1
|
Mohammed R, Nader SM, Hamza DA, Sabry MA. Public health concern of antimicrobial resistance and virulence determinants in E. coli isolates from oysters in Egypt. Sci Rep 2024; 14:26977. [PMID: 39505944 PMCID: PMC11541584 DOI: 10.1038/s41598-024-77519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
The emergence of critical-priority E. coli, carrying a wide array of resistance and virulence factors through food sources, poses a significant challenge to public health. This study aimed to investigate the potential role of oysters sold in Egypt as a source for E. coli, identify their resistance and virulence-associated gene profiles, and assess associated zoonotic risks. A total of 33 pooled fresh oyster samples were obtained from various retail fish markets in Egypt and examined bacteriologically for the presence of E. coli. Antimicrobial resistance was performed by the disk-diffusion method, and the multiple antibiotic resistance index (MAR) was calculated. All isolates were screened for extended-spectrum beta-lactamase (ESBL) (blaTEM, blaSHV, blaCTX-M, and blaOXA-1), plasmid-mediated AmpC blaCMY-2, and carbapenemases (blaKPC, blaNDM, blaVIM, and blaOXA-48) genes by Polymerase chain reaction. Moreover, the presence of virulence-encoding genes was investigated. The virulent MDR strains were clustered using R with the pheatmap package. The prevalence of E. coli was 72.7% (24 out of 33), with 66.7% of the isolates classified as multi-drug resistant, and 75% exhibited MAR values exceeding the 0.2 threshold. Different antimicrobial sensitivity phenotypes and genotype profiles were identified in E. coli isolates. The most prevalent gene detected among all isolates was blaTEM (22/24, 91.7%). Notably, all non-ESBL producers were positive for blaCMY2. Carbapenem-resistant and carbapenem-intermediate strains were carbapenemase producers, with the predominance of the blaKPC gene (11/24, 45.8%). Remarkably, twelve out of sixteen virulence genes were identified, with papC (21/24, 87.5%) and sfa (16/24, 66.7%) genes being the most prevalent. Most isolates carry virulence genes primarily associated with extra-intestinal pathogenic E. coli (ExPEC) (87.5%) and enteropathogenic (EPEC) (70.8%) pathotypes. Four E. coli isolates exhibit cluster patterns. This study provides the first insight into the emergence of virulent MDR E. coli among oysters in Egypt. It underscores the potential role of oysters as a source for disseminating these strains within aquatic ecosystems, presenting a possible threat to public health.
Collapse
Affiliation(s)
- Rahma Mohammed
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Sara M Nader
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| | - Dalia A Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt.
| | - Maha A Sabry
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt
| |
Collapse
|
2
|
Chaisaeng S, Chopjitt P, Kasemsiri P, Putthanachote N, Boueroy P, Takeuchi D, Akeda Y, Hamada S, Kerdsin A. High prevalence of ESBL-producing E. coli phylogroup B2 clinical isolates in northeastern Thailand. BMC Microbiol 2024; 24:425. [PMID: 39438804 PMCID: PMC11495076 DOI: 10.1186/s12866-024-03582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Production of extended-spectrum β-lactamases (ESBLs) is a common resistance mechanism in Enterobacteriaceae, leading to serious hospital-acquired infections. This study aimed to assess phenotypic, phylogenetic, and antibiotic resistance patterns among ESBL-producing Escherichia coli isolates recovered from two rural tertiary hospitals in Thailand. RESULTS Among 467 Enterobacteriaceae isolates, E. coli was the most prevalent 356 (76.2%) followed by K. pneumoniae 88 (18.8%), K. aerogenes 8 (1.7%), K. variicola 3 (0.6%), K. quasipneumoniae 1 (0.2%%), K. oxytoca 1 (0.2%), and unidentified 9 (1.9%). Of the 202 cephalosporin-resistant E. coli isolates, 195 (96.5%) were ESBL-producing and 7 (3.5%) were non-ESBL-producing. Clermont typing revealed that phylogroup B2 was predominant (43.3%), followed by phylogroups F (11.3%), D (10.3%), C (9.7%), and A (8.7%). Among the beta-lactamase-encoding genes, blaCTX-M (83.6%) and blaTEM (81.0%) were widely found among the isolates, and blaCTX-M-1 (60.7%) was the most common among the five blaCTX-M subgroups detected. The predominant ESBL was blaCTX-M-15 (58.3%). All isolates were resistant to cefotaxime (100%) and ampicillin (100%), followed by ciprofloxacin (91.3 %), ceftazidime (72.8 %), and tetracycline (64.1%). CONCLUSION Our findings show that phylogroup B2 was the most prevalent phylogroup among ESBL-producing E. coli isolates in northeastern Thailand. Notably, the isolates mostly carried the blaCTX-M gene(s).
Collapse
Affiliation(s)
- Sumontha Chaisaeng
- Faculty of Public Health, Kasetsart University Chalermphrakiat, Sakon Nakhon Campus, Sakon, Nakhon, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat, Sakon Nakhon Campus, Sakon, Nakhon, Thailand.
| | - Pachara Kasemsiri
- Clinical Microbiology Laboratory, Sakon Nakhon Hospital, Sakon Nakhon, Thailand
| | | | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat, Sakon Nakhon Campus, Sakon, Nakhon, Thailand
| | - Dan Takeuchi
- Japan-Thailand Research Collaboration Center on Emerging and Re-Emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Thailand
| | - Yukihiro Akeda
- Japan-Thailand Research Collaboration Center on Emerging and Re-Emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Thailand
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sihigeyuki Hamada
- Japan-Thailand Research Collaboration Center on Emerging and Re-Emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Thailand
| | - Anusuk Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat, Sakon Nakhon Campus, Sakon, Nakhon, Thailand
| |
Collapse
|
3
|
Chaisaeng S, Phetburom N, Kasemsiri P, Putthanachote N, Wangnadee N, Boueroy P, Kerdsin A, Chopjitt P. Phenotypic and Genotypic Profiles of Extended-Spectrum Beta-Lactamase-Producing Multidrug-Resistant Klebsiella pneumoniae in Northeastern Thailand. Antibiotics (Basel) 2024; 13:917. [PMID: 39452184 PMCID: PMC11505529 DOI: 10.3390/antibiotics13100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
The global emergence of extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae presents a significant public health threat and complicates antibiotic treatment for infections. This study aimed to determine the prevalence of ESBL-producing K. pneumoniae in a clinical setting, analyze their antimicrobial susceptibility profiles, and characterize both phenotypic and genetic determinants. A total of 507 non-duplicate clinical isolates of Enterobacterales were collected between 2019 and 2020, and third-generation cephalosporin resistance was screened by disk diffusion. Identification of K. pneumoniae was confirmed using biochemical tests and PCR with species-specific primers. Antimicrobial susceptibility testing was conducted using disk diffusion, and phenotypic ESBL production was confirmed using the combined disk method. Multiplex PCR detected ESBL genes (blaTEM, blaSHV, and blaCTX-M) and identified blaCTX-M groups. The genetic relatedness of ESBL-producing strains was assessed using the ERIC-PCR approach. Fitty-four isolates were confirmed as ESBL producers, all classified as multidrug-resistant (MDR). All ESBL-producing K. pneumoniae isolates exhibited resistance to ampicillin and cefotaxime, with high resistance rates for ciprofloxacin (98.2%), azithromycin (94.4%), piperacillin-tazobactam (88.9%), and trimethoprim (83.3%). Genotypic analysis revealed blaCTX-M was present in 94.4% of isolates, blaSHV in 87%, and blaTEM in 55.5%. The blaCTX-M-1 group was the most prevalent, accounting for 96.1% of isolates. Co-harboring of blaCTX-M, blaSHV, and blaTEM occurred in 42.6% of isolates, with co-carrying of blaCTX-M, and blaSHV was observed in 23/54 isolates. The ERIC-PCR analysis revealed 15 distinct types, indicating high genetic diversity. These findings highlight the urgent need for ongoing monitoring to control the spread of ESBL among K. pneumoniae and emphasize the importance of early detection and appropriate antibiotic selection for effectively treating infection caused by these pathogens.
Collapse
Affiliation(s)
- Sumontha Chaisaeng
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (S.C.); (N.P.); (P.B.); (A.K.)
| | - Nattamol Phetburom
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (S.C.); (N.P.); (P.B.); (A.K.)
| | - Pachara Kasemsiri
- Clinical Microbiology Laboratory, Sakon Nakhon Hospital, Sakon Nakhon 47000, Thailand;
| | - Nuntiput Putthanachote
- Clinical Microbiology Laboratory, Roi-Et Hospital, Roi-Et 45000, Thailand; (N.P.); (N.W.)
| | - Naowarut Wangnadee
- Clinical Microbiology Laboratory, Roi-Et Hospital, Roi-Et 45000, Thailand; (N.P.); (N.W.)
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (S.C.); (N.P.); (P.B.); (A.K.)
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (S.C.); (N.P.); (P.B.); (A.K.)
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (S.C.); (N.P.); (P.B.); (A.K.)
| |
Collapse
|
4
|
Torkan A, Askari Badouei M. Investigating the virulence-associated genes and antimicrobial resistance of Escherichia fergusonii Isolated from diseased ostrich chicks. Comp Immunol Microbiol Infect Dis 2024; 112:102226. [PMID: 39168034 DOI: 10.1016/j.cimid.2024.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
This study investigates the presence of virulence-associated genes and antimicrobial resistance (AMR) in Escherichia fergusonii isolates obtained from ostrich chicks. A total of 287 isolates were recovered from 106 fecal samples from ostrich chicks suffering from diarrhea and subjected to molecular identification and biochemical characterization. E. fergusonii was detected in 10 samples (9.4 %) using two PCR-detection protocols. Notably, the isolates lacked various virulence genes commonly associated with pathogenic E. coli including elt, est, stx, eae, ehly, cdt, iss, iutA, iroN, hlyA, ompT, except for one isolate harboring the astA gene. Antimicrobial susceptibility testing revealed that all isolates were susceptible to ciprofloxacin, while high resistance was observed against amoxicillin clavulanate (AMC), trimethoprim-sulfamethoxazole (SXT), and doxycycline (D). Moreover, eight isolates displayed multidrug resistance (MDR) and four exhibited resistance to 9-11 antimicrobials. The most frequent resistance gene was sul2, which was present in all isolates; the other resistance genes detected consisted of int1 (4/10), int2 (3/10), blaCMY (2/10), and qnrS, blaTEM, blaCMY, blaCTX-M, and flo each were detected only in one E. fergusonii Isolate. Plasmid replicon typing identified the presence of I1 (7/10), N (5/10), and Y (1/10). This study provides valuable insights into the virulence and antimicrobial resistance of E. fergusonii isolates from ostrich chicks, highlighting the complexity of antimicrobial resistance mechanisms exhibited by these bacteria. Further research is essential to understand the transmission dynamics and clinical implications of these findings in veterinary and public health settings.
Collapse
Affiliation(s)
- Afagh Torkan
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mahdi Askari Badouei
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| |
Collapse
|
5
|
Zhang Y, Zou C, Qin J, Li M, Wang X, Wei T, Wang H. Predictors of Mortality, Drug Resistance, and Determinants among Carbapenem-Resistant Enterobacteriales Infections in Chinese Elderly Patients. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:5459549. [PMID: 39234528 PMCID: PMC11374419 DOI: 10.1155/2024/5459549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 09/06/2024]
Abstract
Elderly patients with carbapenem-resistant Enterobacteriales (CRE) infections represent considerable mortality rates. But data on the risk factors for the death of elderly patients following such infection remain limited. We aimed to assess the clinical outcomes, identify mortality-associated risk factors, and determine the antibiotic resistance and resistance genes of isolates for these patients. Hospitalized patients aged ≥65 years with CRE infection from January 2020 to December 2020 were retrospectively reviewed. Isolates identification and molecular characterization of CRE were carried out. Logistic regression analysis was applied to assess the potential factors associated with mortality. Of the 123 elderly patients with CRE infection included in our study, the all-cause mortality rate was 39.8% (49/123). The most prevalent pathogen was carbapenem-resistant Klebsiella pneumoniae (CRKP, 116 of 123). The overall rates of multidrug-resistant (MDR) and extensively drug-resistant (XDR) were 100.0% and 66.7%. All CRE isolates exclusively harbored a singular variant of carbapenemase gene, such as bla KPC-2, bla IMP-4, bla NDM-5, or bla OXA-48, while 98.4% of isolates harbored more than one β-lactamase gene, of which 106 (86.2%) isolates harbored bla CTX-M, 121 (98.4%) isolates harbored bla TEM, and 116 (94.3%) isolates harbored bla SHV. Multivariable logistic regression analysis revealed that mechanical ventilation (adjusted odds ratio (AOR) = 33.607, 95% confidence interval (CI): 4.176-270.463, P < 0.001), use of tigecycline during hospitalization (AOR = 5.868, 95% CI: 1.318-26.130, P = 0.020), and APACHE II score (AOR = 1.305, 95% CI: 1.161-1.468, P < 0.001) were independent factors associated with increasing the mortality of patients with CRE infection, while admission to intensive care unit (ICU) during hospitalization (AOR = 0.046, 95% CI: 0.004-0.496, P = 0.011) was a protective factor. CRE-infected elderly patients with mechanical ventilation, use of tigecycline during hospitalization, and high APACHE II score were related to poor outcomes. The isolates carried various antibiotic genes and presented high antibiotic resistance. These findings provide crucial guidance for clinicians to devise appropriate strategies for treatment.
Collapse
Affiliation(s)
- Yufei Zhang
- Department of Clinical Laboratory Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Chengyun Zou
- Department of Clinical Laboratory Shanghai Fifth People's Hospital Fudan University, Shanghai 200240, China
| | - Jie Qin
- Department of Clinical Laboratory Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Muyi Li
- Department of Clinical Laboratory Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xing Wang
- Department of Laboratory Medicine Shanghai Children's Medical Center Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Tian Wei
- Department of Clinical Laboratory Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Haiying Wang
- Department of Clinical Laboratory Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
6
|
Shanta AS, Islam N, Al Asad M, Akter K, Habib MB, Hossain MJ, Nahar S, Godman B, Islam S. Resistance and Co-Resistance of Metallo-Beta-Lactamase Genes in Diarrheal and Urinary-Tract Pathogens in Bangladesh. Microorganisms 2024; 12:1589. [PMID: 39203431 PMCID: PMC11356267 DOI: 10.3390/microorganisms12081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/03/2024] Open
Abstract
Carbapenems are the antibiotics of choice for treating multidrug-resistant bacterial infections. Metallo-β-lactamases (MBLs) are carbapenemases capable of hydrolyzing nearly all therapeutically available beta-lactam antibiotics. Consequently, this research assessed the distribution of two MBL genes and three β-lactamases and their associated phenotypic resistance in diarrheal and urinary-tract infections (UTIs) to guide future policies. Samples were collected through a cross-sectional study, and β-lactamase genes were detected via PCR. A total of 228 diarrheal bacteria were isolated from 240 samples. The most predominant pathogens were Escherichia coli (32%) and Klebsiella spp. (7%). Phenotypic resistance to amoxicillin-clavulanic acid, aztreonam, cefuroxime, cefixime, cefepime, imipenem, meropenem, gentamicin, netilmicin, and amikacin was 50.4%, 65.6%, 66.8%, 80.5%, 54.4%, 41.6%, 25.7%, 41.2%, 37.2%, and 42.9%, respectively. A total of 142 UTI pathogens were identified from 150 urine samples. Klebsiella spp. (39%) and Escherichia coli (24%) were the major pathogens isolated. Phenotypic resistance to amoxicillin-clavulanic acid, aztreonam, cefuroxime, cefixime, cefepime, imipenem, meropenem, gentamicin, netilmicin, and amikacin was 93.7%, 75.0%, 91.5%, 93.7%, 88.0%, 72.5%, 13.6%, 44.4%, 71.1%, and 43%, respectively. Twenty-four diarrheal isolates carried blaNDM-1 or blaVIM genes. The overall MBL gene prevalence was 10.5%. Thirty-six UTI pathogens carried either blaNDM-1 or blaVIM genes (25.4%). Seven isolates carried both blaNDM-1 and blaVIM genes. MBL genes were strongly associated with phenotypic carbapenem and other β-lactam antibiotic resistance. blaOXA imparted significantly higher phenotypic resistance to β-lactam antibiotics. Active surveillance and stewardship programs are urgently needed to reduce carbapenem resistance in Bangladesh.
Collapse
Affiliation(s)
- Ayasha Siddique Shanta
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (A.S.S.); (N.I.); (M.A.A.); (K.A.); (M.B.H.); (S.N.)
| | - Nahidul Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (A.S.S.); (N.I.); (M.A.A.); (K.A.); (M.B.H.); (S.N.)
| | - Mamun Al Asad
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (A.S.S.); (N.I.); (M.A.A.); (K.A.); (M.B.H.); (S.N.)
| | - Kakoli Akter
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (A.S.S.); (N.I.); (M.A.A.); (K.A.); (M.B.H.); (S.N.)
| | - Marnusa Binte Habib
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (A.S.S.); (N.I.); (M.A.A.); (K.A.); (M.B.H.); (S.N.)
| | - Md. Jubayer Hossain
- Center for Health Innovation, Research, Action, and Learning—Bangladesh (CHIRAL Bangladesh), Dhaka 1205, Bangladesh;
| | - Shamsun Nahar
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (A.S.S.); (N.I.); (M.A.A.); (K.A.); (M.B.H.); (S.N.)
| | - Brian Godman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK
- Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (A.S.S.); (N.I.); (M.A.A.); (K.A.); (M.B.H.); (S.N.)
- Faculty of Medicine and Health, School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Munim MA, Das SC, Hossain MM, Hami I, Topu MG, Gupta SD. Multi-drug resistant (MDR) Gram-negative pathogenic bacteria isolated from poultry in the Noakhali region of Bangladesh. PLoS One 2024; 19:e0292638. [PMID: 39088478 PMCID: PMC11293736 DOI: 10.1371/journal.pone.0292638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/21/2024] [Indexed: 08/03/2024] Open
Abstract
Rapidly increasing antibiotic-resistant bacterial strains in Bangladesh's food and farm animals stem from the excessive and inappropriate use of antibiotics. To assess the prevalence of multi-drug resistant (MDR) Gram-negative bacteria in poultry chicks, we sought to isolate and identify strains carrying antimicrobial resistance genes. Isolation and identification involved biochemical tests, 16S rRNA sequencing, and PCR screening of species-specific genes. MDR patterns were evaluated using CLSI guidelines with seventeen antibiotics across twelve classes. Targeted gene sequences were amplified for the detection of Extended-spectrum β-Lactamase (ESBL), carbapenem, tetracycline, sulfonamide, and colistin resistance genes. Common isolates, such as Escherichia coli, Klebsiella pneumoniae, Proteus penneri, and Enterobacter hormaechei, exhibited average Multiple Antimicrobial Resistance (MAR) indices of 0.66, 0.76, 0.8, 0.84, and 0.81, 0.76, 0.84, 0.41 for broiler and layer chicken, respectively. Providencia stuartii and Salmonella enterica, exclusive to broiler samples, had MAR indices of 0.82 and 0.84, respectively. Additional isolates Morganella morganii, Aeromonas spp., and Wohlfahrtiimonas chitiniclastica were found in layers (Average MAR indices: 0.73, 0.71, and 0.91). Notably, M. morganii, E. hormaechei and W. chitiniclastica were identified for the first time in Bangladeshi poultry chicken, although their evolution is yet to be understood. In this study, Pan-drug resistance was observed in one P. stuartii (broiler) and one Aeromonas spp. (layer) with a MAR index 1, while all isolates exhibited MAR indices >0.2, indicating MDR. Antimicrobial resistance (AMR) gene screening identified blaTEM, blaSHV, tetA, and sul1 in a majority of the MDR strains. Interestingly, E. coli (lactose positive and negative) and E. hormaechei were exclusively found to possess the tetB gene. In addition, E. coli (lactose negative), Klebsiella pneumoniae, Enterobacter hormaechei, M. morganii, and P. stuartii were observed to carry the colistin-resistant mcr-1 gene, whereas sul2 was detected in E. coli (lactose positive and negative), E. hormaechei, P. stuartii, and P. penneri. These findings emphasize the health risk of our consumers of both broiler and layer chickens as they have turned into a potent reservoir of various AMR gene carrying MDR and Pan-drug resistant bacteria.
Collapse
Affiliation(s)
- Md. Adnan Munim
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Shuvo Chandra Das
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Murad Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Ithmam Hami
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mridul Gope Topu
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Shipan Das Gupta
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
8
|
Anudit C, Saraisuwan P, Kimterng C, Puangmanee C, Bamphensin N, Kerdsin A. Dissemination of Urinary Escherichia coli Phylogroup B2 in Provincial and Community Hospitals in Uthai Thani, Central Thailand. Jpn J Infect Dis 2024; 77:220-226. [PMID: 38417863 DOI: 10.7883/yoken.jjid.2023.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Escherichia coli is a Gram-negative bacterium that causes a variety of clinical infections in humans, including diarrhea, sepsis, and urinary tract infection. This bacterium is a common multidrug-resistant threat in community and hospital settings worldwide. This study examined the antimicrobial susceptibility and genetic relationship based on Clermont phylotyping and enterobacterial repetitive intergenic consensus (ERIC)-PCR of 84 E. coli urinary isolates from provincial and community hospitals in Thailand. All isolates were susceptible to nitrofurantoin, and almost all isolates were susceptible to carbapenem, fosfomycin, and amikacin. High resistance rates to fluoroquinolone, ampicillin, and trimethoprim/sulfamethoxazole were observed. Clermont phylogroup B2 was predominant (n = 58). Subtyping of the B2 phylogroup revealed diverse subgroups, of which subgroup V (n = 11), VII (n = 9), III (n = 6), and II (n = 6) were most prevalent. ERIC-PCR showed that the strains of the B2 subgroups III and V were spread between provincial and community hospitals and between hospital wards. This evidence suggests the need for comprehensive infection control monitoring, with strong active surveillance at all hospital levels.
Collapse
Affiliation(s)
| | | | | | | | - Nicharee Bamphensin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Thailand
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Thailand
| |
Collapse
|
9
|
Zhao M, Wang X, He J, Zhou K, Xie M, Ding H. Serovar and sequence type distribution and phenotypic and genotypic antimicrobial resistance of Salmonella originating from pet animals in Chongqing, China. Microbiol Spectr 2024; 12:e0354223. [PMID: 38757951 PMCID: PMC11218468 DOI: 10.1128/spectrum.03542-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/13/2024] [Indexed: 05/18/2024] Open
Abstract
A total of 334 Salmonella isolates were recovered from 6,223 pet rectal samples collected at 50 pet clinics, 42 pet shops, 7 residential areas, and 4 plazas. Forty serovars were identified that included all strains except for one isolate that did not cluster via self-agglutination, with Salmonella Typhimurium monophasic variant, Salmonella Kentucky, Salmonella Enteritidis, Salmonella Pomona, and Salmonella Give being the predominant serovars. Fifty-one sequence types were identified among the isolates, and ST198, ST11, ST19, ST451, ST34, and ST155 were the most common. The top four dominant antimicrobials to which isolates were resistant were sulfisoxazole, ampicillin, doxycycline, and tetracycline, and 217 isolates exhibited multidrug resistance. The prevalence of β-lactamase genes in Salmonella isolates was 59.6%, and among these isolates, 185 harbored blaTEM, followed by blaCTX-M (66) and blaOXA (10). Moreover, six PMQR genes, namely, including qnrA (4.8%), qnrB (4.2%), qnrD (0.9%), qnrS (18.9%), aac(6')-Ib-cr (16.5%), and oqxB (1.5%), were detected. QRDR mutations (76.6%) were very common in Salmonella isolates, with the most frequent mutation in parC (T57S) (47.3%). Furthermore, we detected six tetracycline resistance genes in 176 isolates, namely, tet(A) (39.5%), tet(B) (8.1%), tet(M) (7.7%), tet(D) (5.4%), tet(J) (3.3%), and tet(C) (1.8%), and three sulfonamide resistance genes in 303 isolates, namely, sul1 (84.4%), sul2 (31.1%), and sul3 (4.2%). Finally, we found 86 isolates simultaneously harboring four types of resistance genes that cotransferred 2-7 resistance genes to recipient bacteria. The frequent occurrence of antimicrobial resistance, particularly in dogs and cats, suggests that antibiotic misuse may be driving multidrug-resistant Salmonella among pets.IMPORTANCEPet-associated human salmonellosis has been reported for many years, and antimicrobial resistance in pet-associated Salmonella has become a serious public health problem and has attracted increasing attention. There are no reports of Salmonella from pets and their antimicrobial resistance in Chongqing, China. In this study, we investigated the prevalence, serovar diversity, sequence types, and antimicrobial resistance of Salmonella strains isolated from pet fecal samples in Chongqing. In addition, β-lactamase, QRDR, PMQR, tetracycline and sulfonamide resistance genes, and mutations in QRDRs in Salmonella isolates were examined. Our findings demonstrated the diversity of serovars and sequence types of Salmonella isolates. The isolates were widely resistant to antimicrobials, notably with a high proportion of multidrug-resistant strains, which highlights the potential direct or indirect transmission of multidrug-resistant Salmonella from pets to humans. Furthermore, resistance genes were widely prevalent in the isolates, and most of the resistance genes were spread horizontally between strains.
Collapse
Affiliation(s)
- Meiyuan Zhao
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xudong Wang
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jiawei He
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Kexin Zhou
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mengqi Xie
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Honglei Ding
- Laboratory of Veterinary Mycoplasmology, College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Miyagi K, Shimoji N. Rapid discrimination methods for clinical and environmental strains of Aeromonas hydrophila and A. veronii biovar sobria using the N-terminal sequence of the flaA gene and investigation of antimicrobial resistance. Lett Appl Microbiol 2024; 77:ovae052. [PMID: 38830808 DOI: 10.1093/lambio/ovae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Although the genus Aeromonas inhabits the natural environment, it has also been isolated from hospital patient specimens as a causative agent of Aeromonas infections. However, it is not known whether clinical strains live in the natural environment, and if these strains have acquired antimicrobial resistance. In this study, we performed the typing of flagellin A gene (flaA) of clinical and environmental strains of Aeromonas hydrophila and A. veronii biovar sobria using Polymerase Chain Reaction (PCR) assay with newly designed primers. Detection rates of the clinical and environmental flaA types of A. hydrophila were 66.7% and 88.2%, and the corresponding rates for A. veronii biovar sobria were 66.7% and 90.9%. The PCR assays could significantly discriminate between clinical and environmental strains of both species in approximately 4 h. Also, among the 63 clinical Aeromonas strains used, only one extended-spectrum β-lactamase-producing bacteria, no plasmid-mediated quinolone resistance bacteria, and only four multidrug-resistant bacteria were detected. Therefore, the PCR assays could be useful for the rapid diagnosis of these Aeromonas infections and the monitoring of clinical strain invasion into water-related facilities and environments. Also, the frequency of drug-resistant Aeromonas in clinical isolates from Okinawa Prefecture, Japan, appeared to be low.
Collapse
Affiliation(s)
- Kazufumi Miyagi
- Laboratory of Microbiology, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0215, Japan
| | - Noriaki Shimoji
- Department of Clinical Laboratory, Urasoe General Hospital, 4-16-1 Iso, Urasoe-shi, Okinawa 901-2132, Japan
| |
Collapse
|
11
|
Gharaibeh MH, Lafi SQ, Allah AMH, Qudsi FRA. Occurrence, virulence, and resistance genes in Salmonella enterica isolated from an integrated poultry company in Jordan. Poult Sci 2024; 103:103733. [PMID: 38631233 PMCID: PMC11040170 DOI: 10.1016/j.psj.2024.103733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Salmonella is considered one of the most common foodborne pathogens worldwide. The annual number of hospitalizations and deaths related to zoonotic salmonellosis, which is transmitted from animals to humans and infects poultry and meat, is expected to be significant. Hence, the primary aims of this research were to isolate and characterize Salmonella species obtained from an integrated poultry company and identify some virulence, and antimicrobial resistance, with a specific concern about colistin resistance genes. A total of 635 samples collected from various sources in an integrated company in Jordan were screened for Salmonella species accompanying their virulence and antimicrobial resistance genes. Samples were collected from parent stock house drag swabs, broiler farms, premix, cecum at the slaughterhouse level, prechilling and postchilling stages, and the final product. Salmonella species were detected in 3% (6/200) of investigated parent stock house drag swabs, 13.8% (11/80) from cloacal swabs from broiler farms, 16.9% (11/65) from boiler farms premix, 24.4% (11/45) from the cecum at slaughterhouse level, 16.4% (9/55) from the prechilling stage, 37.8% (17/45) from the postchilling stage and 53.3% (24/45) from the final product stage. No isolates were detected in feed mills (0/20), parents' premix (0/40), or hatcheries (0/40). Salmonella isolates were resistant to ciprofloxacin (91.0%), nalidixic acid (86.5%), doxycycline (83.1%), tetracycline (83.1%), sulphamethoxazole-trimethoprim (79.8%) and ampicillin (76.4%). Serotyping shows that S. Infantis was the predominant serovar, with 56.2%. Based on the minimum inhibitory concentration (MIC) test, 39.3% (35/89) of the isolates were resistant to colistin; however, no mcr genes were detected. Among antimicrobial-resistant genes, blaTEM was the most prevalent (88.8%). Furthermore, the spvC, ompA, and ompF virulence genes showed the highest percentages (97.8%, 97.8%, and 96.6%, respectively). In conclusion, Salmonella isolates were found at various stages in the integrated company. S. Infantis was the most prevalent serotype. No mcr genes were detected. Cross-contamination between poultry production stages highlights the importance of good hygiene practices. Furthermore, the presence of virulence genes and the patterns of antimicrobial resistance present significant challenges for public health.
Collapse
Affiliation(s)
- Mohammad H Gharaibeh
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, 22110, Jordan.
| | - Shawkat Q Lafi
- Department of Pathology and Public Health, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed M Habib Allah
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, 22110, Jordan
| | - Farah R Al Qudsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 21121, Jordan
| |
Collapse
|
12
|
Beyene AM, Gizachew M, Yousef AE, Haileyesus H, Abdelhamid AG, Berju A, Tebeje MM, Feleke T, Gelaw B. Multidrug-resistance and extended-spectrum beta-lactamase-producing lactose-fermenting enterobacteriaceae in the human-dairy interface in northwest Ethiopia. PLoS One 2024; 19:e0303872. [PMID: 38771780 PMCID: PMC11108214 DOI: 10.1371/journal.pone.0303872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is among the top public health concerns in the globe. Estimating the prevalence of multidrug resistance (MDR), MDR index (MDR-I) and extended-spectrum beta-lactamase (ESBL)-producing lactose fermenting Enterobacteriaceae (LFE) is important in designing strategies to combat AMR. Thus, this study was designed to determine the status of MDR, MDR-I and ESBL-producing LFE isolated from the human-dairy interface in the northwestern part of Ethiopia, where such information is lacking. METHODOLOGY A cross-sectional study was conducted from June 2022 to August 2023 by analyzing 362 samples consisting of raw pooled milk (58), milk container swabs (58), milker's hand swabs (58), farm sewage (57), milker's stool (47), and cow's feces (84). The samples were analyzed using standard bacteriological methods. The antimicrobial susceptibility patterns and ESBL production ability of the LFE isolates were screened using the Kirby-Bauer disk diffusion method, and candidate isolates passing the screening criteria were phenotypically confirmed by using cefotaxime (30 μg) and cefotaxime /clavulanic acid (30 μg/10 μg) combined-disk diffusion test. The isolates were further characterized genotypically using multiplex polymerase chain reaction targeting the three ESBL-encoding- genes namely blaTEM, blaSHV, and blaCTX-M. RESULTS A total of 375 bacterial isolates were identified and the proportion of MDR and ESBL-producing bacterial isolates were 70.7 and 21.3%, respectively. The MDR-I varied from 0.0 to 0.81 with an average of 0.30. The ESBL production was detected in all sample types. Genotypically, the majority of the isolates (97.5%), which were positive on the phenotypic test, were carrying one or more of the three genes. CONCLUSION A high proportion of the bacterial isolates were MDR; had high MDR-I and were positive for ESBL production. The findings provide evidence that the human-dairy interface is one of the important reservoirs of AMR traits. Therefore, the implementation of AMR mitigation strategies is highly needed in the area.
Collapse
Affiliation(s)
- Achenef Melaku Beyene
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mucheye Gizachew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Ahmed E. Yousef
- Department of Food Science and Technology, Ohio State; University, Ohio, Columbus, United States of America
| | - Hana Haileyesus
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Ahmed G. Abdelhamid
- Department of Food Science and Technology, Ohio State; University, Ohio, Columbus, United States of America
| | - Adugna Berju
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Molu Tebeje
- Clinical Bacteriology Unit, Comprehensive Specialized Teaching Hospital, University of Gondar, Gondar, Ethiopia
| | - Tigest Feleke
- Clinical Bacteriology Unit, Comprehensive Specialized Teaching Hospital, University of Gondar, Gondar, Ethiopia
| | - Baye Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
13
|
Aydin A, Suleymanoglu AA, Abdramanov A, Paulsen P, Dumen E. Detection of Extended Spectrum ß-Lactamase-Producing Escherichia coli with Biofilm Formation from Chicken Meat in Istanbul. Foods 2024; 13:1122. [PMID: 38611426 PMCID: PMC11011584 DOI: 10.3390/foods13071122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Antimicrobial resistance is one of the major public health problems worldwide. This study aimed to detect the presence of extended-spectrum β-lactamase-(ESBL-)producing Escherichia (E.) coli in chicken meat in Istanbul, Türkiye. Raw chicken meat samples (n = 208) were collected from different sale points and analyzed for ESBL-producing E. coli. In total, 101 (48.5%) isolates were confirmed as E. coli by PCR, of which 80/101 (79.2%) demonstrated multiple antibiotic resistance. Resistance against amoxicillin-clavulanic acid was most frequent (87.1%). Eighteen isolates (17.8%) demonstrated phenotypical ESBL resistance, as assessed by the double disc synergy test (DDST). Isolates were tested for the presence of β-lactamase genes and mobilized colistin-resistant genes. The blaTEM group was most frequently detected (97.02%), followed by blaCTX m (45.5%), blaSHV (9.9%), and blaOXA-2 (0.9%). However, mcr genes and blaNDM,blaKPC, blaVIM, and blaOXA-48 genes were not found in any isolate. E. coli strains were tested for biofilm formation in six different media [Nutrient broth, LB broth, Tryptone Soya broth (TSB), TSB containing 1% sucrose, TSB containing 0.6% yeast extract, and BHI]. Biofilm formation by E. coli isolates (44/101, 43.5%) was highest in TSB with 1% sucrose. It is worth noting that all biofilm-producing isolates were found to harbor the blaTEM-1 gene, which can indicate a high level of antibiotic resistance. This is the first report about ESBL-producing E. coli in poultry meat, the exposure of consumers in Istanbul metropolitan areas, and the ability of E. coli from this region to produce biofilms.
Collapse
Affiliation(s)
- Ali Aydin
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, 34320 Istanbul, Türkiye; (A.A.S.); (E.D.)
| | - Ali Anil Suleymanoglu
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, 34320 Istanbul, Türkiye; (A.A.S.); (E.D.)
| | - Abzal Abdramanov
- Department of Veterinary Sanitary Examination and Hygiene, Kazakh National Agrarian Research University, 050010 Almaty, Kazakhstan;
| | - Peter Paulsen
- Unit for Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Emek Dumen
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, İstanbul University-Cerrahpaşa, 34320 Istanbul, Türkiye; (A.A.S.); (E.D.)
| |
Collapse
|
14
|
Ferri G, Olivieri V, Olivastri A, Pennisi L, Vergara A. Multidrug resistant Vibrio spp. identified from mussels farmed for human consumption in Central Italy. J Appl Microbiol 2024; 135:lxae098. [PMID: 38609347 DOI: 10.1093/jambio/lxae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/14/2024]
Abstract
AIMS This study investigated phenotypic and genotypic antimicrobial resistance profiles of Vibrio strains identified from Mytilus galloprovincialis farmed for human consumption in the Adriatic Sea Central Italy. METHODS AND RESULTS A total of 475 mussels (M. galloprovincialis) were involved in the present study, and culture-dependent microbiological methods permitted to identify a total of 50 Vibrio strains that were tested for antibiotic susceptibility followed by the genetic determinant detections. Antibiograms showed resistance against ampicillin (36.0%), amoxicillin-clavulanic acid (30.0%), gentamycin (14.0%), and imipenem (18.0%). Biomolecular assays amplified a total of 264 antibiotic resistance genes harbored by both susceptible and resistant Vibrio species. Among resistance genes, aacC2 (62.0%) and aadA (58.0%) for aminoglycosides, blaTEM (54.0%) for beta-lactams, qnrS (24.0%) for quinolones, tetD (66.0%) for tetracyclines, and vanB (60.0%) for glycopeptides were mainly amplified by PCR assays. CONCLUSIONS Vibrio genus is involved in the antibiotic resistance phenomenon diffusion in the aquatic environments, as demonstrated by the harboring of many genetic determinants representing a kind of genetic "dark world".
Collapse
Affiliation(s)
- Gianluigi Ferri
- Post-Graduate Specialization School in Food Inspection "G. Tiecco", Department of Veterinary Medicine, University of Teramo, Strada Provinciale 18, 64100, Piano d'Accio, Teramo, Italy
| | - Vincenzo Olivieri
- Post-Graduate Specialization School in Food Inspection "G. Tiecco", Department of Veterinary Medicine, University of Teramo, Strada Provinciale 18, 64100, Piano d'Accio, Teramo, Italy
| | | | - Luca Pennisi
- Post-Graduate Specialization School in Food Inspection "G. Tiecco", Department of Veterinary Medicine, University of Teramo, Strada Provinciale 18, 64100, Piano d'Accio, Teramo, Italy
| | - Alberto Vergara
- Post-Graduate Specialization School in Food Inspection "G. Tiecco", Department of Veterinary Medicine, University of Teramo, Strada Provinciale 18, 64100, Piano d'Accio, Teramo, Italy
| |
Collapse
|
15
|
Tomeh R, Nemati A, Hashemi Tabar G, Tozzoli R, Badouei MA. Antimicrobial resistance, β-lactamase genotypes, and plasmid replicon types of Shiga toxin-producing Escherichia coli isolated from different animal hosts. J Appl Microbiol 2024; 135:lxae059. [PMID: 38467395 DOI: 10.1093/jambio/lxae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/11/2024] [Accepted: 03/10/2024] [Indexed: 03/13/2024]
Abstract
AIMS The primary objective of this study was to analyze antimicrobial resistance (AMR), with a particular focus on β-lactamase genotypes and plasmid replicon types of Shiga toxin-producing Escherichia coli (STEC) strains originating from various animal hosts. METHODS AND RESULTS A total of 84 STEC strains were isolated from cattle (n = 32), sheep/goats (n = 26), pigeons (n = 20), and wild animals (n = 6) between 2010 and 2018 in various regions of Iran. The Kirby-Bauer susceptibility test and multiple polymerase chain reaction (PCR) panels were employed to elucidate the correlation between AMR and plasmid replicon types in STEC isolates. The predominant replicon types were IncFIC and IncFIB in cattle (46.8%), IncFIC in sheep/goats (46.1%), IncA/C in pigeons (90%), and IncP in wild animals (50%). STEC of serogroups O113, O26, and O111 harbored the IncFIB (100%), IncI1 (80%), and IncFIC + IncA/C (100%) plasmids, respectively. A remarkable AMR association was found between ciprofloxacin (100%), neomycin (68.7%), and tetracycline (61.7%) resistance with IncFIC; amoxicillin + clavulanic acid (88.8%) and tetracycline (61.7%) with IncA/C; ciprofloxacin (100%) with IncFIB; fosfomycin (85.7%) and sulfamethoxazole + trimethoprim (80%) with IncI1. IncI1 appeared in 83.3%, 50%, and 100% of the isolates harboring blaCTX-M, blaTEM, and blaOXA β-lactamase genes, respectively. CONCLUSIONS The emergence of O26/IncI1/blaCTX-M STEC in cattle farms poses a potential risk to public health.
Collapse
Affiliation(s)
- Rwida Tomeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Ali Nemati
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Gholamreza Hashemi Tabar
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Rosangela Tozzoli
- European Union Reference Laboratory for Escherichia coli, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Mahdi Askari Badouei
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| |
Collapse
|
16
|
Chen RZ, Lu PL, Yang TY, Lin SY, Tang HJ, Chang FY, Yang YS, Chiang TT, Wang FD, Wu TS, Shie SS, Ho MW, Liu JW, Shi ZY, Chou CH, Chuang YC. Efficacy of cefoperazone/sulbactam for ESBL-producing Escherichia coli and Klebsiella pneumoniae bacteraemia and the factors associated with poor outcomes. J Antimicrob Chemother 2024; 79:648-655. [PMID: 38319833 DOI: 10.1093/jac/dkae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
OBJECTIVE We aimed to assess the efficacy of cefoperazone/sulbactam (CPZ/SUL) in extended-spectrum β-lactamase (ESBL)-producing Enterobacterales infections and identify factors influencing outcomes. METHODS This retrospective multicentre study was conducted in Taiwan (January 2015 to December 2020) and examined the efficacy of CPZ/SUL treatment in ESBL-producing Enterobacterales bacteraemia. The minimum inhibitory concentrations (MICs) were determined using agar dilution; ESBL/AmpC genes were detected using polymerase chain reaction. The primary outcome was clinical success, whereas the secondary outcome was 30-day mortality. Clinical success was defined as the complete resolution of clinical signs and symptoms of K. pneumoniae or E. coli infection, with no evidence of persistent or recurrent bacteraemia. The factors influencing outcomes were identified using a multivariate analysis. RESULTS CPZ/SUL demonstrated a clinical success rate of 82.7% (91/110) in treating ESBL-producing Enterobacterales bacteraemia, with a 30-day mortality rate of 9.1% (10/110). Among 110 ESBL-producing isolates, a high clinical success rate was observed at an MIC of ≤32/32 mg/L. Multivariate analysis revealed that a Charlson comorbidity index (CCI) of ≥6 was associated with lower clinical success [odds ratio (OR): 5.80, 95% confidence interval (CI): 1.15-29.14, P = 0.033]. High Sequential Organ Failure Assessment scores (≥6) were significantly associated with increased 30-day mortality (OR: 14.34, 95% CI: 1.45-141.82, P = 0.023). DISCUSSION CPZ/SUL demonstrated a clinical success rate of 82.7% (91/110) in treating ESBL-producing Enterobacterales bacteraemia. Treatment success was evident when the CPZ and SUL MIC was ≤32/32 mg/L. Comorbidities (CCI ≥6) were associated with lower clinical success, while disease severity (Sequential Organ Failure Assessment score ≥6) correlated with higher mortality.
Collapse
Affiliation(s)
- Rou-Zhen Chen
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Liang Lu
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Ying Yang
- Department of Medical Laboratory Science, I-Shou University, Kaohsiung, Taiwan
- Research Organization for Nano and Life Innovation, Future Innovation Institute, Waseda University, Tokyo, Japan
- Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
- School of Education, Waseda University, Tokyo, Japan
| | - Shang-Yi Lin
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Infection Control Office and Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Jen Tang
- Division of Infectious Diseases, Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri- Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri- Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsung-Ta Chiang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri- Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shian-Sen Shie
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mao-Wang Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jien-Wei Liu
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Chang Gung University College, School of Medicine, Taoyuan, Taiwan
| | - Zhi-Yuan Shi
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chia-Hui Chou
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yin-Ching Chuang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
17
|
Gato E, Rodiño-Janeiro BK, Gude MJ, Fernández-Cuenca F, Pascual Á, Fernández A, Pérez A, Bou G. Diagnostic tool for surveillance, detection and monitoring of the high-risk clone K. pneumoniae ST15. J Hosp Infect 2023; 142:18-25. [PMID: 37802237 DOI: 10.1016/j.jhin.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND The global spread of Klebsiella pneumoniae ST15, causing multi-continental outbreaks, contributes to the movement of resistance genes between clones increasing the antimicrobial resistance crisis. The genomic traits providing it with the ability to outcompete other bacteria and cause epidemics remain unclear. AIM To identify the specific genomic traits of K. pneumoniae ST15 to develop a diagnostic test. METHODS An outbreak caused by K. pneumoniae occurred in Hospital A Coruña, Spain. Antimicrobial susceptibility analysis and molecular typing (PGFE and MLST) were performed. One isolate of each sequence type was selected for whole-genome sequencing analysis. Comparative analysis of genomes was performed using RAST. BLASTn was used to evaluate the presence of the fhaC and kpiD genes. Two hundred and ninety-four K. pneumoniae from a Spanish nationwide collection were analysed by PCR. FINDINGS Genotyping showed that 87.5% of the isolates tested belonged to a clone with a unique PFGE pattern which corresponded to ST15. Comparative genomic analysis of the different STs enabled us to determine the specific genomic traits of K. pneumoniae ST15. Two adherence-related systems (Kpi and KpFhaB/FhaC) were specific markers of this clone. Multiplex-PCR analysis with kpiD and fhaC oligonucleotides revealed that K. pneumoniae ST15 is specifically detected with a sensitivity of 100% and a specificity of 97.76%. The PCR results showed 100% concordance with the MLST and whole-genome sequencing data. CONCLUSION K. pneumoniae ST15 possesses specific genomic traits that could favour its dissemination. They could be used as targets to detect K. pneumoniae ST15 with high sensitivity and specificity.
Collapse
Affiliation(s)
- E Gato
- Institute for Biomedical Research of A Coruña (INIBIC), A Coruña, Spain; Carlos III Health Institute (ISCIII), Madrid, Spain
| | | | - M J Gude
- University Hospital Lucus Augusti (HULA), Lugo, Spain
| | - F Fernández-Cuenca
- University Hospital Virgen Macarena, Seville, Spain; Institute of Biomedicine of Sevilla, Seville, Spain; University of Sevilla, Seville, Spain
| | - Á Pascual
- University Hospital Virgen Macarena, Seville, Spain; Institute of Biomedicine of Sevilla, Seville, Spain; University of Sevilla, Seville, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - A Fernández
- University Hospital of A Coruña (HUAC), A Coruña, Spain
| | - A Pérez
- Institute for Biomedical Research of A Coruña (INIBIC), A Coruña, Spain; Carlos III Health Institute (ISCIII), Madrid, Spain.
| | - G Bou
- University Hospital of A Coruña (HUAC), A Coruña, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Matsuda N, Aung MS, Urushibara N, Kawaguchiya M, Ohashi N, Taniguchi K, Kudo K, Ito M, Kobayashi N. Prevalence, clonal diversity, and antimicrobial resistance of hypervirulent Klebsiella pneumoniae and Klebsiella variicola clinical isolates in northern Japan. J Glob Antimicrob Resist 2023; 35:11-18. [PMID: 37604276 DOI: 10.1016/j.jgar.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
OBJECTIVES Hypervirulent Klebsiella pneumoniae (hvKp) and Klebsiella variicola (hvKv) cause hospital/community-acquired infections, often associated with antimicrobial resistance (AMR). This study aimed to investigate the molecular epidemiology of hvKp and hvKv in northern Japan. METHODS A total of 500 K. pneumoniae and 421 K. variicola clinical isolates collected from August to December 2021 were studied. Prevalence of virulence factor-encoding genes, wzi sequence and associated K/KL type, sequence type (ST), and beta-lactamases and their types were characterized. RESULTS Any virulence gene (rmpA, rmpA2, peg-344, iucA, iutA, and iroB) and/or magA was detected in 25% (n = 125) of K. pneumoniae and 1% (n = 5) of K. variicola. Among these hvKp/hvKv, 22 wzi types (18 and 4 types, respectively) and 24 STs (20 and 4 STs, respectively) were identified. Sequence types of hvKp were classified into some clonal groups (CGs), among which CG35, including six STs, was the most common (n = 59; 47%), followed by CG23, and CG65. ST268 (CG35) associated with wzi95-K20 or wzi720 was the dominant lineage (n = 43, 34%), while K1:ST23/ST249 and K2:ST65/ST86 accounted for 26% and 13% of hvKp, respectively. Extended-spectrum beta-lactamase (ESBL) genes (blaCTX-M-2, blaCTX-M-3, blaCTX-M-15, and blaCTX-M-27) were detected in only ST23 and CG35 (ST268 and ST412) hvKp. No isolate was resistant to carbapenems, without detection of the ESBL gene in K. variicola. Phylogenetically, wzi was differentiated into two main clusters of K. pneumoniae and K. variicola. A major clonal group CG347 was identified in K. variicola. CONCLUSION Clonal structures were revealed for hvKp and hvKv clinical isolates with their AMR status in northern Japan.
Collapse
Affiliation(s)
- Norifumi Matsuda
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Nobuhide Ohashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | | | - Kenji Kudo
- Sapporo Clinical Laboratory, Inc., Sapporo, Hokkaido, Japan
| | - Masahiko Ito
- Sapporo Clinical Laboratory, Inc., Sapporo, Hokkaido, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
19
|
Mamawal DRD, Calayo JDV, Gandola KP, Nacario MAG, Vejano MRA, Dela Peña LBRO, Rivera WL. Genotypic detection of β-lactamase-producing Escherichia coli isolates obtained from Seven Crater Lakes of San Pablo, Laguna, Philippines. JOURNAL OF WATER AND HEALTH 2023; 21:1518-1529. [PMID: 37902206 PMCID: wh_2023_157 DOI: 10.2166/wh.2023.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The extended-spectrum β-lactamase (ESBL)-producing Escherichia coli is becoming a global public health concern. More comprehensive surveillance of β-lactam resistance in E. coli would improve monitoring strategies and control resistance transmission in contaminated environments. This study investigated the prevalence of β-lactamase genes in E. coli isolated from the Seven Crater Lakes in San Pablo, Laguna, Philippines. Water samples from lakes were collected for the isolation of E. coli (n = 846) and molecular characterization by detecting the presence of the uidA gene. The isolates were then tested for the presence of β-lactamase genes using PCR. Among the screened genes, blaAmpC was the most dominant (91%). Other β-lactamase genes such as blaTEM, blaSHV, and blaCTXM were also detected with percentage occurrence of 34, 5, and 1%, respectively. Multiple genes within individual isolates were also observed, wherein blaTEM/AmpC was the most prevalent gene combination. Moreover, a significant negative correlation between blaAmpC with blaSHV and blaCTXM was depicted in this study. Overall, these findings demonstrate the presence of β-lactamase genes in E. coli in the Seven Crater Lakes of San Pablo and can be used in developing effective strategies to control antibiotic resistance in environmental waters.
Collapse
Affiliation(s)
- Diana Rose D Mamawal
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines E-mail:
| | - Jonah David V Calayo
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Kherson P Gandola
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Mae Ashley G Nacario
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Mark Raymond A Vejano
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Laurice Beatrice Raphaelle O Dela Peña
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Windell L Rivera
- Pathogen-Host-Environment Interactions Research Laboratory, Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| |
Collapse
|
20
|
Marouf S, Li X, Salem HM, Ahmed ZS, Nader SM, Shaalan M, Awad FH, Zhou H, Cheang T. Molecular detection of multidrug-resistant Pseudomonas aeruginosa of different avian sources with pathogenicity testing and in vitro evaluation of antibacterial efficacy of silver nanoparticles against multidrug-resistant P. aeruginosa. Poult Sci 2023; 102:102995. [PMID: 37566970 PMCID: PMC10440575 DOI: 10.1016/j.psj.2023.102995] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a serious zoonotic pathogen threaten the poultry industry causing severe economic losses therefor, this study aimed to isolation, phenotypic, molecular identification of P. aeruginosa from different avian sources (chickens, turkey, pigeons, table eggs, and dead in shell chicken embryos), from different Egyptian governorates (Giza, Qalubia, Beheira, El-Minya, and Al-Sharqia) with applying of antibiotic sensitivity test on all P. aeruginosa isolates. Highly resistant isolates (n = 49) were subjected to molecular identification of P. aeruginosa with detection of resistant genes including carbapenemase-encoding genes blaKPC, blaOXA-48, and blaNDM. On the base of molecular results, a highly resistant P. aeruginosa strain was tested for its pathogenicity on day old specific pathogen free (SPF) chicks. Also, in vitro experiment was adopted to evaluate the efficacy of silver nanoparticles (Ag-NPs) against highly antibiotic-resistant P. aeruginosa strains. The overall isolation percentage was from all examined samples were 36.2% (571/1,576) representing 45.2% (532/1,176) from different birds' tissues and 39/400 (9.7%) from total egg samples. Some of isolated strains showed multidrug resistance (MDR) against kanamycin, amoxicillin, amoxicillin-clavulanic acid, neomycin, chloramphenicol, vancomycin, cefotaxime clavulanic acid, lincomycin-spectinomycin, co-trimoxazole, cefoxitin, gentamycin, and doxycycline. These MDR strains were also molecularly positive for ESBL and carbapenemase-encoding genes. MDR strain showed high pathogenicity with histopathological alterations in different organs in challenged birds. Main histopathological lesions were necrosis of hepatocytes, renal tubular epithelium, and heart muscle bundles. The MDR strain showed in vitro sensitivity to Ag-NPs. In conclusion, MDR P. aeruginosa is a serious pathogen causing high morbidity, mortality, and pathological tissue alterations. Ag NPs revealed a promising in vitro antimicrobial sensitivity against MDR P. aeruginosa and further in vivo studies were recommended.
Collapse
Affiliation(s)
- Sherif Marouf
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Xiting Li
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Zeinab S Ahmed
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Sara M Nader
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt.
| | | | - Hongyan Zhou
- Department of Neurology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Tuckyun Cheang
- Department of Breast Care Surgery, the First Affiliated Hospital of clinical Medicine of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|
21
|
Rodríguez EC, Saavedra SY, Montaño LA, Sossa DP, Correa FP, Vaca JA, Duarte C. Characterization of extended spectrum β-lactamases in Colombian clinical isolates of non-typhoidal Salmonella enterica between 1997 and 2022. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2023; 43:374-384. [PMID: 37871566 PMCID: PMC10637434 DOI: 10.7705/biomedica.6891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/11/2023] [Indexed: 10/25/2023]
Abstract
Introduction. Salmonella spp. is a zoonotic pathogen transmitted to humans through contaminated water or food. The presence of extended-spectrum β-lactamases is a growing public health problem because these enzymes are resistant to third and fourth generation cephalosporins. Objective. To characterize extended-spectrum β-lactamases in Salmonella spp. isolates received by the acute diarrheal disease/foodborne disease surveillance program of the Grupo de Microbiología of the Instituto Nacional de Salud. Materials and methods. A total of 444 Salmonella spp. isolates, resistant to at least one of the cephalosporins, were obtained between January 1997 and June 2022. The extendedspectrum β-lactamases phenotype was identified by the double disk test. DNA extraction was carried out by the boiling method, and the blaCTX-M, blaSHV, and blaTEM genes were amplified by PCR. Results. All the isolates were positive for the extended-spectrum β-lactamases test. The genes identified were: blaCTX-M + blaTEM (n=200), blaCTX-M (n=177), blaSHV (n=16), blaSHV + blaCTX-M (n=6), blaTEM (n=13) and blaSHV + blaCTX-M + blaTEM (n=3). Twenty-six isolates were negative for the evaluated genes. Positive extended-spectrum β-lactamases isolates were identified in Bogotá and 21 departments: Chocó, Magdalena, Meta, Bolívar, Casanare, Cesar, Córdoba, Quindío, Atlántico, Tolima, Cauca, Cundinamarca, Huila, Boyacá, Caldas, Norte de Santander, Risaralda, Antioquia, Nariño, Santander y Valle del Cauca. Conclusion. Resistance to third generation cephalosporins in Salmonella spp. isolates was mainly caused by blaCTX-M. Isolates were resistant to ampicillin, tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole (44 %; 197/444). The most frequent extended-spectrum β-lactamases-expressing serotypes were Salmonella Typhimurium and Salmonella Infantis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carolina Duarte
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, D.C., Colombia.
| |
Collapse
|
22
|
Marini PVB, Tavares ER, Motter CW, Migliorini LB, de Sales RO, Fedrigo NH, Shinohara DR, Hungria M, Yamada-Ogatta SF, Tognim MCB. Whole Genome Sequencing of an Extensively Drug-Resistant Raoultella planticola Isolate Containing blaKPC-2, blaNDM-1, and blaCTX-M-15. Microb Drug Resist 2023; 29:392-400. [PMID: 37486713 DOI: 10.1089/mdr.2022.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Raoultella planticola harboring genes that confer resistance to antimicrobials, such as carbapenems, have been associated with severe infections in immunocompromised patients. In this study, we reported the first whole genome sequence of a Brazilian isolate of R. planticola and the genomic context of antibiotic resistance markers. By whole-genome sequencing (WGS) of a carbapenem-resistant R. planticola isolate, RpHUM1, we found 23 resistance-encoding genes belonging to 9 classes of antibiotics (aminoglycosides, β-lactams, fluoroquinolones, fosfomycin, macrolides, phenicols, sulfonamides, tetracycline, and diaminopyrimidine derivatives) and 3 plasmids (RpHUM1pEaer-4382s, RpHUM1_pFDAARGOS_440, and RpHUM1pRSF1010). This isolate coharbored the genes blaKPC-2, which is carried by the plasmid RpHUM1pEaer-4382s, and blaNDM-1 and blaCTX-M-15 all located in the accessory genome. In addition, these genes were associated with, at least, one mobile genetic element. This comprehensive knowledge is of great importance for implementation of control measures to prevent the rapid dissemination of this neglected microorganism and their genetic resistance background.
Collapse
Affiliation(s)
- Paulo Victor Batista Marini
- Medical Microbiology Laboratory, Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Eliandro Reis Tavares
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina, Brazil
| | - Cintia Werner Motter
- Medical Microbiology Laboratory, Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Letícia Busato Migliorini
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Romário Oliveira de Sales
- Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Nayara Helisandra Fedrigo
- Medical Microbiology Laboratory, Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Danielle Rosani Shinohara
- Medical Microbiology Laboratory, Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | | | - Sueli Fumie Yamada-Ogatta
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina, Brazil
| | | |
Collapse
|
23
|
Saeed MA, Khan AU, Ehtisham-ul-Haque S, Waheed U, Qamar MF, Rehman AU, Nasir A, Zaman MA, Kashif M, Gonzalez JP, El-Adawy H. Detection and Phylogenetic Analysis of Extended-Spectrum β-Lactamase (ESBL)-Genetic Determinants in Gram-Negative Fecal-Microbiota of Wild Birds and Chicken Originated at Trimmu Barrage. Antibiotics (Basel) 2023; 12:1376. [PMID: 37760673 PMCID: PMC10525410 DOI: 10.3390/antibiotics12091376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Extended-spectrum β-lactamases (ESBL) give rise to resistance against penicillin and cephalosporin antibiotics in multiple bacterial species. The present study was conducted to map genetic determinants and related attributes of ESBL-producing bacteria in three wild aquatic bird species and chickens at the "Trimmu Barrage" in district Jhang, Punjab province, Pakistan. To study the prevalence of ESBL-producing bacteria, a total of 280 representative samples were collected from wild bird species; cattle egrets (Bubulcus ibis), little egrets (Egretta garzetta) and common teals (Anas crecca) as well as from indigenous chickens (Gallus gallus domesticus) originating from a local wet market. The isolates were confirmed as ESBL producers using a double disc synergy test (DDST) and bacterial species were identified using API-20E and 20NE strips. A polymerase chain reaction (PCR) was used to detect ESBL genetic determinants and for genus identification via 16S rRNA gene amplification. A phenotypic antimicrobial susceptibility test was performed for ESBL-producing isolates against 12 clinically relevant antibiotics using the Kirby-Bauer disk diffusion susceptibility test. A phylogenetic tree was constructed for the sequence data obtained in this study and comparative sequence data obtained from GenBank. The overall prevalence of ESBL-producing bacteria was 34.64% (97/280). The highest percentage (44.28%; 31/70) of ESBL-producing bacteria was recovered from chickens (Gallus gallus domesticus), followed by little egrets (Egretta garzetta) (41.43%; 29/70), common teal (Anas crecca) (28.57%; 20/70) and cattle egrets (Bubulcus ibis) (24.28%; 17/70). Five different ESBL-producing bacteria were identified biochemically and confirmed via 16S rRNA gene sequencing, which included Escherichia coli (72; 74.23%), Enterobacter cloacae (11; 11.34%), Klebsiella pneumoniae (8; 8.25%), Salmonella enterica (4; 4.12%) and Pseudomonas aeruginosa (2; 2.06%). Based on PCR, the frequency of obtained ESBL genes in 97 isolates was blaCTX-M (51.55%), blaTEM (20.62%), blaOXA (6.18%) and blaSHV (2.06%). In addition, gene combinations blaCTX-M + blaTEM, blaTEM + blaOXA and blaCTX-M + blaSHV were also detected in 16.49%, 2.06% and 1.03% of isolates, respectively. The ESBL gene variation was significant (p = 0.02) in different bacterial species while non-significant in relation to different bird species (p = 0.85). Phylogenetic analysis of amino acid sequence data confirmed the existence of CTX-M-15 and TEM betalactamases. The average susceptibility of the antibiotics panel used was lowest for both Klebsiella pneumoniae (62.5% ± 24.42) and Salmonella enterica (62.5% ± 31.08) as compared to Enterobacter cloacae (65.90% ± 21.62), Pseudomonas aeruginosa (70.83% ± 33.42) and Escherichia coli (73.83% ± 26.19). This study provides insight into the role of aquatic wild birds as reservoirs of ESBL-producing bacteria at Trimmu Barrage, Punjab, Pakistan. Hence, active bio-surveillance and environment preservation actions are necessitated to curb antimicrobial resistance.
Collapse
Affiliation(s)
- Muhammad Adnan Saeed
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.U.K.); (S.E.-u.-H.); (U.W.); (M.F.Q.); (A.u.R.); (M.A.Z.)
| | - Aman Ullah Khan
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.U.K.); (S.E.-u.-H.); (U.W.); (M.F.Q.); (A.u.R.); (M.A.Z.)
| | - Syed Ehtisham-ul-Haque
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.U.K.); (S.E.-u.-H.); (U.W.); (M.F.Q.); (A.u.R.); (M.A.Z.)
| | - Usman Waheed
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.U.K.); (S.E.-u.-H.); (U.W.); (M.F.Q.); (A.u.R.); (M.A.Z.)
| | - Muhammad Fiaz Qamar
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.U.K.); (S.E.-u.-H.); (U.W.); (M.F.Q.); (A.u.R.); (M.A.Z.)
| | - Aziz ur Rehman
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.U.K.); (S.E.-u.-H.); (U.W.); (M.F.Q.); (A.u.R.); (M.A.Z.)
| | - Amar Nasir
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.N.); (M.K.)
| | - Muhammad Arfan Zaman
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.U.K.); (S.E.-u.-H.); (U.W.); (M.F.Q.); (A.u.R.); (M.A.Z.)
| | - Muhammad Kashif
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan; (A.N.); (M.K.)
| | - Jean-Paul Gonzalez
- Department of Microbiology & Immunology, School of Medicine, Georgetown University, Washington, DC 20057, USA;
| | - Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany
- Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 35516, Egypt
| |
Collapse
|
24
|
Ratti G, Facchin A, Stranieri A, Giordano A, Paltrinieri S, Scarpa P, Maragno D, Gazzonis A, Penati M, Luzzago C, Dall’Ara P, Lauzi S. Fecal Carriage of Extended-Spectrum β-Lactamase-/AmpC-Producing Escherichia coli in Pet and Stray Cats. Antibiotics (Basel) 2023; 12:1249. [PMID: 37627669 PMCID: PMC10451524 DOI: 10.3390/antibiotics12081249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Dogs have been reported as potential carriers of antimicrobial-resistant bacteria, but the role of cats has been poorly studied. The aim of this study was to investigate the presence and the risk factors associated with the fecal carriage of extended-spectrum β-lactamase and AmpC (ESBL/AmpC)-producing Escherichia coli (E. coli) in pet and stray cats. Fecal samples were collected between 2020 and 2022 from healthy and unhealthy cats and screened for ESBL/AmpC-producing E. coli using selective media. The presence of ESBL/AmpC-producing E. coli was confirmed by phenotypic and molecular methods. The evaluation of minimum inhibitory concentrations (MICs) was performed on positive isolates. Host and hospitalization data were analyzed to identify risk factors. A total of 97 cats' samples were collected, and ESBL/AmpC-producing E. coli were detected in 6/97 (6.2%), supported by the detection of blaCTX-M (100%), blaTEM (83.3%), and blaSHV (16.7%) genes and the overexpression of chromosomal ampC (1%). All E. coli isolates were categorized as multidrug-resistant. Unhealthy status and previous antibiotic therapy were significantly associated with ESBL/AmpC-producing E. coli fecal carriage. Our results suggest that cats may be carriers of ESBL/AmpC-producing E. coli, highlighting the need for antimicrobial stewardship in veterinary medicine and an antimicrobial-resistance surveillance program focusing on companion animals, including stray cats.
Collapse
Affiliation(s)
- Gabriele Ratti
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Alessia Facchin
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Angelica Stranieri
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Alessia Giordano
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Saverio Paltrinieri
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Paola Scarpa
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Deborah Maragno
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Alessia Gazzonis
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Martina Penati
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
- Laboratory of Animal Infectious Diseases (MiLab), University of Milan, 26900 Lodi, Italy
| | - Camilla Luzzago
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Paola Dall’Ara
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Stefania Lauzi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| |
Collapse
|
25
|
Blot N, Clémencet J, Jourda C, Lefeuvre P, Warrit N, Esnault O, Delatte H. Geographic population structure of the honeybee microsporidian parasite Vairimorpha (Nosema) ceranae in the South West Indian Ocean. Sci Rep 2023; 13:12122. [PMID: 37495608 PMCID: PMC10372035 DOI: 10.1038/s41598-023-38905-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
The microsporidian Vairimorpha (Nosema) ceranae is one of the most common parasites of the honeybee. A single honeybee carries many parasites and therefore multiple alleles of V. ceranae genes that seem to be ubiquitous. As a consequence, nucleotide diversity analyses have not allowed discriminating genetic structure of parasite populations. We performed deep loci-targeted sequencing to monitor the haplotype frequencies of genome markers in isolates from discontinuous territories, namely the tropical islands of the South West Indian Ocean. The haplotype frequency distribution corroborated the suspected tetraploidy of the parasite. Most major haplotypes were ubiquitous in the area but with variable frequency. While oceanic isolates differed from European and Asian outgroups, parasite populations from distinct archipelagoes also differed in their haplotype distribution. Interestingly an original and very divergent Malagasy isolate was detected. The observed population structure allowed formulating hypotheses upon the natural history of V. ceranae in this oceanic area. We also discussed the usefulness of allelic distribution assessment, using multiple informative loci or genome-wide analyses, when parasite population is not clonal within a single host.
Collapse
Affiliation(s)
- Nicolas Blot
- Université Clermont Auvergne, CNRS, "Laboratoire Microorganismes: Génome et Environnement", Clermont-Ferrand, France.
| | - Johanna Clémencet
- Université de la Réunion, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 97410, Saint-Pierre, La Réunion, France
| | - Cyril Jourda
- CIRAD, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 97410, Saint-Pierre, La Réunion, France
| | - Pierre Lefeuvre
- CIRAD, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 97410, Saint-Pierre, La Réunion, France
| | - Natapot Warrit
- Center of Excellence in Entomology, Department of Biology, Faculty of Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Olivier Esnault
- Groupement de Défense Sanitaire de la Réunion, La Plaine des Cafres, France
| | - Hélène Delatte
- CIRAD, UMR Peuplements Végétaux et Bio-agresseurs en Milieu Tropical, 101, Antananarivo, Madagascar
| |
Collapse
|
26
|
Ovis-Sánchez JO, Perera-Pérez VD, Buitrón G, Quintela-Baluja M, Graham DW, Morales-Espinosa R, Carrillo-Reyes J. Exploring resistomes and microbiomes in pilot-scale microalgae-bacteria wastewater treatment systems for use in low-resource settings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163545. [PMID: 37080313 DOI: 10.1016/j.scitotenv.2023.163545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/17/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Antibiotic resistance genes (ARGs) released into the environment are an emerging human and environmental health concern, including ARGs spread in wastewater treatment effluents. In low-to-middle income countries (LMICs), an alternate wastewater treatment option instead of conventional systems are low-energy, high-rate algal ponds (HRAP) that use microalgae-bacteria aggregates (MABA) for waste degradation. Here we studied the robustness of ARG removal in MABA-based pilot-scale outdoor systems for 140 days of continuous operation. The HRAP system successfully removed 73 to 88 % chemical oxygen demand and up to 97.4 % ammonia, with aggregate size increasing over operating time. Fourteen ARG classes were identified in the HRAP influent, MABA, and effluent using metagenomics, with the HRAP process reducing total ARG abundances by up to 5-fold from influent to effluent. Parallel qPCR analyses showed the HRAP system significantly reduced exemplar ARGs (p < 0.05), with 1.2 to 4.9, 2.7 to 6.3, 0 to 1.5, and 1.2 to 4.8 log-removals for sul1, tetQ, blaKPC, and intl1 genes, respectively. Sequencing of influent, effluent and MABAs samples showed associated microbial communities differed significantly, with influent communities by Enterobacteriales (clinically relevant ARGs carrying bacteria), which were less evident in MABA and effluent. In this sense, such bacteria might be excluded from MABA due to their good settling properties and the presence of antimicrobial peptides. Microalgae-bacteria treatment systems steadily reduced ARGs from wastewater during operation time, using sunlight as the energetic driver, making them ideal for use in LMIC wastewater treatment applications.
Collapse
Affiliation(s)
- Julián O Ovis-Sánchez
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Victor D Perera-Pérez
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Germán Buitrón
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico
| | - Marcos Quintela-Baluja
- School of Engineering, Newcastle University, Cassie Building, Newcastle upon Tyne NE1 7RU, UK
| | - David W Graham
- School of Engineering, Newcastle University, Cassie Building, Newcastle upon Tyne NE1 7RU, UK
| | - Rosario Morales-Espinosa
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Julián Carrillo-Reyes
- Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico.
| |
Collapse
|
27
|
Al-Sheboul SA, Al-Madi GS, Brown B, Hayajneh WA. Prevalence of Extended-Spectrum β-Lactamases in Multidrug-Resistant Klebsiella pneumoniae Isolates in Jordanian Hospitals. J Epidemiol Glob Health 2023; 13:180-190. [PMID: 37095370 PMCID: PMC10272028 DOI: 10.1007/s44197-023-00096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
The increase in the prevalence of infections caused by certain bacteria, such as Klebsiella pneumonia (K. pneumoniae), is a global health concern. Bacterial production of an enzyme called extended-spectrum beta-lactamase (ESBL) can generate resistance to antimicrobial therapeutics. Therefore, between 2012 and 2013, we investigated K. pneumoniae that produce ESBLs with the prevalence of individual genes including blaSHV, blaCTX-M, blaTEM, and blaOXA isolated from clinical samples. A total of 99 variable diagnostic samples including blood from hematological malignancies (n = 14) or other clinical sources including sputum, pus, urine, and wound (n = 85) were analyzed. All samples' bacterial type was confirmed and their susceptibility to antimicrobial agents was established. Polymerase chain reaction (PCR) amplification was carried out to ascertain presence of specific genes that included blaSHV, blaCTX-M, blaTEM, and blaOXA. Plasmid DNA profiles were determined to assess significance between resistance to antimicrobial agents and plasmid number. It was found that among non-hematologic malignancy isolates, the highest rate of resistance was 87.9% to imipenem, with lowest rate being 2% to ampicillin. However, in hematologic malignancy isolates, the highest microbial resistance was 92.9% to ampicillin with the lowest rate of resistance at 28.6% to imipenem. Among collected isolates, 45% were ESBL-producers with 50% occurrence in hematologic malignancy individuals that were ESBL-producers. Within ESBL-producing isolates from hematologic malignancy individuals, blaSHV was detected in 100%, blaCTX-M in 85.7%, and blaTEM and blaOXA-1 at 57.1% and 27.1%, respectively. In addition, blaSHV, blaCTX-M, and blaOXA were found in all non-hematological malignancy individuals with blaTEM detected in 55.5% of samples. Our findings indicate that ESBLs expressing blaSHV and blaCTX-M genes are significantly prevalent in K. pneumoniae isolates from hematologic malignancy individuals. Plasmid analysis indicated plasmids in isolates collected from hematological malignancy individuals. Furthermore, there was a correlation between resistance to antimicrobial agents and plasmids within two groups analyzed. This study indicates an increase in incidence of K. pneumoniae infections displaying ESBL phenotypes in Jordan.
Collapse
Affiliation(s)
- Suhaila A. Al-Sheboul
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Sciences and Technology (JUST), Irbid, Jordan
| | - Ghina S. Al-Madi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Sciences and Technology (JUST), Irbid, Jordan
| | | | - Wail A. Hayajneh
- Department of Pediatrics and Neonatology, Faculty of Medicine and King Abdullah University Hospital, Jordan University of Science and Technology (JUST), Irbid, Jordan
- Children’s National Hospital, Saint Louis University, St. Joseph’s University Medical Center, Paterson, USA
| |
Collapse
|
28
|
Saeed MA, Saqlain M, Waheed U, Ehtisham-Ul-Haque S, Khan AU, Rehman AU, Sajid M, Atif FA, Neubauer H, El-Adawy H. Cross-Sectional Study for Detection and Risk Factor Analysis of ESBL-Producing Avian Pathogenic Escherichia coli Associated with Backyard Chickens in Pakistan. Antibiotics (Basel) 2023; 12:antibiotics12050934. [PMID: 37237837 DOI: 10.3390/antibiotics12050934] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The increasing incidence of extended-spectrum β-lactamase (ESBL)-producing Escherichia (E.) coli in backyard chicken farming in Pakistan is of serious concern. This study aimed to assess the prevalence, antimicrobial resistance patterns and risk factors associated with ESBL avian pathogenic E. coli (APEC) isolated from backyard chickens in the Jhang district, Punjab, Pakistan. In total, 320 cloacal swabs were collected from four breeds of backyard chicken (Aseel, Golden, Misri and Necked Neck). ESBL E. coli were phenotypically identified using double disc synergy test (DDST) and corresponding genes were confirmed by multiplex polymerase chain reaction (mPCR). Out of the 320 samples, 164 (51.3%) were confirmed as E. coli, while 74 (45.1%) were characterized as ESBL E. coli. The frequency of isolation of ESBL E. coli was highest in Aseel chickens (35.1%). Of the 164 confirmed E. coli, 95.1%, 78.6%, 76.8%, 71.3%, 70.1%, 68.9%, 60.4% and 57.3% were resistant against tylosin, doxycycline, cefotaxime, enrofloxacin, colistin, trimethoprim/sulfamethoxazole, chloramphenicol and gentamicin, respectively. The ESBL gene types detected and their corresponding proportions were blaCTX-M (54.1 %, 40/74), blaTEM, (12.2%, 9/74) and co-existence (blaCTX-M and blaTEM) were shown in 33.8% (25/74). The blaCTX-M gene sequence showed homology to blaCTX-M-15 from clinical isolates. The mean multiple antibiotic resistance index (MARI) was found to be higher among ESBL E. coli (0.25) when compared to non-ESBL E. coli (0.17). Both free-range husbandry management system (p = 0.02, OR: 30.00, 95% CI = 1.47-611.79) and high antimicrobial usage in the last 6 months (p = 0.01, OR: 25.17, 95% CI = 1.81-348.71) were found significantly associated with isolation of ESBL-producing E. coli in the tested samples using binary logistic regression analysis. This study confirmed the potential of backyard chickens as a reservoir for ESBL E. coli in the Jhang district, Punjab, Pakistan.
Collapse
Affiliation(s)
- Muhammad Adnan Saeed
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan
| | - Muhammad Saqlain
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan
| | - Usman Waheed
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan
| | - Syed Ehtisham-Ul-Haque
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan
| | - Aman Ullah Khan
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan
| | - Aziz Ur Rehman
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan
| | - Muhammad Sajid
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan
| | - Farhan Ahmad Atif
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore, CVAS Campus, 12-Km Chiniot Road, Jhang 35200, Pakistan
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany
| | - Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany
- Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 35516, Egypt
| |
Collapse
|
29
|
Ferri G, Lauteri C, Scattolini M, Vergara A. Antibiotic Resistance Profiles and ARG Detection from Isolated Bacteria in a Culture-Dependent Study at the Codfish Industry Level. Foods 2023; 12:foods12081699. [PMID: 37107494 PMCID: PMC10137873 DOI: 10.3390/foods12081699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The antibiotic resistance phenomenon horizontally involves numerous bacteria cultured from fresh or processed seafood matrix microbiomes. In this study, the identified bacteria from food-producing processes and industrial environments were screened for phenotypic and genotypic resistance determinants. A total of 684 bacterial strains [537 from processed codfish (Gadus morhua and Gadus macrocephalus) products as salted and seasoned and soaked and 147 from environmental samples] were isolated. Antibiotic susceptibility tests showed resistance against tetracycline, oxacillin, and clindamycin in the Staphylococcus genus (both from food and environmental samples) and against beta-lactams (cefotaxime, carbapenems, etc.) and nitrofurans (nitrofurantoin) from E. coli and Salmonella enterica serovar. Enteritidis isolates. One-thousand and ten genetic determinants-tetracycline tetC (25.17%), tetK (21.06%), tetL (11.70%), clindamycin ermC (17.23%), ermB (7.60%), linezolid cfr (8.22%), optrA (3.62%), poxtA (2.05%), and oxacillin mecA (17.37%)-were amplified from Gram-positive resistant and phenotypically susceptible bacteria. Concerning Gram-negative bacteria, the beta-lactam-resistant genes (blaTEM, blaCIT, blaCTX-M, blaIMP, blaKPC, blaOXA-48-like) represented 57.30% of the amplified ARGs. This study found high antibiotic resistance genes in circulation in the fish food industry chain from the macro- to microenvironment. The obtained data confirmed the diffusion of the "antibiotic resistance phenomenon" and its repercussions on the One-health and food-producing systems.
Collapse
Affiliation(s)
- Gianluigi Ferri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy
| | - Carlotta Lauteri
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy
| | | | - Alberto Vergara
- Department of Veterinary Medicine, Post-Graduate Specialization School in Food Inspection "G. Tiecco", University of Teramo, Strada Provinciale 18, 64100 Teramo, Italy
| |
Collapse
|
30
|
Martins JCL, Pintor-Cora A, Alegría Á, Santos JA, Herrera-Arias F. Characterization of ESBL-producing Escherichia spp. and report of an mcr-1 colistin-resistance Escherichia fergusonni strain from minced meat in Pamplona, Colombia. Int J Food Microbiol 2023; 394:110168. [PMID: 36931145 DOI: 10.1016/j.ijfoodmicro.2023.110168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023]
Abstract
Foods of animal origin are increasingly considered a source of extended spectrum β-lactamase (ESBL) producing bacteria which can disseminate throughout the food chain and become a health concern for humans. This work aimed to evaluate the occurrence of ESBL-producing Escherichia coli in 100 retail minced meat samples taken in markets in Pamplona, Colombia. A total of 19 ESBL-producing isolates were obtained, 18 identified as E. coli and one as E. fergusonii. Fifteen isolates (78.9 %) carried blaCTX-M and blaTEM genes, one (5.2 %) blaSHV and blaTEM genes, one isolate (5.2 %) carried blaCTX-M and one (5.2 %) blaSHV alone. The majority of CTX-M-positive E. coli isolates carried the blaCTX-M-15 gene (13 isolates), being the blaCTX-M-9, blaCTX-M-2, and blaCTX-M-8 (one isolate each) also detected. Two SHV-positive isolates presented the blaSHV-5 and blaSHV-12 allele. The isolate identified as E. fergusonii was positive for blaCTX-M-65 gene and mcr-1 gene. Sixteen isolates (84.2 %) belonged to phylogroups A and B1 and grouped together in the phylogenetic tree obtained by MLST; phylogroups E and F were also detected. Transfer of ESBL resistance was demonstrated for the E. fergusonii isolate. Whole genome sequencing of this isolate revealed the presence of plasmids carrying additional resistance genes. This investigation showed the high prevalence of ESBL-producing E. coli in retail samples of minced meat. Also, the isolation of a strain of E. fergusonii is an additional concern, as some resistance genes are located in mobile elements, which can be transmitted to other bacteria. These evidences support the increasing public health concern considering the spreading of resistance genes through the food chain.
Collapse
Affiliation(s)
- Joana C L Martins
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, 24071 León, Spain
| | - Alberto Pintor-Cora
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, 24071 León, Spain.
| | - Ángel Alegría
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, 24071 León, Spain.
| | - Jesús A Santos
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, 24071 León, Spain.
| | - Fanny Herrera-Arias
- Department of Food Hygiene and Food Technology, Veterinary Faculty, Universidad de León, 24071 León, Spain; Departamento de Microbiología, Facultad de Ciencias Básicas, Universidad de Pamplona, Pamplona, Colombia.
| |
Collapse
|
31
|
Cruz-Vargas SA, García-Muñoz L, Cuervo-Maldonado SI, Álvarez-Moreno CA, Saavedra-Trujillo CH, Álvarez-Rodríguez JC, Arango-Gutiérrez A, Gómez-Rincón JC, García-Guzman K, Leal AL, Garzón-Herazo J, Martínez-Vernaza S, Guevara FO, Jiménez-Cetina LP, Mora LM, Saavedra SY, Cortés JA. Molecular and Clinical Data of Antimicrobial Resistance in Microorganisms Producing Bacteremia in a Multicentric Cohort of Patients with Cancer in a Latin American Country. Microorganisms 2023; 11:microorganisms11020359. [PMID: 36838324 PMCID: PMC9960769 DOI: 10.3390/microorganisms11020359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Patients with cancer have a higher risk of severe bacterial infections. This study aims to determine the frequency, susceptibility profiles, and resistance genes of bacterial species involved in bacteremia, as well as risk factors associated with mortality in cancer patients in Colombia. In this prospective multicenter cohort study of adult patients with cancer and bacteremia, susceptibility testing was performed and selected resistance genes were identified. A multivariate regression analysis was carried out for the identification of risk factors for mortality. In 195 patients, 206 microorganisms were isolated. Gram-negative bacteria were more frequently found, in 142 cases (68.9%): 67 Escherichia coli (32.5%), 36 Klebsiella pneumoniae (17.4%), and 21 Pseudomonas aeruginosa (10.1%), and 18 other Gram-negative isolates (8.7%). Staphylococcus aureus represented 12.4% (n = 25). Among the isolates, resistance to at least one antibiotic was identified in 63% of them. Genes coding for extended-spectrum beta-lactamases and carbapenemases, blaCTX-M and blaKPC, respectively, were commonly found. Mortality rate was 25.6% and it was lower in those with adequate empirical antibiotic treatment (22.0% vs. 45.2%, OR: 0.26, 95% CI: 0.1-0.63, in the multivariate model). In Colombia, in patients with cancer and bacteremia, bacteria have a high resistance profile to beta-lactams, with a high incidence of extended-spectrum beta-lactamases and carbapenemases. Adequate empirical treatment diminishes mortality, and empirical selection of treatment in this environment of high resistance is of key importance.
Collapse
Affiliation(s)
- Sergio Andrés Cruz-Vargas
- Department of Internal Medicine, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia
| | - Laura García-Muñoz
- Department of Internal Medicine, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia
| | - Sonia Isabel Cuervo-Maldonado
- Department of Internal Medicine, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia
- Infectious Diseases Group, Instituto Nacional de Cancerología-ESE, Bogotá 111511, Colombia
- Research Group in Cancer Infectious Diseases and Hematological Alterations (GREICAH), Bogotá 111321, Colombia
| | - Carlos Arturo Álvarez-Moreno
- Department of Internal Medicine, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia
- Clínica Universitaria Colombia, Bogota 111321, Colombia
| | | | - José Camilo Álvarez-Rodríguez
- Infectious Diseases Group, Instituto Nacional de Cancerología-ESE, Bogotá 111511, Colombia
- Research Group in Cancer Infectious Diseases and Hematological Alterations (GREICAH), Bogotá 111321, Colombia
- Hospital Universitario Clínica San Rafael, Bogotá 110111, Colombia
| | | | | | | | - Aura Lucía Leal
- Department of Microbiology, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Javier Garzón-Herazo
- Infectious Diseases Unit, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
| | - Samuel Martínez-Vernaza
- Infectious Diseases Unit, Hospital Universitario San Ignacio, Bogotá 110231, Colombia
- Research Group in Infectious Diseases, Hospital Universitario San Ignacio, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | | | | | - Liliana Marcela Mora
- Microbiology Laboratory, Instituto Nacional de Cancerología-ESE, Bogotá 111511, Colombia
| | | | - Jorge Alberto Cortés
- Department of Internal Medicine, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia
- Diseases Unit, Hospital Universitario Nacional, Bogotá 111321, Colombia
- Correspondence:
| |
Collapse
|
32
|
Ortiz-Díez G, Mengíbar RL, Turrientes MC, Artigao MRB, Gallifa RL, Tello AM, Pérez CF, Santiago TA. Prevalence, incidence and risk factors for acquisition and colonization of extended-spectrum beta-lactamase- and carbapenemase-producing Enterobacteriaceae from dogs attended at a veterinary hospital in Spain. Comp Immunol Microbiol Infect Dis 2023; 92:101922. [PMID: 36509030 DOI: 10.1016/j.cimid.2022.101922] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
The last 10 years have seen a progressive increase in antibiotic resistance rates in bacteria isolated from companion animals. Exposure of individuals to resistant bacteria from companion animals, such as extended-spectrum beta-lactamase- (ESBL) and carbapenemase- (CPE) producing Enterobacteriaceae, can be propitiated. Few studies evaluate the incidence and risk factors associated with colonization by multidrug-resistant bacteria in dogs. This work aims to estimate the prevalence, incidence and risk factors associated with colonization of ESBL-E and CPE-E in 44 canine patients hospitalized in a veterinary hospital. The antimicrobial susceptibility of Enterobacteriaceae strains was analyzed and the molecular detection of resistant genes was performed. A prevalence of 25.0% and an incidence of ESBL-E of 45.5% were observed in dogs colonized by Enterobacteriaceae at hospital admission and release, respectively. Escherichia coli, Klebsiella pneumoniae, Citrobacter koseri and Morganella morganii were identified as ESBL-producing bacterial species. Resistance genes were detected for ESBL-producing strains. No CPE isolates were obtained on the CPE-selective medium. The administration of corticosteroids prior to hospitalization and the presence of concomitant diseases were associated with colonization by these bacteria in dogs. Considering that one-quarter of the patients evaluated were colonized by ESBL-E, companion animals should be considered as potential transmission vehicles and ESBL-E reservoirs for humans. Special care should be taken in animals attended at veterinary hospitals, as the length of stay in the hospital could increase the risks.
Collapse
Affiliation(s)
- Gustavo Ortiz-Díez
- Hospital Clínico Veterinario, Universidad Alfonso X El Sabio, Madrid, Spain.
| | - Ruth Luque Mengíbar
- Hospital Clínico Veterinario, Universidad Alfonso X El Sabio, Madrid, Spain.
| | - María-Carmen Turrientes
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal -IRYCIS-, Madrid, Spain; Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública -CIBERESP-, Madrid, Spain.
| | | | - Raúl López Gallifa
- Hospital Clínico Veterinario, Universidad Alfonso X El Sabio, Madrid, Spain.
| | | | - Cristina Fernández Pérez
- Fundación Instituto para la Mejora de la Asistencia Sanitaria, Madrid, Spain; Servicio de Medicina Preventiva y Salud Pública, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, A Coruña, Spain.
| | | |
Collapse
|
33
|
Gücükoğlu A, Uyanik T, Çadirci Ö, Uğurtay E, Kanat S, Bölükbaş A. Determination of extended spectrum β-lactamase-producing Enterobacteriaceae in raw water buffalo milk and dairy products by conventional multiplex and real-time PCR. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2022.105581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
34
|
Mwakyabala JG, Mtemisika CI, Mshana S, Mwakyoma AA, Silago V. Characterisation of genes encoding for extended spectrum β-lactamase in Gram-negative bacteria causing healthcare-associated infections in Mwanza, Tanzania. Afr J Lab Med 2023; 12:2107. [PMID: 37151814 PMCID: PMC10157427 DOI: 10.4102/ajlm.v12i1.2107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/27/2023] [Indexed: 05/09/2023] Open
Abstract
Healthcare-associated infections (HCAIs) caused by extended spectrum β-lactamase-producing Gram-negative bacteria (ESBL-GNB) increase morbidity and mortality. This cross-sectional study characterised ESBL genes (bla CTX-M, bla TEM and bla SHV) among 30 ceftriaxone-resistant GNB causing HCAIs between January 2022 and July 2022 by multiplex polymerase chain reaction assay at the zonal referral hospital in Mwanza, Tanzania. Twenty-five (83.3%) had at least one ESBL gene, of which 23/25 (92.0%) carried the bla CTX-M gene. Seventy-two percent (18/25) of the GNB-ESBL isolates carried more than one ESBL gene, of which the majority (88.8%; n = 16/25) carried the bla CTX-M and bla TEM genes. Extended spectrum β-lactamase genes, particularly bla CTX-M, are common among ceftriaxone-resistant GNB causing HCAIs. What this study adds This study revealed the distribution of genes (bla CTX-M, bla TEM and bla SHV) coding for ESBL production among ceftriaxone resistant GNB causing HCAIs However, all ESBL producing GNB were susceptible towards ceftriaxone-sulbactam indicating that ceftriaxone-sulbactam may be empirically prescribed for treating patients with HCAIs.
Collapse
Affiliation(s)
- Jenipher G Mwakyabala
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, United Republic of Tanzania
| | - Conjester I Mtemisika
- Molecular Biology Laboratory, Central Pathology Laboratory, Bugando Medical Centre, Mwanza, United Republic of Tanzania
| | - Stacy Mshana
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, United Republic of Tanzania
| | - Adam A Mwakyoma
- Department of Clinical Microbiology, Kilimanjaro Christian Medical Centre, Moshi, United Republic of Tanzania
| | - Vitus Silago
- Department of Microbiology and Immunology, Weill Bugando School of Medicine, Catholic University of Health and Allied Sciences, Mwanza, United Republic of Tanzania
| |
Collapse
|
35
|
Jalil A, Gul S, Bhatti MF, Siddiqui MF, Adnan F. High Occurrence of Multidrug-Resistant Escherichia coli Strains in Bovine Fecal Samples from Healthy Cows Serves as Rich Reservoir for AMR Transmission. Antibiotics (Basel) 2022; 12:antibiotics12010037. [PMID: 36671238 PMCID: PMC9855024 DOI: 10.3390/antibiotics12010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Antibiotics are valuable therapeutics. However, the unwarranted and excessive use of these antimicrobials in food animals and the consequent contamination of the environment have been associated with the emergence and spread of antimicrobial resistance. Continuous surveillance and monitoring of antimicrobial resistance among E. coli isolates is recommended, not only for bovine health but also for public health. This study aims to assess the antimicrobial resistance profile, virulence potential, and genetic characterization of fecal E. coli isolates from healthy cows. METHODOLOGY The in vitro, phenotypic antibiotic resistance of isolates was measured via the Kirby-Bauer disc-diffusion method against twenty-seven antibiotics. The β-lactamase enzymatic activities of the strains were also investigated. For the assessment of virulence potential, fecal E. coli isolates were subjected to several in vitro pathogenicity assays, including biofilm formation ability, blood hemolysis, complement resistance, and growth in human urine. Phylogroup determination and virulence-associated genes were detected via multiplex PCR. RESULTS In vitro antibiotic resistance profiling showed that 186/200 (93%) of the isolates were multidrug-resistant (MDR), with the highest resistance against penicillin, tetracycline, fluoroquinolone, and macrolide classes of antibiotics. Of particular concern was the phenotypic resistance to colistin in 52/200 isolates (26%), though 16% of the total isolates harbored mcr1, the genetic determinant of colistin. Despite the scarce use of fluoroquinolone, cephalosporin, and carbapenem in the agricultural sector, resistance to these classes was evident due to the presence of extended-spectrum β-lactamase (ESBL) in 41% of E. coli isolates. The β-lactamase genotyping of E. coli isolates showed that 47% of isolates harbored either blaCTX or blaTEM. Approximately 32% of isolates were resistant to serum complement, and their growth in human urine was evident in 18% of isolates, indicating a possible infection of these isolates in high nitrogenous condition. Phylogrouping showed that the most prevalent phylogenetic group among fecal E. coli isolates was phylogroup B1 (57%), followed by phylogroups A (33%), D (6%), and B2 (4%). The most prevalent virulence-associated genes in fecal E. coli were fimH, iss and tatT. Results showed that ten isolates (5%) harbored the stx1 gene, the genetic marker of enterohemorrhagic E. coli. This study provides insights into the antibiotic resistance and virulence profiling of the fecal E. coli isolates from healthy cows. These results emphasize the need for imposing regulations on the proper use of antibiotics and growth promoters in food-producing animals.
Collapse
Affiliation(s)
- Amna Jalil
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Shabana Gul
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Muhammad Faraz Bhatti
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | | | - Fazal Adnan
- Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
- Correspondence:
| |
Collapse
|
36
|
Evaluation of Antimicrobial Resistance of Different Phylogroups of Escherichia coli Isolates from Feces of Breeding and Laying Hens. Antibiotics (Basel) 2022; 12:antibiotics12010020. [PMID: 36671221 PMCID: PMC9854720 DOI: 10.3390/antibiotics12010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Animal and food sources are seen as a potential transmission pathway of multi-drug resistance (MDR) micro-organisms to humans. Escherichia. coli is frequently used as an indicator of fecal contamination in the food industry and known as a reservoir of antimicrobial resistance genes (ARGs). Microbial contamination as a major outcome for the poultry and egg industry and is a serious public health problem. In the present study we performed the quantification of β-glucoronidase positive E. coli in 60 fecal samples of breeding and laying hens collected in Portugal in 2019. Phylogenetic and pathotypic characterization, antimicrobial susceptibility, and detection of resistant extended-spectrum β-lactamase (ESBL) genes were assessed. The phylogenetic and pathogenic characterization and detection of ESBL genes were assessed by real-time PCR and antimicrobial susceptibility was evaluated using the disk diffusion method. Overall, E. coli quantification was 6.03 log CFU/g in breeding hens and 6.02 log CFU/g in laying hens. The most frequent phylogroups were B1. None of the isolates was classified as diarrheagenic E. coli (DEC). In total, 57% of the isolates showed MDR and 3.8% were positive for ESBL. Our study highlights that consumers may be exposed to MDR E. coli, presenting a major hazard to food safety and a risk to public health.
Collapse
|
37
|
Dong Q, Wang Q, Zhang Y, Chen Y, Wang H, Ding H. Prevalence, antimicrobial resistance, and staphylococcal toxin genes of bla TEM-1a -producing Staphylococcus aureus isolated from animals in Chongqing, China. Vet Med Sci 2022; 9:513-522. [PMID: 36495160 PMCID: PMC9856999 DOI: 10.1002/vms3.1028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Staphylococcus aureus infection of livestock animals and humans is a major public health issue. There are reports of antimicrobial resistance and multiple staphylococcal superantigen genes in many countries and several provinces of China, but the status in Chongqing, China is uncertain. OBJECTIVES The aim of this study was to determine the prevalence, antimicrobial susceptibility, and other molecular characteristics of S. aureus isolates from livestock animals in Chongqing. METHODS Staphylococcus aureus was isolated and identified by selective enrichment and amplification of the nuc gene from 1371 samples collected at farms in Chongqing. The agar dilution method was used to determine the resistant phenotype, and extended spectrum β-lactamase genes were amplified by PCR. Methicillin-resistant S. aureus was verified by the presence of the mecA gene, and the presence or absence of SE, SEl, and TSST-1 genes was detected in the isolates. RESULTS We cultured 89 S. aureus isolates from 1371 samples between March 2014 and December 2017. These isolates were from pigs, cattle, goats, rabbits, and chickens. There were four methicillin-resistant S. aureus strains (three from pigs and one from a chicken). The 89 isolates had high resistance to penicillin (93.3%) and ampicillin (92.1%), but most were susceptible to amikacin and ofloxacin, with resistance rates below 10%. A total of 62.9% of the isolates had varying degrees of multidrug resistance. Almost all strains, except for three isolates from chickens, were positive for blaTEM-1a . There were 19 of 20 tested staphylococcal SE/SEl/TSST-1 genes present (all except for seq), and the predominant genes were sei (58.4%), tst-1 (56.2%), and seg (51.7%). CONCLUSIONS The high antimicrobial resistance and prevalence of blaTEM-1a reinforce the need to reduce the usage of antimicrobials in livestock. The universal existence of staphylococcal toxin genes implies a potential threat to public health by animal-to-human transmission via the food chain.
Collapse
Affiliation(s)
- Qingshuang Dong
- Laboratory of Veterinary MycoplasmologyCollege of Veterinary MedicineSouthwest UniversityChongqingChina
| | - Qing Wang
- Laboratory of Veterinary MycoplasmologyCollege of Veterinary MedicineSouthwest UniversityChongqingChina
| | - Yun Zhang
- Laboratory of Veterinary MycoplasmologyCollege of Veterinary MedicineSouthwest UniversityChongqingChina
| | - Yao Chen
- Laboratory of Veterinary MycoplasmologyCollege of Veterinary MedicineSouthwest UniversityChongqingChina
| | - Haoju Wang
- Laboratory of Veterinary MycoplasmologyCollege of Veterinary MedicineSouthwest UniversityChongqingChina
| | - Honglei Ding
- Laboratory of Veterinary MycoplasmologyCollege of Veterinary MedicineSouthwest UniversityChongqingChina
| |
Collapse
|
38
|
Tohmaz M, Askari Badouei M, Kalateh Rahmani H, Hashemi Tabar G. Antimicrobial resistance, virulence associated genes and phylogenetic background versus plasmid replicon types: the possible associations in avian pathogenic Escherichia coli (APEC). BMC Vet Res 2022; 18:421. [PMID: 36447231 PMCID: PMC9710092 DOI: 10.1186/s12917-022-03496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 10/27/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) in bacterial isolates from food producing animals not only challenges the preventive and therapeutic strategies in veterinary medicine, but also threatens public health. Genetic elements placed on both chromosome and plasmids could be involved in AMR. In the present study, the associations of genomic backbone and plasmids with AMR were evaluated. We also provided some primary evidences that which genetic lineages potentially host certain groups of plasmids. RESULTS In the current study, 72 avian pathogenic Escherichia coli (APEC) strains were examined. Isolates resistant to tetracycline and trimethoprim-sulfamethoxazole (87.5%; each), and harboring blaTEM (61.1%) were dominant. Moreover, phylogroup D was the most prevalent phylogroup in total (23.6%), and among multidrug-resistant (MDR) isolates (14/63). The most prevalent Inc-types were also defined as follows: IncP (65.2%), IncI1 (58.3%), and IncF group (54.1%). Significant associations among phylogroups and AMR were observed such as group C to neomycin (p = 0.002), gentamicin (p = 0.017) and florfenicol (p = 0.036). Furthermore, group D was associated with blaCTX. In terms of associations among Inc-types and AMR, resistance to aminoglycoside antibiotics was considerably linked with IncP (p = 0.012), IncI1 (p = 0.038) and IncA/C (p = 0.005). The blaTEM and blaCTX genes presence were connected with IncI1 (p = 0.003) and IncFIC (p = 0.013), respectively. It was also shown that members of the D phylogroup frequently occured in replicon types FIC (8/20), P (13/47), I1 (13/42), HI2 (5/14) and L/M (3/3). CONCLUSIONS Accorging to the results, it seems that group D strains have a great potential to host a variety of plasmids (Inc-types) carrying different AMR genes. Thus, based on the results of the current study, phyogroup D could be a potential challenge in dealing with AMR in poultry. There were more strong correlations among Inc-types and AMR compared to phylotypes and AMR. It is suggested that in epidemiological studies on AMR both genomic backbone and major plasmid types should be investigated.
Collapse
Affiliation(s)
- Maad Tohmaz
- grid.411301.60000 0001 0666 1211Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Askari Badouei
- grid.411301.60000 0001 0666 1211Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamideh Kalateh Rahmani
- grid.411301.60000 0001 0666 1211Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Hashemi Tabar
- grid.411301.60000 0001 0666 1211Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
39
|
Exploring the Antibiotic Resistance Profile of Clinical Klebsiella pneumoniae Isolates in Portugal. Antibiotics (Basel) 2022; 11:antibiotics11111613. [PMID: 36421258 PMCID: PMC9686965 DOI: 10.3390/antibiotics11111613] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
While antibiotic resistance is rising to dangerously high levels, resistance mechanisms are spreading globally among diverse bacterial species. The emergence of antibiotic-resistant Klebsiella pneumoniae, mainly due to the production of antibiotic-inactivating enzymes, is currently responsible for most treatment failures, threatening the effectiveness of classes of antibiotics used for decades. This study assessed the presence of genetic determinants of β-lactam resistance in 102 multi-drug resistant (MDR) K. pneumoniae isolates from patients admitted to two central hospitals in northern Portugal from 2010 to 2020. Antimicrobial susceptibility testing revealed a high rate (>90%) of resistance to most β-lactam antibiotics, except for carbapenems and cephamycins, which showed antimicrobial susceptibility rates in the range of 23.5−34.3% and 40.2−68.6%, respectively. A diverse pool of β-lactam resistance genetic determinants, including carbapenemases- (i.e., blaKPC-like and blaOXA-48-like), extended-spectrum β-lactamases (ESBL; i.e., blaTEM-like, blaCTX-M-like and blaSHV-like), and AmpC β-lactamases-coding genes (i.e., blaCMY-2-like and blaDHA-like) were found in most K. pneumoniae isolates. blaKPC-like (72.5%) and ESBL genes (37.3−74.5%) were the most detected, with approximately 80% of K. pneumoniae isolates presenting two or more resistance genes. As the optimal treatment of β-lactamase-producing K. pneumoniae infections remains problematic, the high co-occurrence of multiple β-lactam resistance genes must be seen as a serious warning of the problem of antimicrobial resistance.
Collapse
|
40
|
Igbinosa EO, Beshiru A, Igbinosa IH, Okoh AI. Antimicrobial resistance and genetic characterisation of Salmonella enterica from retail poultry meats in Benin City, Nigeria. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
41
|
Gil‐Molino M, Gonçalves P, Risco D, Martín‐Cano FE, García A, Rey J, Fernández‐Llario P, Quesada A. Dissemination of antimicrobial-resistant isolates of Salmonella spp. in wild boars and its relationship with management practices. Transbound Emerg Dis 2022; 69:e1488-e1502. [PMID: 35182450 PMCID: PMC9790216 DOI: 10.1111/tbed.14480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/30/2022]
Abstract
Antimicrobial resistance (AMR) is a global concern and controlling its spread is critical for the effectiveness of antibiotics. Members of the genus Salmonella are broadly distributed, and wild boar may play an important role in its circulation between peri-urban areas and the environment, due to its frequent interactions both with livestock or human garbage. As the population of these animals is rising due to management on certain hunting estates or the absence of natural predators, the aim of the present work is to identify the mechanisms of AMR present and/or expressed in Salmonella spp. from wild boar populations and to determine the possible role of management-related factors applied to different game estates located in central Spain. The detection of Salmonella spp. was carried out in 121 dead wild boar from 24 game estates, and antimicrobial resistance traits were determined by antibiotic susceptibility testing and screening for their genetic determinants. The effects of feeding supplementation, the proximity of livestock, the existence of a surrounding fence and the density of wild boar on the AMR of the isolates were evaluated. The predominant subspecies and serovar found were S. enterica subsp. enterica (n = 69) and S. choleraesuis (n = 33), respectively. The other subspecies found were S. enterica subsp. diarizonae, S. enterica subsp. salamae and S. enterica subsp. houtenae. AMR was common among isolates (75.2%) and 15.7% showed multi drug resistance (MDR). Resistance to sulphonamides was the most frequent (85.7%), as well as sul1 which was the AMR determinant most commonly found. Plasmids appeared in 38.8% of the isolates, with IncHI1 being the replicon detected with the highest prevalence. The AMR of the isolates increased when the animals were raised with feeding supplementation and enclosed by fences around the estates.
Collapse
Affiliation(s)
- María Gil‐Molino
- Facultad de Veterinaria, Unidad de Patología InfecciosaUniversidad de ExtremaduraCáceresSpain
| | - Pilar Gonçalves
- Innovación en Gestión y Conservación de Ingulados S.L. CáceresCáceresSpain
| | - David Risco
- Innovación en Gestión y Conservación de Ingulados S.L. CáceresCáceresSpain
- Neobeitar S.L. CáceresCáceresSpain
| | | | | | - Joaquín Rey
- Facultad de Veterinaria, Unidad de Patología InfecciosaUniversidad de ExtremaduraCáceresSpain
| | | | - Alberto Quesada
- Facultad de Veterinaria, Departamento de BioquímicaBiología Molecular y Genética, Universidad de ExtremaduraCáceresSpain
- INBIO G+CUniversidad de ExtremaduraCáceresSpain
| |
Collapse
|
42
|
Hernández Gómez YF, González Espinosa J, Ramos López MÁ, Arvizu Gómez JL, Saldaña C, Rodríguez Morales JA, García Gutiérrez MC, Pérez Moreno V, Álvarez Hidalgo E, Nuñez Ramírez J, Jones GH, Hernández Flores JL, Campos Guillén J. Insights into the Bacterial Diversity and Detection of Opportunistic Pathogens in Mexican Chili Powder. Microorganisms 2022; 10:microorganisms10081677. [PMID: 36014094 PMCID: PMC9413335 DOI: 10.3390/microorganisms10081677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Chili powder is the most frequently consumed spice in Mexican diets. Thus, the dissemination of microorganisms associated with chili powder derived from Capsicum annuum L. is significant during microbial quality analysis, with special attention on detection of potential pathogens. The results presented here describe the initial characterization of bacterial community structure in commercial chili powder samples. Our results demonstrate that, within the domain Bacteria, the most abundant family was Bacillaceae, with a relative abundance of 99% in 71.4% of chili powder samples, while 28.6% of samples showed an average relative abundance of 60% for the Enterobacteriaceae family. Bacterial load for aerobic mesophilic bacteria (AMB) ranged from 104 to 106 cfu/g, while for sporulated mesophilic bacteria (SMB), the count ranged from 102 to 105 cfu/g. Bacillus cereus sensu lato (s.l.) was observed at ca. ˂600 cfu/g, while the count for Enterobacteriaceae ranged from 103 to 106 cfu/g, Escherichia coli and Salmonella were not detected. Fungal and yeast counts ranged from 102 to 105 cfu/g. Further analysis of the opportunistic pathogens isolated, such as B. cereus s.l. and Kosakonia cowanii, using antibiotic-resistance profiles and toxinogenic characteristics, revealed the presence of extended-spectrum β-lactamases (ESBLs) and Metallo-β-lactamases (MBLs) in these organisms. These results extend our knowledge of bacterial diversity and the presence of opportunistic pathogens associated with Mexican chili powder and highlight the potential health risks posed by its use through the spread of antibiotic-resistance and the production of various toxins. Our findings may be useful in developing procedures for microbial control during chili powder production.
Collapse
Affiliation(s)
- Yoali Fernanda Hernández Gómez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Santiago de Querétaro 76220, Mexico
| | - Jacqueline González Espinosa
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Santiago de Querétaro 76220, Mexico
| | - Miguel Ángel Ramos López
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Santiago de Querétaro 76010, Mexico
| | - Jackeline Lizzeta Arvizu Gómez
- Secretaría de Investigación y Posgrado, Centro Nayarita de Innovación y Transferencia de Tecnología (CENITT), Universidad Autónoma de Nayarit, Tepic 63173, Mexico
| | - Carlos Saldaña
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Santiago de Querétaro 76220, Mexico
| | - José Alberto Rodríguez Morales
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Santiago de Querétaro 76010, Mexico
| | | | - Victor Pérez Moreno
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Santiago de Querétaro 76010, Mexico
| | - Erika Álvarez Hidalgo
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Santiago de Querétaro 76010, Mexico
| | - Jorge Nuñez Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Santiago de Querétaro 76010, Mexico
| | - George H. Jones
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - José Luis Hernández Flores
- Centro de Investigación y de Estudios Avanzados del IPN, Irapuato 36824, Mexico
- Correspondence: (J.L.H.F.); (J.C.G.)
| | - Juan Campos Guillén
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Santiago de Querétaro 76010, Mexico
- Correspondence: (J.L.H.F.); (J.C.G.)
| |
Collapse
|
43
|
Prevalence and Molecular Characterization of Extended-Spectrum β-Lactamases and AmpC β-lactamase-Producing Enterobacteriaceae among Human, Cattle, and Poultry. Pathogens 2022; 11:pathogens11080852. [PMID: 36014973 PMCID: PMC9414889 DOI: 10.3390/pathogens11080852] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae are a universal public health alarm frequently identified among humans, animals, and poultry. Livestock and poultry production are a possible source of multidrug-resistant microorganisms, including ESBL-producing Enterobacteriaceae, which confer antimicrobial resistance to different β-lactam antimicrobial agents. From January to May 2020, a cross-sectional study was carried out in three dairy cattle farms and four poultry farms in different districts of northern Egypt to assess the prevalence of ESBLs, AmpC beta-lactamase-producing E. coli and Klebsiella in livestock, poultry, and human contacts, and to investigate the genetic relatedness of the recovered isolates. In total, 140 samples were collected, including human fecal samples (n = 20) of workers with intimate livestock contact, cattle rectal swabs (n = 34), milk (n = 14), milking machine swabs (n = 8), rations (n = 2), and water (n = 2) from different cattle farms, as well as cloacal swabs (n = 45), rations (n = 5), water (n = 5) and litter (n = 5) from poultry farms. The specimens were investigated for ESBL-producing E. coli and Klebsiella using HiCrome ESBL media agar. The agar disk diffusion method characterized the isolated strains for their phenotypic antimicrobial susceptibility. The prevalence of ESBL-producing Enterobacteriaceae was 30.0%, 20.0%, and 25.0% in humans, cattle, and poultry, respectively. Further genotypic characterization was performed using conventional and multiplex PCR assays for the molecular identification of ESBL and AmpC genes. The majority of the ESBL-producing Enterobacteriaceae showed a multi-drug resistant phenotype. Additionally, blaSHV was the predominant ESBL genotype (n = 31; 93.94%), and was mainly identified in humans (n = 6), cattle (n = 11), and poultry (14); its existence in various reservoirs is a concern, and highlights the necessity of the development of definite control strategies to limit the abuse of antimicrobial agents.
Collapse
|
44
|
Hao Y, Jiang Y, Ishaq HM, Liu W, Zhao H, Wang M, Yang F. Molecular Characterization of Klebsiella pneumoniae Isolated from Sputum in a Tertiary Hospital in Xinxiang, China. Infect Drug Resist 2022; 15:3829-3839. [PMID: 35880230 PMCID: PMC9307913 DOI: 10.2147/idr.s370006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background In clinical practice, Klebsiella pneumoniae (K. pneumoniae) is a common opportunistic pathogen responsible for nosocomial infection. This study aimed to analyze the trend of antimicrobial susceptibility and virulent characteristics of K. pneumoniae isolated from sputum. In clinics, data of the current study will help in the clinical treatment of K. pneumoniae infection. Results The current research showed the resistance rates of the 20 K. pneumoniae isolates against 13 antibiotics ranged from 15.0% to 80.0%. The detection rate of extended spectrum β-lactamases (ESBLs) was up to 55%, while blaSHV was the most prevalent ESBLs genes. Four strains (25.0%) of K. pneumoniae presented hypermucoviscous phenotype (HMV). Moreover, 18 strains (90.0%) showed the stronger biofilm-forming ability. wzi, wabG, fimH, mrkD were the most prevalent virulence genes in current research. Ten strains were found capsule typing and the higher genetic diversity of colonizing K. pneumoniae in this region. K19 exhibited a strong positive correlation with imipenem resistance, while K1 showed strong correlations with magA . Furthermore, HMV phenotype showed significantly negative correlations with multidrug-resistant. Conclusion In the hospital, the antibiotic resistance of K. pneumoniae (isolated from sputum samples) has a serious concern. Additionally, strains of K. pneumoniae show the higher genetic diversity.
Collapse
Affiliation(s)
- Yuqi Hao
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Yong'ang Jiang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Hafiz Muhammad Ishaq
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Wenke Liu
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Huajie Zhao
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Mingyong Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, School of Laboratory Medicine, Xinxiang Medical University,, Xinxiang, People's Republic of China
| | - Fan Yang
- Xinxiang Key Laboratory of Pathogenic Biology, Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People's Republic of China
| |
Collapse
|
45
|
Lin SY, Lu PL, Wu TS, Shie SS, Chang FY, Yang YS, Chiang TT, Wang FD, Ho MW, Chou CH, Liu JW, Shi ZY, Chuang YC, Tang HJ. Correlation Between Cefoperazone/Sulbactam MIC Values and Clinical Outcomes of Escherichia coli Bacteremia. Infect Dis Ther 2022; 11:1853-1867. [PMID: 35864347 DOI: 10.1007/s40121-022-00672-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The clinical efficiency of cefoperazone/sulbactam (CPZ/SUL) against Escherichia coli bacteremia was unknown. This study aimed to explore the relationship between CPZ/SUL MIC values and clinical outcomes in Escherichia coli bacteremia. METHODS A multicenter, retrospective, observational cohort study was conducted in Taiwan between January 2015 and December 2020. Patients treated with CPZ/SUL for E. coli bacteremia were enrolled in the analysis. The CPZ/SUL MICs were determined by using the agar dilution method. The primary outcome was 30-day mortality. RESULTS Among 247 isolates, 160 (64.8%) isolates were susceptible, 8 (3.2%) were intermediate, and 79 (32.0%) were resistant to cefoperazone. The activity of cefoperazone against cefoperazone-non-susceptible E. coli (n = 87) was restored upon combination with sulbactam, with susceptibility ranging from 0% to 97.7%. The 30-day mortality was 4.5% (11/247) and overall clinical success rate was 91.9% (227/247). Multivariate Cox proportional-hazards model revealed that heart failure [adjusted relative risk (ARR), 5.49; 95% confidence interval (CI) 1.31-23.02; p = 0.020], malignancy (ARR 7.50; 95% CI 2.02-27.80; p = 0.003), SOFA score (ARR 1.29; 95% CI 1.09-1.52; p = 0.003), and CPZ/SUL MIC ≥ 64 mg/L (ARR 11.31; 95% CI 1.34-95.52; p = 0.026) were independently associated with 30-day mortality. No statistically significant differences in 30-day mortality were found between groups with or without cefoperazone susceptibility (3.4% vs. 5.0%, p = 0.751, respectively). CONCLUSIONS Patients with E. coli bacteremia who were treated with CPZ/SUL had a favorable outcome when the MICs of the isolates were ≤ 16 mg/L and a high risk of mortality with MICs ≥ 64 mg/L.
Collapse
Affiliation(s)
- Shang-Yi Lin
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Po-Liang Lu
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shian-Sen Shie
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Sung Yang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tsung-Ta Chiang
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital and National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Mao-Wang Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Hui Chou
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jien-Wei Liu
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Zhi-Yuan Shi
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Hung-Jen Tang
- Department of Medicine, Chi Mei Medical Center, Tainan, Taiwan. .,Division of Infectious Diseases, Department of Internal Medicine, Department of Medical Research, Chi Mei Medical Center, Tainan, No. 901, Zhonghua Rd., Yongkang Dist., Tainan City, 71004, Taiwan.
| |
Collapse
|
46
|
Extended Spectrum β-Lactamase Producing Lactose Fermenting Bacteria Colonizing Children with Human Immunodeficiency Virus, Sickle Cell Disease and Diabetes Mellitus in Mwanza City, Tanzania: A Cross-Sectional Study. Trop Med Infect Dis 2022; 7:tropicalmed7080144. [PMID: 35893652 PMCID: PMC9332460 DOI: 10.3390/tropicalmed7080144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 11/16/2022] Open
Abstract
Rectal carriage of extended spectrum β-lactamase-lactose fermenters (ESBL-LF) is the major risk factor for the development of subsequent endogenous infections. This study determined the patterns and factors associated with the rectal carriage of ESBL-LF among children with Human Immunodeficiency Virus (HIV), Diabetes Mellitus (DM), and Sickle Cell Disease (SCD) attending clinics at different health care facilities in the city of Mwanza, Tanzania. A cross-sectional study was conducted among children living with HIV (n = 236), DM (n = 42) and SCD (n = 126) between July and September 2021. Socio-demographic and clinical data were collected using a structured questionnaire. Rectal swabs/stool samples were collected and processed to detect the rectal carriage of ESBL-LF following laboratory standard operating procedures (SOPs). Descriptive statistical analysis was conducted using STATA 13.0. The overall prevalence of ESBL-LF carriage was 94/404 (23.3%). Significantly higher resistance was observed to ampicillin, trimethoprim-sulfamethoxazole, and tetracycline among Enterobacteriaceae isolated from HIV infected children than in non-HIV infected children (p < 0.05). The commonest ESBL allele 45/62 (72.6%) detected was blaCTX-M. Generally, a parent’s low education level was found to be associated with ESBL-LF colonization among children living with HIV; (OR 4.60 [95%CI] [1.04−20], p = 0.044). A higher proportion of ESBL-LF from DM 10/10 (100%) carried ESBL genes than ESBL-LF from HIV 37/56 (66.1%) and SCD 15/28 (53.6%), p = 0.02. There is a need to collect more data regarding trimethoprim-sulfamethoxazole (SXT) prophylaxis and antibiotic resistance to guide the decision of providing SXT prophylaxis in HIV-infected children especially at this time, when testing and treatment is carried out.
Collapse
|
47
|
Shinohara DR, de Carvalho NMM, Mattos MDSFD, Fedrigo NH, Mitsugui CS, Carrara-Marroni FE, Nishiyama SAB, Tognim MCB. Evaluation of phenotypic methods for detection of polymyxin B-resistant bacteria. J Microbiol Methods 2022; 199:106531. [PMID: 35772571 DOI: 10.1016/j.mimet.2022.106531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 12/27/2022]
Abstract
Determination of sensitivity to polymyxins has always been a challenge, especially in clinical laboratory routines. This study evaluated two rapid, simple, and inexpensive phenotypic methods to test polymyxin B (PMB) susceptibility in Enterobacterales and non-fermenting Gram-negative bacilli. One hundred isolates were used in the tests. The isolates were collected in three hospitals in southern and southeastern Brazil from 1995 to 2019. We compared broth microdilution (reference method) with the broth disk elution test and modified drop test, using polymyxin B -disk or PMB -powder in 2 concentrations (12 and 16 μg/ml). For the broth disk elution and modified drop test with the concentration of 12 μg/ml, categorical agreement values exceeded 90%. The modified drop test with a concentration of 12 μg/ml and broth disk elution may be excellent for initial screening of polymyxin-resistance in laboratory routines. Moreover, these methods are simple and use inexpensive supplies, and may optimize therapeutic decisions.
Collapse
|
48
|
Bakry N, Awad W, Ahmed S, Kamel M. The role of Musca domestica and milk in transmitting pathogenic multidrug-resistant Escherichia coli and associated phylogroups to neonatal calves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39593-39609. [PMID: 35107727 DOI: 10.1007/s11356-022-18747-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Escherichia coli, as a global source of antimicrobial resistance, is a serious veterinary and public health concern. The transmission of pathogenic multidrug-resistant (MDR) E. coli within diarrheic calves and its correlation with Musca domestica and milk strains have been investigated. In total, 110, 80, and 26 E. coli strains were obtained from 70 rectal swabs from diarrheic calves, 60 milk samples and 20 M. domestica, respectively. Molecular pathotyping of E. coli revealed the presence of pathogenic E. coli with a higher percentage of shigatoxigenic strains within diarrheic calves and M. domestica at 46.4% and 34.6%, respectively. Phenotypic antimicrobial resistance revealed higher β-lactams resistance except for cefquinome that exhibited low resistance in M.domestica and milk strains at 30.8% and 30%, respectively. The extended-spectrum cephalosporin (ESC) resistant strains were detected within fecal, M. domestica, and milk strains at 69.1%, 73.1%, and 71.3%, respectively. All E. coli strains isolated from M. domestica exhibited MDR, while fecal and milk strains were harboring MDR at 99.1% and 85%, respectively. Molecular detection of resistant genes revealed the predominance of the blaTEM gene, while none of these strains harbored the blaOXA gene. The highest percentages for blaCTXM and blaCMYII genes were detected in M. domestica strains at 53.8% and 61.5%, respectively. Regarding colistin resistance, the mcr-1 gene was detected only in fecal and milk strains at 35.5% and 15%, respectively. A high frequency of phylogroup B2 was detected within fecal and M. domestica strains, while milk strains were mainly assigned to the B1 phylogroup. Pathogenic E. coli strains with the same phenotypic and genotypic antimicrobial resistance and phylogroups were identified for both diarrheic calves and M. domestica, suggesting that the possible role of M. domestica in disseminating pathogenic strains and antimicrobial resistance in dairy farms.
Collapse
Affiliation(s)
- Noha Bakry
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Walid Awad
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samia Ahmed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
49
|
Joseph J, Kalyanikutty S. Occurrence of multiple drug-resistant Shiga toxigenic Escherichia coli in raw milk samples collected from retail outlets in South India. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2150-2159. [PMID: 35602458 PMCID: PMC9114227 DOI: 10.1007/s13197-021-05226-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/30/2021] [Accepted: 08/02/2021] [Indexed: 05/13/2023]
Abstract
The prevalence of Shiga-toxigenic E. coli (STEC), harbouring multidrug-resistant genes in raw milk collected from household vendors and cooperative milk marketing societies in Ernakulam District, Kerala, India, has been investigated. A higher prevalence of STEC pathotypes, with 47.16% (20 out of 42 samples), was observed in raw milk. A total of 157 STEC isolates were identified, which included notorious pathoserotypes, E. coli O157 group (10.19%) and E. coli non-O157 group 5.73%). All of the tested STEC isolates were multidrug-resistant and showed resistance to at least six different antibiotics. Two of the isolates showed resistance to 14 different antibiotics tested. Cent percentage resistance was observed for Penicillin, Cefalexine, Rifampicin, Methicillin, and Novobiocin. We observed in phenotypic assays that 26.75% of STEC isolates are ESBL producers. The bla TEM gene, a characteristic marker for ESBL production, was detected in 42.85% of the isolates. The study points out the risk of virulent and multidrug-resistant STEC in raw milk and the need for stringent quality surveillance and assurance plans to alleviate the potential public health threat. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-021-05226-x.
Collapse
Affiliation(s)
- Jomy Joseph
-
Department of Microbiology (Research Centre affiliated to Mahatma Gandhi University, Kerala), Sree Sankara College, Kalady, Ernakulam, 683574 Kerala India
| | - Sudha Kalyanikutty
- Department of Biotechnology, St. Peter’s College, Kolenchery, Ernakulam, 682311 Kerala India
| |
Collapse
|
50
|
Uyanik T, Çadirci Ö, Gücükoğlu A, Can C. Investigation of major carbapenemase genes in ESBL-producing Escherichia coli and Klebsiella pneumoniae strains isolated from raw milk in Black Sea region of Turkey. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|