.2017.03.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/06/2017] [Accepted: 03/11/2017] [Indexed: 01/15/2023]
Abstract
A major obstacle in the survival and efficacy of tissue engineered transplants is inadequate oxygenation, whereby unsupportive oxygen tensions result in significant cellular dysfunction and death within the implant. In a previous report, we developed an innovative oxygen generating biomaterial, termed OxySite, to provide supportive in situ oxygenation to cells and prevent hypoxia-induced damage. Herein, we explored the capacity of this biomaterial to mitigate hypoxic stress in both rat and nonhuman primate pancreatic islets by decreasing cell death, supporting metabolic activity, sustaining aerobic metabolism, preserving glucose responsiveness, and decreasing the generation of inflammatory cytokines. Further, the impact of supplemental oxygenation on in vivo cell function was explored by the transplantation of islets previously co-cultured with OxySite into a diabetic rat model. Transplant outcomes revealed significant improvement in graft efficacy for OxySite-treated islets, when transplanted within an extrahepatic site. These results demonstrate the potency of the OxySite material to mitigate activation of detrimental hypoxia-induced pathways in islets during culture and highlights the importance of in situ oxygenation on resulting islet transplant outcomes.
Collapse
Affiliation(s)
- Maria M Coronel
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Ryan Geusz
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - Cherie L Stabler
- Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA.
| |
Collapse
|
21
|
Carraway KR, Johnson EM, Kauffmann TC, Fry NJ, Mansfield KD. Hypoxia and Hypoglycemia synergistically regulate mRNA stability. RNA Biol 2017; 14:938-951. [PMID: 28362162 PMCID: PMC5546718 DOI: 10.1080/15476286.2017.1311456] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ischemic events, common in many diseases, result from decreased blood flow and impaired delivery of oxygen and glucose to tissues of the body. While much is known about the cellular transcriptional response to ischemia, much less is known about the posttranscriptional response to oxygen and glucose deprivation. The goal of this project was to investigate one such posttranscriptional response, the regulation of mRNA stability. To that end, we have identified several novel ischemia-related mRNAs that are synergistically stabilized by oxygen and glucose deprivation including VEGF, MYC, MDM2, and CYR61. This increase in mRNA half-life requires the synergistic effects of both low oxygen (1%) as well as low glucose (≤ 1 g/L) conditions. Oxygen or glucose deprivation alone fails to initiate the response, as exposure to either high glucose (4 g/L) or normoxic conditions inhibits the response. Furthermore, in response to hypoxia/hypoglycemia, the identified mRNAs are released from the RNA binding protein KHSRP which likely contributes to their stabilization.
Collapse
Affiliation(s)
- Kristen R Carraway
- a Biochemistry and Molecular Biology, Brody School of Medicine , East Carolina University , Greenville , NC , USA
| | - Ellen M Johnson
- a Biochemistry and Molecular Biology, Brody School of Medicine , East Carolina University , Greenville , NC , USA
| | - Travis C Kauffmann
- b Brody School of Medicine , East Carolina University , Greenville , NC , USA
| | - Nate J Fry
- a Biochemistry and Molecular Biology, Brody School of Medicine , East Carolina University , Greenville , NC , USA
| | - Kyle D Mansfield
- a Biochemistry and Molecular Biology, Brody School of Medicine , East Carolina University , Greenville , NC , USA
| |
Collapse
|
22
|
Bertolin AP, Katz MJ, Yano M, Pozzi B, Acevedo JM, Blanco-Obregón D, Gándara L, Sorianello E, Kanda H, Okano H, Srebrow A, Wappner P. Musashi mediates translational repression of the Drosophila hypoxia inducible factor. Nucleic Acids Res 2016; 44:7555-67. [PMID: 27141964 PMCID: PMC5027473 DOI: 10.1093/nar/gkw372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/23/2016] [Indexed: 12/22/2022] Open
Abstract
Adaptation to hypoxia depends on a conserved α/β heterodimeric transcription factor called Hypoxia Inducible Factor (HIF), whose α-subunit is regulated by oxygen through different concurrent mechanisms. In this study, we have identified the RNA binding protein dMusashi, as a negative regulator of the fly HIF homologue Sima. Genetic interaction assays suggested that dMusashi participates of the HIF pathway, and molecular studies carried out in Drosophila cell cultures showed that dMusashi recognizes a Musashi Binding Element in the 3' UTR of the HIFα transcript, thereby mediating its translational repression in normoxia. In hypoxic conditions dMusashi is downregulated, lifting HIFα repression and contributing to trigger HIF-dependent gene expression. Analysis performed in mouse brains revealed that murine Msi1 protein physically interacts with HIF-1α transcript, suggesting that the regulation of HIF by Msi might be conserved in mammalian systems. Thus, Musashi is a novel regulator of HIF that inhibits responses to hypoxia specifically when oxygen is available.
Collapse
Affiliation(s)
| | - Maximiliano J Katz
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires (1405), Argentina
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757, Asahimachidori, Chuo-ku, Niigata, Niigata 951-8510, Japan
| | - Berta Pozzi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Ciudad Universitaria, Pabellón 2, Buenos Aires (C1428EHA), Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires (C1428EHA), Argentina
| | - Julieta M Acevedo
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires (1405), Argentina
| | | | - Lautaro Gándara
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires (1405), Argentina
| | | | - Hiroshi Kanda
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Anabella Srebrow
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Ciudad Universitaria, Pabellón 2, Buenos Aires (C1428EHA), Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires (C1428EHA), Argentina
| | - Pablo Wappner
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires (1405), Argentina Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires (C1428EHA), Argentina
| |
Collapse
|
23
|
Zhang LF, Lou JT, Lu MH, Gao C, Zhao S, Li B, Liang S, Li Y, Li D, Liu MF. Suppression of miR-199a maturation by HuR is crucial for hypoxia-induced glycolytic switch in hepatocellular carcinoma. EMBO J 2015; 34:2671-85. [PMID: 26346275 PMCID: PMC4641532 DOI: 10.15252/embj.201591803] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/11/2015] [Accepted: 08/20/2015] [Indexed: 01/06/2023] Open
Abstract
Glucose metabolic reprogramming is a hallmark of cancer. Cancer cells rapidly adjust their energy source from oxidative phosphorylation to glycolytic metabolism in order to efficiently proliferate in a hypoxic environment, but the mechanism underlying this switch is still incompletely understood. Here, we report that hypoxia potently induces the RNA-binding protein HuR to specifically bind primary miR-199a transcript to block miR-199a maturation in hepatocellular carcinoma (HCC) cells. We demonstrate that this hypoxia-suppressed miR-199a plays a decisive role in limiting glycolysis in HCC cells by targeting hexokinase-2 (Hk2) and pyruvate kinase-M2 (Pkm2). Furthermore, systemically delivered cholesterol-modified agomiR-199a inhibits [(18)F]-fluorodeoxyglucose uptake and attenuates tumor growth in HCC tumor-bearing mice. These data reveal a novel mechanism of reprogramming of cancer energy metabolism in which HuR suppresses miR-199a maturation to link hypoxia to the Warburg effect and suggest a promising therapeutic strategy that targets miR-199a to interrupt cancerous aerobic glycolysis.
Collapse
Affiliation(s)
- Ling-Fei Zhang
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Tao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Hua Lu
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chunfang Gao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai, China
| | - Shuang Zhao
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine and Micro PET Center, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Liang
- Department of Nuclear Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dangsheng Li
- Shanghai Information Center for Life Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mo-Fang Liu
- Center for RNA Research, State Key Laboratory of Molecular Biology-University of Chinese Academy of Sciences, Institute of Biochemistry and Cell Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences, Shanghai, China Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Ju UI, Park JW, Park HS, Kim SJ, Chun YS. FBXO11 represses cellular response to hypoxia by destabilizing hypoxia-inducible factor-1α mRNA. Biochem Biophys Res Commun 2015; 464:1008-1015. [DOI: 10.1016/j.bbrc.2015.07.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
|
25
|
Nagpal N, Ahmad HM, Chameettachal S, Sundar D, Ghosh S, Kulshreshtha R. HIF-inducible miR-191 promotes migration in breast cancer through complex regulation of TGFβ-signaling in hypoxic microenvironment. Sci Rep 2015; 5:9650. [PMID: 25867965 PMCID: PMC4394754 DOI: 10.1038/srep09650] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/10/2015] [Indexed: 12/13/2022] Open
Abstract
The molecular mechanisms of hypoxia induced breast cell migration remain incompletely understood. Our results show that hypoxia through hypoxia-inducible factor (HIF) brings about a time-dependent increase in the level of an oncogenic microRNA, miR-191 in various breast cancer cell lines. miR-191 enhances breast cancer aggressiveness by promoting cell proliferation, migration and survival under hypoxia. We further established that miR-191 is a critical regulator of transforming growth factor beta (TGFβ)-signaling and promotes cell migration by inducing TGFβ2 expression under hypoxia through direct binding and indirectly by regulating levels of a RNA binding protein, human antigen R (HuR). The levels of several TGFβ pathway genes (like VEGFA, SMAD3, CTGF and BMP4) were found to be higher in miR-191 overexpressing cells. Lastly, anti-miR-191 treatment given to breast tumor spheroids led to drastic reduction in spheroid tumor volume. This stands as a first report of identification of a microRNA mediator that links hypoxia and the TGFβ signaling pathways, both of which are involved in regulation of breast cancer metastasis. Together, our results show a critical role of miR-191 in hypoxia-induced cancer progression and suggest that miR-191 inhibition may offer a novel therapy for hypoxic breast tumors.
Collapse
Affiliation(s)
- Neha Nagpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, India-110016
| | - Hafiz M. Ahmad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India- 110067
| | - Shibu Chameettachal
- Department of Textile Technology, Indian Institute of Technology Delhi, India-110016
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, India-110016
| | - Sourabh Ghosh
- Department of Textile Technology, Indian Institute of Technology Delhi, India-110016
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, India-110016
- ;
| |
Collapse
|
26
|
Shang J, Wan Q, Wang X, Duan Y, Wang Z, Wei X, Zhang Y, Wang H, Wang R, Yi F. Identification of NOD2 as a novel target of RNA-binding protein HuR: evidence from NADPH oxidase-mediated HuR signaling in diabetic nephropathy. Free Radic Biol Med 2015; 79:217-27. [PMID: 25528059 DOI: 10.1016/j.freeradbiomed.2014.12.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 12/21/2022]
Abstract
Although our recent studies have demonstrated that NOD2 is one of the critical components of a signal transduction pathway that links renal injury to inflammation in diabetic nephropathy (DN), the regulatory mechanisms for NOD2 expression under hyperglycemia have not yet been elucidated. Considering that NOD2 mRNA from different species bears a long 3'-UTR with various AU-rich elements, the present study was designed to investigate the potential contribution of the RNA-binding protein human antigen R (HuR) on the posttranscriptional regulation of NOD2 expression. In this study, we first found upregulation of HuR in the kidney from DN subjects, which was correlated with proteinuria, indicating a role for HuR in the pathogenesis of DN. In vitro, high glucose (HG) induced a distinct increase in cytoplasmic HuR in rat glomerular mesangial cells. By RNA EMSA, we found that HuR bound to the 3'-UTR of NOD2, and HuR silencing reduced HG-induced NOD2 expression and mRNA stability. Mechanistically, we further found that NADPH oxidase-mediated redox signaling contributed to the expression and translocation of HuR and NOD2 mRNA stability. Finally, we evaluated the role of HuR showing that in vivo gene silencing of HuR by intrarenal lentiviral gene delivery ameliorated renal injury as well as reducing NOD2 expression in diabetic rats. Collectively, our studies demonstrate that HuR acts as a key posttranscriptional regulator of NOD2 expression, suggesting that targeting of HuR-NOD2 signaling might be crucial for the treatment of DN.
Collapse
Affiliation(s)
- Jin Shang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Qiang Wan
- Department of Nephrology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan 250021, China
| | - Xiaojie Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Yiqi Duan
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Ziying Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Xinbing Wei
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Yan Zhang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Hui Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan 250021, China.
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan 250012, China.
| |
Collapse
|
27
|
Infante T, Mancini FP, Lanza A, Soricelli A, de Nigris F, Napoli C. Polycomb YY1 is a critical interface between epigenetic code and miRNA machinery after exposure to hypoxia in malignancy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:975-86. [PMID: 25644713 DOI: 10.1016/j.bbamcr.2015.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/19/2014] [Accepted: 01/16/2015] [Indexed: 02/09/2023]
Abstract
Yin Yang 1 (YY1) is a member of polycomb protein family involved in epigenetic modifications and transcriptional controls. We have shown that YY1 acts as positive regulator of tumor growth and angiogenesis by interfering with the VEGFA network. Yet, the link between polycomb chromatin complex and hypoxia regulation of VEGFA is still poorly understood. Here, we establish that hypoxia impairs YY1 binding to VEGFA mRNA 3'UTR (p<0.001) in bone malignancy. Moreover, RNA immunoprecipitation reveals the formation of triplex nuclear complexes among YY1, VEGFA DNA, mRNA, and unreached about 200 fold primiRNA 200b and 200c via Dicer protein. In this complex, YY1 is necessary to maintain the steady-state level of VEGFA expression while its silencing increases VEGFA mRNA half-life at 4 h and impairs the maturation of miRNA 200b/c. Hypoxia promotes histone modification through ubiquitination both of YY1 and Dicer proteins. Hypoxia-mediated down-regulation of YY1 and Dicer changes post-transcriptional VEGFA regulation by resulting in the accumulation of primiRNA200b/c in comparison to mature miRNAs (p<0.001). Given the regulatory functions of VEGFA on cellular activities to promote neoangiogenesis, we conclude that YY1 acts as novel critical interface between epigenetic code and miRNAs machinery under chronic hypoxia in malignancy.
Collapse
Affiliation(s)
| | - Francesco P Mancini
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Alessandro Lanza
- Department Multidisciplinary of Specialistic Medical Surgery and Odontostomatologic of Second University of Naples, Naples Italy
| | | | - Filomena de Nigris
- Department of Biochemistry Biophysics and General Pathology, Second University of Naples, Naples Italy.
| | - Claudio Napoli
- IRCCS, SDN, Via E. Gianturco 113, 80143 Naples, Italy; Department of Biochemistry Biophysics and General Pathology, Second University of Naples, Naples Italy
| |
Collapse
|
28
|
Uluer E, Inan S, Ozbilgin K, Karaca F, Dicle N, Sancı M. The role of hypoxia related angiogenesis in uterine smooth muscle tumors. Biotech Histochem 2014; 90:102-10. [DOI: 10.3109/10520295.2014.952339] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
29
|
Parker AL, Kavallaris M, McCarroll JA. Microtubules and their role in cellular stress in cancer. Front Oncol 2014; 4:153. [PMID: 24995158 PMCID: PMC4061531 DOI: 10.3389/fonc.2014.00153] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/03/2014] [Indexed: 01/08/2023] Open
Abstract
Microtubules are highly dynamic structures, which consist of α- and β-tubulin heterodimers, and are involved in cell movement, intracellular trafficking, and mitosis. In the context of cancer, the tubulin family of proteins is recognized as the target of the tubulin-binding chemotherapeutics, which suppress the dynamics of the mitotic spindle to cause mitotic arrest and cell death. Importantly, changes in microtubule stability and the expression of different tubulin isotypes as well as altered post-translational modifications have been reported for a range of cancers. These changes have been correlated with poor prognosis and chemotherapy resistance in solid and hematological cancers. However, the mechanisms underlying these observations have remained poorly understood. Emerging evidence suggests that tubulins and microtubule-associated proteins may play a role in a range of cellular stress responses, thus conferring survival advantage to cancer cells. This review will focus on the importance of the microtubule-protein network in regulating critical cellular processes in response to stress. Understanding the role of microtubules in this context may offer novel therapeutic approaches for the treatment of cancer.
Collapse
Affiliation(s)
- Amelia L Parker
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia
| | - Maria Kavallaris
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia ; Australian Centre for NanoMedicine, University of New South Wales , Sydney, NSW , Australia
| | - Joshua A McCarroll
- Tumour Biology and Targeting Program, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales , Sydney, NSW , Australia ; Australian Centre for NanoMedicine, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
30
|
Yasuda M, Hatanaka T, Shirato H, Nishioka T. Cell type-specific reciprocal regulation of HIF1A gene expression is dependent on 5'- and 3'-UTRs. Biochem Biophys Res Commun 2014; 447:638-43. [PMID: 24769203 DOI: 10.1016/j.bbrc.2014.04.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 01/04/2023]
Abstract
In the present study, we demonstrated the reciprocal regulation of hypoxia-inducible factor 1 alpha (HIF1A) gene expression via untranslated region-(UTR) dependent mechanisms. A 151 nucleotide sequence found in the HIF1A 5'-UTR is sufficient for significant translational up-regulation. On the other hand, the 3'-UTR of HIF1A has been implicated in mRNA degradation. In the non-metastatic breast cancer cell line MCF7, the 3'-UTR-dependent down-regulatory machinery predominates over the 5'-UTR-dependent up-regulation of HIF1A. However, 5'-UTR-dependent up-regulation is dominant among metastatic cell lines (MDA-MB453, U87MG). It is therefore likely that the predominance of 5'-UTR-dependent translational enhancement of HIF1A is critical for the malignant phenotype of cancer cells. PTBP-1, but not HuR, is a candidate RNA binding protein for the translational control of HIF1A.
Collapse
Affiliation(s)
- Motoaki Yasuda
- Department of Oral Pathobiology, Graduate School of Dental Medicine, Hokkaido University, N13 W7, Kita-ku, Sapporo 060-8586, Japan
| | - Tomoyuki Hatanaka
- Department of Oral Pathobiology, Graduate School of Dental Medicine, Hokkaido University, N13 W7, Kita-ku, Sapporo 060-8586, Japan
| | - Hiroki Shirato
- Department of Radiation Medicine, Hokkaido University School of Medicine, K15 W7, Kita-ku, Sapporo 060-8638, Japan
| | - Takeshi Nishioka
- Department of Biomedical Sciences and Engineering, Graduate School of Health Sciences, Hokkaido University, N12 W5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
31
|
HuR and TIA1/TIAL1 are involved in regulation of alternative splicing of SIRT1 pre-mRNA. Int J Mol Sci 2014; 15:2946-58. [PMID: 24566137 PMCID: PMC3958892 DOI: 10.3390/ijms15022946] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/19/2014] [Accepted: 02/10/2014] [Indexed: 12/16/2022] Open
Abstract
SIRT1 is a pleiotropic protein that plays critical and multifunctional roles in metabolism, senescence, longevity, stress-responses, and cancer, and has become an important therapeutic target across a range of diseases. Recent research demonstrated that SIRT1 pre-mRNA undergoes alternative splicing to produce different isoforms, such as SIRT1 full-length and SIRT1-ΔExon8 variants. Previous studies revealed these SIRT1 mRNA splice variants convey different characteristics and functions to the protein, which may in turn explain the multifunctional roles of SIRT1. However, the mechanisms underlying the regulation of SIRT1 alternative splicing remain to be elucidated. Our objective is to search for new pathways that regulate of SIRT1 alternative splicing. Here we describe experiments showing that HuR and TIA1/TIAL1, two kinds of RNA-binding proteins, were involved in the regulation of alternative splicing of SIRT1 pre-mRNA under normal and stress circumstances: HuR increased SIRT1-ΔExon8 by promoting SIRT1 exon 8 exclusion, whereas TIA1/TIAL1 inhibition of the exon 8 exclusion led to a decrease in SIRT1-ΔExon8 mRNA levels. This study provides novel insight into how the alternative splicing of SIRT1 pre-mRNA is regulated, which has fundamental implications for understanding the critical and multifunctional roles of SIRT1.
Collapse
|
32
|
Mallinjoud P, Villemin JP, Mortada H, Polay Espinoza M, Desmet FO, Samaan S, Chautard E, Tranchevent LC, Auboeuf D. Endothelial, epithelial, and fibroblast cells exhibit specific splicing programs independently of their tissue of origin. Genome Res 2013; 24:511-21. [PMID: 24307554 PMCID: PMC3941115 DOI: 10.1101/gr.162933.113] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alternative splicing is the main mechanism of increasing the proteome diversity coded by a limited number of genes. It is well established that different tissues or organs express different splicing variants. However, organs are composed of common major cell types, including fibroblasts, epithelial, and endothelial cells. By analyzing large-scale data sets generated by The ENCODE Project Consortium and after extensive RT-PCR validation, we demonstrate that each of the three major cell types expresses a specific splicing program independently of its organ origin. Furthermore, by analyzing splicing factor expression across samples, publicly available splicing factor binding site data sets (CLIP-seq), and exon array data sets after splicing factor depletion, we identified several splicing factors, including ESRP1 and 2, MBNL1, NOVA1, PTBP1, and RBFOX2, that contribute to establishing these cell type–specific splicing programs. All of the analyzed data sets are freely available in a user-friendly web interface named FasterDB, which describes all known splicing variants of human and mouse genes and their splicing patterns across several dozens of normal and cancer cells as well as across tissues. Information regarding splicing factors that potentially contribute to individual exon regulation is also provided via a dedicated CLIP-seq and exon array data visualization interface. To the best of our knowledge, FasterDB is the first database integrating such a variety of large-scale data sets to enable functional genomics analyses at exon-level resolution.
Collapse
Affiliation(s)
- Pierre Mallinjoud
- Inserm UMR-S1052, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Beta-catenin/HuR post-transcriptional machinery governs cancer stem cell features in response to hypoxia. PLoS One 2013; 8:e80742. [PMID: 24260469 PMCID: PMC3829939 DOI: 10.1371/journal.pone.0080742] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/07/2013] [Indexed: 01/28/2023] Open
Abstract
Hypoxia has been long-time acknowledged as major cancer-promoting microenvironment. In such an energy-restrictive condition, post-transcriptional mechanisms gain importance over the energy-expensive gene transcription machinery. Here we show that the onset of hypoxia-induced cancer stem cell features requires the beta-catenin-dependent post-transcriptional up-regulation of CA9 and SNAI2 gene expression. In response to hypoxia, beta-catenin moves from the plasma membrane to the cytoplasm where it binds and stabilizes SNAI2 and CA9 mRNAs, in cooperation with the mRNA stabilizing protein HuR. We also provide evidence that the post-transcriptional activity of cytoplasmic beta-catenin operates under normoxia in basal-like/triple-negative breast cancer cells, where the beta-catenin knockdown suppresses the stem cell phenotype in vitro and tumor growth in vivo. In such cells, we unravel the generalized involvement of the beta-catenin-driven machinery in the stabilization of EGF-induced mRNAs, including the cancer stem cell regulator IL6. Our study highlights the crucial role of post-transcriptional mechanisms in the maintenance/acquisition of cancer stem cell features and suggests that the hindrance of cytoplasmic beta-catenin function may represent an unprecedented strategy for targeting breast cancer stem/basal-like cells.
Collapse
|
34
|
Wang D, Zhang H, Li M, Frid MG, Flockton AR, McKeon BA, Yeager ME, Fini MA, Morrell NW, Pullamsetti SS, Velegala S, Seeger W, McKinsey TA, Sucharov CC, Stenmark KR. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. Circ Res 2013; 114:67-78. [PMID: 24122720 DOI: 10.1161/circresaha.114.301633] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RATIONALE Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. OBJECTIVE We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. METHODS AND RESULTS We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti-miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract-binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3' untranslated region of polypyrimidine tract-binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. CONCLUSIONS Stable decreases in miR-124 expression contribute to an epigenetically reprogrammed, highly proliferative, migratory, and inflammatory phenotype of hypertensive pulmonary adventitial fibroblasts. Thus, therapies directed at restoring miR-124 function, including histone deacetylase inhibitors, should be investigated.
Collapse
Affiliation(s)
- Daren Wang
- From the Department of Pediatrics (D.W., H.Z., M.L., M.G.F., A.R.F., B.A.K., M.E.Y., M.A.F.), Department of Medicine (T.A.M., C.C.S.), Department of Medicine and Pediatrics (K.R.S.), Department of Medicine (N.W.M.), Department of Lung Development and Remodeling (S.S.P., S.V., W.S.), Department of Medicine (H.Z.), University of Colorado Anschutz Medical Campus, Aurora, CO; University of Cambridge, Cambridge, United Kingdom (N.W.M.); Addenbrooke's & Papworth Hospitals, Cambridge, United Kingdom (N.W.M.); Max-Planck-Institute for Heart and Lung Research; University of Giessen and Marburg Lung Center, Bad Nauheim, Germany (S.S.P., S.V., W.S.); and Shengjing Hospital of China Medical University, Shenyang, China (H.Z.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
NF90 in posttranscriptional gene regulation and microRNA biogenesis. Int J Mol Sci 2013; 14:17111-21. [PMID: 23965975 PMCID: PMC3759954 DOI: 10.3390/ijms140817111] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/05/2013] [Accepted: 08/07/2013] [Indexed: 11/16/2022] Open
Abstract
Gene expression patterns are effectively regulated by turnover and translation regulatory (TTR) RNA-binding proteins (RBPs). The TTR-RBPs control gene expression at posttranscriptional levels, such as pre-mRNA splicing, mRNA cytoplasmic export, turnover, storage, and translation. Double-stranded RNA binding proteins (DSRBPs) are known to regulate many processes of cellular metabolism, including transcriptional control, translational control, mRNA processing and localization. Nuclear factor 90 (NF90), one of the DSRBPs, is abundantly expressed in vertebrate tissue and participates in many aspects of RNA metabolism. NF90 was originally purified as a component of a DNA binding complex which binds to the antigen recognition response element 2 in the interleukin 2 promoter. Recent studies have provided us with interesting insights into its possible physiological roles in RNA metabolism, including transcription, degradation, and translation. In addition, it was shown that NF90 regulates microRNA expression. In this review, we try to focus on the function of NF90 in posttranscriptional gene regulation and microRNA biogenesis.
Collapse
|
36
|
Yamagishi N, Teshima-Kondo S, Masuda K, Nishida K, Kuwano Y, Dang DT, Dang LH, Nikawa T, Rokutan K. Chronic inhibition of tumor cell-derived VEGF enhances the malignant phenotype of colorectal cancer cells. BMC Cancer 2013; 13:229. [PMID: 23651517 PMCID: PMC3658959 DOI: 10.1186/1471-2407-13-229] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/25/2013] [Indexed: 02/04/2023] Open
Abstract
Background Vascular endothelial growth factor-a (VEGF)-targeted therapies have become an important treatment for a number of human malignancies. The VEGF inhibitors are actually effective in several types of cancers, however, the benefits are transiently, and the vast majority of patients who initially respond to the therapies will develop resistance. One of possible mechanisms for the acquired resistance may be the direct effect(s) of VEGF inhibitors on tumor cells expressing VEGF receptors (VEGFR). Thus, we investigated here the direct effect of chronic VEGF inhibition on phenotype changes in human colorectal cancer (CRC) cells. Methods To chronically inhibit cancer cell-derived VEGF, human CRC cell lines (HCT116 and RKO) were chronically exposed (2 months) to an anti-VEGF monoclonal antibody (mAb) or were disrupted the Vegf gene (VEGF-KO). Effects of VEGF family members were blocked by treatment with a VEGF receptor tyrosine kinase inhibitor (VEGFR-TKI). Hypoxia-induced apoptosis under VEGF inhibited conditions was measured by TUNEL assay. Spheroid formation ability was assessed using a 3-D spheroid cell culture system. Results Chronic inhibition of secreted/extracellular VEGF by an anti-VEGF mAb redundantly increased VEGF family member (PlGF, VEGFR1 and VEGFR2), induced a resistance to hypoxia-induced apoptosis, and increased spheroid formation ability. This apoptotic resistance was partially abrogated by a VEGFR-TKI, which blocked the compensate pathway consisted of VEGF family members, or by knockdown of Vegf mRNA, which inhibited intracellular function(s) of all Vegf gene products. Interestingly, chronic and complete depletion of all Vegf gene products by Vegf gene knockout further augmented these phenotypes in the compensate pathway-independent manner. These accelerated phenotypes were significantly suppressed by knockdown of hypoxia-inducible factor-1α that was up-regulated in the VEGF-KO cell lines. Conclusions Our findings suggest that chronic inhibition of tumor cell-derived VEGF accelerates tumor cell malignant phenotypes.
Collapse
Affiliation(s)
- Naoko Yamagishi
- Department of Physiological Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cheng YC, Liou JP, Kuo CC, Lai WY, Shih KH, Chang CY, Pan WY, Tseng JT, Chang JY. MPT0B098, a novel microtubule inhibitor that destabilizes the hypoxia-inducible factor-1α mRNA through decreasing nuclear-cytoplasmic translocation of RNA-binding protein HuR. Mol Cancer Ther 2013; 12:1202-12. [PMID: 23619299 DOI: 10.1158/1535-7163.mct-12-0778] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microtubule inhibitors have been shown to inhibit hypoxia-inducible factor-1α (HIF-1α) expression through inhibition translation or enhancing protein degradation. Little is known of the effect of microtubule inhibitors on the stability of HIF-1α mRNA. We recently discovered a novel indoline-sulfonamide compound, 7-aryl-indoline-1-benzene-sulfonamide (MPT0B098), as a potent microtubule inhibitor through binding to the colchicine-binding site of tubulin. MPT0B098 is active against the growth of various human cancer cells, including chemoresistant cells with IC50 values ranging from 70 to 150 nmol/L. However, normal cells, such as human umbilical vein endothelial cells (HUVEC), exhibit less susceptibility to the inhibitory effect of MPT0B098 with IC50 of 510 nmol/L. Similar to typical microtubule inhibitors, MPT0B098 arrests cells in the G2-M phase and subsequently induces cell apoptosis. In addition, MPT0B098 effectively suppresses VEGF-induced cell migration and capillary-like tube formation of HUVECs. Distinguished from other microtubule inhibitors, MPT0B098 not only inhibited the expression levels of HIF-1α protein but also destabilized HIF-1α mRNA. The mechanism of causing unstable of HIF-1α mRNA by MPT0B098 is through decreasing RNA-binding protein, HuR, translocation from the nucleus to the cytoplasm. Notably, MPT0B098 effectively suppresses tumor growth and microvessel density of tumor specimens in vivo. Taken together, our results provide a novel mechanism of inhibiting HIF-1α of a microtubule inhibitor MPT0B098. MPT0B098 is a promising anticancer drug candidate with potential for the treatment of human malignancies.
Collapse
Affiliation(s)
- Yun-Ching Cheng
- National Institute of Cancer Research, National Health Research Institutes, Taiwan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hinman MN, Zhou HL, Sharma A, Lou H. All three RNA recognition motifs and the hinge region of HuC play distinct roles in the regulation of alternative splicing. Nucleic Acids Res 2013; 41:5049-61. [PMID: 23525460 PMCID: PMC3643579 DOI: 10.1093/nar/gkt166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The four Hu [embryonic lethal abnormal vision-like (ELAVL)] protein family members regulate alternative splicing by binding to U-rich sequences surrounding target exons and affecting the interaction of the splicing machinery and/or local chromatin modifications. Each of the Hu proteins contains a divergent N-terminus, three highly conserved RNA recognition motifs (RRM1, RRM2 and RRM3) and a hinge region separating RRM2 and RRM3. The roles of each domain in splicing regulation are not well understood. Here, we investigate how HuC, a relatively poorly characterized family member, regulates three target pre-mRNAs: neurofibromatosis type I, Fas and HuD. We find that the HuC N-terminus is dispensable for splicing regulation, and the three RRMs are required for splicing regulation of each target, whereas the hinge region contributes to regulation of only some targets. Interestingly, the regions of the hinge and RRM3 required for regulating different targets only partially overlap, implying substrate-specific mechanisms of HuC-mediated splicing regulation. We show that RRM1 and RRM2 are required for binding to target pre-mRNAs, whereas the hinge and RRM3 are required for HuC–HuC self-interaction. Finally, we find that the portions of RRM3 required for HuC–HuC interaction overlap with those required for splicing regulation of all three targets, suggesting a role of HuC–HuC interaction in splicing regulation.
Collapse
Affiliation(s)
- Melissa N Hinman
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
39
|
Fallone F, Britton S, Nieto L, Salles B, Muller C. ATR controls cellular adaptation to hypoxia through positive regulation of hypoxia-inducible factor 1 (HIF-1) expression. Oncogene 2012; 32:4387-96. [PMID: 23085754 DOI: 10.1038/onc.2012.462] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/20/2012] [Accepted: 08/24/2012] [Indexed: 01/29/2023]
Abstract
Tumor cells adaptation to severe oxygen deprivation (hypoxia) plays a major role in tumor progression. The transcription factor HIF-1 (hypoxia-inducible factor 1), whose α-subunit is stabilized under hypoxic conditions is a key component of this process. Recent studies showed that two members of the phosphoinositide 3-kinase-related kinases (PIKKs) family, ATM (ataxia telangiectasia mutated) and DNA-PK (DNA-dependent protein kinase), regulate the hypoxic-dependent accumulation of HIF-1. These proteins initiate cellular stress responses when DNA damage occurs. In addition, it has been demonstrated that extreme hypoxia induces a replicative stress resulting in regions of single-stranded DNA at stalled replication forks and the activation of ATR (ataxia telangiectasia and Rad3 related protein), another member of the PIKKs family. Here, we show that even less severe hypoxia (0.1% O2) also induces activation of ATR through replicative stress. Importantly, in using either transiently silenced ATR cells, cells expressing an inactive form of ATR or cells exposed to an ATR inhibitor (CGK733), we demonstrate that hypoxic ATR activation positively regulates the key transcription factor HIF-1 independently of the checkpoint kinase Chk1. We show that ATR kinase activity regulates HIF-1α at the translational level and we find that the elements necessary for the regulation of HIF-1α translation are located within the coding region of HIF-1α mRNA. Finally, by using three independent cellular models, we clearly show that the loss of ATR expression and/or kinase activity results in the decrease of HIF-1 DNA binding under hypoxia and consequently affects protein expression levels of two HIF-1 target genes, GLUT-1 and CAIX. Taken together, our data show a new function for ATR in cellular adaptation to hypoxia through regulation of HIF-1α translation. Our work offers new prospect for cancer therapy using ATR inhibitors with the potential to decrease cellular adaptation in hypoxic tumors.
Collapse
Affiliation(s)
- F Fallone
- 1] CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France [2] Université de Toulouse, UPS, IPBS, Toulouse, France
| | | | | | | | | |
Collapse
|
40
|
Abdelmohsen K, Tominaga-Yamanaka K, Srikantan S, Yoon JH, Kang MJ, Gorospe M. RNA-binding protein AUF1 represses Dicer expression. Nucleic Acids Res 2012; 40:11531-44. [PMID: 23066106 PMCID: PMC3526313 DOI: 10.1093/nar/gks930] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
MicroRNA (miRNA) biogenesis is tightly regulated by numerous proteins. Among them, Dicer is required for the processing of the precursor (pre-)miRNAs into the mature miRNA. Despite its critical function, the mechanisms that regulate Dicer expression are not well understood. Here we report that the RNA-binding protein (RBP) AUF1 (AU-binding factor 1) associates with the endogenous DICER1 mRNA and can interact with several segments of DICER1 mRNA within the coding region (CR) and the 3'-untranslated region (UTR). Through these interactions, AUF1 lowered DICER1 mRNA stability, since silencing AUF1 lengthened DICER1 mRNA half-life and increased Dicer expression, while overexpressing AUF1 lowered DICER1 mRNA and Dicer protein levels. Given that Dicer is necessary for the synthesis of mature miRNAs, the lowering of Dicer levels by AUF1 diminished the levels of miRNAs tested, but not the levels of the corresponding pre-miRNAs. In summary, AUF1 suppresses miRNA production by reducing Dicer production.
Collapse
Affiliation(s)
- Kotb Abdelmohsen
- Laboratory of Molecular Biology and Immunology, National Institute on Aging-Intramural Research Program, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
41
|
St Laurent G, Shtokalo D, Heydarian M, Palyanov A, Babiy D, Zhou J, Kumar A, Urcuqui-Inchima S. Insights from the HuR-interacting transcriptome: ncRNAs, ubiquitin pathways, and patterns of secondary structure dependent RNA interactions. Mol Genet Genomics 2012; 287:867-79. [PMID: 23052832 DOI: 10.1007/s00438-012-0722-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022]
Abstract
The HuR protein regulates the expression of thousands of cellular transcripts by modulating mRNA splicing, trafficking, translation, and stability. Although it serves as a model of RNA-protein interactions, many features of HuR's interactions with RNAs remain unknown. In this report, we deployed the cryogenic RNA immunoprecipitation technique to analyze HuR-interacting RNAs with the Affymetrix all-exon microarray platform. We revealed several thousand novel HuR-interacting RNAs, including hundreds of non-coding RNAs such as natural antisense transcripts from stress responsive loci. To gain insight into the mechanisms of specificity and sensitivity of HuR's interaction with its target RNAs, we searched HuR-interacting RNAs for composite patterns of primary sequence and secondary structure. We provide evidence that secondary structures of 66-75 nucleotides enhance HuR's recognition of its specific RNA targets composed of short primary sequence patterns. We validated thousands of these RNAs by analysis of overlap with recently published findings, including HuR's interaction with RNAs in the pathways of RNA splicing and stability. Finally, we observed a striking enrichment for members of ubiquitin ligase pathways among the HuR-interacting mRNAs, suggesting a new role for HuR in the regulation of protein degradation to mirror its known function in protein translation.
Collapse
Affiliation(s)
- Georges St Laurent
- Grupo de Inmunovirologia, Universidad de Antioquia, Calle 67 Número 53-108, Medellin, Antioquia, Colombia.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Muscle Health Research Centre, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
43
|
Papadopoulou C, Ganou V, Patrinou-Georgoula M, Guialis A. HuR-hnRNP interactions and the effect of cellular stress. Mol Cell Biochem 2012; 372:137-47. [PMID: 22983828 DOI: 10.1007/s11010-012-1454-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/05/2012] [Indexed: 12/11/2022]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) constitute an important group of RNA-binding proteins (RBPs) that play an active role in post-transcriptional gene regulation. Here, we focus on representative members of the hnRNP group of RBPs, namely hnRNP A1 and hnRNP C1/C2, which participate mainly in RNA splicing, as well as on HuR, a prototype of the AU-rich element-binding proteins (ARE-BP), which has an established role in regulating the stability and translation of target mRNAs. HuR and most hnRNPs are primarily localized in the nucleoplasm, and they can shuttle between the nucleus and the cytoplasm. Herein, we have extended our recently reported findings on the ability of HuR to associate with the immunopurified from mammalian cell extracts hnRNP and mRNP complexes by the application of an anti-HuR antibody that selects HuR-RNP complexes. We find that the protein components precipitated by the anti-HuR antibody are very similar to the hnRNP-HuR complexes reported previously. The in vivo association of HuR and hnRNP proteins is examined in the presence and the absence of thermal stress by confocal microscopy of intact cells and by in situ nuclear matrix preparation. We find notable heat-induced changes of HuR and of hnRNP A1, which exit the nucleus and co-localize to large cytoplasmic foci that represent heat-induced stress granules. The functional implications of HuR-hnRNP interactions in stressed and unstressed cells are discussed.
Collapse
Affiliation(s)
- Christina Papadopoulou
- RNA Processing Program, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, 11635 Athens, Greece
| | | | | | | |
Collapse
|
44
|
Posttranscriptional regulation of connexin-43 expression. Arch Biochem Biophys 2012; 524:23-9. [DOI: 10.1016/j.abb.2012.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/10/2012] [Accepted: 03/12/2012] [Indexed: 12/26/2022]
|
45
|
Shaw JH, Lloyd PG. Post-transcriptional regulation of placenta growth factor mRNA by hydrogen peroxide. Microvasc Res 2012; 84:155-60. [PMID: 22683469 DOI: 10.1016/j.mvr.2012.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/10/2012] [Accepted: 05/29/2012] [Indexed: 01/10/2023]
Abstract
In tissues containing pre-existing collateral vessels, occlusion of an upstream supply artery results in diversion of blood flow through these vessels, protecting the distal tissue from ischemia. The sudden rise in blood flow through collateral vessels exerts shear stress upon the vessel wall, thereby providing the initial stimulus for arteriogenesis. Arteriogenesis, the structural expansion of collateral circulation, involves smooth muscle cell (SMC) proliferation which leads to increased vessel diameter and wall thickness. Since shear is sensed at the level of endothelial cells (EC), communication from EC to the underlying SMC must occur as part of this process. We previously reported that endothelial cells (EC) exposed to shear stress release hydrogen peroxide (H(2)O(2)), and that H(2)O(2) can signal vascular SMC to increase gene and protein expression of placenta growth factor (PLGF), a known mediator of arteriogenesis. The purpose of the current study was to further elucidate the mechanism whereby PLGF is regulated by H(2)O(2). We found that a single, physiological dose of H(2)O(2) increases PLGF mRNA half-life, but has no effect on PLGF promoter activity, in human coronary artery SMC (CASMC). We further demonstrated that the H(2)O(2)-induced increase in PLGF mRNA levels partially relies on p38 MAPK, JNK and ERK1/2 pathways. Finally, we showed that chronic exposure to pathological levels of H(2)O(2) further increases PLGF mRNA levels, but does not result in a corresponding increase in PLGF secreted protein. These data suggest that PLGF regulation has an important translational component. To our knowledge, this is the first study to characterize post-transcriptional regulation of PLGF mRNA by H(2)O(2) in vascular SMC. These findings provide new insights into the regulation of this important growth factor and increase our understanding of PLGF-driven arteriogenesis.
Collapse
Affiliation(s)
- Jennifer H Shaw
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | | |
Collapse
|
46
|
Fernández-Barral A, Orgaz JL, Gomez V, del Peso L, Calzada MJ, Jiménez B. Hypoxia negatively regulates antimetastatic PEDF in melanoma cells by a hypoxia inducible factor-independent, autophagy dependent mechanism. PLoS One 2012; 7:e32989. [PMID: 22457728 PMCID: PMC3311626 DOI: 10.1371/journal.pone.0032989] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 02/07/2012] [Indexed: 11/26/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor (SERPIN) superfamily, displays a potent antiangiogenic and antimetastatic activity in a broad range of tumor types. Melanocytes and low aggressive melanoma cells secrete high levels of PEDF, while its expression is lost in highly aggressive melanomas. PEDF efficiently abrogates a number of functional properties critical for the acquisition of metastatic ability by melanoma cells, such as neovascularization, proliferation, migration, invasiveness and extravasation. In this study, we identify hypoxia as a relevant negative regulator of PEDF in melanocytes and low aggressive melanoma cells. PEDF was regulated at the protein level. Importantly, although downregulation of PEDF was induced by inhibition of 2-oxoglutarate-dependent dioxygenases, it was independent of the hypoxia inducible factor (HIF), a key mediator of the adaptation to hypoxia. Decreased PEDF protein was not mediated by inhibition of translation through untranslated regions (UTRs) in melanoma cells. Degradation by metalloproteinases, implicated on PEDF degradation in retinal pigment epithelial cells, or by the proteasome, was also excluded as regulatory mechanism in melanoma cells. Instead, we found that degradation by autophagy was critical for PEDF downregulation under hypoxia in human melanoma cells. Our findings show that hypoxic conditions encountered during primary melanoma growth downregulate antiangiogenic and antimetastasic PEDF by a posttranslational mechanism involving degradation by autophagy and could therefore contribute to the acquisition of highly metastatic potential characteristic of aggressive melanoma cells.
Collapse
Affiliation(s)
- Asunción Fernández-Barral
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - José Luis Orgaz
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Valentí Gomez
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Luis del Peso
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - María José Calzada
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- Servicio de Inmunologia, Hospital de la Princesa, Instituto de Investigación Sanitaria Princesa and Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Benilde Jiménez
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
- * E-mail:
| |
Collapse
|
47
|
Paukku K, Backlund M, De Boer RA, Kalkkinen N, Kontula KK, Lehtonen JYA. Regulation of AT1R expression through HuR by insulin. Nucleic Acids Res 2012; 40:5250-61. [PMID: 22362742 PMCID: PMC3384301 DOI: 10.1093/nar/gks170] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Angiotensin II type 1 receptor (AT1R) has a pathophysiological role in hypertension, atherosclerosis and heart failure. Type 2 diabetes is hyperinsulinemic state and a major risk factor for atherosclerosis and hypertension. It is known that hyperinsulinemia upregulates AT1R expression post-transcriptionally by increasing the half-life of AT1R mRNA, but little is known about the mechanism of this effect. In the present study, we first identified AT1R 3′-UTR as a mediator of insulin effect. Using 3′-UTR as a bait, we identified through analysis of insulin-stimulated cell lysates by affinity purification and mass spectrometry HuR as an insulin-regulated AT1R mRNA binding protein. By ribonucleoprotein immunoprecipitation, we found HuR binding to AT1R to be increased by insulin. Overexpression of HuR leads to increased AT1R expression in a 3′-UTR-dependent manner. Both insulin and HuR overexpression stabilize AT1R 3′-UTR and their responsive element within 3′-UTR are located within the same region. Cell fractionation demonstrated that insulin induced HuR translocation from nucleus to cytoplasm increased HuR binding to cytoplasmic AT1R 3′-UTR. Consistent with HuR translocation playing a mechanistic role in HuR effect, a reduction in the cytoplasmic levels of HuR either by silencing of HuR expression or by inhibition of HuR translocation into cytoplasm attenuated insulin response. These results show that HuR translocation to cytoplasm is enhanced by insulin leading to AT1R upregulation through HuR-mediated stabilization of AT1R mRNA.
Collapse
Affiliation(s)
- Kirsi Paukku
- Research Program for Molecular Medicine, Biomedicum Helsinki, FIN-00014 University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
48
|
Hundahl CA, Luuk H, Ilmjärv S, Falktoft B, Raida Z, Vikesaa J, Friis-Hansen L, Hay-Schmidt A. Neuroglobin-deficiency exacerbates Hif1A and c-FOS response, but does not affect neuronal survival during severe hypoxia in vivo. PLoS One 2011; 6:e28160. [PMID: 22164238 PMCID: PMC3229544 DOI: 10.1371/journal.pone.0028160] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 11/02/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Neuroglobin (Ngb), a neuron-specific globin that binds oxygen in vitro, has been proposed to play a key role in neuronal survival following hypoxic and ischemic insults in the brain. Here we address whether Ngb is required for neuronal survival following acute and prolonged hypoxia in mice genetically Ngb-deficient (Ngb-null). Further, to evaluate whether the lack of Ngb has an effect on hypoxia-dependent gene regulation, we performed a transcriptome-wide analysis of differential gene expression using Affymetrix Mouse Gene 1.0 ST arrays. Differential expression was estimated by a novel data analysis approach, which applies non-parametric statistical inference directly to probe level measurements. PRINCIPAL FINDINGS Ngb-null mice were born in expected ratios and were normal in overt appearance, home-cage behavior, reproduction and longevity. Ngb deficiency had no effect on the number of neurons, which stained positive for surrogate markers of endogenous Ngb-expressing neurons in the wild-type (wt) and Ngb-null mice after 48 hours hypoxia. However, an exacerbated hypoxia-dependent increase in the expression of c-FOS protein, an immediate early transcription factor reflecting neuronal activation, and increased expression of Hif1A mRNA were observed in Ngb-null mice. Large-scale gene expression analysis identified differential expression of the glycolytic pathway genes after acute hypoxia in Ngb-null mice, but not in the wts. Extensive hypoxia-dependent regulation of chromatin remodeling, mRNA processing and energy metabolism pathways was apparent in both genotypes. SIGNIFICANCE According to these results, it appears unlikely that the loss of Ngb affects neuronal viability during hypoxia in vivo. Instead, Ngb-deficiency appears to enhance the hypoxia-dependent response of Hif1A and c-FOS protein while also altering the transcriptional regulation of the glycolytic pathway. Bioinformatic analysis of differential gene expression yielded novel predictions suggesting that chromatin remodeling and mRNA metabolism are among the key regulatory mechanisms when adapting to prolonged hypoxia.
Collapse
Affiliation(s)
- Christian Ansgar Hundahl
- Department of Clinical Biochemistry, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
- * E-mail: (CAH); (HL); (AHS)
| | - Hendrik Luuk
- Department of Clinical Biochemistry, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
- Department of Physiology, University of Tartu, Tartu, Estonia
- * E-mail: (CAH); (HL); (AHS)
| | - Sten Ilmjärv
- Department of Physiology, University of Tartu, Tartu, Estonia
- Quretec Ltd, Tartu, Estonia
| | - Birgitte Falktoft
- Department of Clinical Biochemistry, University of Copenhagen, Bispebjerg Hospital, Copenhagen, Denmark
| | - Zindy Raida
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Vikesaa
- Department of Genomic Medicine, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Lennart Friis-Hansen
- Department of Genomic Medicine, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Anders Hay-Schmidt
- Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (CAH); (HL); (AHS)
| |
Collapse
|
49
|
Robinson MA, Baumgardner JE, Otto CM. Oxygen-dependent regulation of nitric oxide production by inducible nitric oxide synthase. Free Radic Biol Med 2011; 51:1952-65. [PMID: 21958548 DOI: 10.1016/j.freeradbiomed.2011.08.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/29/2011] [Accepted: 08/30/2011] [Indexed: 12/19/2022]
Abstract
Inducible nitric oxide synthase (iNOS) catalyzes the reaction that converts the substrates O(2) and l-arginine to the products nitric oxide (NO) and l-citrulline. Macrophages, and many other cell types, upregulate and express iNOS primarily in response to inflammatory stimuli. Physiological and pathophysiological oxygen tension can regulate NO production by iNOS at multiple levels, including transcriptional, translational, posttranslational, enzyme dimerization, cofactor availability, and substrate dependence. Cell culture techniques that emphasize control of cellular PO(2), and measurement of NO or its stable products, have been used by several investigators for in vitro study of the O(2) dependence of NO production at one or more of these levels. In most cell types, prior or concurrent exposure to cytokines or other inflammatory stimuli is required for the upregulation of iNOS mRNA and protein by hypoxia. Important transcription factors that target the iNOS promoter in hypoxia include hypoxia-inducible factor 1 and/or nuclear factor κB. In contrast to the upregulation of iNOS by hypoxia, in most cell types NO production is reduced by hypoxia. Recent work suggests a prominent role for O(2) substrate dependence in the short-term regulation of iNOS-mediated NO production.
Collapse
Affiliation(s)
- Mary A Robinson
- Department of Clinical Studies, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-6010, USA
| | | | | |
Collapse
|
50
|
Suppression of TG-interacting factor sensitizes arsenic trioxide-induced apoptosis in human hepatocellular carcinoma cells. Biochem J 2011; 438:349-58. [PMID: 21649584 DOI: 10.1042/bj20101653] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HCC (hepatocellular carcinoma) is among the most common and lethal cancers worldwide with a poor prognosis mainly due to a high recurrence rate and chemotherapy resistance. ATO (arsenic trioxide) is a multi-target drug that has been effectively used as an anticancer drug in acute promyelocytic leukaemia. However, a Phase II trial involving patients with HCC indicates that the use of arsenic as a single agent is not effective against HCC. TGIF (TG-interacting factor) is a transcriptional co-repressor that interferes with TGF-β (transforming growth factor-β) signalling which plays a growth-inhibitory role in HCC. In the present study, we demonstrated that ATO induced hepatocellular apoptosis via TGF-β/Smad signalling and led to downstream induction of p21(WAF1/CIP1) (p21). However, ATO could also induce TGIF expression via a post-transcriptional regulation mechanism to antagonize this effect. Using a biotin-labelled RNA probe pull-down assay and in vivo RNA immunoprecipitation analysis, we identified that HuR (human antigen R) bound to the TGIF mRNA 3'-UTR (3'-untranslated region) and prevented it from degradation. ATO treatment increased the interaction between HuR and TGIF mRNA, and reduction of HuR expression inhibited ATO-induced TGIF expression. Moreover, the EGFR (epidermal growth factor receptor)/PI3K (phosphoinositide 3-kinase)/Akt pathway was shown to mediate the post-transcriptional regulation of TGIF in response to ATO. Finally, we also demonstrated that the down-regulation of TGIF could sensitize ATO-induced HepG2 cell apoptosis. Collectively, we propose that the EGFR/PI3K/Akt pathway may regulate the post-transcriptional regulation of TGIF expression to antagonize ATO-induced apoptosis in HCC. Blockage of the PI3K/Akt pathway or TGIF expression combined with ATO treatment may be a promising strategy for HCC therapy.
Collapse
|