1
|
Paulson OB, Schousboe A, Hultborn H. The history of Danish neuroscience. Eur J Neurosci 2023; 58:2893-2960. [PMID: 37477973 DOI: 10.1111/ejn.16062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/04/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023]
Abstract
The history of Danish neuroscience starts with an account of impressive contributions made at the 17th century. Thomas Bartholin was the first Danish neuroscientist, and his disciple Nicolaus Steno became internationally one of the most prominent neuroscientists in this period. From the start, Danish neuroscience was linked to clinical disciplines. This continued in the 19th and first half of the 20th centuries with new initiatives linking basic neuroscience to clinical neurology and psychiatry in the same scientific environment. Subsequently, from the middle of the 20th century, basic neuroscience was developing rapidly within the preclinical university sector. Clinical neuroscience continued and was even reinforced during this period with important translational research and a close co-operation between basic and clinical neuroscience. To distinguish 'history' from 'present time' is not easy, as many historical events continue in present time. Therefore, we decided to consider 'History' as new major scientific developments in Denmark, which were launched before the end of the 20th century. With this aim, scientists mentioned will have been born, with a few exceptions, no later than the early 1960s. However, we often refer to more recent publications in documenting the developments of initiatives launched before the end of the last century. In addition, several scientists have moved to Denmark after the beginning of the present century, and they certainly are contributing to the present status of Danish neuroscience-but, again, this is not the History of Danish neuroscience.
Collapse
Affiliation(s)
- Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet, 9 Blegdamsvej, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Hultborn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Zhou Y, Eid T, Hassel B, Danbolt NC. Novel aspects of glutamine synthetase in ammonia homeostasis. Neurochem Int 2020; 140:104809. [DOI: 10.1016/j.neuint.2020.104809] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
3
|
Ammonium induced dysfunction of 5-HT 2B receptor in astrocytes. Neurochem Int 2019; 129:104479. [PMID: 31145970 DOI: 10.1016/j.neuint.2019.104479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 11/24/2022]
Abstract
Previously we reported that gene expression of astrocytic 5-HT2B receptors was decreased in brains of depressed animals exposed to chronic mild stress (CMS) (Li et al., 2012) and of Parkinson's disease (Song et al., 2018). Depression is also one of the psychiatric symptoms in hyperammonemia, and astrocyte is a primary target of ammonium in brain in vivo. In the present study, we have used preparations of the brains of urease-treated mice and ammonium-treated astrocytes in culture to study gene expression and function of 5-HT2B receptors. The urease-treated mice showed depressive behaviour. Both mRNA and protein of 5-HT2B receptors were increased in the brains of urease-treated mice and in ammonium-treated cultured astrocytes. Further study revealed that mRNA and protein expression of adenosine deaminase acting on RNA 2 (ADAR2), an enzyme catalyze RNA deamination of adenosine to inosine was increased in the brains of urease-treated mice and in ammonium-treated cultured astrocytes. This increase in ADAR2 induced RNA editing of 5-HT2B receptors. Cultured astrocytes treated with ammonium lost 5-HT induced Ca2+ signalling and ERK1/2 phosphorylation, indicating dysfunction of 5-HT2B receptors. This is in agreement with our previous observation that edited 5-HT2B receptors no longer respond to 5-HT (Hertz et al., 2014). Ammonium effects are inhibited by ADAR2 siRNA in cultured astrocytes, suggesting that increased gene expression and editing and loss of function of 5-HT2B receptors are results of increased activity of ADAR2. In summary, we have demonstrated that functional malfunction of astrocytic 5-HT2B receptors occurs in animal models of major depression, Parkinson depression and hepatic encephalopathy albeit via different mechanisms. Understanding the role of astrocytic 5-HT2B receptors in different pathological contexts may instigate development of novel therapeutic strategies for treating disease-specific depressive behaviour.
Collapse
|
4
|
Galland F, Negri E, Da Ré C, Fróes F, Strapazzon L, Guerra MC, Tortorelli LS, Gonçalves CA, Leite MC. Hyperammonemia compromises glutamate metabolism and reduces BDNF in the rat hippocampus. Neurotoxicology 2017; 62:46-55. [PMID: 28506823 DOI: 10.1016/j.neuro.2017.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/31/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022]
Abstract
Ammonia is putatively the major toxin associated with hepatic encephalopathy (HE), a neuropsychiatric manifestation that results in cognitive impairment, poor concentration and psychomotor alterations. The hippocampus, a brain region involved in cognitive impairment and depressive behavior, has been studied less than neocortical regions. Herein, we investigated hippocampal astrocyte parameters in a hyperammonemic model without hepatic lesion and in acute hippocampal slices exposed to ammonia. We also measured hippocampal BDNF, a neurotrophin commonly related to synaptic plasticity and cognitive deficit, and peripheral S100B protein, used as a marker for brain damage. Hyperammonemia directly impaired astrocyte function, inducing a decrease in glutamate uptake and in the activity of glutamine synthetase, in turn altering the glutamine-glutamate cycle, glutamatergic neurotransmission and ammonia detoxification itself. Hippocampal BDNF was reduced in hyperammonemic rats via a mechanism that may involve astrocyte production, since the same effect was observed in astrocyte cultures exposed to ammonia. Ammonia induced a significant increase in S100B secretion in cultured astrocytes; however, no significant changes were observed in the serum or in cerebrospinal fluid. Data demonstrating hippocampal vulnerability to ammonia toxicity, particularly due to reduced glutamate uptake activity and BDNF content, contribute to our understanding of the neuropsychiatric alterations in HE.
Collapse
Affiliation(s)
- Fabiana Galland
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Elisa Negri
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Carollina Da Ré
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Fernanda Fróes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Liliane Strapazzon
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Maria Cristina Guerra
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Lucas Silva Tortorelli
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Marina Concli Leite
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
5
|
Wang W, Gu L, Verkhratsky A, Peng L. Ammonium Increases TRPC1 Expression Via Cav-1/PTEN/AKT/GSK3β Pathway. Neurochem Res 2016; 42:762-776. [DOI: 10.1007/s11064-016-2004-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 12/22/2022]
|
6
|
Bodega G, Segura B, Ciordia S, Mena MDC, López-Fernández LA, García MI, Trabado I, Suárez I. Ammonia Affects Astroglial Proliferation in Culture. PLoS One 2015; 10:e0139619. [PMID: 26421615 PMCID: PMC4589356 DOI: 10.1371/journal.pone.0139619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/14/2015] [Indexed: 11/19/2022] Open
Abstract
Primary cultures of rat astroglial cells were exposed to 1, 3 and 5 mM NH4Cl for up to 10 days. Dose- and time-dependent reductions in cell numbers were seen, plus an increase in the proportion of cells in the S phase. The DNA content was reduced in the treated cells, and BrdU incorporation diminished. However, neither ammonia nor ammonia plus glutamine had any effect on DNA polymerase activity. iTRAQ analysis showed that exposure to ammonia induced a significant reduction in histone and heterochromatin protein 1 expression. A reduction in cell viability was also noted. The ammonia-induced reduction of proliferative activity in these cultured astroglial cells seems to be due to a delay in the completion of the S phase provoked by the inhibition of chromatin protein synthesis.
Collapse
Affiliation(s)
- Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
- * E-mail:
| | - Berta Segura
- Instituto de Salud Carlos III, UFIEC, Unidad de Neuro-Oncología, 28220 Majadahonda, Madrid, Spain
| | - Sergio Ciordia
- Proteomics, Centro Nacional de Biotecnología/CSIC, Campus de Cantoblanco, Madrid, Spain
| | - María del Carmen Mena
- Proteomics, Centro Nacional de Biotecnología/CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Luis Andrés López-Fernández
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - María Isabel García
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Isabel Trabado
- Unidad de Cultivos, Facultad de Medicina, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Isabel Suárez
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
7
|
Wang F, Du T, Liang C, Verkhratsky A, Peng L. Ammonium increases Ca(2+) signalling and upregulates expression of Cav1.2 gene in astrocytes in primary cultures and in the in vivo brain. Acta Physiol (Oxf) 2015; 214:261-74. [PMID: 25846713 DOI: 10.1111/apha.12500] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 12/12/2022]
Abstract
AIM The primary aim of this study was to identify the effects of hyperammonaemia on functional expression of Cav1.2 L-type Ca(2+) channels in astroglia. METHODS Primary cultures of mouse astrocytes were used to study effects of chronic treatment (1-5 days) with ammonium chloride, at 1, 3 and 5 mm on depolarization-induced increases in free cytosolic Ca(2+) concentration ([Ca(2+)]i , measured with Fura-2 based microfluorimetry) in control conditions and following treatment with the L-type Ca(2+) channel inhibitor, nifedipine, or with ryanodine receptor inhibitor, ryanodine. Expression of Cav1.2 mRNA was identified with RT-PCR, whereas protein content was determined by Western blotting. Sustained hyperammonaemia in vivo was induced by daily injections of urease (33 units kg body weight(-1), i.p.) for 3 days. RESULTS Depolarization-induced [Ca(2+)]i transients sensitive to nifedipine (peak of the response) and to ryanodine (plateau phase) were significantly increased in astrocytes chronically exposed to ammonium. The ammonium-induced increase in Ca(2+) influx in astrocytes resulted from an upregulation of Cav1.2 channel's expression detected at mRNA and protein levels. Increase in Cav1.2 expression was prevented by ouabain antagonist canrenone. Similar upregulation of Cav1.2 gene expression was found in the brains of adult mice subjected to intraperitoneal injection of urease. In transgenic mice tagged with an astrocyte-specific or neurone-specific markers and treated with intraperitoneal injections of urease, the fluorescence-activated cell sorting of neurones and astrocytes demonstrated that Cav1.2 mRNA expression was upregulated in astrocytes, but not in neurones. CONCLUSIONS Ammonium-induced deregulation of astroglial Ca(2+) signalling, is, in part, associated with upregulation of Cav1.2 L-type calcium channels.
Collapse
Affiliation(s)
- F. Wang
- Laboratory of Brain Metabolic Diseases; Institute of Metabolic Disease Research and Drug Development; China Medical University; Shenyang China
| | - T. Du
- Laboratory of Brain Metabolic Diseases; Institute of Metabolic Disease Research and Drug Development; China Medical University; Shenyang China
| | - C. Liang
- Laboratory of Brain Metabolic Diseases; Institute of Metabolic Disease Research and Drug Development; China Medical University; Shenyang China
| | - A. Verkhratsky
- Faculty of Life Science; The University of Manchester; Manchester UK
- Achucarro Center for Neuroscience; IKERBASQUE; Basque Foundation for Science; Bilbao Spain
- University of Nizhny Novgorod; Nizhny Novgorod Russia
| | - L. Peng
- Laboratory of Brain Metabolic Diseases; Institute of Metabolic Disease Research and Drug Development; China Medical University; Shenyang China
| |
Collapse
|
8
|
Agusti A, Dziedzic JL, Hernandez-Rabaza V, Guilarte TR, Felipo V. Rats with minimal hepatic encephalopathy due to portacaval shunt show differential increase of translocator protein (18 kDa) binding in different brain areas, which is not affected by chronic MAP-kinase p38 inhibition. Metab Brain Dis 2014; 29:955-63. [PMID: 24307181 PMCID: PMC4087148 DOI: 10.1007/s11011-013-9461-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/21/2013] [Indexed: 01/01/2023]
Abstract
Neuroinflammation plays a main role in neurological deficits in rats with minimal hepatic encephalopathy (MHE) due to portacaval shunt (PCS). Treating PCS rats with SB239063, an inhibitor of MAP-kinase-p38, reduces microglial activation and brain inflammatory markers and restores cognitive and motor function. The translocator protein-(18-kDa) (TSPO) is considered a biomarker of neuroinflammation. TSPO is increased in brain of PCS rats and of cirrhotic patients that died in hepatic coma. Rats with MHE show strong microglial activation in cerebellum and milder in other areas when assessed by MHC-II immunohistochemistry. This work aims were assessing: 1) whether binding of TSPO ligands is selectively increased in cerebellum in PCS rats; 2) whether treatment with SB239063 reduces binding of TSPO ligands in PCS rats; 3) which cell type (microglia, astrocytes) increases TSPO expression. Quantitative autoradiography was used to assess TSPO-selective (3)H-(R)-PK11195 binding to different brain areas. TSPO expression increased differentially in PCS rats, reaching mild expression in striatum or thalamus and very high levels in cerebellum. TSPO was expressed in astrocytes and microglia. Treatment with SB239063 did not reduces (3)[H]-PK11195 binding in PCS rats. SB239063 reduces microglial activation and levels of inflammatory markers, but not binding of TSPO ligands. This indicates that SB239063-induced neuroinflammation reduction in PCS rats is not mediated by effects on TSPO. Also, enhanced TSPO expression is not always associated with cognitive or motor deficits. If enhanced TSPO expression plays a role in mechanisms leading to neurological alterations in MHE, SB239063 would interfere these mechanisms at a later step.
Collapse
Affiliation(s)
- Ana Agusti
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo Yufera, 3, 46012, Valencia, Spain
| | | | | | | | | |
Collapse
|
9
|
Liang C, Du T, Zhou J, Verkhratsky A, Peng L. Ammonium increases Ca(2+) signalling and up-regulates expression of TRPC1 gene in astrocytes in primary cultures and in the in vivo brain. Neurochem Res 2014; 39:2127-35. [PMID: 25113123 DOI: 10.1007/s11064-014-1406-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 12/12/2022]
Abstract
Rapid rise in ammonium concentration in the brain is the major pathogenic factor in hepatic encephalopathy that is manifested by state of confusion, forgetfulness and irritability, psychotic symptoms, delusions, lethargy, somnolence and, in the terminal stages, coma. Primary cultures of mouse astrocytes were used to investigate effects of chronic treatment (3 days) with ammonium chloride (ammonium) at 3 mM, this being a relevant concentration for hepatic encephalopathy condition, on metabotropic receptor agonist-induced increases in free cytosolic Ca(2+) concentration [(Ca(2+))i], measured with fura-2 based microfluorimetry and on store-operated Ca(2+) entry (SOCE) activated following treatment with the SERCA inhibitor thapsigargin. The agonists used were the β-adrenergic agonist isoproterenol, the α2-adrenergic agonist dexmedetomidine, the InsP3 receptor (InsP3R) agonist adenophostin A and ryanodine receptor agonist 4-Chloro-m-cresol (4-CMC). Agonist-induced [Ca(2+)]i responses were significantly increased in astrocytes chronically exposed to ammonium. Similarly, the SOCE, meditated by the transient receptor potential channel 1 (TRPC1), was significantly augmented. The ammonium-induced increase in SOCE was a result of an up-regulation of mRNA and protein expression of TRPC1 in astrocytes. Increase in TRPC1 expression and in SOCE were both prevented by ouabain antagonist canrenone. Similar up-regulation of TRPC1 gene expression was found in the brain of adult mice subjected to intraperitoneal injection of urease for 3 days. In transgenic mice tagged with an astrocyte-specific or a neurone-specific markers and treated with intraperitoneal injections of urease for 3 days, the fluorescence-activated cell sorting of neurones and astrocytes demonstrated that TRPC1 mRNA expression was up-regulated in astrocytes, but not in neurones.
Collapse
Affiliation(s)
- Chunguang Liang
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, No. 92 Beier Road, Heping District, Shenyang, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Viegas CM, Zanatta Â, Grings M, Hickmann FH, Monteiro WO, Soares LE, Sitta Â, Leipnitz G, de Oliveira FH, Wajner M. Disruption of redox homeostasis and brain damage caused in vivo by methylmalonic acid and ammonia in cerebral cortex and striatum of developing rats. Free Radic Res 2014; 48:659-69. [PMID: 24580146 DOI: 10.3109/10715762.2014.898842] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hyperammonemia is a common finding in children with methylmalonic acidemia and propionic acidemia, but its contribution to the development of the neurological symptoms in the affected patients is poorly known. Considering that methylmalonic acid (MMA) and propionic acid (PA) predominantly accumulate in these disorders, we investigated the effects of hyperammonemia induced by urease treatment in 30-day-old rats receiving an intracerebroventricular (ICV) injection of MMA or PA on important parameters of redox homeostasis in cerebral cortex and striatum. We evaluated glutathione (GSH) concentrations, sulfhydryl content, nitrate and nitrite concentrations, 2',7'-dichlorofluorescein (DCFH) oxidation, and the activity of antioxidant enzymes. MMA decreased GSH concentrations and sulfhydryl content and increased nitrate and nitrite concentrations in cerebral cortex and striatum from hyperammonemic rats, whereas MMA or ammonia per se did not alter these parameters. MMA plus hyperammonemia also decreased glutathione reductase activity in rat cerebral cortex, but did not affect catalase, superoxide dismutase and glutathione peroxidase activities, neither DCFH oxidation. Furthermore, ICV PA administration alone or combined with hyperammonemia did not alter any of the evaluated parameters. We also found that pre-treatment with antioxidants prevented GSH reduction and sulfhydryl oxidation, whereas N(ω)-nitro-L-arginine methyl ester (L-NAME) prevented the increased nitrate and nitrite concentrations provoked by MMA plus ammonia treatments. Histological alterations, including vacuolization, ischemic neurons, and pericellular edema, were observed in brain of hyperammonemic rats injected with MMA. The data indicate a synergistic effect of MMA and ammonia disturbing redox homeostasis and causing morphological brain abnormalities in rat brain.
Collapse
Affiliation(s)
- C M Viegas
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS , Porto Alegre, RS , Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Viegas CM, Tonin AM, Zanatta A, Seminotti B, Busanello ENB, Fernandes CG, Moura AP, Leipnitz G, Wajner M. Impairment of brain redox homeostasis caused by the major metabolites accumulating in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome in vivo. Metab Brain Dis 2012; 27:521-30. [PMID: 22798168 DOI: 10.1007/s11011-012-9327-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022]
Abstract
Ornithine, ammonia and homocitrulline are the major metabolites accumulating in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome, a genetic disorder characterized by neurological regression whose pathogenesis is still not understood. The present work investigated the in vivo effects of intracerebroventricular administration of ornithine and homocitrulline in the presence or absence of hyperammonemia induced by intraperitoneal urease treatment on a large spectrum of oxidative stress parameters in cerebral cortex from young rats in order to better understand the role of these metabolites on brain damage. Ornithine increased thiobarbituric acid-reactive substances (TBA-RS) levels and carbonyl formation and decreased total antioxidant status (TAS) levels. We also observed that the combination of hyperammonemia with ornithine resulted in significant decreases of sulfhydryl levels, reduced glutathione (GSH) concentrations and the activities of catalase (CAT) and glutathione peroxidase (GPx), highlighting a synergistic effect of ornithine and ammonia. Furthermore, homocitrulline caused increases of TBA-RS values and carbonyl formation, as well as decreases of GSH concentrations and GPx activity. Hcit with hyperammonemia (urease treatment) decreased TAS and CAT activity. We also showed that urease treatment per se was able to enhance TBA-RS levels. Finally, nitric oxide production was not altered by Orn and Hcit alone or in combination with hyperammonemia. Our data indicate that the major metabolites accumulating in hyperornithinemia-hyperammonemia-homocitrullinuria syndrome provoke lipid and protein oxidative damage and a reduction of the antioxidant defenses in the brain. Therefore, it is presumed that oxidative stress may represent a relevant pathomechanism involved in the brain damage found in patients affected by this disease.
Collapse
Affiliation(s)
- Carolina Maso Viegas
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos, 2600 - Anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Xue Z, Li B, Gu L, Hu X, Li M, Butterworth RF, Peng L. Increased Na, K-ATPase alpha2 isoform gene expression by ammonia in astrocytes and in brain in vivo. Neurochem Int 2010; 57:395-403. [PMID: 20447429 DOI: 10.1016/j.neuint.2010.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 03/28/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
In mouse astrocyte cultures identical to those used in the present study ammonia increases the production of ouabain-like compounds and Na, K-ATPase activity (Kala et al., 2000). Increased activity of Na, K-ATPase could be the result of enhanced production of ouabain-like compounds, since cultured rat astrocytes react to prolonged exposure to a high concentration of ouabain with an upregulation of the Na, K-ATPase alpha(1) isoform (Hosoi et al., 1997). However, unlike astrocytes in brain in vivo and mouse primary cultures, cultured rat astrocytes do not express the astrocyte-specific alpha(2) isoform, which shows a higher affinity for ouabain (EC(50) approximately 0.1 microM) than the alpha(1) isoform (EC(50) approximately 10 microM). In the present study we have investigated (i) effects of ammonia on mRNA and protein expression of alpha(1) and alpha(2) isoforms in primary cultures of mouse astrocytes; (ii) effects of hyperammonia obtained by urease injection on mRNA and protein expression of alpha(1) and alpha(2) isoforms in the brain in vivo; and (iii) effect on observed upregulation of gene expression of AG1478, an inhibitor of the EGF receptor-tyrosine kinase, PP1, an inhibitor of Src, and GM6001, an inhibitor of Zn(2+)-dependent metalloproteinases in the cultured cells. It was established that alpha(2) mRNA and protein expression, but not alpha(1) expression, was upregulated in cultured astrocytes by 1-4 days of exposure to 3 or 5 mM ammonia and that similar upregulation, contrasted by a downregulation of the neuronal alpha(3) subunit occurred in the hyperammonemic brain. Based on the effects of the inhibitors and literature data it is concluded that ammonia activates formation of an endogenous ouabain-like compound, which binds to the Na, K-ATPase, activating Src, which in turn stimulates the receptor-tyrosine kinase of the EGF receptor, leading to activation of the Ras, Raf, MEK pathway and phosphorylation of ERK(1/2), which eventually causes upregulation of alpha(2) gene expression.
Collapse
Affiliation(s)
- Zhanxia Xue
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | | | | | | | | | | | | |
Collapse
|
13
|
Sanz S, Lizano C, Luque J, Pinilla M. In vitro and in vivo study of glutamate dehydrogenase encapsulated into mouse erythrocytes by a hypotonic dialysis procedure. Life Sci 2000; 65:2781-9. [PMID: 10622267 DOI: 10.1016/s0024-3205(99)00546-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glutamate dehydrogenase (GDH) has been encapsulated into mouse erythrocytes by a hypotonic dialysis/isotonic resealing method. Although a low GDH entrapment yield was achieved (3.8%), this percentage appeared sufficient enough to metabolize high quantities of ammonia. Carrier cell recovery yield was 56%. Due to the decrease in cell volume and haemoglobin content, constant mean cell haemoglobin concentration (MCHC) values were obtained. The osmotic fragility curves (OFC) indicated that dialyzed/resealed-RBCs are more resistant to hypotonic haemolysis than native-RBCs. The successful in vitro ammonia degradation by GDH-RBCs was reflected in its total disappearance from the incubation medium at around 48 h. In contrast, initial ammonia levels were not affected during the incubation in the presence of native-RBCs and remained constant. Two different methods were used for the preparation of hyperammonaemic mice model. Since the intraperitoneal (i.p.) administration of ammonium acetate produced high ammonia levels that lasted only a few minutes, the i.p. administration of urease was chosen, given that it generated elevated ammonia levels for longer periods of time. Hyperammonaemic mice quickly removed high levels of circulating ammonia in the presence of GDH-RBCs, whereas in the presence of native-RBCs ammonia was slowly metabolized. These results suggest that loaded GDH-erythrocytes can be used as a potential carrier systems for the in vivo removal of high levels of ammonia from blood.
Collapse
Affiliation(s)
- S Sanz
- Dpt. Bioquímica y Biología Molecular, Campus Universitario, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| | | | | | | |
Collapse
|
14
|
Suárez I, Bodega G, Arilla E, Rubio M, Villalba R, Fernández B. Different response of astrocytes and Bergmann glial cells to portacaval shunt: an immunohistochemical study in the rat cerebellum. Glia 1992; 6:172-9. [PMID: 1282500 DOI: 10.1002/glia.440060304] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The present study was performed in order to follow the response of rat cerebellum astroglial cells (Bergmann glial cells and astrocytes) to long-term portacaval shunt (PCS), by means of glial fibrillary acidic protein (GFAP) and vimentin immunoreactivities. Bergmann glia accumulated GFAP in response to PCS, whereas astrocytes decreased GFAP immunoreactivity when compared to control rats. The increase of GFAP occurs in cells located in the cerebellar layer where glutamate is mainly released. Since the vimentin content remained unaltered in response to PCS, when compared to control rats, it can be concluded that only the GFAP filaments are affected by PCS. Nevertheless, GFAP immunoreactivity presents regional differences in the cerebellar astroglial population, and the factors responsible for these variations are still unknown.
Collapse
Affiliation(s)
- I Suárez
- Department de Biologia Celular y Genética Universidad de Alcalá Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Bodega G, Suárez I, Arilla E, Rubio M, Fernández B. Heterogeneous astroglial response in the rat spinal cord to long-term portacaval shunt: an immunohistochemical study. Glia 1991; 4:400-7. [PMID: 1834560 DOI: 10.1002/glia.440040408] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glial fibrillary acidic protein (GFAP) immunoreactivity has been used to study the astroglial response in the rat spinal cord to long-term portacaval shunt (PCS). The astroglial response in PCS rats is heterogeneous. In general, astrocytes show a loss of GFAP immunoreactivity, as well as shrinking and pyknosis in their nuclei; however, while GFAP reactivity was unchanged in the periependymal region, it was strongly increased in the dorsolateral region of the spinal cord (lateral spinal nucleus, dorsal root entry zone, and the most dorsal region of the dorsal horn). Three possibilities are postulated to explain how astrocytes, in the periependymal and dorsolateral regions, can support the effects of PCS: a) astrocytes related to glutamatergic pathways ought to possess a more efficient ammonia uptake and detoxification system, b) long-term PCS can activate nociceptive pathways (substancePergic fibers), and c) astrocytes located in periependymal and dorsolateral regions can be exposed to lower concentrations of ammonia because of its diffusion into the cerebro-spinal fluid close to these regions.
Collapse
Affiliation(s)
- G Bodega
- Dpto. Biología Celular y Genética, Universidad de Alcalá, Spain
| | | | | | | | | |
Collapse
|
16
|
Jessy J, Mans AM, DeJoseph MR, Hawkins RA. Hyperammonaemia causes many of the changes found after portacaval shunting. Biochem J 1990; 272:311-7. [PMID: 1702623 PMCID: PMC1149700 DOI: 10.1042/bj2720311] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. Portacaval shunting in rats results in several metabolic alterations similar to those seen in patients with hepatic encephalopathy. The characteristic changes include: (a) diminution of cerebral function; (b) raised plasma ammonia and brain glutamine levels; (c) increased neutral amino acid transport across the blood-brain barrier; (d) altered brain and plasma amino acid levels; and (e) changes in brain neurotransmitter content. The aetiology of these abnormalities remains unknown. 2. To study the degree to which ammonia could be responsible, rats were made hyperammonaemic by administering 40 units of urease/kg body weight every 12 h and killing the rats 48 h after the first injection. 3. The changes observed in the urease-treated rats were: (a) whole-brain glucose use was significantly depressed, whereas the levels of high-energy phosphates remained unchanged; (b) the permeability of the blood-brain to barrier to two large neutral amino acids, tryptophan and leucine, was increased; (c) blood-brain barrier integrity was maintained, as indicated by the unchanged permeability-to-surface-area product for acetate; (d) plasma and brain amino acid concentrations were altered; and (e) dopamine, 5-hydroxytryptamine (serotonin) and noradrenaline levels in brain were unchanged, but 5-hydroxyindoleacetic acid (5-HIAA), a metabolite of 5-hydroxytryptamine, was elevated. 4. The depressed brain glucose use, increased tryptophan permeability-to-surface-area product, elevated brain tryptophan content and rise in the level of cerebral 5-HIAA were closely correlated with the observed rise in brain glutamine content. 5. These results suggest that many of the metabolic alterations seen in rats with portacaval shunts could be due to elevated ammonia levels. Furthermore, the synthesis or accumulation of glutamine may be closely linked to cerebral dysfunction in hyperammonaemia.
Collapse
Affiliation(s)
- J Jessy
- Department of Physiology and Biophysics, University of Health Sciences/The Chicago Medical School, IL 60064
| | | | | | | |
Collapse
|
17
|
Bosman DK, Deutz NE, De Graaf AA, vd Hulst RW, Van Eijk HM, Bovée WM, Maas MA, Jörning GG, Chamuleau RA. Changes in brain metabolism during hyperammonemia and acute liver failure: results of a comparative 1H-NMR spectroscopy and biochemical investigation. Hepatology 1990; 12:281-90. [PMID: 1975248 DOI: 10.1002/hep.1840120215] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effects of hyperammonemia on brain function have been studied in three different experimental models in the rat: acute liver ischemia, urease-treated animals and methionine sulfoximine-treated animals. To quantify the development of encephalopathy, clinical grading and electroencephalographic spectral analysis were used as indicators. In all three experimental models brain ammonia concentrations increased remarkably associated with comparable increases in severity of encephalopathy. Furthermore, in vivo 1H-nuclear magnetic resonance spectroscopy of a localized cerebral cortex region showed a decrease in glutamate concentration in each of the aforementioned experimental models. This decreased cerebral cortex glutamate concentration was confirmed by biochemical analysis of cerebral cortex tissue post mortem. Furthermore, an increase in cerebral cortex glutamine and lactate concentration was observed in urease-treated rats and acute liver ischemia rats. As expected, no increase in cerebral cortex glutamine was observed in methionine sulfoximine-treated rats. These data support the hypothesis that ammonia is of key importance in the pathogenesis of acute hepatic encephalopathy. Decreased availability of cerebral cortex glutamate for neurotransmission might be a contributing factor to the pathogenesis of hyperammonemic encephalopathy. A surprising new finding revealed by 1H-nuclear magnetic resonance spectroscopy was a decrease of cerebral cortex phosphocholine compounds in all three experimental models. The significance of this finding, however, remains speculative.
Collapse
Affiliation(s)
- D K Bosman
- Laboratory of Experimental Medicine, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Brasileiro-Filho G, Guimaraes RC, Pittella JE. Quantitation and karyometry of cerebral neuroglia and endothelial cells in liver cirrhosis and in the hepatosplenic schistosomiasis mansoni. Acta Neuropathol 1989; 77:582-90. [PMID: 2501965 DOI: 10.1007/bf00687885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A morphological, karyometric, and quantitative study of cerebral neuroglia and endothelial cells of blood capillaries was done in cirrhotic and in hepatosplenic schistosomotic human autopsied cases. Cluster analysis applied to them revealed three subgroups (cirrhosis and schistosomiasis polar groups and one intermediate). The comparison of these three groups with a control revealed increased numbers of astrocytes, oligodendrocytes and endothelial cells, but no nuclear enlargement in the schistosomiasis group; the cirrhosis group exhibited a pronounced nuclear enlargement of both astrocyte and oligodendrocytes but no increase in cell numbers. The intermediate group, which encompasses the majority of pathological cases, is heterogeneous but on average behave as the cirrhosis group in that nuclear enlargement, but no increase in cell numbers, was noted. Such changes could represent a response of the nervous system to the metabolic disturbances present in hepatic and/or portal-systemic encephalopathy. There was a positive correlation between glial and endothelial cell numbers in cerebral cortex, suggesting a functional relationship between the glial cells and the capillary bed. This study points out the importance of clustering the cases, because the physiopathological status of individuals belonging to the same nosological condition can be different. Comparisons considering this aspect should be useful in understanding the progression of the pathological process.
Collapse
Affiliation(s)
- G Brasileiro-Filho
- Departamento de Anatomia Patologica, Faculdade de Medicina, UFMG, Belo Horizonte-MG, Brazil
| | | | | |
Collapse
|
19
|
Koo H, Roessmann U. Astrocyte response to perinatal liver disease, hyperammonemia, and hyperbilirubinemia: an immunohistochemical study. PEDIATRIC PATHOLOGY 1988; 8:301-11. [PMID: 3174510 DOI: 10.3109/15513818809042973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Astrocytic reaction to perinatal brain damage, which is caused by hyperammonemia, liver disease, hyperbilirubinemia, and a few other conditions, was studied using immunohistochemical methods for the demonstration of glial fibrillary acidic protein (GFAP). We found no increase in GFAP expression in those areas where Alzheimer II astrocytes usually proliferate. Diffuse astrocytic proliferation in the white matter and focal reaction in gray matter, which we ascribe to complicating factors, the foremost of which is anoxia, was found in many of the cases.
Collapse
Affiliation(s)
- H Koo
- Division of Neuropathology, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
20
|
Jones DB, Mullen KD, Roessle M, Maynard T, Jones EA. Hepatic encephalopathy. Application of visual evoked responses to test hypotheses of its pathogenesis in rats. J Hepatol 1987; 4:118-26. [PMID: 3033057 DOI: 10.1016/s0168-8278(87)80018-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A previous study of the patterns of visual evoked responses (VERs) in rats was interpreted as providing support for the synergistic neurotoxins hypothesis of the pathogenesis of hepatic encephalopathy (HE) due to fulminant hepatic failure (FHF). In contrast, other studies of the patterns of VERs in rabbits with different encephalopathies were interpreted as providing support for the concept that increased GABA-ergic tone may contribute to the neural inhibition of HE due to FHF. To attempt to resolve the discordant findings in these studies, additional studies of VERs have been undertaken in rats. To induce increased tissue levels of ammonia, mercaptans and fatty acids which are found in HE due to FHF, carefully predetermined doses of urease, dimethyldisulphide and octanoic acid were administered. The (pre-seizure) encephalopathy induced by these three agents was associated with abnormalities of the VER waveform that were fundamentally different from the abnormalities of the VER waveform associated with HE due to thioacetamide-induced FHF. However, the VER waveform in this model of HE due to FHF resembled closely that associated with pentobarbital-induced encephalopathy. These findings are in satisfactory agreement with those in the previous analogous studies in rabbits. They do not provide support for the synergistic neurotoxins hypothesis of the pathogenesis of HE, but are entirely consistent with increased GABA-ergic tone contributing to the neural inhibition of HE due to FHF.
Collapse
|
21
|
Abstract
Acute and sustained hyperammonemia in mice resulted in a decrease of the transition temperature of Arrhenium plots of synaptosomal (Na+-K+)ATPase. The activation energies in both phases of the plots were increased. "In vitro" addition of ammonia produced similar changes. This seems to indicate that ammonia alters the physical properties of synaptosomal membranes. The "in vitro" interaction of ammonia and ethanol at the membrane level was also investigated. Both agents together produced a further shift in the transition temperature and affected the activation energies. The relevance of these findings regarding the mechanism of ammonia toxicity and the protective effect of ethanol thereon is discussed.
Collapse
|
22
|
Abstract
Inborn errors of the urea cycle, liver malfunction and drug-induced hepatotoxicity are causes of life-threatening encephalopathies arising from hyperammonemia. L-Carnitine prevented entirely ammonia toxicity in mice when injected intraperitoneally 30 min before a lethal dose of ammonium acetate. Survival depends on the dose of L-carnitine injected, e.g., 0, 60, 70, 80 and 100% with 0, 1, 2, 8 and 16 mmol L-carnitine/kg, respectively. At the highest doses L-carnitine abolishes the convulsions that accompany acute ammonia intoxication. At lower doses it delayed their onset. The protective effect was associated with a marked decrease of blood ammonia, while in unprotected mice ammonemia was lethal in less than 15 min. When sustained hyperammonemia was induced by urease injections, protection was also obtained. The mechanism of protection is under investigation, however, since L-carnitine facilitates fatty acid entry into mitochondria, possibly ATP or reducing equivalents are increased.
Collapse
|
23
|
O'Connor JE, Renau-Piqueras J, Grisolía S. Effects of urease-induced hyperammonemia in mouse liver. Ultrastructural, stereologic and biochemical study. VIRCHOWS ARCHIV. B, CELL PATHOLOGY INCLUDING MOLECULAR PATHOLOGY 1984; 46:187-97. [PMID: 6148800 DOI: 10.1007/bf02890308] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intraperitoneal injections of urease induced a marked and sustained hyperammonemia in mice. Ultrastructural and stereologic analysis of hepatocytes from urease-treated mice showed striking changes in the mitochondria, rough and smooth endoplasmic reticulum and lysosomes. Thus, mitochondria became larger and rounder, and contained a less electron-dense matrix although their volume density remained similar to that of control cells. In addition, increases in the smooth and rough reticulum and the lysosomal compartment, were observed. Biochemical analysis of the livers from urease-treated mice revealed a significant increase in the intracellular content of water and lipids. Although the mechanism by which ammonia induces these changes remains unclear, the possible relationship between these findings and those described in the liver of humans and experimental animals in conditions of sustained hyperammonemia is discussed.
Collapse
|
24
|
Pilbeam CM, Anderson RM, Bhathal PS. The brain in experimental portal-systemic encephalopathy. II. Water and electrolyte changes. J Pathol 1983; 140:347-55. [PMID: 6875707 DOI: 10.1002/path.1711400404] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The water content and amounts of sodium, potassium and chloride were measured in the brains of normal rats, rats with PCA, normal rats fed ammoniated cationic exchange resin, and rats with PCA fed the resin. Plasma electrolytes and ammonia levels were also measured, and sodium and chloride spaces were calculated. Rats with PCA showed increased water content, sodium space and chloride space in the brainstem compared to controls. Rats with PCA fed ammoniated resin showed increased chloride content and Na+:K+ ratio in the brainstem, and an increased chloride space in the brainstem. In these rats the chloride spaces in the cerebrum and cerebellum exceeded the sodium spaces. It is concluded that high circulating ammonia levels can in vivo produce ionic shifts which may interfere with nervous function. It is also concluded that increased cytoplasmic osmolarity produced by ammonium ion-induced stimulation of (Na+ + Ka+) ATPase may result in the appearance of swollen astrocytes in conventional electron micrographs.
Collapse
|
25
|
Pilbeam CM, Anderson RM, Bhathal PS. The brain in experimental portal-systemic encephalopathy. I. Morphological changes in three animal models. J Pathol 1983; 140:331-45. [PMID: 6875706 DOI: 10.1002/path.1711400403] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Morphological features of three models of portal-systemic encephalopathy in the rat were studied and compared with plasma ammonia levels and clinical observations. Carbon tetrachloride-induced cirrhosis with terminal coma produced a wide variety of structural changes in the brain whose severity was related to plasma ammonia levels at the time of death. These changes included diffuse gliosis, Alzheimer cells and focal neuronal necrosis but did not include spongiform changes in cerebral or cerebellar cortex. Porta-caval anastomosis (PCA) did not appear to produce any significant neurological symptoms. Rats with PCA of durations 1-30 weeks were studied and over this time the structural changes included astrocytic nuclear swelling, swelling of perivascular astrocytic foot-processes and spongiform change in the molecular layer of the cerebellum. No evidence of Alzheimer cells or gliosis was seen and plasma ammonia levels at no stage exceed twice the normal levels. Porta-caval anastomosis followed by gavage feeding with ammoniated cationic exchange resin produced severe neurological symptoms and marked hyperammonaemia. In these animals not only astrocytes but oligodendrocytes and neurons showed nuclear and cytoplasmic swelling and numerous Alzheimer type II cells were seen, together with a diffuse gliosis, but no evidence of spongiform change in the cerebral or cerebellar cortex was seen. It is concluded that ammonium ions are important in the genesis of morphological changes in the brain in rat models of portal-systemic encephalopathy, but the relevance of these changes to neurological dysfunction is uncertain.
Collapse
|
26
|
Laursen H. Cerebral vessels and glial cells in liver disease. A morphometric and electron microscopic investigation. Acta Neurol Scand 1982; 65:381-412. [PMID: 7113654 DOI: 10.1111/j.1600-0404.1982.tb03097.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
Laursen H, Westergaard E. The permeability of the blood-brain barrier and cell membranes to horseradish peroxidase in hyperammonaemia. Acta Neuropathol 1981; 54:293-9. [PMID: 7023171 DOI: 10.1007/bf00697003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
28
|
|
29
|
Laursen H, Diemer NH. Capillary size, density and ultrastructure in brain of rats with urease-induced hyperammonaemia. Acta Neurol Scand 1980; 62:103-15. [PMID: 7211159 DOI: 10.1111/j.1600-0404.1980.tb03010.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The capillary diameter, the capillary area as percentage of brain area, the minimal intercapillary distance, the harmonic mean basement membrane thickness and the mitochondrial content of capillary endothelium were estimated in the striatum of normal rats and after 4 days' urease-induced hyperammonaemia. Electronic image analysis, planimetry and classification with a ruler were the methods used. The capillary diameter was increased after 4 days' hyperammonaemia. The mitochondrial content of capillary endothelium was decreased after hyperammonaemia, while all other parameters were unchanged. Using an inverse logarithmic transformation, the distribution of the basement membrane intercepts was approximately normal. The increased capillary diameter could be a result of vascular paralysis induced by hyperammonaemia. The metabolic working capability is decreased in hyperammonaemia but the diffusion properties across the basement membrane and in the brain parenchyma appear from a morphological point of view to be unchanged.
Collapse
|
30
|
Laursen H, Diemer NH. Morphometry of astrocyte and oligodendrocyte ultrastructure after portocaval anastomosis in the rat. Acta Neuropathol 1980; 51:65-70. [PMID: 7435142 DOI: 10.1007/bf00688851] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ultrastructure of astrocytes and oligodendrocytes was investigated in rats 10 days, 30 days, and 10 weeks after portocaval anastomosis (PCA). Cell and nuclear sizes were measured by planimetry on randomly sampled cells magnified X 24,000. The volume fractions of mitochondria, glia fibrils, and lipofuscin granules were measured in astrocytes by electronic image analysis. The mitochondrial profile area distribution and oligodendrocyte mitochondrial content were likewise estimated. All PCA animals had an increased astrocyte cell and cytoplasmic area, and after correction for cytoplasmic edema all groups had an enhanced mitochondrial fraction and mitochondrial number. The mitochondrial sizes were increased in all PCA groups. The mitochondrial profile area distribution curves did not suggest more than one group of mitochondria. All PCA groups had increased fractions of lipofuscin granules and glia fibrils. The oligodendrocytes had a slight fall in cell, nuclear, and cytoplasmic area after 30 days of shunting, and the mitochondrial fraction was diminished. After 10 weeks of PCA, all changes were reversed to normal values. It is concluded that the astrocytes are the active cells in the brain metabolism of ammonium. The oligodendrocytes seem to be dependent on neuronal integrity and do not contribute to the brain ammonium metabolism. The increase in astrocyte lipofuscin granules content may be explained by a beginning neuronal loss.
Collapse
|
31
|
Laursen H, Diemer NH. Morphometric studies of rat glial cell ultrastructure after urease-induced hyperammonaemia. Neuropathol Appl Neurobiol 1979; 5:345-62. [PMID: 514447 DOI: 10.1111/j.1365-2990.1979.tb00634.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ultrastructure of astrocytes and oligodendrocytes was investigated in hyperammonaemic rats injected daily with urease for 4 days. Glial cells were randomly photographed and magnified x28 000. Cell and nuclear sizes were estimated by planimetry and mitochondrial size and density were measured by image analysis. After 4 days of hyperammonaemia the astrocyte cytoplasmic area was increased by 46%. Mitochondrial area was increased by 20%, but after correction for cytoplasmic oedema the number and size of mitochondria were not significantly increased. The nuclear and cytoplasmic areas of oligodendrocytes were unchanged. The mitochondria of oligodendrocytes were small in the hyperammonaemic group and so was their percentage area to cytoplasmic area, but their numbers were unchanged. It was concluded that hyperammonaemia induces astrocyte oedema and increases the astrocyte mitochondrial content. These findings support the assumption that the astrocytes are the active cells in the brain metabolism of ammonia. The decrease in oligodendrocyte mitochondrial content could be considered a point against an active function of oligodendrocyte mitochondria in ammonia metabolism in hyperammonaemia.
Collapse
|
32
|
Diemer NH. Glial and neuronal changes in experimental hepatic encephalopathy. A quantitative morphological investigation. ACTA NEUROLOGICA SCANDINAVICA. SUPPLEMENTUM 1978; 71:1-144. [PMID: 362795 DOI: 10.1111/j.1600-0404.1978.tb07641.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Diemer NH, Tonnesen K. Glial changes in pigs with porto-caval anastomosis and temporary or total hepatic artery clamping. ACTA PATHOLOGICA ET MICROBIOLOGICA SCANDINAVICA. SECTION A, PATHOLOGY 1977; 85:721-30. [PMID: 920186 DOI: 10.1111/j.1699-0463.1977.tb00464.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The number and size of astrocyte, oligodendrocyte, and neurone nuclie were determined in cortex and corpus striatum (putamen) of pigs with porto-caval anastomosis (PCA) and total or temporary clamping of the hepatic artery. Animals with PCA and total clamping became comatose and died on average 18 1/2 hours postoperatively. Their brains showed slight oedema but no changes in the glial and neurone nuclear numbers. Animals with PCA and temporary clamping of the hepatic artery (30-60 min.) all survived without clinical symptoms of encephalopathy. However, the brains showed vacuolization of the deeper cortical layers, diffuse occurrence of Alzheimer type II astrocytes, and the counts revealed an increased number of astrocytic nuclei. The total number of glial cells decreased due to loss of oligodendrocytes, but the number of neurones was unchanged. The findings indicate that the neuropathological changes after PCA and temporary hepatic artery clamping are concerned primarily with changes of the glial cells.
Collapse
|
34
|
Diemer NH, Klee J, Schröder H, Klinken L. Glial and nerve cell changes in rats with porto-caval anastomosis. Acta Neuropathol 1977; 39:59-68. [PMID: 899732 DOI: 10.1007/bf00690386] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nuclear size and density were determined in brain regions with different glial--neurone composition in rats up to 35 weeks after porto-caval anastomosis. In the white matter, i.e. corpus callosum, both the total cell count and the percentage of astrocytes and oligodendrocytes were unchanged. In the corpus striatum, where the glial/neurone ratio is about 1, the number of nuclei registered as astrocytes increased, and after 35 weeks astrocytes comprised 29% of glial cells (compared with 15% in controls). However, the number of oligodendrogial nuclei decreased simultaneously, leaving the total glial number unchanged. In the animals with longest experimental period there was a 15% loss of neurones. In a region with higher glial/neurone ratio, i.e. the Purkinje cell layer, the neurones showed a similar reduction, whereas the number of Bergmann astrocyte nuclei increased less than striatal astrocytes. A small group of animals with pronounced signs of encephalopathy had a higher loss of neurones and, furthermore, the glial number in corpus striatum and callosum was reduced, due to loss of oligodendrocytes. Despite the use of perfusion fixation, the size of astrocyte nuclei increased, this was reversible, as only slight changes were seen after 35 weeks. A possible explanation of the increase in astrocyte nuclear count and decrease in oligodendroglial count could be that nuclei normally considered to be oligodendroglial are transformed into nuclei with morphological characteristics of astrocytes.
Collapse
|